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THE MINKOWSKI FORMULA AND THE QUASI-LOCAL MASS

PO-NING CHEN, MU-TAO WANG, AND SHING-TUNG YAU

Abstract. In this article, we estimate the quasi-local energy with reference to the
Minkowski spacetime [16, 17], the anti-de Sitter spacetime [4], or the Schwarzschild space-
time [3]. In each case, the reference spacetime admits a conformal Killing–Yano 2-form
which facilitates the application of the Minkowski formula in [15] to estimate the quasi-
local energy. As a consequence of the positive mass theorems in [9, 13] and the above
estimate, we obtain rigidity theorems which characterize the Minkowski spacetime and
the hyperbolic space.

1. Introduction

In this article, we estimate the quasi-local mass with reference to the Minkowski space-
time [16, 17], the anti-de Sitter spacetime [4], or the Schwarzschild spacetime [3]. In each
case, the reference spacetime admits a conformal Killing–Yano 2-form. As a result of this
“hidden symmetry”, the classical Minkowski formula is extended to spacelike codimension-
two submanifolds in these reference spacetimes by Wang, Wang and Zhang in [15]. Our
estimate of the quasi-local energy is based on the k = 2 Minkowski formula for surfaces in
these reference spacetimes.

In the classical Minkowski formula [11], the mean curvature H and the Gauss curvature
K of a surface Σ in R

3 are related as follows:
∫

HdΣ =

∫
K(X · e3)dΣ,

where X is the position vector of R3 and e3 is the outward unit normal of the surface Σ.
A major application of the classical Minkowski formula is the rigidity of isometric convex
surfaces in R

3, namely, two convex surfaces Σ1 and Σ2 in R
3 with the same induced metric

are the same up to an isometry of R3 [5]. The Minkowski formula is used to evaluate the
integral of the difference of the mean curvatures.

Let H1 and H2 be the mean curvatures, and let h1 and h2 be the second fundamental
forms of the surfaces Σ1 and Σ2 given by the two embeddings X1,X2 into R

3, respectively.
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It follows from the Minkowski formula that
∫

(H1 −H2)dΣ =

∫
det(h1 − h2)(X1 · e3)dΣ.

Using the Gauss equations of the surfaces, we can conclude that

det(h1 − h2) ≤ 0.

Reversing the order of two surfaces, we obtain h1 = h2 and thus the two embeddings differ
by an isometry of R3. In this article, we use the Minkowski formula in a similar manner
to evaluate the quasi-local energy. For the Minkowski reference, this is done in Theorem
3.2. For the anti-de Sitter reference, this is done in Theorem 5.2 and for the Schwarzschild
reference, this is done in Theorem 6.2.

Using Theorem 3.2 and Theorem 5.2, we derive upper bounds of the quasi-local energy in
terms of the curvature tensor of the physical spacetime. See Theorem 4.2 and Corollary 4.4
for the Minkowski reference and Corollary 5.3 for the anti-de Sitter reference. Combining
the upper bound of the quasi-local energy with the positive mass theorems [9, 13], we
obtain rigidity theorems which characterize the Minkowski space, the Euclidean 3-space
and the hyperbolic space. See Theorem 4.3, Corollary 4.5 and Theorem 5.4, respectively.

2. Killing–Yano 2-form and the Minkowski formula

In this section, we review the Minkowski formula of surfaces in 4-dimensional spacetimes
admitting a Killing–Yano 2-form [15]. First we recall the definition of the Killing–Yano
2-form.

Definition 2.1. Let Q be a 2-form in an (n+1)-dimensional pseudo-Riemannian manifold
(N, 〈, 〉) with Levi-Civita connection D. Q is called a conformal Killing–Yano 2-form if

(2.1) DXQ(Y,Z) +DY Q(X,Z) =
1

n
(2〈X,Y 〉〈ξ, Z〉 − 〈X,Z〉〈ξ, Y 〉 − 〈Y,Z〉〈ξ,X〉) ,

where ξ = divQ.

In [15], the Minkowski formulae for higher order mixed mean curvatures are derived for
submanifolds in a spacetime admitting a Killing–Yano 2-form. In particular, for a spherical
symmetric spacetime N with metric

−f(r)2dt2 +
dr2

f2(r)
+ r2dS2,

the 2-form

Q = rdr ∧ dt

is a conformal Killing–Yano 2-form wtih

divQ = −3
∂

∂t
.
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Let Σ be a 2-surface in N. Let {e3, e4} be a frame of the normal bundle of Σ in N. Let h3
and h4 be the second fundamental form of Σ in N in the direction of e3 and e4, respectively
and let

αe3(·) = 〈D(·)e3, e4〉

be the connection 1-form of the normal bundle determined by the frame {e3, e4}.
Let H0 be the mean curvature vector of Σ inN and J0 be the reflection of H0 through the

light cone in the normal bundle of Σ. The (r, s) = (2, 0) Minkowski formula [15, Theorem
4.3] is

−
∫

Σ
〈J0,

∂

∂t
〉dΣ

=

∫

Σ

{
2(det(h3)− det(h4))Q34 + (Rab

a3Qb4 −Rab
a4Qb3) + [Rab

43 − (dαe3)
ab]Qab

}
dΣ,

where R denote the curvature tensor of the spacetime N. This generalized the k = 2
Minkowski formula for surfaces in R

3.
In particular, for surfaces in the Minkowski space, the curvature tensor vanish and the

formula reduces to

−
∫

Σ
〈J0,

∂

∂t
〉dΣ =

∫

Σ
{2(det(h3)− det(h4))Q(e3, e4)− (dαe3)

abQab}dΣ.

3. The Minkowski identity and the quasi-local energy

In this section, we rewrite the Wang–Yau quasi-local energy [16, 17] using the Minkowski
formula for surfaces in R

3,1.
Let N be our physical spacetime. Given a spacelike 2-surface Σ in N , let {e′3, e′4} be a

frame of the normal bundle of Σ in N . Let h′3 and h′4 be the second fundamental forms of
Σ in N in the direction of e′3 and e′4, respectively, and let αe′

3
be the connection 1-form

αe′
3
(·) = 〈∇N

(·)e
′
3, e

′
4〉.

Let X be an isometric embedding of Σ into R
3,1. Let {e3, e4} be a frame of the normal

bundle of X(Σ) in R
3,1 and h3, h4 and αe3 be the corresponding second fundamental forms

and the connection 1-form.

Theorem 3.1. Given a spacelike 2-surface Σ in N and a frame {e′3, e′4} of the normal
bundle, let X be an isometric embedding of Σ into R

3,1. Suppose there is a frame {e3, e4}
of the normal bundle of X(Σ) in R

3,1 such that

αe′
3
= αe3 .
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Then we have∫
{−〈 ∂

∂t
, e4〉(trh3 − trh′3) + 〈 ∂

∂t
, e3〉(trh4 − trh′4)}dΣ

=

∫
[2det(h3)− 2det(h4)− trh3trh

′
3 + h3 · h′3 + trh4trh

′
4 − h4 · h′4]Q34dΣ

+

∫
{Rab

a4Qb3 −Rab
a3Qb4 −Qbcσ

cd[(h3)dah
′ab
4 − (h4)dah

′ab
3 ]}dΣ,

(3.1)

where R is the curvature tensor for the spacetime N .

Proof. We consider the following two divergence quantities on Σ:

∇a

(
[trh3σ

ab − hab3 ]Qb4 − [tr(h4)σ
ab − hab4 ]Qb3

)

and

∇a

(
[trh′3σ

ab − h
′ab
3 ]Qb4 − [tr(h′4)σ

ab − h
′ab
4 ]Qb3

)
.

The first divergence quantitiy is exactly the one considered in [15, Theorem 4.3]. It gives

(3.2)

∫
{−〈 ∂

∂t
, e4〉(trh3) + 〈 ∂

∂t
, e3〉(trh4)}dΣ =

∫
[2[det(h3)− det(h4)]− (dζ)abQab]dΣ.

where ζ = αe′
3
= αe3 .

For the second divergence quantity, following the proof of [15, Theorem 4.3] (see also
[14, Theorem 3.3]), we compute

∇a(tr(h
′
3)σ

ab − h
′ab
3 ) = −Rab

a3 − ζbtrh′4 + ζah
′ab
4

∇a(tr(h
′
4)σ

ab − h
′ab
4 ) = −Rab

a4 − ζbtrh′3 + ζah
′ab
3 .

(3.3)

On the other hand,

∇aQb4 = (DaQ)b4 − (h3)abQ34 +Qbcσ
cd(h4)da −Qb3ζa

∇aQb3 = (DaQ)b3 + (h4)abQ43 +Qbcσ
cd(h3)da −Qb4ζa.

(3.4)

Putting (3.3) and (3.4) together, we get

∇a

(
(tr(h′3)σ

ab − h
′ab
3 )Qb4 − (tr(h′4)σ

ab − h
′ab
4 )Qb3

)

=Rab
a3Qb4 −Rab

a4Qb3 + (tr(h′3)σ
ab − h

′ab
3 )

(
(DaQ)b4 − (h3)abQ34 +Qbcσ

cd(h4)da

)

− (tr(h′4)σ
ab − h

′ab
4 )

(
(DaQ)b3 + (h4)abQ43 +Qbcσ

cd(h3)da

)
.

(3.5)

From the definition of conformal Killing-Yano 2-forms, we have

(tr(h′3)σ
ab − h

′ab
3 )(DaQ)b4 =

1

2
(tr(h′3)σ

ab − h
′ab
3 )((DaQ)b4 + (DbQ)a4)

=〈 ∂
∂t

, tr(h′3)e4〉.
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Similarly,

(tr(h′4)σ
ab − h

′ab
4 )(DaQ)b3 = 〈 ∂

∂t
, tr(h′4)e3〉.

Collecting terms, we get

∇a

(
[trh′3σ

ab − h
′ab
3 ]Qb4 − [tr(h′4)σ

ab − h
′ab
4 ]Qb3

)

=Rab
a3Qb4 −Rab

a4Qb3 + 〈 ∂
∂t

, e4〉(trh′3)− 〈 ∂
∂t

, e3〉(trh′4)− (dζ)abQab

+ [trh3trh
′
3 − h3 · h′3 − trh4trh

′
4 + h4 · h′4]Q34 +Qbcσ

cd[(h3)dah
′ab
4 − (h4)dah

′ab
3 ].

(3.6)

Integrating (3.6) over Σ, we get

∫
{−〈 ∂

∂t
, e4〉(trh′3) + 〈 ∂

∂t
, e3〉(trh′4)}dΣ

=

∫
[trh3trh

′
3 − h3 · h′3 − trh4trh

′
4 + h4 · h′4]Q34dΣ

+

∫
{Rab

a3Qb4 −Rab
a4Qb3 +Qbcσ

cd[(h3)dah
′ab
4 − (h4)dah

′ab
3 ]}dΣ.

(3.7)

(3.1) follows from the difference between (3.2) and (3.7). �

Next, we relate the left hand side of (3.1) to the Wang-Yau quasi-local energy when the
frame {e′3, e′4} and {e3, e4} are the canonical gauge corresponding to a pair of an isometric
embedding X of Σ into R

3,1 and a constant future directed timelike unit vector T0.

Let Σ̂ be the projection of X(Σ) onto the orthogonal complement of T0. Let ĕ3 be the

unit outward normal of Σ̂ in the orthogonal complement of T0. We extend ĕ3 along T0 by
parallel translation. Let ĕ4 be the unit normal of Σ which is also normal to ĕ3. Let {ē3, ē4}
be the unique frame of the normal bundle of Σ in N such that

〈H, ē4〉 = 〈H0, ĕ4〉.
The quasi-local energy of Σ with respect to the pair (X,T0) is

E(Σ,X, T0) =
1

8π

∫
[−〈H0, ĕ3〉

√
1 + |∇τ |2 − αĕ3(∇τ) + 〈H, ē3〉

√
1 + |∇τ |2 + αē3(∇τ)]dΣ.

Let h3, h
′
3, h4 and h′4 be the second fundamental form in the directions of ĕ3, ē3, ĕ4 and

ē4, respectively. If αē3 = αĕ3 , we have

1

8π

∫
[−〈 ∂

∂t
, e4〉(trh3 − trh′3) + 〈 ∂

∂t
, e3〉(trh4 − trh′4)]dΣ

=
1

8π

∫
[−〈H0, ĕ3〉

√
1 + |∇τ |2 + 〈H, ē3〉

√
1 + |∇τ |2]dΣ

=E(Σ,X, T0)

(3.8)

Hence, we have proved the following:
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Theorem 3.2. Given a surface Σ in the spacetime N , suppose we have a pair (X,T0) of
observer such that αē3 = αĕ3. Then we have

E(Σ,X, T0) =
1

8π

∫
{2[det(h3)− det(h4)]− [trh3trh

′
3 − h3 · h′3 − trh4trh

′
4 + h4 · h′4]Q34}dΣ

+
1

8π

∫
{Rab

a4Qb3 −Rab
a3Qb4 −Qbcσ

cd[(h3)dah
′ab
4 − (h4)dah

′ab
3 ]}dΣ

(3.9)

4. Upper bound of the Liu-Yau quasi-local mass

In this section, we apply Theorem 3.2 to the Liu-Yau quasi-local mass. For a surface
Σ in M , we consider the isometric embedding X of Σ into the orthogonal complement
of T0 = ∂

∂t
. The quasi-local energy E(Σ,X, T0) is precisely the Liu-Yau quasi-local mass

mLY (Σ) of the surface. To apply Theorem 3.2, we assume that αH = 0. Under the
assumption, mLY (Σ) is a critical point of the Wang-Yau quasi-local energy. We have the
following lemma concerning the Liu-Yau mass:

Lemma 4.1. Suppose αH = 0. The Liu-Yau mass is

(4.1) mLY (Σ) =
1

8π

∫
{[2det(h3)− trh3trh

′
3 + h3 · h′3](X · e3)−Rab

a3(X · eb)}dΣ.

Proof. For the isometric embedding into the orthogonal complement of ∂
∂t
, we have ĕ4 =

∂
∂t

and

〈H0, ĕ4〉 = 0.

Hence, ē4 =
J
|H| and

αē3 = αĕ3 = 0.

This verifies the assumption of Theorem 3.2. Moreover, for the isometric embedding into
the orthogonal complement of ∂

∂t
, h4 = 0. As a result of Theorem 3.2, we get

(4.2) mLY (Σ) =
1

8π

∫
{[2det(h3)− trh3trh

′
3 + h3 · h′3]Q34 +Rab

a4Qb3 −Rab
a3Qb4}dΣ.

Finally, we observe that Qab = 0, Qa3 = 0 and

Q34 =(X · e3)
Qb4 =(X · eb)

since ĕ4 =
∂
∂t

and Q = r ∂
∂r

∧ ∂
∂t
. �

From Lemma 4.1, we derive the following upper bound for the Liu-Yau quasi-local mass
in terms of the curvature tensor of N along Σ.

Theorem 4.2. Let Σ be a topological sphere in a spacetime N . Let e′3 = − H
|H| and e′4 =

J
|H| .

Suppose αe′
3
= 0 and Rab

a4 = 0. Finally, assume the second fundamental form in the
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direction of e′3 is positive definite and the Gauss curvature of the induced metric on Σ is
positive. We have

mLY (Σ) ≤
1

8π

∫
{2R+

1212(X · e3)−Rab
a3(X · eb)}dΣ.

where R+
1212 = max{R1212, 0}.

Proof. We use the Gauss equation

K = det(h′3)− det(h′4) +R1212

and the Codazzi equations

∇a(h
′
3)bc −∇b(h

′
3)ac =Rabc3 + (αe′

3
)b(h

′
4)ac − (αe′

3
)a(h

′
4)bc

∇a(h
′
4)bc −∇b(h

′
4)ac =Rabc4 + (αe′

3
)b(h

′
3)ac − (αe′

3
)a(h

′
3)bc

of the surface Σ in N . By our assumption, αe′
3
= 0 and Rab

a4 = 0. As trh′4 = 0, the last
Codazzi equation gives

∇c(h′4)bc = ∇c(h′4)bc −∇btrh
′
4 = 0.

This implies h′4 = 0 since it is traceless and symmetric. The Gauss equation simplifies to

K = det(h′3) +R1212.

We estimate 2det(h3)− trh3trh
′
3+h3 ·h′3, keeping in mind that h3 and h′3 are both positive

definite. At each point, we diagonalize h3 and assume

h3 =

(
a 0
0 b

)
h′3 =

(
a′ c′

c′ b′

)
.

We compute

2det(h3)− trh3trh
′
3 + h3 · h′3 = 2ab− a′b− ab′.

The Gauss equations of the surface Σ in N and X(Σ) in R
3 read

K = ab , K = a′b′ − (c′)2 +R1212.

We claim that

(1) For the points where R1212 ≤ 0, we have 2ab− a′b− ab′ ≤ 0
(2) For the points where R1212 > 0, we have 2ab− a′b− ab′ ≤ 2R1212.

The first claim is easy. If R1212 ≤ 0, then a′b′ ≥ K and

a′b+ ab′ ≥ a′b+
K2

a′b
≥ 2K.

For the second case, we have

a′b′ > K −R1212.

Let C > 1 be the constant such that

(K −R1212)C
2 = K.
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We have (Ca′)(Cb′) ≥ K and

2ab− a′b− ab′ ≤ 2K − 2K

C
≤ 2R1212.

�

From the above upper bound for the Liu-Yau quasi-local mass, we obtain the following
rigidity theorem characterizing the Minkowski spacetime.

Theorem 4.3. Let Σ be a surface in a spacetime N satisfying the dominant energy condi-
tion. Suppose Σ bounds a spacelike hypersurface M . Let e′3 = − H

|H| and e′4 =
J
|H| . Suppose

αe′
3
= 0, Rab

a4 = 0, ∇bR
ab

a3 = 0, and R1212 ≤ 0 on Σ. Finally, assume the second fun-
damental form in the direction of e3 is positive definite and the Gauss curvature of Σ is
positive. Then the domain of dependence of M is isometric to a open set in R

3,1.

Proof. We have

(X · e2)e2 + (X · e1)e1 =
1

2
∇|X|2.

It follows that ∫
[Rab

a3(X · eb)]dΣ = −1

2

∫
[|X|2∇bR

ab
a3]dΣ = 0.

We conclude that

mLY (Σ) ≤
1

8π

∫
[2R+

1212(X · e3)−Rab
a3(X · eb)]dΣ = 0.

The theorem follows from the positivity and rigidity of the Liu-Yau quasi-local mass [9]. �

As corollaries of the above theorem, we have the following two statements about time-
symmetric initial data (M, ḡ). Let R̄ijkl and R̄icij be the Riemannian curvature and Ricci
curvature tensor of g, respectively. First, we get the following upper bound of the Brown-
York quasi-local mass mBY .

Corollary 4.4. Let Σ be a convex surface in a time-symmetric hypersurface (M, ḡ) with
positive Gauss curvature. We have the following upper bound for its Brown-York quasi-local
mass.

mBY (Σ) =
1

8π

∫
{[2det(h3)− trh3trh

′
3 + h3 · h′3](X · e3)− R̄ab

a3(X · eb)}dΣ.

≤ 1

8π

∫
{2R̄+

1212(X · e3)dΣ +
1

16π

∫
|X|2∇bR̄

ab
a3}dΣ.

(4.3)

where R̄+
1212 = max{R̄1212, 0}.

Proof. Consider the static spacetime N with the metric

g = −dt2 + ḡ

We have

Rijkl = R̄ijkl
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and

Rijk0 = 0.

The corollary follows from Lemma 4.1 and Theorem 4.2. �

We also get the following rigidity theorem:

Theorem 4.5. Let (M, ḡ) be a 3-manifold with boundary Σ. Assume that the scalar
curvature of ḡ is non-negative and Σ is a convex 2-sphere with positive Gauss curvature.
If ∇bR̄

ab
a3 = 0 and R̄1212 ≤ 0 on Σ. Then ḡ is the flat metric.

Proof. It follows from Corollary 4.4 that

mBY (Σ) ≤ 0.

The theorem follows from the the positivity and rigidity of the Brown-York mass. �

For asymptotically flat initial data sets, it is known that the limit of the Brown-York-Liu-
Yau quasi-local mass of the coordinate spheres recovers the ADM mass of the initial data
[7]. In the general relativity literature (see Ashtekar–Hansen [2], Chruściel [6] and Schoen
[12]), it is also known that the ADM mass can be computed using the Ricci curvature of
the induced metric of the initial data. As a corollary of Lemma 4.1, we obtain a simple
proof that the limit of the Brown-York-Liu-Yau quasi-local mass coincides with the ADM
mass via the Ricci curvature (see also the earlier proof by Miao–Tam–Xie in [10]).

Definition 4.6. (M3, ḡ) is an asymptotically flat manifold of order τ if, outside a compact
set, M3 is diffeomorphic to R

3 \ {|x| ≤ r0} for some r0 > 0 and under the diffeomorphism,
we have

ḡij − δij = O(|x|−τ ), ∂ḡij = O(|x|−1−τ ), ∂2ḡij = O(|x|−2−τ )

for some τ > 1
2 . Here ∂ denotes the partial differentiation on R

3.

Theorem 4.7. Suppose we have an asymptotically manifold of order α > 1
2 and Σr be the

coordinate spheres of the asymptotically flat coordinates. We have

(4.4) lim
r→∞

∫
[H0 −H + (R̄ic− 1

2
R̄ḡ)(X, e3)]dΣr = 0.

Here X denote the position vector of R3 which is identified with a vector field along the
surface Σr on the initial data set via the canonical gauge of the isometric embedding.
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Proof. Using (4.3), we have
∫

(H0 −H)dΣr

=

∫
{[2det(h3)− trh3trh

′
3 + h3 · h′3](X · e3)− R̄ic(e3, ea)X · ea}dΣr

=

∫
{det(h3 − h′3)(X · e3) + [det(h3)− det(h′3)](X · e3)− R̄ic(e3, ea)X · ea}dΣr

=

∫
{det(h3 − h′3)(X · e3) + [

R̄

2
− R̄ic(e3, e3)](X · e3)− R̄ic(e3, ea)X · ea}dΣr

=

∫
{det(h3 − h′3)(X · e3) + [

1

2
R̄ḡ − R̄ic](X, e3)}dΣr

For an asymptotically flat initial data set of order τ > 1
2 , it is straight-forward to check

that X · e3 = O(r) and

det(h3 − h′3) = O(r−2τ−2).

�

5. Quasi-local mass with reference to the anti-de Sitter spacetime

The anti-de Sitter spacetime,

−(1 + r2)dt2 +
dr2

1 + r2
+ r2dS2,

also admits the Killing-Yano 2-form Q = r ∂
∂r

∧ ∂
∂t
. In the following, we derive the analogue

of Theorem 3.1 with respect to the anti-de Sitter spacetime.

Theorem 5.1. Given a spacelike 2-surface Σ in N and a frame {e′3, e′4} of the normal
bundle and let X be an isometric embedding of Σ into the Anti-de Sitter spacetime. Suppose
there is a frame {e3, e4} of the normal bundle of X(Σ) such that

αe′
3
= αe3 .

Then we have∫
[−〈 ∂

∂t
, e4〉(trh3 − trh′3) + 〈 ∂

∂t
, e3〉(trh4 − trh′4)]dΣ

=

∫
[2det(h3)− 2det(h4)− trh3trh

′
3 + h3 · h′3 + trh4trh

′
4 − h4 · h′4]Q34dΣ

+

∫
[Rab

a4Qb3 −Rab
a3Qb4 −Qbcσ

cd[(h3)dah
′ab
4 − (h4)dah

′ab
3 ]]dΣ

(5.1)

where R is the curvature tensor for the spacetime N .

Proof. The proof is the same as that of Theorem 3.1. While the anti-de Sitter space is not
flat, it is a space form and thus, curvature tensor for the reference space does not show up
in the formula. �
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We relate the left hand side of equation (5.1) to the quasi-local mass with the reference
in the anti-de Sitter spacetime when the frame {e′3, e′4} and {e3, e4} are the canonical gauge
corresponding to a pair of isometric embedding X of Σ into the anti-de Sitter spacetime
and the Killing vector field T0 =

∂
∂t
.

The Killing vector field T0 generates a one-parameter family of isometries φt of the anti-
de Sitter spacetime. Let C be the image of Σ under the one-parameter family φt. The

intersection of C with the static slice t = 0 is Σ̂. By a slight abuse of terminology, we refer

to Σ̂ as the projection of Σ. Let ĕ3 be the outward unit normal of Σ̂ in the static slice
t = 0. Consider the pushforward of ĕ3 by the one-parameter family φt, which is denoted
by ĕ3 again. Let ĕ4 be the future directed unit normal of Σ normal to ĕ3 and extend it
along C in the same manner. Let {ē3, ē4} be the unique frame of the normal bundle of Σ
in N such that

〈H, ē4〉 = 〈H0, ĕ4〉.
The quasi-local energy of Σ with respect to the pair (X,T0) is

E(Σ,X, T0) =
1

8π

∫
[〈H0, ĕ3〉〈

∂

∂t
, ĕ4〉+ αĕ3(T

T
0 )− 〈H, ē3〉〈

∂

∂t
, ĕ4〉 − αē3(T

T
0 )]dΣ.

Assume again that αē3 = αĕ3 and use trh4 = trh′4, we have

(5.2) E(Σ,X, T0) =
1

8π

∫
[−〈 ∂

∂t
, ĕ4〉(trh3 − trh′3)]dΣ

To summarize, we have proved the following:

Theorem 5.2. Given a surface Σ in the spacetime N , suppose we have an isometric
embedding X of Σ into the anti-de Sitter spacetime and the Killing vector field T0 = ∂

∂t

such that αē3 = αĕ3 , then we have

E(Σ,X, T0) =
1

8π

∫
[2det(h3)− 2det(h4)− trh3trh

′
3 + h3 · h′3 + trh4trh

′
4 − h4 · h′4]Q34dΣ

+
1

8π

∫
{Rab

a4Qb3 −Rab
a3Qb4 −Qbcσ

cd[(h3)dah
′ab
4 − (h4)dah

′ab
3 ]}dΣ

(5.3)

In particular, we can rewrite the quasi-local mass with reference in the t = 0 slice of the
anti-de Sitter spacetime.

Corollary 5.3. Suppose αH = 0. Let X be the isometric embedding of the surface into
the t = 0 slice in the anti-de Sitter spacetime. We have

(5.4) E(Σ,X,
∂

∂t
) =

1

8π

∫
{[2det(h3)− trh3trh

′
3 + h3 · h′3](r

∂

∂r
· e3)−Rab

a3(r
∂

∂r
· eb)}dΣ.

Proof. For the isometric embedding of the surface into the t = 0 slice of the anti-de Sitter
spacetime, we have h4 = 0 and Qab = Qa3 = 0. Hence (5.4) follows from Theorem 5.2. �

We get the following rigidity theorem:



12 PO-NING CHEN, MU-TAO WANG, AND SHING-TUNG YAU

Theorem 5.4. Let (M, ḡ) be a 3-manifold with boundary. Assume that the scalar curvature
R̄(g) satisfies R̄(g) ≥ −6, the boundary is convex and the Gauss curvature of the induced
metric is bounded from below by −1. Let R̄ijkl be the curvature tensor of ḡ. If ∇bR̄

ab
a3 = 0

and R̄1212 ≤ −1 on the boundary. Then g is the hyperbolic metric.

Proof. We pick an isometric embedding of Σ into the hyperbolic space such that

r
∂

∂r
· e3 > 0.

In view of the form the hyperbolic metric dr2

1+r2
+ r2dS2 on the t = 0 slice, it is easy

to check that r ∂
∂r

is a gradient vector field with the potential 1
2r

2 + 1
4r

4. In particular,

r ∂
∂r

· eb = ∇b(
1
2r

2 + 1
4r

4) on X(Σ).
Let N be the spacetime with metric

g = −dt2 + ḡ.

We have
Rijkl = R̄ijkl.

We apply Corollary 5.3 to express the quasi-local energy. By our assumption,∫
Rab

a3(r
∂

∂r
· eb)dΣ = 0.

As a result, (5.4) implies

E(Σ,X,
∂

∂t
) =

1

8π

∫
[2det(h3)− trh3trh

′
3 + h3 · h′3](r

∂

∂r
· e3)dΣ.

The Gauss equations read

K =R̄1212 + det(h′3)

K =− 1 + det(h3).

We estimate
2det(h3)− trh3trh

′
3 + h3 · h′3

as in the proof of Theorem 4.2 and use the assumption that R̄1212 ≤ −1. We get

(5.5) E(Σ,X,
∂

∂t
) ≤ 0.

The theorem now follows from the positive mass theorem of [13]. �

For an asymptotically hyperbolic manifold, we can use Corollary 5.3 to express the limit
of the quasi-local mass with reference in the hyperbolic space in terms of the limit of Ricci
curvature similar to Theorem 4.6. This gives a new proof of the results proved by Herzlich
in [8] and by Miao, Tam and Xie in [10]. Let

g0 =
dr2

r2 + 1
+ r2dS2

be the hyperbolic metric of the hyperbolic space H
3 and V =

√
r2 + 1 be the static poten-

tial.
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Definition 5.5. (M3, ḡ) is an asymptotically hyperbolic manifold of order τ if, outside
a compact set, M3 is diffeomorphic to H

3 \ {|x| ≤ r0} for some r0 > 0. Under the
diffeomorphism, we have

|ḡ − g0| = O(|x|−τ ), |∂(ḡ − g0)| = O(|x|−1−τ ), ∂2(ḡ − g0) = O(|x|−2−τ )

for some τ > 3
2 . Here ∂ denotes the partial differentiation with respect to the coordinate

system of H3 and the norm is measured with respect to g0.

Theorem 5.6. Suppose we have an asymptotically flat initial data set of order α > 3
2 and

Σr be the coordinate spheres of the asymptotically flat coordinates. We have

(5.6) lim
r→∞

∫
{V (H0 −H) + (R̄ic− 1

2
(R̄+ 2)ḡ)(X, e3)}dΣr = 0.

Proof. The proof is the same as Theorem 4.6 using Corollary 5.3 instead of Corollary 4.4.
The resulting formula has R̄+2 instead of R̄ due to the curvature of the hyperbolic space
when applying the Gauss equation to the image of the isometric embedding. �

6. Quasi-local mass with reference to the Schwarzschild spacetime

The Schwarzschild spacetime spacetime,

−(1− 2M

r
)dt2 +

dr2

1− 2M
r

+ r2dS2,

also admits the Killing-Yano 2-form Q = r ∂
∂r

∧ ∂
∂t
. In the following, we derive the analogue

of Theorem 3.1 with respect to the Schwarzschild spacetime.

Theorem 6.1. Given a spacelike 2-surface Σ in N and a frame {e′3, e′4} of the normal
bundle and let X be an isometric embedding of Σ into the Schwarzschild spacetime. Suppose
there is a frame {e3, e4} of the normal bundle of X(Σ) such that

αe′
3
= αe3 .

Then we have

∫
{−〈 ∂

∂t
, e4〉(trh3 − trh′3) + 〈 ∂

∂t
, e3〉(trh4 − trh′4)}dΣ

=

∫
{[2det(h3)− 2det(h4)− trh3trh

′
3 + h3 · h′3 + trh4trh

′
4 − h4 · h′4]Q34}dΣ

+

∫
{(Rab

a4 −Rab
s a4)Qb3 − (Rab

a3 −Rab
s a3)Qb4 −Qbcσ

cd[(h3)dah
′ab
4 − (h4)dah

′ab
3 ]}dΣ

(6.1)

where R and Rs the curvature tensor for the spacetime N and the Schwarzschild spacetime,
respectively.

Proof. The proof is the same as that of Theorem 3.1. The corresponding curvature terms
appear when we apply the Codazzi equation of the surface in the Schwarzschild spacetime.

�
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We relate the left hand side of equation (6.1) to the quasi-local mass with the reference in
the Schwarzschild spacetime when the frame {e′3, e′4} and {e3, e4} are the canonical gauge
corresponding to a pair of isometric embedding X of Σ into the Schwarzschild spacetime
and the Killing vector field T0 =

∂
∂t
.

The Killing vector field T0 generates a one-parameter family of isometries φt of the
Schwarzschild spacetime. Let C be the image of Σ under the one-parameter family φt.

The intersection of C with the static slice t = 0 is Σ̂. By a slight abuse of terminology, we

refer to Σ̂ as the projection of Σ. Let ĕ3 be the outward unit normal of Σ̂ in the static slice
t = 0. Consider the pushforward of ĕ3 by the one-parameter family φt, which is denoted
by ĕ3 again. Let ĕ4 be the future directed unit normal of Σ normal to ĕ3 and extend it
along C in the same manner. Let {ē3, ē4} be the unique frame of the normal bundle of Σ
in N such that

〈H, ē4〉 = 〈H0, ĕ4〉.
The quasi-local energy of Σ with respect to the pair (X,T0) is

E(Σ,X, T0) =
1

8π

∫
[〈H0, ĕ3〉〈

∂

∂t
, ĕ4〉+ αĕ3(T

T
0 )− 〈H, ē3〉〈

∂

∂t
, ĕ4〉 − αē3(T

T
0 )]dΣ.

Assume again that αē3 = αĕ3 and use trh4 = trh′4, we have

(6.2) E(Σ,X, T0) =
1

8π

∫
[−〈 ∂

∂t
, ĕ4〉(trh3 − trh′3)]dΣ

To summarize, we have proved the following:

Theorem 6.2. Given a surface Σ in the spacetime N , suppose we have an isometric
embedding X of Σ into the Schwarzschild spacetime and the Killing vector field T0 = ∂

∂t

such that αē3 = αĕ3 , then we have

E(Σ,X, T0)

=
1

8π

∫
[2det(h3)− 2det(h4)− trh3trh

′
3 + h3 · h′3 + trh4trh

′
4 − h4 · h′4]Q34dΣ

+
1

8π

∫
{(Rab

a4 −Rab
s a4)Qb3 − (Rab

a3 −Rab
s a3)Qb4 −Qbcσ

cd[(h3)dah
′ab
4 − (h4)dah

′ab
3 ]}dΣ

(6.3)
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