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Abstract

We define new energy momentum surface density and quasilocal

mass for the boundary surface of a spacelike region in spacetime. Iso-

metric embeddings of such a surface into the Minkowski space are

used as reference surfaces in the definition. When the reference sur-

face lies in a flat three-dimensional space slice of the Minkowski space,

our expression recovers the Brown-York and Liu-Yau quasilocal mass.

Moreover, we prove the positivity of the new quasilocal mass under

the dominant energy condition and show that it is zero for surfaces in

the Minkowski space.

1 Introduction

The notion of quasi-local energy for a bounded space-like region is essential
to several major unsettled problems in general relativity. In [3], Brown and
York proposed a quasi-local energy-momentum based on the Hamiltonian
formulation of general relativity. Liu and the second author [8] (see also
Kijowski [6]) found a gauge independent definition based on attempts to
understanding the second author’s work on the existence of black holes due
to boundary effect. The Brown York mass is proved to be positive in the
time-symmetric case by Shi and Tam [13]; Liu and the second author also
proved the positivity of their mass under the more physical and desirable
dominant energy condition. However, it was shown that surfaces exist in
R

3,1 for which the Liu-Yau mass (as well as the Brown-York mass) is strictly
positive [9]. In the definitions of the Brown-York mass and the Liu-Yau mass,
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the boundary surface is assumed to have positive Gauss curvature and the
(essentially unique) isometric embedding into R

3 as a flat three-dimensional
space slice in R

3,1 is used as a reference. In this letter, we define new notions
of energy-momentum surface density and quasi-local mass using isometric
embeddings of surfaces into R

3,1 as references. This involves the precise
description of isometric embeddings into R

3,1 in terms of the time function
on Σ and canonical choice of gauges in R

3,1 and the physical space so that
the expansions of the surfaces in the corresponding directions are the same.
We prove the new quasi-local mass is positive under the dominant energy
condition and show that it is zero for surfaces in R

3,1.

2 Hamiltonian formulation revisited

We recall (e.g. (E.1.42) [16]) that the action for a spacetime region M with
boundary ∂M is given by

S =
1

16π

∫

M

R+
1

8π

∮

∂M

K + Sm

where R is the scalar curvature of the spacetime Lorentzian metric, K is
the trace of the extrinsic curvature of ∂M , and Sm is the matter action.
We consider a spacetime region M that is foliated by a family of spacelike
hypersurface Ωt for t in the time interval [t′, t′′]. The boundary of M consists
of Ωt′ , Ωt′′ , and

3B. Let uµ denote the future pointing timelike unit normal
to Ωt. We assume uµ is tangent to 3B. Denote the boundary of Ωt by Σt

which is the intersection of Ωt and
3B. Let vµ denote the outward pointing

spacelike unit normal of Σt such that uµv
µ = 0. Denote by k the trace of

the two-dimensional extrinsic curvature of Σt in Ωt in the direction of vµ.
Our choice makes k = 2 for the sphere of radius one in R

3. Denote the
Riemannian metric and the extrinsic curvature on Ωt by gµν and Kµν =
∇µuν , respectively. Both gµν and Kµν are purely spatial and can be viewed
alternatively as tensors on Ωt, denoted by gij and Kij, where the indices i, j
refer to coordinates on Ω. K = gijKij is the trace of the extrinsic curvature.
Let tµ be a timelike vector field satisfying tµ∇µt = 1. tµ can be decomposed
into the lapse function and shift vector tν = Nuν +Nν . The Hamiltonian at
t is then given by

H = −∂S

∂t
.

2



The calculation in Brown-York [3] (see also Hawking-Horowitz [5]) leads to

H =

∫

Ωt

(NH +NµHµ)−
1

8π

∫

Σt

[Nk −Nµvν(Kµν −Kgµν)] (2.1)

where H is the Hamiltonian constraint and Hµ the momentum constraint.
On a solution M of the Einstein equation both H and Hµ vanish. Equation
(2.1) is the same as equation (2.11) in [5] ( see also equation (4.13) in [3]
in which the reference Hamiltonian is already subtracted). Notice that our
k is the same as in [8] and the 2K in [5], but is the negative of the k in
[3]. To define the quasi-local energy, we need to find a reference action S0

that corresponds to fixing the metric on 3B and compute the corresponding
reference Hamiltonian H0. The energy is then

E =
∂

∂t
(S − S0) = H −H0.

In Brown-York’s definition of quasilocal energy, the reference is taken to be
an isometric embedding of Σ into R

3, considered as a flat three-dimensional
slice with Kµν = 0 in a flat spacetime. Choosing N = 1 and Nµ = 0, the
Brown-York quasilocal energy is

1

8π

∫

Σt

(k0 − k).

A similar choice of reference leads to the expression in (2.14) of [5]. References
such as surfaces in the light cones ([2] and [7]) and other conditions [6] have
been proposed. However, the Brown-York energy for the examples [9] of
surfaces in the Minkowski are in general non-zero for all these references.

We shall use a different reference to define our quasilocal energy. We
suppress the subindex t and rewrite the Hamiltonian (2.1) on a solution as

H =
1

8π

∫

Σ

[kuµ + vν(Kµ
ν −Kδµν )]tµ. (2.2)

This is an integral on Σ that depends on the choices of a future pointing
timelike unit normal uµ (vµ is then determined by the outward pointing and
the orthogonal uµvµ = 0 conditions) and a time-like vector field tµ along Σ.
Given a space-like surface Σ in a spacetime M , we shall define two types
of quasi-local energy using isometric embeddings into R

3,1, the first type
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corresponds to an arbitrary choice of uµ while the second type corresponds
to a canonical choice of uµ. When the embedding falls in a flat slice R

3, the
first type recovers the Brown-York quasi-local energy and the second type
recovers the Liu-Yau quasi-local energy. In both cases, the tµ is obtained by
transplanting a Killing vector field in R

3,1 back to the physical space through
the isometric embedding of Σ.

3 Definition in general gauge

We first look at the case when Σ bounds a space-like hypersurface Ω and uν

is the future-pointing time-like unit normal of Ω. Consider the four vector
field

kuν + vµ(Kν
µ −Kδνµ) (3.1)

on Σ. The definition of this vector field only depends on the two normals uν

and vν along Σ. In particular, only the first order information of Ω along Σ
is needed. The normal component (with respect to Σ) of (3.1) is

jν = kuν − pvν ,

where p = K −Kµνv
µvν . jν , as well as the mean curvature vector field

hν = −kvν + puν ,

is defined independent of the choice of gauge uν and vν . Given an isometric
embedding i : Σ →֒ R

3,1 of Σ. We fix a constant timelike unit vector tν0
in R

3,1 and choose a preferred pair of normals uν
0 and vν0 along i(Σ) in the

following way. Take a space-like hypersurface Ω0 with ∂Ω0 = i(Σ), and such
that the outward pointing spacelike unit normal vν0 of ∂Ω0 satisfies tνv

ν
0 = 0.

Let uν
0 be the future pointing timelike unit normal of Ω0 along i(Σ). We can

similarly form
k0u

ν
0 + v

µ
0 ((K0)

ν
µ −K0δ

ν
µ)

in terms of the corresponding geometric quantities on Ω0 and i(Σ). (u0
ν , v0

ν)
along i(Σ) in R

3,1 is the reference normal gauge we shall fix and it depends
on the choice of the pair (i, tν0). Four-vectors in R

3,1 and M , along i(Σ) and
Σ respectively, can be identified through

u0
ν → uν , v0

ν → vν , (3.2)
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and the identification of tangent vectors on i(Σ) and Σ. For example, the
four-vector field tν0 = N0u

ν
0 + Nν

0 in R
3,1 with lapse function N0 and shift

vector Nν
0 is identified with the four-vector field tν = N0u

ν +Nν
0 in M with

the same lapse function and shift vector.

Definition 3.1 The energy-momentum surface density vector in the uν gauge
is defined to be

1

8πG
[kuν + vµ(Kν

µ −Kδνµ)− k0u
ν
0 + v

µ
0 ((K0)

ν
µ −K0δ

ν
µ)]

as a four vector field of M along Σ through the identification (3.2).

Definition 3.2 The quasi-local energy-momentum in the uν gauge is defined
to be

1

8πG

∫

Σ

[kuν + vµ(Kν
µ −Kδνµ)− k0u

ν
0 + v

µ
0 ((K0)

ν
µ −K0δ

ν
µ)](t0)ν (3.3)

where the identification (3.2) is used.

When the reference isometric embedding lies in a flat space slice on which the
time-function t is a constant, tν0 = uν

0 and (3.3) reduces to the Brown-York
quasi-local energy 1

8πG

∫
Σ
(k0 − k).

4 Definition in the canonical gauge

When the mean curvature vector hν of Σ in M is spacelike, a reference
isometric embedding i : Σ →֒ R

3,1 and tν0 ∈ R
3,1 determines a canonical

future-directed time-like normal vector field ūν in M along Σ. Indeed, there
is a unique ūν that satisfies

hν ū
ν = (h0)νu0

ν (4.1)

where hν
0 is the mean curvature vector of i(Σ) and uν

0 is the same as in
the previous section. Physically, (4.1) means the expansions of Σ ⊂ N and
i(Σ) ⊂ R

3,1 along the respective directions ūν and u0
ν are the same. This

condition corresponds to fixing the metric on 3B up to the first order in
choosing the reference Hamiltonian in §2. ūν shall be called the canonical
gauge with respect to the pair (i, tν0). For any surface in the Minkowski space,
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the canonical gauge is the same as the uν
0 gauge we choose in the previous

section. We can take v̄ν to be the space-like normal vector that is orthogonal
to ūν and satisfies v̄νhν < 0. Shrink Σ in the direction v̄ν to get a space-like
hypersurface Ω̄ that is locally defined near Σ, we can similarly form

k̄ūν + v̄µ(K̄ν
µ − K̄δνµ)

where K̄ν
µ, K̄, and k̄ are the corresponding data on Ω̄. The trace of the

two-dimensional extrinsic curvature k̄ of Σ with respect to v̄ν is then given
by

k̄ = −v̄νhν > 0.

Definition 4.1 The energy-momentum surface density vector in the canon-
ical gauge is defined to be

1

8π
[k̄ūν + v̄µ(K̄ν

µ − K̄δνµ)− k0u
ν
0 − v

µ
0 ((K0)

ν
µ −K0δ

ν
µ)]

where ūν is given by (4.1) and the identification (3.2) is used.

Definition 4.2 The quasi-local energy-momentum of Σ in the canonical gauge
with respect to (i, tν0) is defined to be

1

8π

∫

Σ

[k̄ūν + v̄µ(K̄ν
µ − K̄δνµ)− k0u

ν
0 − v

µ
0 ((K0)

ν
µ −K0δ

ν
µ)](t0)ν , (4.2)

where the identification (3.2) is used.

The mean curvature vector hν being spacelike is equivalent to ρµ > 0
where ρ and µ are the expansion along the future and past outer null-normals
of Σ, respectively ( so-called the Newman-Penrose spin coefficients, see [11]
or [12]). Indeed the Lorentzian norm of the mean curvature vector is hνh

ν =
8ρµ. When the reference isometric embedding i : Σ →֒ R

3,1 has its image
i(Σ) in a flat space slice, we have tν0 = uν

0. The canonical gauge ū
ν = 1√

8ρµ
jν ,

v̄ν = − 1√
8ρµ

hν , and k̄ =
√
8ρµ. In this case, (4.2) recovers the Liu-Yau

quasi-local mass
∫
Σ
(k0 −

√
8ρµ).
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5 Positivity of quasi-local mass

Unlike Brown-York or Liu-Yau, we do not require the surface Σ to have pos-
itive Gauss (intrinsic) curvature and apply the isometric embedding theorem
of Weyl. Instead, we prove a uniqueness and existence theorem of isomet-
ric embeddings into the Minkowski space under a more general convexity
condition.

Definition 5.1 Let tν0 be a constant timelike unit vector in R
3,1. An isomet-

ric embedding i : Σ →֒ R
3,1 is said to have convex shadow in the direction

of tν0 if the projection of i(Σ) onto the orthogonal complement R3 of tν0 is a
convex surface.

The set of isometric embedding with convex shadows is parametrized by
functions satisfying an convexity condition.

Theorem 5.1 Let σab be a Riemannian metric on a two-sphere Σ. Given
any function τ with

κ+ (1 + σab∇′
aτ∇′

bτ)
−1det(∇′

a∇′
bτ)

det σab
> 0 (5.1)

where κ is the Gauss curvature and ∇′ is the covariant derivative of the
metric σab. Then there exists a unique space-like isometric embedding i :
Σ →֒ R

3,1 such that the time function restricts to τ on Σ.

Proof. We prove the uniqueness part first. Suppose there are two such iso-
metric embeddings i1 and i2 with the same time function. It is not hard
to check that the condition (5.1) implies the projections of i1(Σ) and i2(Σ)
onto the orthogonal complement of the time direction are isometric as con-
vex surfaces in R

3. By Cohn-Vossen’s rigidity theorem, the projections are
congruent by a rigid motion of R3. Since they have the same time func-
tions, i1(Σ) and i2(Σ) are congruent by a Lorentizian rigid motion of R3,1.
Now we turn to the existence part. The condition (5.1) implies the metric
σab + ∇′

aτ∇′
bτ has positive Gauss curvature, and thus can be isometrically

embedded into R
3. We may assume this R3 is a space-slice in the Minkowski

space, so the induced metric on the graph of τ is exactly σab. ✷

In order the recognize a surface in the Minkowski space, we solve the
Dirichlet boundary value problem for the Jang’equation. Given a hypersur-
face (Ω, gij, Kij) in M , we recall that the Jang’s equation asks for a solution
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f of

3∑

i,j=1

(gij − f if j

1 + gijDifDjf
)(

DiDjf

(1 + gijDifDjf)1/2
−Kij) = 0, (5.2)

where D is the covariant derivative of gij. The graph of f in the space Ω×R

is denoted by Ω̃. In this article, we are interested in the case when ∂Ω = Σ
and the prescribed value of f on the boundary Σ is given. Notice that if Σ
is in R

3,1, and if we take the time function τ as the boundary value to solve
the Jang’s equation, then Ω̃ will be a flat domain in R

3.

Definition 5.2 Given a space-like two surface Σ in a spacetime M , an iso-
metric embedding i : Σ →֒ R

3,1, and a constant timelike unit vector tν0 ∈ R
3,1.

Let τ denote the time function restricted on Σ. (i, tν0) is said to be an admis-
sible pair for Σ if the followings are satisfied
(1) i has convex shadow in the direction of tν0.
(2) Σ bounds a space-like domain Ω in M such that the Jang’s equation (5.2)
with the Dirichlet boundary data τ is solvable on Ω (with possible apparent
horizons in the interior).
(3) Suppose f is the solution of the Jang’s equation in (2) and vν is the
outward unit normal of Σ that is tangent to Ω, and uν is the future-directed
time-like normal of Ω in N . Consider the new gauge u′ν given by

u′ν = sinh φvν + coshφuν, and v′ν = coshφvν + sinh φuν

where

sinh φ =
fv√

1 + σab∇′
aτ∇′

bτ
,

and fv is the normal derivative of f in the direction of vν. We require that

k′N0 −Nν
0 v

′µ(K ′
µν −K ′g′µν) > 0, (5.3)

where k′, g′µν , K
′
µν, and K ′ are the corresponding data on Ω′ spanned by v′ν,

and N0 and Nν
0 are the lapse function and shift vector of tν0 = N0u

ν
0 +Nν

0 .

Remark 5.1 By a barrier argument, we show that Ω satisfies (2) if on Σ,
k > 1

tata(1+tata)
(Kabt

atb)+Kabu
aub where ua is a two-vector such that taua = 0

and uaua = 1, and ta = πa
ν t

ν
0 is the projection of tν0 onto Σ. Also by elliptic

estimates, (3) will be satisfied if (5.3) holds for uν and vν and σab∇aτ∇bτ is
small enough. In particular, if Σ has space-like mean curvature vector in M ,
then any isometric embedding i whose image lies in an R

3 is admissible.
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We emphasize that although the definition of admissible pairs involves
solving the Jang’s equation, the results only depend on the solvability but not
on the specific solution. The expression of quasi-local energy only depends
on the canonical gauge ūν .

Theorem 5.2 Suppose M is a time-orientable spacetime that satisfies the
dominant energy condition. Suppose Σ has spacelike mean curvature vec-
tor in M . Then the quasi-local energy-momentum (4.2) with respect to any
admissible pair (i, tν0) is positive.

Proof. We take the time function τ on i(Σ) and consider the Dirichlet prob-
lem of the Jang’s equation (5.2) over (Ω, gij, Kij) with f = τ on Σ. Condition

(2) guarantees the equation is solvable on Ω. Denote by Ω̃ the graph of the
solution of the Jang’s equation. Schoen and Yau [14] showed that if M sat-

isfies the dominant energy condition, there exists a vector filed X on Ω̃ such
that

R ≥ 2|X|2 − 2divX (5.4)

where R is the scalar curvature of Ω̃.
Let Σ̃ be the graph of τ over Σ and denote the outward normal of Σ̃ with

respect to Ω̃ by ṽi and the mean curvature of Σ̃ with respect to ṽi by k̃. We
show that the condition (3) guarantees that k̃ − ṽiXi > 0. Then we make
use of another important property of the canonical gauge that

∫

eΣ

(k̃ − ṽiXi) ≥ −
∫

Σ

[k̄ūν + v̄µ(K̄ν
µ − K̄δνµ)](t0)ν . (5.5)

This is why the eventual definition of the quasi-local energy momentum is
independent of the solution of the Jang’s equation. On the other hand, it
is not hard to check that −

∫
Σ
[k0u0

ν + v0
µ(K0

ν
µ − K0δ

ν
µ)](t0)ν =

∫
bΣ
k̂ (we

were motivated by Gibbon’s paper [4] to study this expression, however, the

equality he obtained is different from ours). Here Σ̂ is the image of the

projection of i(Σ) onto the orthogonal complement of tν0 and k̂ is the mean

curvature of Σ̂. Therefore the proof is reduced to the inequality
∫

bΣ

k̂ ≥
∫

eΣ

(k̃ − ṽiXi).

We notice that the Riemannian metrics on Σ̃ and Σ̂ are the same. The proof
will be completed by the following comparison theorem for the solution of
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Jang’s equation. Suppose Ω̃ is a Riemannian three-manifold with boundary
Σ̃ and suppose there exists a vector field X on Ω̃ such that (5.4) holds on Ω̃
and

k̃ > ṽiXi

on Σ̃. Suppose the Gauss curvature of Σ̃ is positive and k0 is the mean
curvature of the isometric embedding of Σ̃ into R

3. Then

∫

eΣ

k0 ≥
∫

eΣ

(k̃ − ṽiXi).

When X = 0, the theorem was proved by Shi-Tam [13]. In the general case,
Liu-Yau [8] essentially proved the theorem by conformal changing the scalar
curvature to zero. The proof of Theorem 6.2 in [15] gives a direct proof
without conformal change in a slightly different setting. ✷

Definition 5.3 The quasi-local mass of Σ in M is defined to be the infimum
of the quasi-local energy-momentum (4.2) among all admissible pairs (i, tν0).

Under the assumption of Theorem 5.2, we obtain

Corollary 5.1 If the set of admissible pairs is nonempty, then the quasi-
local mass of Σ in M is positive. In particular, this is the case when Σ has
positive Gauss curvature.

Proof. The first part is clear from the definition. When Σ has positive Gauss
curvature, we can use Weyl’s isometric embedding theorem to embed Σ into
a flat space-slice R

3 on which the time function in R
3,1 is a constant. Thus

the admissible set is non-empty by Remark 5.1. ✷

6 Properties of the new quasi-local mass

The expression (4.2) contains the desired correction term so the examples of
surfaces in R

3,1 found in [9] have zero quasi-local mass. In calculating the
large or small sphere limits, only the asymptotic expansions of the geometric
data on the isometric embedding are needed. Therefore the analysis in [2], [3],
and [5] apply to the current situation and the mass has the desired limits. To
summarize, the new quasi-local mass given in Definition 5.3 has the following
properties:
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1. Suppose Σ is a space-like two-surface which bounds a spacelike hyper-
surface in a spacetime M . The quasi-local mass is defined when the mean
curvature vector of Σ in M is spacelike (or ρµ > 0 in terms of the Newman-
Penrose spin coefficients, see [11] or [12]). If M satisfies the dominant energy
condition and Σ has positive intrinsic curvature, then the quasi-local mass is
positive.

2. The definition of the quasi-local mass is independent of whichever spacelike
hypersurface Σ bounds in M .

3. Any space-like two-surface in R
3,1 with convex shadow in some time-

direction (see Definition 5.1) has zero quasi-local mass.

4. The quasi-local mass has the small sphere limits recovering the matter
energy-momentum tensor in the presence of matter and the Bel-Robinson
tensor in vacuo, and the large sphere limits approaching the ADM mass in
the asymptotically flat case and the Bondi mass in the asymptotically null
case.

We remark that the admissible pairs indeed form an open subset of the
set of functions τ on Σ that satisfies (5.1). The condition that the admissible
set is nonempty in Corollary 5.1 is a very mild assumption and the quasilocal
mass should be positive regardless of the sign of the intrinsic curvature of Σ.

The argument that the vanishing of the quasi-local mass implies M is
flat along Σ requires some further study of the regularity of the minimiz-
ing isometric embedding which will be discussed later. The Euler-Lagrange
equation for the minimizing isometric embedding (x, y, z, τ) : Σ →֒ R

3,1 is:

∇′
ax∇′

bx+∇′
ay∇′

by +∇′
az∇′

bz −∇′
aτ∇′

bτ = σab, a, b = 1, 2

σab∇′
a

[
∇′

bθ +
∇′

bτ√
1 + σcd∇′

cτ∇′
dτ

cosh θ
√

8ρµ+ αb

]

= (k̂σ̂ab − σ̂aeσ̂bf k̂ef)
∇′

a∇′
bτ√

1 + σcd∇′
cτ∇′

dτ

(6.1)

where sinh θ =
σab∇′

a∇′

b
τ

√
8ρµ

√
1+σcd∇′

cτ∇′

d
τ
, σ̂ab = σab + ∇′

aτ∇′
bτ is the metric on

the projection Σ̂, k̂ab is the two-dimensional extrinsic curvature of Σ̂, αb =
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−1
8ρµ

π
µ
b hν∇µj

ν , and π
µ
b is the projection onto Σ. This is a fourth-order ellip-

tic system with four equations and four unknown functions. When a Σ in
spacetime is given, we can take the data σab, ρµ, and αb and solve the elliptic
system for the minimizing isometric embedding. Once the minimizing iso-
metric embedding is obtained, a quasi-local energy-momentum four-vector
can be defined.

The new quasi-local mass on a concentric round sphere of the Schwarzschild
solution is the same as the Brown-York mass and the Liu-Yau mass. Al-
though this does not give the usual Schwarzschild mass and is monotone
decreasing as the sphere becomes larger, it was pointed out in [10] the an-
swer coincides with the binding energy of spherical stars and is perhaps the
only quasi-local mass that can tell us about the possible interiors enclosed
by the surface.

We wish to thank Richard Hamilton for helpful discussions on isometric
embeddings.
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