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GENERAL FRAMEWORK FOR DISCRETE SURFACE RICCI

FLOW

MIN ZHANG, REN GUO, WEI ZENG, FENG LUO, SHING-TUNG YAU,
AND XIANFENG GU

Abstract. Ricci flow deforms the Riemannian metric proportionally to the
curvature, such that the curvature evolves according to a heat diffusion process
and eventually becomes constant everywhere. Ricci flow has demonstrated its
great potential by solving various problems in many fields, which can be hardly
handled by alternative methods so far.

This work introduces the unified theoretic framework for discrete Surface
Ricci Flow, including all common schemes: Thurston’s Circle Packing, Tangen-
tial Circle Packing, Inversive Distance Circle Packing and Discrete Yamabe.
Furthermore, this work also introduces a novel scheme, virtual radius circle
packing, under the unified framework. This work gives explicit geometric in-
terpretation to the discrete Ricci energy for all the schemes, and Hessian of
the discrete Ricci energy for schemes with Euclidean back ground geometry.

The unified frame work deepen our understanding to the the discrete sur-
face Ricci flow theory, and inspired us to discover the new schemes, improved
the flexibility and robustness of the algorithms, greatly simplified the imple-
mentation and improved the debugging efficiency. Experimental results shows
the unified surface Ricci flow algorithms can handle general surfaces with dif-
ferent topologies, and is robust to meshes with different qualities, and effective
for solving real problems.

1. Introduction

Ricci flow was introduced by Hamilton for the purpose of studying low dimen-
sional topology. Ricci flow deforms the Riemannian metric proportional to the
curvature, such that the curvature evolves according to a heat diffusion process,
and eventually becomes constant everywhere. In pure theory field, Ricci flow has
been used for the proof of Poincaré’s conjecture. In engineering fields, surface
Ricci flow has been broadly applied for tackling many important problems, such
as parameterization in graphics [23], deformable surface registration in vision [41],
manifold spline construction in geometric modeling [15] and cancer detection in
medical imaging [40].

Suppose (S,g) is a metric surface, according to the Gauss-Bonnet theorem, the
total Gaussian curvature

∫

S
K equals to 2πχ(S), whereK is the Gaussian curvature,

χ(S) the Euler characteristics of S. Ricci flow deforms the Riemannian metric
conformally, namely, g(t) = e2u(t)g(0), where u(t) : S → R is the conformal factor.
The Ricci flow can be written as

(1.1)
du(t)

dt
= −K(t).

Surface Ricci flow implies the celebrated surface uniformization theorem as shown
in Fig.1. Surface Ricci flow is the negative gradient flow Ricci energy. Ricci flow a
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Figure 1. Uniformization for closed surfaces by Ricci flow.

powerful tool for designing Riemannian metrics using prescribed curvatures, which
has great potential for many applications in engineering fields.

Conformal metric deformation transforms infinitesimal circles to infinitesimal
circles. This inspried Thurston to develop the idea of circle packing [37]. Intuitively,
one approximates the surface by a triangular polyhedron (a triangle mesh), covers
each vertex a disk with finite size (a cone), and deforms the disk radii preserving
the combinatorial structure of the triangulation and the intersection angles among
the circles. This deformation simulates the smooth conformal mapping with very
high fidelity. The discrete version of surface Ricci flow has been established based
on the circle packing method.

Historically, many schemes of circle packing or circle pattern have been invented.
In this work, we focus on the most common ones, including tangential circle packing,
Thurston’s circle packing, inversive distance circle packing, discrete Yamabe flow.
The first three schemes can be unified by the inversive distance circle packing.
Furthermore, a novel scheme virtual radius circle packing will be introduced. On
the other hand, each triangle on the mesh can be treated as a spherical, Euclidean
or a hyperbolic triangle. Accordingly, we say the triangle mesh has spherical S2,
Euclidean E

2 or hyperbolic H
2 background geometry. Therefore, this work focus

on three main schemes, ( inversive distance circle packing, Yamabe flow and virtual
radius circle packing), with three background geometries, (S2, E2, H2). There are
9 combinations in total.

All the schemes were invented and developed individually in the past. This work
seeks a coherent theoretic framework, which can unify all the existing schemes, and
predicts undiscovered ones. In theory, this effort leads to deeper understandings of
discrete surface Ricci flow and approaches for further generalization. In practice,
the theoretic discovery of virtual radius circle packing gives novel computational al-
gorithm; the mixed schemes improves the flexibility; the unified framework greatly
simplifies the implementation; the geometric interpretation helps people to memo-
rize and debug the algorithms.
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The theoretic results of the current work can be briefly summarized as follows.
We use (Σ, γ, η, ǫ) to represent a circle packing with background geometry S

2, E2

and H
2, where Σ is the triangulation, γ is the vertex circle radii, η is a function

defined on the edges, which gives discrete conformal structure, ǫ is constant in
{+1, 0,−1}, representing inversive distance circle packing, Yamabe flow or virtual
radius circle packing respectively. The discrete conformal factor u is defined on
vertices,

ui =







log γi E
2

log tanh γi

2 H
2

log tan γi

2 S
2

The Riemannian metric is represented as edge lengths, which is determined by the
circle packing,

l2ij = 2ηije
ui+uj + ǫ(e2ui + e2uj ) E

2

cosh lij =
4ηije

ui+uj+(1+ǫe2ui )(1+ǫe
2uj )

(1−ǫe2ui )(1−ǫe
2uj )

H
2

cos lij =
−4ηije

ui+uj+(1−ǫe2ui )(1−ǫe
2uj )

(1+ǫe2ui )(1+ǫe
2uj )

S
2

The edge lengths determine the corner angles by different cosine laws. The vertex
curvature K is defined as angle deficit, such that discrete Gauss-Bonnet holds. For
all 9 schemes, the discrete surface Ricci flow has exactly the same formula as the
smooth case:

dui(t)

dt
= −Ki(t),

which is the negative gradient flow of the discrete Ricci energy

EΣ(u1, u2, · · · , un) =

∫ (u1,u2,··· ,un)
∑

i

Kidui,

The Ricci energy for the whole mesh can be decomposed as the energy on each face.
Assume Σ is closed,

EΣ = 2π
∑

i

ui −
∑

∆∈Σ

E∆

where ∆ = [vi, vj , vk] is a face of Σ,

E∆(ui, uj, uk) =

∫ (ui,uj ,uk)

θidui + θjduj + θkduk.

The geometric meaning of E∆ is the volume of a generalized hyperbolic tetrahedron,
which is completely determined by (ui, uj, uk) and (ηij , ηjk, ηki). Furthermore, for
all 9 schemes, the Hessian of Ricci energy has the same form

∂(θi, θj , θk)

∂(ui, uj, uk)
=

−1

2A
LΘL−1D,

where the matrices L, Θ and D has similar structure as shown in Eqn. 5.5, Eqn.
5.6 and Eqn. 5.7.

Furthermore, the Hessian matrix has explicit geometric interpretation in E
2 case.

One can treat the circle packing (Σ, γ) as a power triangulation, which has a dual
power diagram Σ̄. Each edge eij ∈ Σ has a dual edge ē ∈ Σ̄, then

(1.2)
∂Ki

∂uj

=
∂Kj

∂ui

= −
|ēij |

|eij |
,
∂Ki

∂ui

= −
∑

j

∂Ki

∂uj

.
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If the triangulation is power Delaunay, then the Hessian matrix is positive definite,
the Ricci energy is convex. In general, the Ricci energies for E

2 and H
2 cases are

convex. This implies the curvature mapping from the conformal factor to Gaussian
curvature is locally bijective, which is called local rigidity. The global rigidity has
been established for Thurston’s circle packing and Yamabe flow with surgeries.

1.1. Contributions. This work has the following contributions:

(1) this work introduces a novel scheme for discrete surface Ricci flow: virtual
radius circle packing, which is naturally deduced from our unification work.

(2) this work establishes a unified framework for discrete surface Ricci flow,
which covers most existing schemes: tangential circle packing, Thurston’s
circle packing, inversive distance circle packing, discrete Yamabe flow and
virtual radius circle packing, with Spherical, Euclidean and hyperbolic
background geometry.

(3) this work gives explicit geometric interpretation to the discrete Ricci energy
for all the schemes.

(4) this work gives explicit geometric interpretation to the Hessian of the dis-
crete Ricci energy for schemes with Euclidean background geometry.

The paper is organized as follows: section 2 briefly reviews the most related the-
oretic works; section 3 focuses on the smooth surface Ricci flow theory; section 4
explains the discrete surface Ricci flow theory, including all schemes with all back-
ground geometries, in a unified way; section 6 reports our implementation based on
the unified framework; and the paper is concluded in section 7, which points out
future research directions. Finally, in the appendix 7, we give the implementation
details and reorganize all the formulae.

2. Previous Works

Ricci flow conformally deforms the Riemannian metrics, such that during the
flow the infinitesimal circles are preserved. This phenomenon inspired Thurston to
develop the circle packing method. In his work on constructing hyperbolic metrics
on 3-manifolds, Thurston [37] studied a Euclidean (or a hyperbolic) circle pack-
ing on a triangulated closed surface with prescribed intersection angles. His work
generalizes Koebe’s and Andreev’s results of circle packing on a sphere [3, 4, 24].
Thurston conjectured that the discrete conformal mapping based on circle packing
converges to the smooth Riemann mapping when the discrete tessellation becomes
finer and finer. Thurston’s conjecture has been proved by Rodin and Sullivan [32].
Chow and Luo established the intrinsic connection between circle packing and sur-
face Ricci flow [10].

The rigidity for classical circle packing was proved by Thurston [37], Marden-
Rodin [30], Colin de Verdiére [11], Chow-Luo [10], Stephenson [36], and He [22].
Bowers-Stephenson [6] introduced inversive distance circle packing which general-
izes Andreev-Thurston’s intersection angle circle packing. See Stephenson [36] for
more information. Guo gave a proof for local rigidity [19]. Luo gave a proof for
global rigidity in [28]. Luo studied the combinatorial Yamabe problem for piece-
wise flat metrics on triangulated surfaces [26]. Springborn, Schröder and Pinkall
[35] considered this combinatorial conformal change of piecewise flat metrics and
found an explicit formula of the energy function. Glickenstein [12, 13] studied the
combinatorial Yamabe flow on 3-dimensional piecewise flat manifolds. Recently
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Glickenstein [14] set the theory of combinatorial Yamabe flow of piecewise flat met-
ric in a broader context including the theory of circle packing on surfaces. Com-
binatorial Yamabe flow on hyperbolic surfaces with boundary has been studied by
Guo in [18]. The existence of the solution to Yamabe flow with topological surg-
eries has been proved recently in [16], which shows the mapping between conformal
factor and the curvature is a diffeomorphism.

The variational approach to circle packing was first introduced by Colin de
Verdiére [11]. Since then, many works on variational principles on circle packing
or circle pattern have appeared. For example, see Brägger [39], Rivin [31], Leibon
[25], Chow-Luo [10], Bobenko-Springborn [5], Guo-Luo [20], and Springborn [34].
Variational principles for polyhedral surfaces including the topic of circle packing
were studied systematically in Luo [27]. Many energy functions are derived from
the cosine law and its derivative. Tangent circle packing is generalized to tangent
circle packing with a family of discrete curvature. For exposition of this work, see
also Luo-Gu-Dai [29].

3. Smooth Surface Ricci Flow

This section briefly reviews the fundamental concepts and theorems related to
surface Ricci flow. Detailed discussion on Ricci flow on general Riemannian man-
ifolds can be found in [9]. Advanced topics on differential geometry related to
Yamabe equations can be found in [33].

3.1. Isothermal Coordinates and Gauss-Bonnet Theorem. Given a metric
surface, one can choose isothermal coordinates to facilitate geometric computa-
tions,as show in Fig. 2. Most differential operators, such as gradient and Laplace-
Beltrami operators, have the simplest form under isothermal coordinates.

Figure 2. Isothermal coordinate system on the Stanford bunny
surface. The mapping from the surface to the parameter plane is
conformal, which preserves angles and infinitesimal circles

Definition 3.1 (Isothermal Coordinates). On a surface S with a Riemannian met-
ric g, a local coordinates system (u, v) is an isothermal coordinate system, if

(3.1) g(u, v) = e2λ(u,v)(du2 + dv2),

where λ : S → R is a function defined on the surface, and called conformal factor.
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Isothermal coordinates on metric surfaces always exist, which can be proved
either using surface Ricci flow or quasi-conformal mapping. In the later part, we
give a proof by solving a Beltrami equation. An elementary proof can be found in
Chern’s work [7].

Theorem 3.2 (Existence of Isothermal Coordinates). Let (S,g) be a compact ori-
entable surface, then every point of S has a neighborhood whose local coordinates
are isothermal parameters.

Under the isothermal coordinates, the Gaussian curvature can be formulated as

(3.2) K(u, v) = −e−2λ(u,v)(
∂2

∂u2
+

∂2

∂v2
)λ = −∆gλ,

where the Laplace-Beltrami operator is

∆g = e−2λ(u,v)(
∂2

∂u2
+

∂2

∂v2
).

The Gauss-Bonnet theorem claims that although the Gauss curvature is deter-
mined by the Riemannian metric, the total curvature is solely determined by the
surface topology.

Theorem 3.3 (Gauss-Bonnet). Suppose S is a compact two-dimensional Riemann-
ian manifold with piecewise-smooth boundary ∂S. Let K be the Gaussian curvature,
kg the geodesic curvature of ∂S, and θk, k = 1, 2 · · · , n be the exterior angles of ∂S.
Then

∫

S

KdA+

∫

∂S

kgds+
n
∑

k=1

θk = 2πχ(S),

where χ(S) is the Euler characteristics of the surface.

3.2. Yamabe Problem. Suppose S is a surface with a Riemannian metric g,
which induces Gauss curvature K and geodesic curvature kg on the boundary. Let

ḡ = e2λg

be another metric conformal to the original one, which induces Gauss curvature
K̄ and geodesic curvature k̄g. Then the relations between Gaussian curvature
associated to a conformal change of metric are

K̄ = e−2λ(K −∆gλ),
k̄g = e−λ(kg − ∂n,gλ).

Given (S,g) and the prescribed curvature, K̄ and k̄g, compute the conformal
factor λ. Surface Yamabe problem can be solved using surface Ricci flow.

3.3. Surface Ricci Flow. Given an n dimensional Riemannian manifold M with
metric tensor g = (gij), the normalized Ricci flow is defined by the geometric
evolution equation

∂tg(t) = −2Ric(g(t)) + ρg(t).

where Ric is the Ricci curvature tensor and ρ is the mean value of the scalar
curvature

ρ =
2

n

∫

M
Rgdµg

∫

M
dµg

,

where Rg and µg are the scalar curvature and the volume element with respect
to the evolving metric g(t), respectively. Recall that a one-parameter family of
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metrics {g(t)}, where t ∈ [0, T ) for some 0 < T ≤ ∞ is called a solution to the
normalized Ricci flow if it satisfies the above equation at all p ∈ M and t ∈ [0, T ).

In two dimensions, the Ricci curvature for a metric g is equal to 1
2Rg, where R

is the scalar curvature (or twice the Gauss curvature). Therefore, the normalized
Ricci flow equation for surfaces takes the form

(3.3) ∂tg(t) = (ρ−R(t))g(t),

where ρ is the mean value of the scalar curvature,

ρ =
4πχ(M)

A(0)
,

where χ(M) is the Euler characteristic number of M , and A(0) is the total area of
the surface M at time t = 0.

The normalized Ricci flow preserves the total area, A(t) = A(0), ∀t > 0. During
the Ricci flow (Eqn. 3.3), the metric deforms conformally, g(t) = e2λ(t)g(0), the
conformal factor evolution equation is

(3.4) ∂tλ =
1

2
(ρ−R), λ(0) = 0,

and the curvature evolution equation is

(3.5) ∂tR = ∆g(t)R+R(R− ρ).

Hamilton [21] and chow [8] proved the convergence of surface Ricci flow.

Theorem 3.4 (Hamilton [21]). Let (M2, g0) be compact. If ρ ≤ 0, or if R(0) ≥ 0
on all of M2, then the solution to (3.3) exists for all t ≥ 0 and converges to a
metric of constant curvature.

Theorem 3.5 (Chow [8]). If g0 is any metric on S
2, then its evolution under

(Eqn. 3.3) develops positive scalar curvature in finite time, and hence by Theorem
3.4 converges to the round metric as t goes to ∞.

Surface Ricci flow implies the celebrated surface uniformization theorem.

Theorem 3.6. Suppose (S,g) is a compact, there is a function λ : S → R, such
that e2λg induces constant Gaussian curvature. If the Euler characteristics of S
χ(S) is positive, zero or negative, the constant is +1,0,-1 respectively.

Namely, as shown in Fig. 1, any closed metric surface can be conformally mapped
to the unit sphere S

2 , the Euclidean plane E
2 or hyperbolic plane H

2 . Similarly,
surfaces with boundaries can be mapped to one of these three canonical spaces with
circular holes (the so-called circle domains), as shown in Fig. 3.

4. Discrete Surface Ricci Flow

This section systematically introduces the discrete surface Ricci flow theory. The
whole theory is explained using the variational principle on discrete surfaces based
on derivative cosine law [29].

Ricci flow conformally deforms the Riemannian metrics, such that during the
flow the infinitesimal circles are preserved. This phenomenon inspired Thurston to
develop the circle packing method. In his work on constructing hyperbolic metrics
on 3-manifolds, Thurston [37] studied a Euclidean (or a hyperbolic) circle pack-
ing on a triangulated closed surface with prescribed intersection angles. His work
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Figure 3. Uniformization for surfaces with boundaries

Figure 4. Smooth surfaces are approximated by discrete Surfaces

generalizes Koebe’s and Andreev’s results of circle packing on a sphere [3, 4, 24].
Thurston conjectured that the discrete conformal mapping based on circle packing
converges to the smooth Riemann mapping when the discrete tessellation becomes
finer and finer. Thurston’s conjecture has been proved by Rodin and Sullivan [32].
Chow and Luo established the intrinsic connection between circle packing and sur-
face Ricci flow [10].

4.1. Discrete Surface. In practice, smooth surfaces are usually approximated by
discrete surfaces. Discrete surfaces are represented as two dimensional simplicial
complexes which are manifolds, as shown in Fig. 4.

Definition 4.1 (Triangular Mesh). Suppose Σ is a two dimensional simplicial
complex, furthermore it is also a manifold, namely, for each point p of Σ, there
exists a neighborhood of p, U(p), which is homeomorphic to the whole plane or the
upper half plane. Then Σ is called a triangular mesh.

If U(p) is homeomorphic to the whole plane, then p is called an interior point; if
U(p) is homeomorphic to the upper half plane, then p is called a boundary point.
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The fundamental concepts from smooth differential geometry, such as Riemann-
ian metric, curvature and conformal structure, are generalized to the simplicial
complex, respectively.

In the following discussion, we use Σ = (V,E, F ) to denote the mesh with vertex
set V , edge set E and face set F . A discrete surface is with Euclidean (hyperbolic or
spherical) background geometry if it is constructed by isometrically gluing triangles
in E

2 (H2 or S2).

Definition 4.2 (Discrete Riemannian Metric). A discrete metric on a triangular
mesh is a function defined on the edges, l : E → R

+, which satisfies the triangle
inequality: on each face [vi, vj , vk],

lij + ljk > lki, ljk + lki > lij , lki + lij > ljk.

A triangular mesh with a discrete Riemannian metric is called a discrete metric
surface.

vi vj

vk

li

lj

lk

θi

θk

θj

vi vj

vk

vi vj

vk

li
li

lk
lk

lj
lj

θi θi

θk θk

θjθj

R2
H2 S2

Figure 5. Different background geometry, Euclidean, spherical
and hyperbolic.

Definition 4.3 (Background Geometry). Suppose Σ is a discrete metric surface,
if each face of Σ is a spherical, ( Euclidean or hyperbolic ) triangle, then we say Σ
is with spherical, (Euclidean or hyperbolic) background geometry. We use S

2, E2

and H
2 to represent spherical Euclidean or hyperbolic background metric.

Triangles with different background geometries satisify different cosine laws:

1 =
cos θi+cos θj cos θk

sin θj sin θk
E
2

cos li =
cos θi+cos θj cos θk

sin θj sin θk
S
2

cosh li =
cosh θi+cosh θj cosh θk

sinh θj sinh θk
H

2

The discrete Gaussian curvature is defined as angle deficit, as shown in Fig. 6.

Definition 4.4 (Discrete Gauss Curvature). The discrete Gauss curvature function
on a mesh is defined on vertices, K : V → R,

K(v) =

{

2π −
∑

i αi, v 6∈ ∂M

π −
∑

i αi, v ∈ ∂M
,

where αi’s are corner angles adjacent to the vertex v, and ∂M represents the bound-
ary of the mesh.

The Gauss-Bonnet theorem still holds in the discrete case.
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α1 α3
α2

v

v

α1

α2

Figure 6. Discrete curvatures of an interior vertex and a bound-
ary vertex

Figure 7. Conformal mapping preserves infinitesimal circles.

Theorem 4.5 (Discrete Gauss-Bonnet Theorem). Suppose Σ is a triangular mesh
with Euclidean background metric. The total curvature is a topological invariant,

∑

v 6∈∂Σ

K(v) +
∑

v∈∂Σ

K(v) + ǫA(Σ) = 2πχ(Σ),

where χ is the characteristic Euler number, and K is the Gauss curvature, A(Σ)
is the total area, ǫ = {+1, 0,−1} if Σ is with spherical, Euclidean or hyperbolic
background geometry.

4.2. Thurston’s Circle Packing Idea. Surface Ricci flow conformally deforms
the Riemannian metric, such that infinitesimal circles are mapped to infinitesimal
circles, as shown in Fig. 7. This inspires Thurston to develop circle packing idea
as shown in Fig. 8. Suppose one wants to compute the Riemann mapping from a
planar domain Ω to the unit disk D. Here we treat the unit disk as the Poincaré
disk, namely the Riemannian metric is

g =
dzdz̄

(1− zz̄)2
.

One can triangulate Ω, and associate each vertex vi with a circle Ci = (vi, γi). For
each edge [vi, vj ], two circles at the end vertices Ci and Cj are tangential to each
other. This procedure constructs a circle packing of Ω with hyperbolic background
geometry. Then one can deform the circle packing, preserving the combinatorial
structure and the tangential relations among the circles, such that the boundary
circle radii approach to ∞, and all interior vertex curvatures are kept to be zeros.
This deformation between Ω and D can be treated as a discrete conformal mapping.
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Figure 8. Tangential circle packing on the hyperbolic disk.

If the triangulation is subdivided infinite times, the induced discrete conformal
mappings converge to the smooth Riemann mapping.

Definition 4.6 (Circle Packing Metric). Suppose Σ = (V,E, F ) is triangle mesh
with spherical, Euclidean or hyperbolic background geometry. Each vertex vi is
associated with a circle with radius γi. The circle radius function is denoted as
γ : V → R>0; a function defined on the vertices ǫ : V → {+1, 0,−1} is called
the scheme coefficient ; a function defined on edges η : E → R is called the discrete
conformal structure. A circle packing metric is a 4-tuple (Σ, γ, η, ǫ), the edge length
is determined by the 4-tuple.

In the smooth case, changing a Riemannian metric by a scalar function, g →
e2ug, is called a conformal metric deformation. The discrete analogy to this is as
follows.

Definition 4.7 (Discrete Conformal Equivalence). Two circle packing metrics
(Σk, γk, ηk, ǫk), k = 1, 2, are conformally equivalent if Σ1 = Σ2, η1 = η2, ǫ1 = ǫ2.

The discrete analogy to the concept of conformal factor in the smooth case is

Definition 4.8 (Discrete Conformal Factor). Discrete conformal factor for a circle
packing metric (Σ, γ, η, ǫ) is a function defined on each vertex u : V → R,

ui =







log γi E
2

log tanh γi

2 H
2

log tan γi

2 S
2

The following symmetric relation has fundamental importance.

Lemma 4.9 (Symmetry). A discrete surface with S
2, E2 or H

2 background geom-
etry, and a circle packing metric (Σ, γ, η, ǫ), then for any pair of vertices vi and
vj:

(4.1)
∂Ki

∂uj

=
∂Kj

∂ui

.

Furthermore, the partial derivatives have explicit geometric meaning, which will
be explained in details in later sections.

Definition 4.10 (Discrete Surface Ricci Flow). A discrete surface with S
2, E

2

or H
2 background geometry, and a circle packing metric (Σ, γ, η, ǫ), the discrete

surface Ricci flow is

(4.2)
dui(t)

dt
= K̄i −Ki(t),
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where K̄i is the target curvature at the vertex vi.

The discrete surface Ricci flow has exactly the same formula as the smooth
counter part 3.3. Furthermore, similar to the smooth case, discrete surface Ricci
flow is also variational: the discrete Ricci flow is the negative gradient flow of the
discrete Ricci energy.

Definition 4.11 (Discrete Ricci Energy). A discrete surface with S
2, E2 or H

2

background geometry, and a circle packing metric (Σ, γ, η, ǫ), the discrete surface
Ricci energy is

(4.3) EΣ(u1, u2, · · · , un) =

∫ (u1,u2,··· ,un) n
∑

i=1

(K̄i −Ki)dui.

The desired metric inducing the target curvature K̄ is a critical point of the
discrete Ricci energy. The symmetry relation 4.1 shows the discrete Ricci energy
is well defined. The discrete Ricci energy has explicit geometric meaning as well,
which will be further explained later.

Remark 4.12. Suppose (Σ, γ, η, ǫ) is with E
2 and H

2 background geometry, and
Σ is a (power) Delaunay triangulation (the power distance is determined by the
schemes), then the discrete Ricci energies are convex. The convexity implies the
local rigidity, namely the curvature mapping

(4.4) ∇EΣ : (u1, u2, · · · , un) → (K1,K2, · · · ,Kn)

is locally injective.

Remark 4.13. For Thurston’s circle packing scheme with both E
2 and H

2 back-
ground geometry, the admissible spaces of discrete conformal factors are also con-
vex, which implies the global rigidity, namely the curvature mapping 4.4 is a global
diffeomorphism. The admissible curvature space is a convex polytope, constrained
by a set of linear inequalities.

Remark 4.14. For Yamabe flow scheme with both E
2 and H

2 background geometry,
if Σ is preserved to be Delaunay during the flow, then the curvature mapping 4.4
is a global diffeomorphism [16],

∇EΣ : Rn
⋂

{
n
∑

i=1

ui = 0} → (−∞, 2π)n.

Remark 4.15. Discrete Ricci flow for surfaces with spherical background geometry
in general is not convex, which causes numerical instability. Therefore, in practice,
instead of mapping the surface onto the unit sphere, one can map the surface onto
the Euclidean plane first using Euclidean Ricci flow, then map the plane to the
sphere by the stereo-graphic projection.

5. Various Schemes

In the following, we explain different schemes in details. We only focus on one
triangle [vi, vj , vk], with corner angles θi, θj , θk, conformal factors ui, uj, uk and edge
lengths lij for edge [vi, vj ], ljk for [vj , vk] and lki for [vk, vi]. The Ricci energy of
the triangle is

(5.1) E(ui, uj, uk) =

∫ (ui,uj ,uk)

θidui + θjduj + θkduk.
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Under each background geometry E
2, H2 and S

2, there are 5 different schemes:
tangential circle packing, Thurston’s circle packing, inversive distance circle pack-
ing, Yamabe flow and virtual radius circle packing.

5.1. Euclidean Background Geometry.

Edge Length. Given a circle packing metric (Σ, γ, η, ǫ) The edge length on [vi, vj ]
is given by

(5.2) l2ij = 2ηijγiγj + ǫiγ
2
i + ǫjγ

2
j .

where ǫ is +1 for tangential/Thurston’s/inversive distance circle packing, 0 for
discrete Yamabe flow, −1 for virtual radius circle packing.
Hessian Matrix. The Hessian of the energy function 5.1 is the Jacobian

(5.3)
∂(θi, θj , θk)

∂(ui, uj, uk)
= −

1

2A
LΘL−1D,

In the following, we use the function s(x) = x. In the above formula, A is the
triangle area

(5.4) A =
1

2
sin θis(lj)s(lk),

the matrix L

(5.5) L =





s(li) 0 0
0 s(lj) 0
0 0 s(lk)





the matrix Θ

(5.6) Θ =





−1 cos θk cos θj
cos θk −1 cos θi
cos θj cos θi −1





and

(5.7) D =





0 τ(i, j, k) τ(i, k, j)
τ(j, i, k) 0 τ(j, k, i)
τ(k, i, j) τ(k, j, i) 0





where τ(i, j, k) = 1
2 (l

2
i + ǫjγ

2
j − ǫkγ

2
k).

The formula for Hessian matrix 5.3 can be applied for optimizing the Ricci energy
using Newton’s method.
Geometric Interpretation. The geometric meaning for the Hessian matrix is as fol-
lows. As shown in Fig. 9, the power of q with respect to vi is

pow(vi, q) = |vi − q|2 − ǫγ2
i .

The power center o of the triangle satisifies

pow(vi, o) = pow(vj , o) = pow(vk, o).

The power circle C centered at o with radius γ, where γ = pow(vi, o). Therefore,
for tangential, Thurton’s and inversive distance circle packing cases, the power
circle is orthogonal to three circles at the vertices Ci, Cj and Ck; for Yamabe flow
case, the power circle is the circumcircle of the triangle; for virtual radius circle
packing, the power circle is the equator of the sphere, which goes through three
points {vi + γ2

i n, vj + γ2
jn, vk + γ2

kn}, where n is the normal to the plane.
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Through the power center, we draw line perpendicular to three edges, the per-
pendicular feets are wi, wj and wk respectively. The distance from the power center
to the perpendicular feet are hi, hj and hk respectively. Then it can be shown easily
that

(5.8)
∂θi

∂uj

=
∂θj

∂ui

=
hk

lk
,
∂θj

∂uk

=
∂θk

∂uj

=
hi

li
,
∂θk

∂ui

=
∂θi

∂uk

=
hj

lj
,

furthermore,

(5.9)
∂θi

∂ui

= −
hk

lk
−

hj

lj
,
∂θj

∂uj

= −
hk

lk
−

hi

li
,
∂θk

∂uk

= −
hi

li
−

hj

lj
.

These two formula induces the formula in Eqn. 1.2.
The geometric interpreation to the discrete Ricci energy in Eqn. 5.1 is the volume

of a truncated ideal hyperbolic prism. We use the upper half space model for H3,
with Riemannian metric

ds2 =
dx2 + dy2 + dz2

z2

the xy-plane is the infinite plane. We draw the triangle on the xy-plane, and draw
vertical lines through three vertices, this gives us a prism. Then we through each
vertex circle, we either draw a hyperbolic plane (Euclidean hemispheres orthogonal
to the xy-plane) or a horosphere, and/or draw a hyperbolic plane through the power
circle. The prism is cut off by these hyperbolic planes or horospheres, the volume
of the truncated hyperbolic idea tetrahedron is the discrete Ricci energy in Eqn.
5.1. Details are illustrated by Fig. 9.

Suppose on the edge [vi, vj ], the distance from vi to the perpendicular foot wk

is dij , the distance from vj to wk is dji, then lij = dij + dji, and

∂lij

∂ui

= dij ,
∂lij

∂uj

= dji,

furthermore

d2ij + d2jk + d2ki = d2ik + d2kj + d2ji.

Tangential Circle Packing. Fig. 9 row (a) shows the tangential circle packing
scheme, where circles at the end vertices of each edge are tangential to each other.

lij = γi + γj.

The truncated hyperbolic tetrahedron is obtained by cutting off the prism by the
hyperbolic planes through all the vertex circles and the power circle.
Thurston’s Circle Packing. As shown in Fig. 9 row (b), two circles centered at the
end vertices of the same edge intersect each other. Assume the intersection angle
on edge [vi, vj ] is φij , where 0φij ∈ [0, π2 ], which determines the conformal structure
coefficient ηij = cosφij . Then the edge length is given by

l2ij = 2 cosφijγiγj + γ2
i + γ2

j .

The tangential circle packing is the special case of this scheme, where each φij is
zero. The construction of the truncated hyperbolic tetrahedron is similar to that
of tangent circle packing.
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Inversive Distance Circle Packing. As shown in Fig. 9 row (c), this scheme further
generalizes Thurston’s scheme. On each edge [vi, vj ], two circles Ci and Cj are
separated, the discrete conformal structure coefficient ηij > 1. The edge length is
given by

l2ij = 2ηijγiγj + γ2
i + γ2

j .

The construction of the truncated hyperbolic tetrahedron is similar.
Yamabe Flow. As shown in Fig. 9 row (d), the edge length is given by

l2ij = 2ηijγiγj ,

where ηij =
L2

ij

2 , Lij is the initial edge length, namely

lij = e
ui
2 Lije

uj

2 .

The power circle is the circum circle of the triangle. The truncated hyperbolic
tetrahedron is constructed as follows: draw a horosphere through the vertices vi,vj
and vk, with Euclidean radii γi, γj and γk, and draw a hemisphere through the
power circle. The prism is cut off by these horospheres and the hyperbolic plane.
Virtual Radius Circle Packing. As shown in Fig. 9 row (e), the vertex circles are
with imaginary radius, the edge length is given by

l2ij = 2ηijγiγj − γ2
i − γ2

j .

We vertically lift vertex vi to pi, pi = vi + γ2
i n, similarly lift vj and vk to pj and

pk. Draw a hemisphere through pi, pj and pk, orthogonal to the xy-plane. The
hemisphere cuts off the prism, the volume of the truncated hyperbolic tetrahedron
gives the Ricci energy.
Mixed Scheme. Fig. 10 shows the mixed scheme, which mixes inversive distance
circle packing at vi, virtual radius circle packing vj and Yamabe flow at vk, namely
(ǫi, ǫj , ǫk) = (+1,−1, 0). The edge length is given by

l2k = 2ηijγiγj + γ2
i − γ2

j , l
2
i = 2ηjkγjγk − γ2

j , l
2
j = 2ηkiγkγi + γ2

i .

The power circle is constructed as follows: lift vj to pj = vj+γ2
jn, draw a hemisphere

through vk and pj, and its equator is orthogonal to the circle (vi, γi). The Hessian
matrix formulae, Eqn. 5.8 and Eqn. 5.9, still hold. We draw hemispheres from
the vertex circle (vi, γi) and the power circle, and a horosphere through vk with
Euclidean raidus γk, the prims is cut off by these spheres, the volume of the left
part is the discrete Ricci energy.

5.2. Hyperbolic Background Geometry. For discrete surface with hyperbolic
background geometry, with the circle packing metric (Σ, γ, η, ǫ), suppose the con-
formal structure coefficient η is a constant function defined on edges, then for each
edge [vi, vj ], the edge length is given by

cosh lij =
4ηije

ui+uj + (1 + ǫie
2ui)(1 + ǫje

2uj )

(1− ǫie2ui)(1− ǫje2uj )
,

where ui = log tanh γi

2 is the discrete conformal factor, ǫ is +1 for tangential/
Thurston’s/inversive distance circle packing, 0 for discrete Yamabe flow and −1 for
virtual radius circle packing. The Hessian of the energy function or the Jacobian
has similar formula

∂(θi, θj , θk)

∂(ui, uj, uk)
= −

1

2A
LΘL−1D,
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(a) tangential circle packing η = 1, ǫ = 1
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(b) Thurston’s circle packing 0 ≤ η ≤ 1, ǫ = 1
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(c) Inversive distance circle packing η ≥ 1, ǫ = 1
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(d) Yamabe flow η > 0, ǫ = 0
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dki
hj

hihk
τij τij

τjk

τjk
τik
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θi θj

θk
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pk
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(e) virtual radius circle packing η > 0, ǫ = −1

Figure 9. Different circle packing schemes

where A and L is similar to those in Eqn. 5.4 and Eqn. 5.5 with s(x) = sinhx, Θ
is the same as in Eqn. 5.6, and D is similar to that in Eqn. 5.7 with

τ(i, j, k) = cosh li cosh
ǫj γj − coshǫk γk.
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Figure 10. Mixed type scheme

Inversive Distance Circle Packing. The tangential and Thurston’s circle packings
can be unified as inversive distance circle packing. In this scheme ǫ is +1, ηij > 0,
the length is given by

cosh lij = ηij sinh γi sinh γj + cosh γi cosh γj .

As shown in Fig. 14 1st row and 2nd column, the hyperbolic tetrahedron has
four hyperideal vertices, each vertex is cut by a hyperbolic plane, such that the
top section is a hyperbolic triangle with lengths lij , ljk and lki, the “vertical” edge
lengths are −ui, −uj and −uk respectively. The bottom lengths are λij , λjk and
λki respectively, where

coshλij = ηij .

Yamabe Flow. In this scheme ǫ is 0, ηij > 0, The edge length is given by

sinh
lij

2
= e

ui
2 sinh

Lij

2
e

uj

2 ,

where Lij is the initial edge length.
As shown in Fig. 14 2nd row and 2nd column, the hyperideal tetrahedron has

one hyperideal vertex and three ideal vertices. The top hyperideal vertex is cut by
a hyperbolic plane, the section is a hyperbolic triangle with edge lengths lij , ljk and
lki. The three ideal vertices are cut by horosphers, such that the “vertical” edge
lengths are −ui, −uj and −uk respectively. Furthermore, the bottom edge lengths
are λij , λjk and λki respectively, where

λij = 2 log sinh
Lij

2
= log 2ηij .

Virtual radius Circle Packing. In this scheme ǫ is −1, ηij > 0, The edge length is
given by

cosh lij =
ηij sinh ri sinh rj + 1

cosh ri cosh rj
.

As shown in Fig. 14 3rd row and 2nd column, the hyperbolic tetrahedron has one
hyperideal vertex and three vertices inside H3. The top hyperideal vertex is cut by
a hyperbolic plane, the section is a hyperbolic triangle with edge lengths lij , ljk and
lki. The “vertical” edge lengths are −ui, −uj and −uk respectively. Furthermore,
the bottom edge lengths are λij , λjk and λki respectively, where

coshλij = ηij .
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Remark 5.1. Similar to the Euclidean case, there is the mixed type hyperbolic
scheme. The energy function relates to a truncated hyperbolic tetrahedron. It top
vertex is hyperideal. It three bottom vertices are determined by the types ǫi, ǫj and
ǫk.

5.3. Spherical background geometry. The general principle to obtain formula
in spherical geometry, we only need to change sinh and cosh in hyperbolic geometry
into sin and cos. Given a circle packing metric (Σ, γ, η, ǫ) with spherical background
geometry, the length of an edge [vi, vj ] is

cos lij =
−4ηije

ui+uj + (1− ǫie
2ui)(1 − ǫje

2uj )

(1 + ǫie2ui)(1 + ǫje2uj )
,

where ui = log tan γi

2 . The Hessian of the energy or the Jacobian has exactly the
same formula as hyperbolic case

∂(θi, θj , θk)

∂(ui, uj, uk)
= −

1

2A
LΘL−1D,

where A and L is similar to those in Eqn. 5.4 and Eqn. 5.5 with s(x) = sinx, Θ is
the same as in Eqn. 5.6, and D is similar to that in Eqn. 5.7 with

τ(i, j, k) = cos li cos
ǫj γj − cosǫk γk.

Inversive Distance Circle Packing. The tangential and Thurston’s circle packings
can be unified as inversive distance circle packing. In this scheme ǫ is +1, ηij > 0,
the length is given by

cos lij = ηij sin γi sin γj + cos γi cos γj .

As shown in Fig. 14 1st row and 3rd column, the top vertex of the hyperbolic
tetrahedron is inside H

3, with three corner angles lij , ljk and lki. The other three
hyperideal vertices are cut by three hyerbolic planes, such that the “vertical” edge
lengths are −ui, −uj and −uk respectively. The bottom lengths are λij , λjk and
λki respectively, where

coshλij = ηij .

Yamabe Flow. In this scheme ǫ is 0, ηij > 0, The edge length is given by

sin
lij

2
= e

ui
2 sin

Lij

2
e

uj

2 ,

where Lij is the initial edge length.
As shown in Fig. 14 2nd row and 3rd column, the top vertex of the hyperbolic

tetrahedron is inside H
3, with three corner angles lij , ljk and lki. The other three

ideal vertices are cut by three horospheres, such that the “vertical” edge lengths
are −ui, −uj and −uk respectively. The bottom lengths are λij , λjk and λki

respectively, where

λij = log 2ηij .

Virtual radius Circle Packing. In this scheme ǫ is −1, ηij > 0, The edge length is
given by

cos lij =
ηij sin γi sin γj + 1

cos γi cos γj
.

As shown in Fig. 14 3rd row and 3rd column, the hyperbolic tetrahedron has
all four vertices inside H

3. The top vertex is with three corner angles lij , ljk and
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Tangential CP Inversive distance CP

Yamabe flow Virtual radius CP

Figure 11. Conformality test for different schemes.

lki, the “vertical” edge lengths are −ui, −uj and −uk respectively. The bottom
lengths are λij , λjk and λki respectively, where

coshλij = ηij .

Remark 5.2. Similar to E
2 and H

2 cases, there is the mixed type for S2 case. The
energy function relates to a truncated hyperbolic tetrahedron. It top vertex is in
H

3. It three bottom vertices are determined by the types ǫi, ǫj and ǫk.

6. Experimental Results

Our current implementation covers all schemes: Thurston’s circle packing, tan-
gential circle packing, inversive distance circle packing, Yamabe flow and virtual
radius circle packing, for discrete surfaces with Euclidean and Hyperbolic back-
ground geometries. The algorithms can handle surfaces with different topologies.
The package is accessible for the whole research community. The geometric data
sets are from the public databases, such as [1] and [2]. The human face surfaces
were scanned from a high speed and high resolution, phase shifting scanner, as
described in [38]. We tested our algorithm on a huge amount of various models,
including different sizes and topology types.
Generality. Fig. 1 and Fig. 3 demonstrate the generality of Ricci flow method to
handle surfaces with all possible topologies. These two figures cover all the topology
types of compact surfaces.
Conformality. Fig. 12 and Fig. 11 compares the qualities of different schemes.
In general, tangential circle packing scheme assumes all the edges lengths to be
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Tangential CP Inversive distance CP

Yamabe flow Virtual radius CP

Figure 12. Conformality test for different schemes.

one, therefore the conformality is as good as other schemes. On the other hand,
tangential circle packing scheme is robust to low qualities meshes.
Robustness. We also test robustness to the mesh qualities of different schemes. As
shown in Fig. 13, we use different schemes to compute Riemann mapping. For
low quality meshes, the tangential circle packing scheme outperforms others. If we
allow the connectivity to be modified during the flow, then all schemes succeed on
both surfaces.

7. Conclusion

This work establishes a unified framework for discrete surface Ricci flow, which
covers most existing schemes: tangential circle packing, Thurston’s circle packing,
inversive distance circle packing, discrete Yamabe flow, virtual radius circle packing
and mixed scheme, with Spherical, Euclidean and hyperbolic background geometry.
For the first time, two novel schemes, virtual radius circle packing and the mixed
scheme, are introduced. This work also gives explicit geometric interpretation to
the discrete Ricci energy for all the schemes, and Hessian of the discrete Ricci
energy for schemes with Euclidean background geometry.

The unified frame work deepen our understanding to the the discrete surface
Ricci flow theory, and inspired us to discover the novel schemes of virtual radius
circle packing and the mixed scheme, improved the flexibility and robustness of
the algorithms, greatly simplified the implementation and improved the debugging
efficiency. Experimental results show the unified surface Ricci flow algorithms can
handle surfaces with all possible topologies, and are robust to meshes with different
qualities, and effective for solving real problems.
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(a) General triangulation (b) Delaunay triangulation

Figure 13. The input meshes for the robustness tests.

In the future, we will focus on parallel algorithms for surface Ricci flow and prove
the convergence of discrete Ricci flow to the smooth Ricci flow.
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Appendix

In the appendix, we explain the unified surface Ricci flow algorithm 1 in details,
and reorganize all the formulae necessary for the coding purpose.
Step 1. Initial Circle Packing (γ, η). Depending on different schemes, the initial-
ization of the circle packing is different. The mesh has induced Euclidean metric
lij . For inversive distance circle packing, we choose

γi =
1

3
min
j

lij ,

this ensures all the vertex circles are separated. For Yamabe flow, we choose all γi
to be 1. For virtual radius circle packing, we choose all γi’s to be 1. Then γij can
be computed using the lij formula in Tab. 1.

http://arxiv.org/abs/math/0612714
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Algorithm 1 Unified Surface Ricci Flow

Require: The inputs include:
1. A triangular mesh Σ, embedded in E

3;
2. The background geometry, E2, H2 or S

2;
3. The circle packing scheme, ǫ ∈ {+1, 0,−1};
4. A target curvature K̄,

∑
K̄i = 2πχ(Σ) and K̄i ∈ (−∞, 2π).

Ensure: A discrete metric conformal to the original one, which realizes the target curvature K̄.
1: Initialize the circle radii γ, discrete conformal factor u and conformal structure coefficient η,

obtain the initial circle packing metric (Σ, γ, η, ǫ)
2: while maxi |K̄i −Ki| > threshold do

3: Compute the circle radii γ from the conformal factor u

4: Compute the edge length from γ and η

5: Compute the corner angle θ
jk
i

from the edge length using cosine law

6: Compute the vertex curvature K

7: Compute the Hessian matrix H

8: Solve linear system Hδu = K̄ −K

9: Update conformal factor u← u− δu

10: end while

11: Output the result circle packing metric.

ui Edge Length lij τ(i, j, k) s(x)

E2 log γi l2ij = 2ηije
ui+uj + ǫie

2ui + ǫje
2uj 1

2
(l2i + ǫjγ

2
j − ǫkγ

2
k
) x

H2 log tanh γi
2

cosh lij =
4ηij+(1+ǫie

2ui )(1+ǫje
2uj )

(1−ǫie
2ui )(1−ǫje

2uj )
cosh li cosh

ǫj γj − coshǫk γk sinhx

S
2 log tan γi

2
cosh lij =

4ηij+(1−ǫie
2ui )(1−ǫje

2uj )

(1+ǫie
2ui )(1+ǫje

2uj )
cos li cos

ǫj γj − cosǫk γk sinx

Table 1. Formulae for E2, H2 and S
2 background geometries.

Step 3. Circle Radii γ. The computation for circle radii from conformal factor uses
the formulae in the first column in Tab.1.
Step 4. Edge Length l. The computation of edge lengths from conformal factor u
and conformal structure coefficient η uses the formulae in the 2nd column in Tab.1
Step 5. Corner Angle θ. The computation from edge length l to the corner angle
θ uses the cosine law formulae,

l2k = l2i + l2j − 2lilj cos θk E
2

cosh lk = cosh li cosh lj − sinh li sinh lj cos θk H
2

cos lk = cos li cos lj − sin li sin lj cos θk S
2

Step 6. Vertex Curvature K. The vertex curvature is defined as angle deficit

K(vi) =

{

2π −
∑

[vi,vj ,vk]
θ
jk
i vi 6∈ ∂Σ

π −
∑

[vi,vj ,vk]
θ
jk
i vi 6∈ ∂Σ

Step 7. Hessian Matrix H .

∂(θi, θj , θk)

∂(ui, uj, uk)
= −

1

2A
LΘL−1D,

where

A = sin θis(lj)s(lk),

and

L = diag(s(li), s(lj), s(lk)),
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Figure 14. Geometric meaning of discrete Ricci energy - volumes
of truncated hyperbolic tetrahedra.

and

D =





0 τ(i, j, k) τ(i, k, j)
τ(j, i, k) 0 τ(j, k, i)
τ(k, i, j) τ(k, j, i) 0



 .

Step. 8 Linear System. If the Σ is with H
2 background geometry, then the Hessian

matrix H is positive define; else if Σ is with E
2 background geometry, then H is

positive definite on the linear subspace
∑

i ui = 0. The linear system can be solved
using any sparse linear solver, such as Eigen [17].
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Remark 7.1. For discrete surface Ricci flow with topological surgeries, we can add
one more step right after step 4. In this new step, we modify the connectivity of Σ
to keep the triangulation to be (Power) Delaunay.

Remark 7.2. In Alg. 1, ǫ is a constant function defined on the vertices. The algo-
rithm can be easily modified for mixed type scheme with E

2, H2 and S
2 background

geometries, by changing ǫ to be a non-constant function with values in {−1, 0,+1}.
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