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GRAPH INVARIANT FROM IDEAS IN QUANTUM FIELD THEORY

AN HUANG, SHING-TUNG YAU

Abstract. We propose a polynomial time computable graph invariant, which comes
out directly from a modified version of discrete Green’s function on a graph. It is our
hope that it can help to construct fast algorithms for the graph isomorphism testing.
We explain the physics behind this discrete Green’s function, which is a very basic idea
applied to graphs.

1. introduction

The graph isomorphism problem is a long standing problem that is of both theoretical
and practical importance. For complexity considerations, the problem is clearly in NP, but
it is neither known to be in P nor NP-complete. In practice, it has many applications, in
e.g. chemistry, image processing, etc. Due to its importance, much effort has been put
into the research of this problem, and a lot have been learned: e.g. for random graphs, or
graphs with various special properties, or graphs coming from practice in various specific
ways, there are various known fast algorithms. Many graph invariants have been studied,
and put into work. However, as stated in [1], it is clear that there lacks a uniform and
deeper understanding of this problem, thus causing many issues in an unclear stage. The
main motivation of this paper is to try to initiate a new perspective to the study of graphs,
and in particular to the graph isomorphism problem, from ideas familiar in physics, with
the hope of eventually providing a deeper understanding.

More concretely, in section 2, we propose a particular polynomial time computable graph
invariant. In section 3, we study one of the simplest quantum field theories defined on a
graph1, namely a real free scalar field theory, with a varying mass parameter. Its two point
correlation function gives us a version of the discrete Green’s function, which determines the
graph up to isomorphism. This function showed up in [7] for different purposes. The graph
invariant we propose, arises directly from this discrete Green’s function. In section 4, we
study some basic properties of this graph invariant. In particular, it turns out that if two
cospectral graphs share this invariant, then infinitely many identities have to be satisfied,
which should strongly constrain the possibilities. Thus it looks that very basic physics idea
may produce interesting graph invariants.

The invariant we propose belongs to the framework of spectral graph theory: it is con-
structed using eigenspaces of the Laplacian matrix. As stated in e.g. [2][4], there is a hope
to discover good complete invariants from this approach. Our idea is related with the idea
of graph angles that is surveyed in e.g. [4][5]. [3] is also of relevance to our idea, where the
authors use the eigenspace to constrain the action of the automorphism group of the graph,
on the coset space of the eigenspace.

Acknowledgements. The authors thank CASTS (Center of Advanced Study in Theoretical
Sciences) of National Taiwan University, where the work was done during their visit. They
also thank Mei-Heng Yue, Wen-wei Lin and Paul Horn for their help on a preliminary testing
of the algorithm, and thank Fan Chung and Alexander Grigor’yan for useful discussions.

1Here we use the notion quantum field theory in a sense similar to lattice gauge theory: we apply some
of its very basic ideas, in a situation where there are only finitely many degrees of freedom.
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2. A graph invariant

Let G be a graph with |G| = n vertexes, choose an arbitrary labeling of the vertexes
by x1, x2, ..., xn, and let M denote its n × n (combinatorial) Laplacian matrix under this
basis: for i 6= j, the i, j-th entry is equal to −1 if there is an edge between xi and xj , and
is equal to 0 otherwise. The diagonal entries are the degrees of the vertexes, so that the
sum of any column of M is equal to 0. From definition, M is symmetric. M represents the
combinatorial Laplacian operator under the dual basis.

Remark 2.1. The following method is linear algebra, that can also work for suitable varia-
tions of the Laplacian matrix, e.g. the normalized Laplacian. Furthermore, the discussion
can actually be applied to more general situations, such as multigraphs.

Suppose we have another graph G1 with n vertexes, and upon a choice of an arbitrary
labeling of the vertexes, we get another Laplacian matrix M1. The problem of whether
G and G1 are isomorphic graphs, amounts to the linear algebra question of whether there
exists a permutation matrix P , such that P tMP = M1. (Note that P t = P−1) In spectral
graph theory, people study the real spectrum of M , as an invariant of the graph under
isomorphisms, however, the spectrum itself is not sufficient for the graph isomorphism prob-
lem: two graphs can have the same real spectrum but fail to be isomorphic, and these are
called cospectral graphs. On the other hand, the eigenfunctions contain much more infor-
mation than just the eigenvalues. The apparent question of dealing with the eigenfunctions
or eigenspaces is that, they are not preserved under graph isomorphisms but instead, the
eigenspaces also transform by permutations. So one needs to find suitable invariants associ-
ated with the eigenfunctions, in order to use them appropriately in the graph isomorphism
problem. To do this, we first normalize the eigenfunctions in the standard way: choose an
orthonormal basis for each (real) eigenspace, in the sense that they are all orthogonal to
each other, and the L2 norm of each is 1: namely, let λk, k = 1, 2, ...,m denote the set of
different eigenvalues of M by increasing order. For each k, let the column vectors φ1

k, ..., φ
lk
k

denote an orthonormal basis of the corresponding eigenspace Ek.

Denote tk(x, y) =
∑lk

i=1 φ
i
k(x)φ

i
k(y), and T (x, y) = 〈t1(x, y), ..., tm(x, y)〉. It is obvious

that the vector function T (x, y) does not depend on the choice of the orthonormal basis,
and it can be constructed directly from the graph Laplacian independent of the choice of a
labeling of vertexes, therefore it is an intrinsically defined function on G × G. The set of
1×m vectors T (x, y) counting multiplicity, where x, y range among all pairs of vertexes of
G, which we name by ST , is therefore an invariant of the graph, which is clearly polynomial
time computable, and furthermore the elements of this set can be ordered in order for
comparisons.

3. Physics interpretation

Consider an Euclidean real scalar field theory on the graph G: the space of fields is then
the space of all real valued functions on vertexes of G, which is an n dimensional real vector
space. We write the free field Lagrangian with a mass parameter u = m2 in direct analogy
with the familiar Lagrangian in the continuous situation:

(3.1) L =
∑

e∈E

(∇eφ)
2 + uφ2

where ∇e is the graph gradient with respect to a directed edge e, (∇eφ)
2 is independent of

the choice of the orientation of e, and E is the set of edges of G. One can consult e.g. [8]
for these notations. We have the usual Green’s formula

(3.2)

∫

G

(∇eφ)
2dx =

∫

G

φ∆φdx
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where ∆ is the Laplacian.
As the same with usual QFT on a manifold, we consider two point correlation functions

defined as

(3.3) 〈φ(x)φ(y)〉 =

∫

φ(x)φ(y)e−
∫
φ(∆+u)φdxDφ

e−
∫
φ(∆+u)φdxDφ

We allow x and y to be equal, as there will be no short distance problems in our situation.
This is a finite dimensional path integral of the type that is often used as toy model to
introduce the Feynman rules in physics textbooks, and it is free of divergences. However, in
our simple situation here, this is our path integral. We know very well how to evaluate this
by undergraduate calculus with familiar result: the denominator equals the determinant of
the Laplacian to the power − 1

2 , which cancels with a factor coming from the numerator. Up
to a nonzero constant scalar, what is left is a sum over different eigenvalues of the form

(3.4)

m
∑

k=1

tk(x, y)

λk + u

Which may be viewed as a discrete version of the Fourier transform of the D’Alembert
propagator, the familiar result in usual QFT. The individual tk(x, y) for each eigenvalue
may be recovered as residues near different poles of the two point correlation function, as
we vary the parameter u.

It is straightforward to check that the function 〈φ(x)φ(y)〉 satisfies a discrete version of
the quantum equation of motion

(3.5) Lx 〈φ(x)φ(y)〉 = δx,y

where Lx is the Laplacian operating on coordinate x, and the delta function δx,y on a graph
is given by

δx,y =

{

0, x 6= y,

1, x = y.

Therefore, we call the two point correlation function by the discrete Green’s function,
and upon a choice of labeling of vertexes as we have done, (3.5) becomes the statement that,
〈φ(x)φ(y)〉 as a matrix, is the inverse of M + uI. So obviously, it determines the graph up
to isomorphism.

Remark 3.1. The two point correlation function determines the graph up to isomorphism,
thus it also determines the QFT on the graph, and therefore all of its correlation functions.
This can be viewed as a baby version of Wick’s theorem in the graph case.

Furthermore, one can then study various operations on graphs, and try to see how the two
point correlation function changes accordingly. This is interesting because, theoretically, it is
almost always important to understand how invariants change under important operations.
On the other hand, the two point correlation function as a complete invariant may provide
a measure on when two given graphs are considered ”almost isomorphic”, which may be
useful in practice– e.g. if we have a large data presented as a big graph, one should expect
that the data given may contain a little marginal error, and so being able to make sense
of and detect ”almost isomorphic” graphs looks to be a practically important problem. It
looks interesting to investigate whether the two point function or something similar can give
practically useful definitions of almost isomorphic graphs.

For example, suppose we delete an edge (adding an edge will be just the opposite, of
course) between two vertexes x1 and x2, and get a new graph we call G2. Let us try to write
down the two point correlation function for G2, in terms of data of G and the two vertexes
x1 and x2. From the form of (3.3), we know that this operation may only possibly affect the
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term e
∫
φ∆φdx. For this term, at any vertex other than x1 and x2, the action of the Laplacian

is unaffected by definition. At x1, the integral
∫

φ∆φdx changes by φ(x1)(φ(x1) − φ(x2)),
and at x2, the integral changes by φ(x2)(φ(x2)−φ(x1)). Therefore, the two point correlation
function for G2 can be expressed as

(3.6) 〈φ(x)φ(y)〉G2
=

∫

φ(x)φ(y)e
∫
φ∆φdxe(φ(x1)−φ(x2))

2

Dφ

e
∫
φ∆φdxe(φ(x1)−φ(x2))2Dφ

Again, the above can be explicitly calculated by Gaussian integrals, and one may then com-
pare it with the two point correlation function of G, and analyze the difference in various
situations. One elementary observation is that, roughly speaking, difference of values of
eigenfunctions at vertexes x1 and x2 contribute to the difference of two point correlation
functions, and furthermore, the two point correlation function is more sensitive to the differ-
ence at smaller eigenvalues. This is consistent with the physics picture: smaller eigenvalues
correspond to lower energy modes, and if the low energy modes for two graphs are close,
then we have a sense that these two graphs are close to each other.

Remark 3.2. The individual functions tk(x, y) will change in a more complicated manner,
and probably one should not expect a particularly nice formula for the change of tk(x, y)
similar to (3.6), because e.g. even the number of eigenvalues and the dimension of eigenspaces
may jump, and there may be complications from cross terms. The combination 〈φ(x)φ(y)〉
takes into account all of these and the change of it can be presented by the simple formula
above.

Note that the operation of deleting or adding an edge can turn any graph with a given
finite number of vertexes to any other graph with the same number of vertexes, it is our
hope that one can then try to estimate further how two point correlation functions change,
and develop useful quantitative concepts for ”almost isomorphism” from this. Of course,
there may well be other reasonable concepts of ”almost isomorphism”, but our guideline here
is that a concept coming naturally from physics may be worth of study. More generally,
it is conceivable that one may also use the two point correlation function to study other
operations or problems on graphs.

Remark 3.3. It looks quite possible that one may study more elaborated quantum field
theories on a general graph, especially with the help of various topological and geometrical
concepts for graphs that are developed for graphs recently.

4. A first study of the invariant

As the two point function matrix is the inverse of M+uI, by the adjugate matrix formula
of an inverse matrix, we have

(4.1) 〈φ(x)φ(y)〉 =
(−1)x+yAy,x

det(M + uI)

where Ay,x is the y, x-th cofactor ofM+uI, which is a polynomial in u of integral coefficients
of degree less than n. Since our discrete Green’s function can be written as an integral of
the heat kernel which is positive, one expects 〈φ(x)φ(y)〉 to be positive. In fact, one has the
following stronger fact

Lemma 4.1. All coefficients of the polynomial (−1)x+yAy,x are positive.

Proof. This is a simple verification by induction. �

We consider the graph invariant given by the set of values (actually a set of functions of u)
of the two point correlation function, counting multiplicities, together with the multiplicity
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information of the real spectrum. We have

(4.2) 〈φ(x)φ(y)〉 =

m
∑

k=1

lk
∑

i=1

φi
k(x)φ

i
k(y)

λk + u

and by basic linear algebra, more generally,

(4.3) (M + uI)α =

m
∑

k=1

lk
∑

i=1

(φi
k(x)φ

i
k(y))(λk + u)α

for any α ∈ R. Note that one can take such arbitrary powers of a positive semi-definite
matrix.

Therefore, if for two cospectral graphs G and G1, the invariant we are considering are the
same, this means that there exists a permutation T of n2 elements acting linearly on n× n

matrices by permuting the corresponding elements, such that

(4.4) T 〈φ(x)φ(y)〉G = 〈φ(x)φ(y)〉G1

By the above equation combined with taking residues of (4.2), we have for all k,

(4.5) T

〈

lk
∑

i=1

φi
k(x)φ

i
k(y)

〉

G

=

〈

lk
∑

i=1

φi
k(x)φ

i
k(y)

〉

G1

Therefore by (4.3), we have

(4.6) T (M + uI)α = (M1 + uI)α

for all α ∈ R.
(4.6) looks to be a rather strong condition on the Laplacian matrix, as it gives (uncount-

ably) infinitely many identities of functions of u. e.g. Taking α = 0, one derives that T

preserves the diagonal. Taking α to be positive integers, and u = 0, one gets infinitely many
identities with more or less clear combinatorial meaning.

One the other hand, as it is clear from the above derivation, the set of 1 × m vectors
T (x, y), which we denoted by ST , together with the real spectrum, as an invariant of the
graph, is equivalent to the above set of values of two point correlation functions.

Remark 4.1. It may be expensive to compute the cofactors Ay,x as a polynomial in u.
However, if one prefers to work with positive integers, one can instead take n different
integral values of u, and compute the corresponding n positive integral values of Ay,x, which
determine Ay,x uniquely as it is a polynomial of degree less than n. This can be done in
polynomial time, however, the price is that very possibly, in this way one has to deal with
very big integers.

Motivated by (4.6), we have the following obvious question:

Question 4.1. Is the invariant we discussed, namely ST together with the real spectrum,
a complete invariant of graphs?

If the answer is yes, as a consequence then the graph isomorphism problem is in P. If the
answer is no, it will be of interest to find a counterexample. In any case, since this gives an
easily computable and comparable graph invariant which also looks rather strong, it should
be of interest to investigate more, and also to optimize practical algorithms based on it.

As it is mentioned in the beginning of the paper, this method can also work for some other
variants of the Laplacian matrix. As an example, we can consider the normalized Laplacian
and calculate the same invariant. In this situation, the cofactors are no longer polynomials
with integral coefficients, but that is not essential. The key facts such as equation (4.6) still
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hold, and therefore one again gets a graph invariant that looks rather strong. On the other
hand, there are well-known examples of large sets of cospectral graphs w.r.t the normalized
Laplacian that one can test on.
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