D0-brane realizations of the resolution of a reduced singular curve

Chien-Hao Liu and Shing-Tung Yau

Abstract

Based on examples from superstring/D-brane theory since the work of Douglas and Moore on resolution of singularities of a superstring target-space Y via a D-brane probe, the richness and the complexity of the stack of punctual D0-branes on a variety, and as a guiding question, we lay down a conjecture that any resolution $Y^{\prime} \rightarrow Y$ of a variety Y over \mathbb{C} can be factored through an embedding of Y^{\prime} into the stack $\mathfrak{M}_{r}^{0^{0_{p}}{ }^{f}}(Y)$ of punctual D0-branes of rank r on Y for $r \geq r_{0}$ in \mathbb{N}, where r_{0} depends on the germ of singularities of Y. We prove that this conjecture holds for the resolution $\rho: C^{\prime} \rightarrow C$ of a reduced singular curve C over \mathbb{C}. In string-theoretical language, this says that the resolution C^{\prime} of a singular curve C always arises from an appropriate D0-brane aggregation on C and that the rank of the Chan-Paton module of the D0-branes involved can be chosen to be arbitrarily large.

Key words: D-brane, resolution, singularity; punctual D0-brane, stack; singular curve, normalization; embedding, separation of points, separation of tangents.

MSC number 2010: 14E15, 14A22, 81T30.

Acknowledgements. In fall 2011, Baosen Wu gives a topic course at Harvard on moduli of coherent sheaves. This note arises from a series of originally-casual-but-later-serious discussions with him. Despite his generosity, insisting that he plays only a mild role in this, we regard him as a coauthor and thank him for serving as a sounding board to our preliminary thought, catching an incompleteness of the first draft of the note, and influencing our mathematical understanding of Bbranes and other issues. C.-H.L. thanks in addition Carl Mautner for discussions on constructible/perverse sheaves that influence his thought on A-branes; Sean Keel for an exceptional lecture on mirror symmetry and answers to his various questions; Clay Cordova, Babak Haghighat, Cumrun Vafa for discussions on new issues on A-branes; Lara Anderson, Feng-Li Lin, Li-Sheng Tseng for conversations that enrich his stringy culture; Nir Avni, Jacob Lurie, C.M., B.W. for topic courses, fall 2011; and Ling-Miao Chou for moral support. S.-T.Y. thanks in addition Department of Mathematics at National Taiwan University for the intellectually rich environments and hospitality. The project is supported by NSF grants DMS-9803347 and DMS-0074329.

Chien-Hao Liu dedicates this note to
the Willmans, a musical family that influenced him in every aspect during his teen-years; and his music teachers (time-ordered)
Cheng-Yo Lin, Bai-Chung Chen, Natalia Colocci, Kathy McClure, Janet Maestre who brought another dimension to his life;
and to Ann and Ling-Miao for the double flutes/flute*-piano duets he forever cherishes.
*(From C.-H.L.) Special thanks to Langus, a then-9-year-old kid when entering accidentally my life and who motivated me to re-pick up the instrument after its being discarded for more than a decade.

0 . Introduction and outline.

The work [D-M] of Michael Douglas and Gregory Moore on resolution of singularities of a superstring target-space Y via a D-brane probe (i.e., the realization of a resolution Y^{\prime} of Y as a space of vacua - namely, a moduli space in quantum-field-theoretical sense - of the worldvolume quantum field theory of the D-brane probe) has influenced many studies both on the mathematics and the string-theory side. (See also a related work [J-M] of Clifford Johnson and Robert Myers.) The attempt to understand the underlying geometry behind the setup of [D-M] is indeed part of the driving force that leads us to the current setting of D-branes in the project (cf. [L-Y1] and [L-Y2]). Based on examples ${ }^{1}$ from superstring/D-brane theory since [D-M], the richness and the complexity of the stack $\mathfrak{M}^{0_{p}^{A z f}}(Y)$ of punctual D0-branes on a variety Y, and as a guiding question, we lay down in this not ${ }^{2}$ a conjecture that any resolution $Y^{\prime} \rightarrow Y$ of a variety Y over \mathbb{C} can be factored through an embedding of Y^{\prime} into the stack $\mathfrak{M}_{r}^{0_{p}^{A_{z} f}}(Y)$ of punctual D0-branes of rank r on Y for $r \geq r_{0}$ in \mathbb{N}, where r_{0} depends on the germ of singularities of Y; cf. Sec. 1. For the one-dimensional case, we prove that this conjecture holds for the resolution $\rho: C^{\prime} \rightarrow C$ of a reduced singular curve C over \mathbb{C}; cf. Sec. 2. In string-theoretical language, this says that the resolution C^{\prime} of a singular curve C always arises from an appropriate D0-brane aggregation on C and that the rank of the Chan-Paton module of the D0-branes involved can be chosen to be arbitrarily large.

Remark 0.1. [another aspect]. It should be noted that there is another direction of D-brane resolutions of singularities (e.g. [As], [Br], [Ch]), from the point of view of (hard/massive/solitonic) D-branes (or more precisely B-branes) as objects in the bounded derived category of coherent sheaves. Conceptually that aspect and ours (for which D-branes are soft in terms of string tension) are in different regimes of a refined Wilson's theory-space of $d=2$ supersymmetric field theory-with-boundary on the open-string world-sheet $\sqrt[3]{ }$ Being so, there should be an interpolation between these two aspects. It would be very interesting to understand such details.

Convention. Standard notations, terminology, operations, facts in (1) algebraic geometry; (2) coherent sheaves; (3) resolution of singularities; (4) stacks can be found respectively in (1) [Ha]; (2) [H-L]; (3) [Hi], [Ko]; (4) [L-MB].

- All varieties, schemes and their products are over \mathbb{C}; a 'curve' means a 1-dimensional proper scheme over \mathbb{C}; a 'stack' means an Artin stack.
- The 'support' $\operatorname{Supp}(\mathcal{F})$ of a coherent sheaf \mathcal{F} on a scheme Y means the scheme-theoretical support of $\mathcal{F} ; \mathcal{I}_{Z}$ denotes the ideal sheaf of a subscheme of Z of a scheme Y.
- The current note continues the study in [L-Y1] (arXiv:0709.1515 [math.AG], D(1)), [LY2] (arXiv:0901.0342 [math.AG], D(3)), and [L-Y3] (arXiv:0907.0268 [math.AG], D(4)) with some background from [L-L-S-Y] (arXiv:0809.2121] [math.AG], (2)). A partial review of D-branes and Azumaya noncommutative geometry is given in [L-Y4] (arXiv:1003.1178 [math.SG], $\mathrm{D}(6)$). Notations and conventions follow these early works when applicable.

[^0]
Outline.

0 . Introduction.

1. The stack of punctual D0-branes on a variety and an abundance conjecture.

- D-branes as morphisms from Azumaya noncommutative spaces with a fundamental module.
- The stack of punctual D0-branes on a variety and an abundance conjecture.

2. Realizations of resolution of singular curves via D0-branes.

- Basic setup and a criterion for nontrivial extensions of modules.
- Separation of points in $\rho^{-1}(p)$ via punctual D0-branes at p.
- Construction of embeddings $C^{\prime} \hookrightarrow \mathfrak{M}^{0^{A_{z}{ }^{f}}}(C)$ that descend to ρ.

1 The stack of punctual D0-branes on a variety and an abundance conjecture.

We collect a few most essential definitions and setups for this sub-line of the project. Readers are referred to [L-Y4] for a more thorough review of the first part of the project and stringytheoretical remarks on how inputs from [Po1], [Po2], and [Wi] lead to such a setting.

D-branes as morphisms from Azumaya noncommutative spaces with a fundamental module.

Our starting point is the following prototypical definition of D-branes that comes from a mathematical understanding of [Po1], [Po2] from Joseph Polchinski and [Wi] from Edward Witten based on how Alexandre Grothendieck developed the theory of schemes in modern (commutative) algebraic geometry:

Definition 1.1. [D-brane]. Let Y be a variety (over \mathbb{C}). A D-brane on Y is a morphism φ from an Azumaya noncommutative space-with-a-fundamental-module $\left(X^{A z}, \mathcal{E}\right):=\left(X, \mathcal{O}_{X}^{A z}, \mathcal{E}\right)$ to Y. Here, X is a scheme over \mathbb{C}, \mathcal{E} a locally free \mathcal{O}_{X}-module, and $\mathcal{O}_{X}^{A z}=\mathcal{E} n d_{\mathcal{O}_{X}}(\mathcal{E})$; and φ is defined through an equivalence class of gluing systems of ring homomorphisms given by $\varphi^{\sharp}: \mathcal{O}_{Y} \rightarrow \mathcal{O}_{X}^{A z}$. The rank of \mathcal{E} is called the rank of the D-brane.

Similar to the fact that the data of a morphism $f: X \rightarrow Y$ between schemes can be encoded completely by its graph Γ_{f} as a subscheme in $X \times Y$, the data of φ is also encoded completely by its graph Γ_{φ} :

Definition 1.2. [φ in terms of its graph Γ_{φ}]. The graph of a morphism in Definition 1.1 is given by an $\mathcal{O}_{X \times Y}$-module $\tilde{\mathcal{E}}$ that is flat over X and of relative dimension 0 . In detail, let $p r_{1}: X \times Y \rightarrow X, p r_{2}: X \times Y \rightarrow Y$ be the projection map, and $f_{\varphi}: \operatorname{Supp}(\tilde{\mathcal{E}}) \rightarrow Y$ be the restriction of $p r_{2}$. Then $\tilde{\mathcal{E}}$ defines a morphism φ in Definition 1.1 as follows:

- $\mathcal{E}=p r_{1 *} \tilde{\mathcal{E}} ;$
- note that $\operatorname{Supp}(\tilde{\mathcal{E}})$ is affine over X; thus, the gluing system of ring homomorphisms
$f_{\varphi}^{\sharp}: \mathcal{O}_{Y} \rightarrow \mathcal{O}_{\operatorname{Supp}(\tilde{\mathcal{E}})}$ defines a gluing system of ring-homomorphisms
$\varphi^{\sharp}: \mathcal{O}_{Y} \rightarrow \mathcal{E} n d_{\mathcal{O}_{X}}(\mathcal{E})=\mathcal{O}_{X}^{A z}$, which defines φ.

It is worth emphasizing that, unlike the standard setting for a morphism between ringed topological spaces in commutative geometry, in general φ specifies only a correspondence from X to Y via the diagram

$$
\begin{aligned}
X_{\varphi}:= & \operatorname{Supp}(\tilde{\mathcal{E}}) \xrightarrow{f_{\varphi}} Y \\
& \pi_{\varphi} \\
& \downarrow \\
& X
\end{aligned}
$$

not a morphism from X to Y.
Definition 1.2 suggests another equivalent description of φ.
Definition 1.3. [φ as morphism to stack of D0-branes]. Let $\mathfrak{M}^{0^{A z}}(Y)$ be the stack of 0-dimensional \mathcal{O}_{Y}-modules. It follows from Definition 1.2 that this is precisely the stack of D0-branes on Y in the sense of Definition 1.1 and, hence, the notation. Then, a morphism φ in Definition 1.1 is specified by a morphism $\hat{\varphi}: X \rightarrow \mathfrak{M}^{0^{A z} f}(Y)$.

The stack of punctual D0-branes on a variety and an abundance conjecture.

Definition 1.4. [stack of punctual D0-branes]. Let Y be a variety. By a punctual 0dimensional \mathcal{O}_{Y}-module, we mean a 0 -dimensional \mathcal{O}_{Y}-module \mathcal{F} whose $\operatorname{Supp}(\mathcal{F})$ is a single point (with structure sheaf an Artin local ring). By Definition $1.2, \mathcal{F}$ specifies a D0-brane on Y, which is called a punctual D0-brane. It is a morphism from an Azumaya point with a fundamental module to Y that takes the fundamental module to a punctual 0-dimensional \mathcal{O}_{Y}-module. Let $\mathfrak{M}_{r}^{0_{p}^{A z}}(Y)$ be the stack of punctual D0-branes of rank r on a variety Y. It has an Artin stack with atlas constructed from Quot-schemes. There is a morphism $\pi_{Y}: \mathfrak{M}^{0^{A z}{ }_{p}^{f}}(Y) \rightarrow Y$ that takes \mathcal{F} to $\operatorname{Supp}(\mathcal{F})$ with the reduced scheme structure. π_{Y} is essentially the Hilbert-Chow/Quot-Chow morphism.

The following two conjectures are motivated by the various examples in string theory concerning D-brane resolution of singularities of a superstring target-space and the richness and the complexity of the stack $\mathfrak{M}^{0^{A z}{ }^{f}}(Y)$:

Conjecture 1.5. [D0-brane resolution of singularity]. Any resolution $Y^{\prime} \rightarrow Y$ of a variety Y can be factored through an embedding of Y^{\prime} into the stack $\mathfrak{M}_{r}^{0^{A z}{ }^{f}}(Y)$ of punctual D0-branes of rank r on Y for any $r \geq r_{0}$ in \mathbb{N}, where r_{0} depends only on the germ of singularities of Y.

Conjecture 1.5 is a weaker form of the following stronger form of an abundance conjecture:
Conjecture 1.6. [abundance]. Any birational morphism $Y^{\prime} \rightarrow Y$ between varieties over \mathbb{C} can be factored through an embedding of Y^{\prime} into the stack $\mathfrak{M}_{r}^{0^{A z_{z}^{f}}}(Y)$ of punctual D0-branes of rank r on Y for any $r \geq r_{0}$ in \mathbb{N}, where r_{0} depends only on the germ of singularities of Y and the germ of singularities of Y^{\prime}.

This says that all the birational models of and over Y are already contained in the stack $\mathfrak{M}^{0^{A z}}{ }^{f}(Y)$ of punctual D0-branes on Y. All the birational transitions between birational models of and over Y happens as correspondences inside $\mathfrak{M}^{0^{A z}{ }_{p}^{f}}(Y)$ (and hence the name of the conjecture) - an intrinsic stack over Y, locally of finite type, that is canonically associated to Y.

Remark 1.7. [string-theoretical remark]. A standard setting (cf. [D-M]) in D-brane resolution of singularities of a (complex) variety Y (which is a singular Calabi-Yau space in the context of string theory) is to consider a super-string target-space-time of the form $\mathbb{R}^{(9-2 d)+1} \times Y$ and an (effective-space-time-filling) $\mathrm{D}(9-2 d)$-brane whose world-volume sits in the target space-time as a submanifold of the form $\mathbb{R}^{(9-2 d)+1} \times\{p\}$. Here, d is the complex dimension of the variety Y and $p \in Y$ is an isolated singularity of Y. When considering only the geometry of the internal part of this setting, one sees only a D0-brane on Y. This explains the role of D0-branes in the statement of Conjecture 1.5 and Conjecture 1.6. In the physics side, the exact dimension of the D-brane (rather than just the internal part) matters since supersymmetries and their superfield representations in different dimensions are not the same and, hence, dimension does play a role in writing down a supersymmetric quantum-field-theory action for the world-volume of the $\mathrm{D}(9-2 d)$-brane probe. In the above mathematical abstraction, these data are now reflected into the richness, complexity, and a master nature of the stack $\mathfrak{M}_{r}^{0_{p}^{\text {Az } f}}(Y)$ that is intrinsically associated to the internal geometry. The precise dimension of the D-brane as an object sitting in or mapped to the whole space-time becomes irrelevant.

2 Realizations of resolution of singular curves via D0-branes.

Let C be a reduced singular curve over \mathbb{C} and

$$
\rho: C^{\prime} \longrightarrow C
$$

be the resolution of singularities of C. In the current 1-dimensional case, the singularities of C are isolated and ρ is realized by the normalization of C. In particular, ρ is an affine morphism. The built-in $\mathcal{O}_{C^{\prime}}$-module homomorphism $\rho^{\sharp}: \mathcal{O}_{C} \rightarrow \rho_{*} \mathcal{O}_{C^{\prime}}$ determines a subsheaf $\mathcal{A}_{C} \subset \mathcal{O}_{C^{\prime}}$ of \mathbb{C}-subalgebras with the induced morphism $C^{\prime} \rightarrow \mathbf{S p e c} \mathcal{A}_{C}$ identical to ρ. Let $p^{\prime} \in C^{\prime}$ be a closed point, $p:=\rho\left(p^{\prime}\right)$, and $\mathfrak{m}_{p^{\prime}}=(t)$ (resp. \mathfrak{m}_{p}) be the maximal ideal of $\mathcal{O}_{C^{\prime}, p^{\prime}}$ (resp. $\mathcal{O}_{C, p}$). Then $\rho^{\sharp}\left(\mathfrak{m}_{p}\right) \cdot \mathcal{O}_{C^{\prime}, p^{\prime}}=\left(t^{n_{p^{\prime}}}\right)$ for some $n_{p^{\prime}} \in \mathbb{N} . n_{p^{\prime}}>1$ if and only if $p \in C_{\text {sing }}:=$ the singular locus of C. We show in this section that:

Proposition 2.1. [one-dimensional case]. Conjecture 1.5 holds for $\rho: C^{\prime} \rightarrow C$. Namely, there exists an $r_{0} \in \mathbb{N}$ depending only on the tuple $\left(n_{p^{\prime}}\right)_{\rho\left(p^{\prime}\right) \in C_{\text {sing }}}$ and a (possibly empty) set $\left\{\right.$ b.i.i. $(p): p \in C_{\text {sing }}, C$ has multiple branches at $\left.p\right\}$ (cf. Definition 2.6), both associated to the germ of $C_{\text {sing }}$ in C, such that, for any $r \geq r_{0}$, there exists an embedding $\tilde{\rho}: C^{\prime} \hookrightarrow \mathfrak{M}_{r}^{0_{r}^{A_{z} f}}{ }^{f}(C)$ that makes the following diagram commute:

Basic setup and a criterion for nontrivial extensions of modules.

Consider the induced affine morphism $i d_{C^{\prime}} \times \rho: C^{\prime} \times C^{\prime} \rightarrow C^{\prime} \times C$. Let $p r_{1}^{\prime}: C^{\prime} \times C^{\prime} \rightarrow C^{\prime}$ (the first factor), $p r_{2}^{\prime}: C^{\prime} \times C^{\prime} \rightarrow C^{\prime}$ (the second factor), $p r_{1}: C^{\prime} \times C \rightarrow C^{\prime}$, and $p r_{2}: C^{\prime} \times C \rightarrow C$ be the projection maps. Let $\tilde{\mathcal{E}}^{\prime}$ be a coherent sheaf on $C^{\prime} \times C^{\prime}$ that is flat over C^{\prime} under $p r_{1}^{\prime}$, with support in an infinitesimal neighborhood of the diagonal $\Delta_{C^{\prime}} \subset C^{\prime} \times C^{\prime}$. Then $\tilde{\mathcal{E}}:=\left(i d_{C^{\prime}} \times \rho\right)_{*}\left(\tilde{\mathcal{E}}^{\prime}\right)$ is a coherent sheaf on $C^{\prime} \times C$ that is flat over C^{\prime} under $p r_{1}$, with support in an infinitesimal neighborhood of the graph Γ_{ρ} of ρ in $C^{\prime} \times C$.

Lemma 2.2. [commutativity of push-forward and restriction]. Let $p^{\prime} \in C^{\prime}$ be a closed point. Then $\left(i d_{C^{\prime}} \times \rho\right)_{*}\left(\left.\tilde{\mathcal{E}}^{\prime}\right|_{\left\{p^{\prime}\right\} \times C^{\prime}}\right)=\left.\tilde{\mathcal{E}}\right|_{\left\{p^{\prime}\right\} \times C}$.

Proof. As $\tilde{\mathcal{E}}^{\prime}$ is flat over C^{\prime} under $p r_{1}^{\prime}$, one has the exact sequence

$$
\left.0 \longrightarrow \mathcal{I}_{\left\{p^{\prime}\right\} \times C^{\prime}} \otimes_{\mathcal{O}_{C^{\prime}}} \tilde{\mathcal{E}}^{\prime} \longrightarrow \tilde{\mathcal{E}}^{\prime} \longrightarrow \tilde{\mathcal{E}}^{\prime}\right|_{\left\{p^{\prime}\right\} \times C^{\prime}} \longrightarrow 0 .
$$

Since $i d_{C^{\prime}} \times \rho$ is affine, $\left(i d_{C^{\prime}} \times \rho\right)_{*}: \mathcal{C o h}\left(C^{\prime}\right) \rightarrow \mathcal{C o h}(C)$ is exact and one has

$$
\begin{gathered}
0 \longrightarrow\left(i d_{C^{\prime}} \times \rho\right)_{*}\left(\mathcal{I}_{\left\{p^{\prime}\right\} \times C^{\prime}} \otimes_{\mathcal{O}_{C^{\prime}}} \tilde{\mathcal{E}}^{\prime}\right) \longrightarrow \tilde{\mathcal{E}} \longrightarrow\left(i d_{C^{\prime}} \times \rho\right)_{*}\left(\left.\tilde{\mathcal{E}}^{\prime}\right|_{\left\{p^{\prime}\right\} \times C^{\prime}}\right) \longrightarrow 0 \\
\| \\
\mathcal{I}_{\left\{p^{\prime}\right\} \times C} \otimes_{\mathcal{O}_{C^{\prime}}} \tilde{\mathcal{E}}
\end{gathered}
$$

where the top horizontal line is an exact sequence. This proves the lemma.

Remark/Notation 2.3. [general restriction over a base]. Lemma 2.2 holds more generally with p^{\prime} replaced by a subscheme of C^{\prime}, by the same proof with the replacement. We'll denote the restriction of a coherent sheaf $\tilde{\mathcal{F}}^{\prime}\left(\right.$ resp. $\tilde{\mathcal{F}}$) on $C^{\prime} \times C^{\prime}\left(\right.$ resp. $\left.C^{\prime} \times C\right)$ over a subscheme Z^{\prime} of the base C^{\prime} by $\tilde{\mathcal{F}}_{Z^{\prime}}^{\prime}\left(\right.$ resp. $\left.\tilde{\mathcal{F}}_{Z^{\prime}}\right)$.

Let $v_{p^{\prime}} \simeq \operatorname{Spec}(\mathbb{C}[\varepsilon])$, where $\varepsilon^{2}=0$, be the subscheme of the base C^{\prime} that corresponds to the \mathbb{C}-algebra quotient $\mathcal{O}_{C^{\prime}, p^{\prime}} \rightarrow \mathbb{C}[\varepsilon]$ with $t \mapsto \varepsilon$. Then the restriction of $\tilde{\mathcal{E}}^{\prime}$ over $v_{p^{\prime}}$ determines an element $\alpha_{p^{\prime}}^{\prime} \in \operatorname{Ext}{ }_{C^{\prime}}^{1}\left(\tilde{\mathcal{E}}_{p^{\prime}}^{\prime}, \tilde{\mathcal{E}}_{p^{\prime}}^{\prime}\right)$. Similarly, the restriction of \mathcal{E} over $v_{p^{\prime}}$ determines an element $\alpha_{p^{\prime}}=: \rho_{*} \alpha_{p^{\prime}}^{\prime} \in \operatorname{Ext}_{C}^{1}\left(\tilde{\mathcal{E}}_{p^{\prime}}, \tilde{\mathcal{E}}_{p^{\prime}}\right)$. Let $p:=\rho\left(p^{\prime}\right)$ and recall $t \in \mathcal{O}_{C^{\prime}, p^{\prime}}$ and $n_{p^{\prime}} \in \mathbb{N}$ from the beginning of this section. Let us first state an elementary criterion for non-splitability of a short exact sequence, whose proof is immediate:

Lemma 2.4. [criterion of non-splitability]. Let W be a scheme and

$$
0 \longrightarrow \mathcal{F}_{2} \longrightarrow \mathcal{G} \longrightarrow \mathcal{F}_{1} \longrightarrow 0
$$

be an exact sequence of \mathcal{O}_{W}-modules that represents a class $\beta \in \operatorname{Ext}{ }_{W}^{1}\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right)$. Suppose that there exist a point $w \in W$ and a local function $f \in \mathcal{O}_{W, w}$ such that, for the associated $\mathcal{O}_{W, w^{-}}$ modules (still denoted the same), $f \cdot \mathcal{F}_{1}=f \cdot \mathcal{F}_{2}=0$ while $f \cdot \mathcal{G} \neq 0$. Then, $\beta \neq 0$; namely, the above sequence doesn't split.

Corollary 2.5. [push-forward of jet]. Continuing the main-line discussions and notations. Let α^{\prime} be given by the exact sequence

$$
0 \longrightarrow \tilde{\mathcal{E}}_{p^{\prime}}^{\prime} \longrightarrow \tilde{\mathcal{F}}^{\prime} \xrightarrow{j} \tilde{\mathcal{E}}_{p^{\prime}}^{\prime} \longrightarrow 0
$$

of $\mathcal{O}_{C^{\prime}}$-modules. Denote the same for the associated exact sequence of $\mathcal{O}_{C^{\prime}, p^{\prime}}$-modules. As such, suppose that there is an $l \in \mathbb{N}$ such that $\left(t^{n_{p^{\prime}}}\right)^{l} \cdot \tilde{\mathcal{E}}^{\prime}=0$ while $\left(t^{n_{p^{\prime}}}\right)^{l+1} \cdot \tilde{\mathcal{F}}^{\prime} \neq 0$. Then $\alpha \neq 0$ in $\operatorname{Ext}_{C}^{1}\left(\tilde{\mathcal{E}}_{p^{\prime}}, \tilde{\mathcal{E}}_{p^{\prime}}\right)$.

Proof. Note that the multiplication of t by an invertible element in $\mathcal{O}_{C^{\prime}, p^{\prime}}$ (i.e. by an element in $\mathcal{O}_{C^{\prime}, p^{\prime}}-\mathfrak{m}_{p^{\prime}}$) won't alter its nilpotency behavior on the modules in question. The corollary follows immediately from Lemma 2.4 and the observation that, up to a multiplication by an invertible element in $\mathcal{O}_{C^{\prime}, p^{\prime}}$, one may assume that $t^{n_{p^{\prime}}} \in \rho^{\sharp}\left(\mathcal{O}_{C, p}\right)$.

Separation of points in $\rho^{-1}(p)$ via punctual D0-branes at p.

Let $p \in C_{\text {sing }}$ and \hat{C} be the formal neighborhood (as an ind-scheme) of p in C. Then each irreducible component $\hat{C}_{i}, i=1, \cdots, k$, of \hat{C} corresponds to a branch of the germ of p in C. Assume that $k \geq 2$. Then the intersection of two distinct components \hat{C}_{i} and \hat{C}_{j} of \hat{C} is represented by a punctual 0 -dimensional subscheme $Z_{i j}=Z_{j i}$ of C at p of finite length $l_{i j}=l_{j i}$.

Definition 2.6. [branch intersection index]. For $k \geq 2$, define the branch intersection index b.i.i. (p) at $p \in C_{\text {sing }}$ to be

$$
\text { b.i.i. }(p):=\max \left\{l_{i j}: 1 \leq i, j \leq k ; i \neq j\right\} .
$$

Let $p \in C_{\text {sing }}, \rho^{-1}(p)=\left\{p_{1}^{\prime}, \cdots p_{k}^{\prime}\right\}$, and \hat{C}_{i}^{\prime} be the formal neighborhood of p_{i}^{\prime} in C^{\prime}. Then $\rho: C^{\prime} \rightarrow C$ induces a morphism $\hat{\rho}_{i}: \hat{C}_{i}^{\prime} \rightarrow \hat{C}$ of ind-schemes, for $i=1, \ldots, k$. The image $\hat{\rho}_{i}\left(\hat{C}_{i}^{\prime}\right)$ is a branch of \hat{C}, which we may assume to be \hat{C}_{i}, after relabeling, since different $\hat{C}_{i}^{\prime \prime}$ s are mapped to different branches of \hat{C} under $\hat{\rho}_{i}$. Let $\mathfrak{m}_{p_{i}^{\prime}}=\left(u_{i}\right)$ be the maximal ideal of $\mathcal{O}_{C^{\prime}, p_{i}^{\prime}}$;

- $\mathcal{F}_{i ; l}^{\prime}$ be the 0-dimensional $\mathcal{O}_{C^{\prime}}$-module $\mathcal{O}_{C^{\prime}, p_{i}^{\prime}} /\left(u_{i}^{n_{p_{i}^{\prime}} l}\right)$;
- $\hat{\mathcal{F}}_{i ; l}^{\prime}$ be the $\mathcal{O}_{\hat{C}_{i}^{\prime}}$-module associated to $\mathcal{F}_{i ; l}^{\prime}$;
- $\mathcal{F}_{i ; l}$ be the \mathcal{O}_{C}-module $\rho_{*} \mathcal{F}_{i ; l}^{\prime} ;$
- $\hat{\mathcal{F}}_{i ; l}$ be the $\mathcal{O}_{\hat{C}}$-module $\hat{\rho}_{i *} \hat{\mathcal{F}}_{i ; l}^{\prime}=\widehat{\rho_{*} \mathcal{F}_{i ; l}^{\prime}}$.

Then, one has the following lemma:
Lemma 2.7. [separation by punctual modules]. length $\left(\operatorname{Supp}\left(\mathcal{F}_{i ; l}\right)\right) \geq l$ and $\operatorname{Supp}\left(\hat{\mathcal{F}}_{i ; l}\right) \subset$ \hat{C}_{i}. In particular, if $l>$ b.i.i. (p), then $\mathcal{F}_{1 ; l}, \cdots, \mathcal{F}_{k ; l}$ are punctual 0 -dimensional \mathcal{O}_{C}-modules at p that are non-isomorphic to each other.

Proof. As in the previous theme, we may assume that $u_{i}^{n_{p_{i}^{\prime}}}=\rho^{\sharp}\left(f_{i}\right)$ for some $f_{i} \in \mathfrak{m}_{p} \subset \mathcal{O}_{C, p}$. Let $h \in \mathbb{C}[x]$ be a polynomial in one variable. Then, by construction, $h\left(u_{i}^{n_{p_{i}^{\prime}}}\right) \cdot \mathcal{F}_{i: l}^{\prime}=0$ if and only if $h \in\left(x^{l}\right)$. In other words, $h\left(f_{i}\right) \cdot \mathcal{F}_{i ; l}=0$ if and only of $h \in\left(x^{l}\right)$. It follows that there exists a local section $m_{i ; l}$ of $\mathcal{F}_{i, l}$ such that $f_{i}^{l-1} \cdot m_{i ; l} \neq 0$. Consider the sub- \mathcal{O}_{C}-module $\mathcal{O}_{C} \cdot m_{i ; l} \simeq \mathcal{O}_{C} / \operatorname{Ann}\left(m_{i ; l}\right)$ of $\mathcal{F}_{i ; l}$, where $\operatorname{Ann}\left(m_{i ; l}\right)$ is the annihilator of $m_{i ; l}$ in $\mathcal{O}_{C, p}$. Then,

$$
m_{i ; l}, f_{i} \cdot m_{i ; l}, \cdots, f_{i}^{l-1} \cdot m_{i, l}
$$

are \mathbb{C}-linearly independent in $\mathcal{F}_{i ; l}$, which implies that

$$
1, f_{i}, \cdots, f_{i}^{l-1}
$$

are \mathbb{C}-linearly independent in $\mathcal{O}_{C, p}$. Since

$$
\operatorname{Span}_{\mathbb{C}}\left\{1, f_{i}, \cdots, f_{i}^{l-1}\right\} \cap \operatorname{Ann}\left(m_{i ; l}\right)=0
$$

as \mathbb{C}-vector subspaces in $\mathcal{O}_{C, p}$, one has that length $\left(\operatorname{Supp}\left(\mathcal{O}_{C, p} / \operatorname{Ann}\left(m_{i}\right)\right)\right) \geq l$ and, hence, that length $\left(\operatorname{Supp}\left(\mathcal{F}_{i ; l}\right)\right) \geq l$. The rest of the lemma are immediate.

We say that $p_{1}^{\prime}, \cdots, p_{k}^{\prime} \in \rho^{-1}(p) \subset C^{\prime}$ are separated by the punctual \mathcal{O}_{C}-modules $\mathcal{F}_{1 ; l}, \cdots, \mathcal{F}_{k ; l}$ at $p \in C$ when $\mathcal{F}_{1 ; l}, \cdots, \mathcal{F}_{k ; l}$ as constructed above are non-isomorphic to each other.

Construction of embeddings $C^{\prime} \hookrightarrow \mathfrak{M}^{00_{p}^{A z} f}(C)$ that descend to ρ.

We now proceed to prove Proposition 2.1 in three steps.
Step (a): Examination of a local model.
Consider the local ring $\mathcal{O}_{C^{\prime} \times C^{\prime},\left(p^{\prime}, p^{\prime}\right)}=\mathcal{O}_{C^{\prime}, p^{\prime}} \otimes_{\mathbb{C}} \mathcal{O}_{C^{\prime}, p^{\prime}}$. (For simplicity of phrasing, here we use ' $=$ ' to mean 'standard canonical isomorphism'.) Let $\mathfrak{m}_{p^{\prime}}=\left(t_{1}\right) \subset \mathcal{O}_{C^{\prime}, p^{\prime}}$ be the maximal ideal of the first factor and $\mathfrak{m}_{p^{\prime}}=\left(t_{2}\right) \subset \mathcal{O}_{C^{\prime}, p^{\prime}}$ be the maximal ideal of the second factor. Given $r \in \mathbb{N}$, compare the following two quotient $\mathcal{O}_{C^{\prime} \times C^{\prime},\left(p^{\prime}, p^{\prime}\right) \text {-modules: }}^{\text {- }}$

$$
M_{1}:=\frac{\mathcal{O}_{C^{\prime}, p^{\prime}} \otimes_{\mathbb{C}} \mathcal{O}_{C^{\prime}, p^{\prime}}}{\left(\left(t_{1} \otimes 1-1 \otimes t_{2}\right)^{r}, t_{1} \otimes 1\right)} \quad \text { and } \quad M_{2}:=\frac{\mathcal{O}_{C^{\prime}, p^{\prime}} \otimes_{\mathbb{C}} \mathcal{O}_{C^{\prime}, p^{\prime}}}{\left(\left(t_{1} \otimes 1-1 \otimes t_{2}\right)^{r}, t_{1}^{2} \otimes 1\right)}
$$

M_{1} corresponds to the restriction of the $\mathcal{O}_{C^{\prime}, p^{\prime}} \otimes_{\mathbb{C}} \mathcal{O}_{C^{\prime}, p^{\prime}}$ module $\mathcal{O}_{C^{\prime}, p^{\prime}} \otimes_{\mathbb{C}} \mathcal{O}_{C^{\prime}, p^{\prime}} /\left(t_{1} \otimes 1-1 \otimes t_{2}\right)^{r}$, which is flat over C^{\prime} (the first factor), to over $p^{\prime} \in C^{\prime}$ (the first factor) while M_{2} corresponds to the restriction of the same $\mathcal{O}_{C^{\prime}, p^{\prime}} \otimes_{\mathbb{C}} \mathcal{O}_{C^{\prime}, p^{\prime}}$-module to over $v_{p^{\prime}} \simeq \operatorname{Spec}\left(\mathbb{C}\left[t_{1}\right] /\left(t_{1}^{2}\right)\right) \simeq \operatorname{Spec}(\mathbb{C}[\varepsilon]) \subset C^{\prime}$ (the first factor). They fit into an exact sequence, representing a class in $\operatorname{Ext}{ }_{C^{\prime}}^{1}\left(M_{1}, M_{1}\right)$ (here $C^{\prime}=$ the second factor),

$$
0 \longrightarrow M_{1} \xrightarrow{a} M_{2} \xrightarrow{b} M_{1} \longrightarrow 0
$$

of $\mathbb{C}[\varepsilon]$-modules with

$$
\begin{aligned}
M_{1} & =\operatorname{Span}_{\mathbb{C}}\left\{1 \otimes 1,1 \otimes t_{2}^{2}, \cdots, 1 \otimes t_{2}^{r-1}\right\} \\
M_{2} & =\operatorname{Span}_{\mathbb{C}[\varepsilon]}\left\{1 \otimes 1,1 \otimes t_{2}^{2}, \cdots, 1 \otimes t_{2}^{r-1}\right\} \\
& =\operatorname{Span}_{\mathbb{C}}\left\{1 \otimes 1,1 \otimes t_{2}^{2}, \cdots, 1 \otimes t_{2}^{r-1}, \varepsilon \otimes 1, \varepsilon \otimes t_{2}^{2}, \cdots, \varepsilon \otimes t_{2}^{r-1}\right\},
\end{aligned}
$$

where $a=$ multiplication by ε, and $b=$ quotient by εM_{1}. As $\mathbb{C}[\varepsilon]$-modules and with respect to the above bases (and with a vector identified as a column vector),

$$
t_{2} \text { on } M_{1}=\left[\begin{array}{ccccc}
0 & & & & \\
1 & 0 & & & \\
& 1 & \ddots & & \\
& & \ddots & 0 & \\
& & & 1 & 0
\end{array}\right]_{r \times r} \quad \text { and } \quad t_{2} \text { on } M_{2}=\left[\begin{array}{ccccc}
0 & & & & \\
1 & 0 & & & \\
& 1 & \ddots & & \\
& & \ddots & 0 & \\
& & & 1 & r \varepsilon
\end{array}\right]_{r \times r}
$$

Here all the missing entries in the $r \times r$-matrices are 0 . It follows that, as $\mathcal{O}_{C^{\prime}, p^{\prime}}$ (the second factor) -modules,

$$
\text { - } t_{2}^{l} \cdot M_{1}=0 \text { if and only if } l \geq r \text { while } t_{2}^{l} \cdot M_{2}=0 \text { if and only if } l \geq r+1 \text {. }
$$

In particular, the above short exact sequence (of $\mathcal{O}_{C^{\prime}, p^{\prime}}$-modules) doesn't split.
Step (b) : Construction of a local embedding $C^{\prime} \rightarrow \mathfrak{M}_{r_{0}}^{0_{p}^{A z} f}(C)$ that descend to ρ, for some $r_{0} \in \mathbb{N}$. Let

$$
l_{0}:=1+\max \left\{\text { b.i.i. }(p): p \in C_{\text {sing }}, \mathrm{C} \text { has multiple branches at } p\right\}
$$

(by convention, $l_{0}=1$ if C has only single branch at each $p \in C_{\text {sing }}$) and

$$
r_{0}:=l_{0} \cdot \text { l.c. } m .\left\{n_{p^{\prime}}: p^{\prime} \in C^{\prime}\right\} \in \mathbb{N} .
$$

(Here, l.c.m. $=$ the 'least common multiple' in \mathbb{N}.) Since $n_{p^{\prime}}=1$ except for $\rho\left(p^{\prime}\right)$ in the finite set $C_{\text {sing }}, r_{0}$ is well-defined. Furthermore, since $\left\{n_{p^{\prime}}\right\}_{\rho\left(p^{\prime}\right) \in C_{\text {sing }}}$ and $\left\{\right.$ b.i.i. $\left.(p): p \in C_{\text {sing }}\right\}$ (possibly
empty) depend only on the germ of $C_{\text {sing }}$ in C, r_{0} depends only on the germ of $C_{\text {sing }}$ in C. Let $\tilde{\mathcal{E}}^{\prime}$ be the $\mathcal{O}_{C^{\prime} \times C^{\prime}}$-module

$$
\tilde{\mathcal{E}}^{\prime}=\mathcal{O}_{C^{\prime} \times C^{\prime}} / \mathcal{I}_{\Delta_{C^{\prime}}}^{r_{0}}
$$

and $\tilde{\mathcal{E}}:=\left(i d_{C^{\prime}} \times \rho\right)_{*}\left(\tilde{\mathcal{E}}^{\prime}\right)$ on $C^{\prime} \times C$. Then, it follows from the construction and Lemma 2.7 that the induced morphism

$$
\tilde{\rho}_{0}: C^{\prime} \longrightarrow \mathfrak{M}_{r_{0}}^{\hat{A x}_{p}^{A_{z}} f}(C)
$$

descends to ρ and sends distinct closed points of C^{\prime} to distinct geometric points on $\mathfrak{M}_{r_{0}^{0_{p}}{ }^{A_{z} f}}$ (C) (i.e. $\tilde{\rho}$ separates points of C^{\prime}). Furthermore, it follow from the local study in Step (a) and Corollary 2.5 that all the extension classes $\alpha_{p^{\prime}} \in \operatorname{Ext}{ }_{C}^{1}\left(\tilde{\mathcal{E}}_{p^{\prime}}, \tilde{\mathcal{E}}_{p^{\prime}}\right), p^{\prime} \in C^{\prime}, \tilde{\mathcal{E}}$ specifies are nonzero. This shows that $\tilde{\rho}_{0}$ separates also tangents of C^{\prime} and hence is an embedding.

Step (c): Embeddings $C^{\prime} \hookrightarrow \mathfrak{M}_{r}^{0_{p}^{\text {Az } f}}{ }^{f}(C)$ that descend to ρ, for all $r>r_{0}$.
Finally, to obtain an embedding $\tilde{\rho}: C^{\prime} \rightarrow \mathfrak{M}_{r}^{0_{p}^{A_{z}}{ }^{f}}(C)$ for $r>r_{0}$ that descends to ρ, observe that the $\mathcal{O}_{C^{\prime} \times C^{\prime}}$-module $\mathcal{O}_{\Gamma_{\rho}}$ has the following properties:

- The corresponding extension class $\bar{\alpha}_{p^{\prime}}$ in $\operatorname{Ext}{ }_{C}^{1}\left(\mathcal{O}_{p}, \mathcal{O}_{p}\right)$, where $p:=\rho\left(p^{\prime}\right)$, vanishes if and only if $p \in C_{\text {sing }}$.

This implies that all the extension classes $\hat{\alpha}_{p^{\prime}} \in \operatorname{Ext}{ }_{C}^{1}\left(\hat{\mathcal{E}}_{p^{\prime}}, \hat{\mathcal{E}}_{p^{\prime}}\right), p^{\prime} \in C^{\prime}$, as specified by the direct sum

$$
\hat{\mathcal{E}}:=\tilde{\mathcal{E}} \oplus \mathcal{O}_{\Gamma_{\rho}}^{\oplus\left(r-r_{0}\right)}
$$

of $\mathcal{O}_{C^{\prime} \times C^{-}}$-modules, remain non-zero. Furthermore,

$$
\operatorname{Supp}\left(\left.\left(\tilde{\mathcal{E}} \oplus \mathcal{O}_{\Gamma_{\rho}}^{\oplus\left(r-r_{0}\right)}\right)\right|_{p^{\prime} \times C}\right)=\operatorname{Supp}\left(\tilde{\mathcal{E}}_{p^{\prime}}\right) \quad \text { for all } p^{\prime} \in C^{\prime}
$$

It follows that the morphism $\tilde{\rho}: C^{\prime} \rightarrow \mathfrak{M}_{r}^{0_{p}^{A_{z}} f^{f}}(C)$ specified by $\hat{\mathcal{E}}$ on $C^{\prime} \times C$ separates both points and tangents of C^{\prime} and, hence, is an embedding that descend to ρ.

This concludes the proof of Proposition 2.1.
Remark 2.8. [non-uniqueness]. In general there can be other embeddings of C^{\prime} into $\mathfrak{M}_{r}^{0_{p}^{A_{z}^{z} f}}(C)$ that descend also to ρ. Hence, the one constructed in the proof above is by no means unique.

References

[As] P. Aspinwall, A point's point view of stringy geometry, J. High Energy Phys. 0301 (2003) 002, 15 pp. (arXiv:hep-th/0203111)
[Br] T. Bridgeland, Flops and derived categories, Invent. Math. 147 (2002), 613-632. (arXiv:math/0009053 [math.AG])
[Ch] J.-C. Chen, Flops and equivalences of derived categories for threefolds with only terminal Gorenstein singularities, J. Diff. Geom. 61 (2002), 227-261. (arXiv:math/0202005 [math.AG])
[D-M] M.R. Douglas and G.W. Moore, D-branes, quivers, and ALE instantons, arXiv:hep-th/9603167.
[Ei] D. Eisenbud, Commutative algebra - with a view toward algebraic geometry, GTM 150, Springer, 1995.
[Fu] W. Fulton, Intersection theory, Ser. Mod. Surv. Math. 2, Springer, 1984.
[Ha] R. Hartshorne, Algebraic geometry, GTM 52, Springer, 1977.
[Hi] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero, I, II. Ann. Math. 79 (1964), 109-203; 205-326.
[H-H-P] M. Herbst, K. Hori, and D. Page, Phases of $\mathcal{N}=2$ theories in $1+1$ dimensions with boundary, arXiv:0803.2045 [hep-th].
[H-I-V] K. Hori, A. Iqbal, and C. Vafa, D-branes and mirror symmetry, arXiv:hep-th/0005247.
[H-L] D. Huybrechts and M. Lehn, The geometry of moduli spaces of sheaves, 2nd., Cambridge Univ. Press, 2010.
[Jo] C.V. Johnson, D-branes, Cambridge Univ. Press, 2003.
[J-M] C.V. Johnson and R.C. Myers, Aspects of type IIB theory on ALE spaces, Phys. Rev. D55 (1997), 6382-6393. (arXiv:hep-th/9610140)
[Ko] J. Kollár, Lectures on resolution of singularities, Ann. Math. Studies, no. 166, Princeton Univ. Press, 2007
[K-S] I.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: duality cascade and χ SBresolution of naked singularities, J. High Energy Phys. (2000) 052, 35 pp. (arXiv:hep-th/0007191)
[K-W] I.R. Klebanov and E. Witten, Superconformal field theory on threebranes at a Calabi-Yau singularity, Nucl. Phys. B536 (1999), pp. 199-218. (arXiv:hep-th/9807080)
[L-MB] G. Laumon and L. Moret-Bailly, Champs algébriques, Ser. Mod. Surveys Math. 39, Springer, 2000.
[L-Y1] C.-H. Liu and S.-T. Yau, Azumaya-type noncommutative spaces and morphism therefrom: Polchinski's D-branes in string theory from Grothendieck's viewpoint, arXiv:0709.1515 [math.AG]. (D(1))
[L-L-S-Y] S. Li, C.-H. Liu, R. Song, S.-T. Yau, Morphisms from Azumaya prestable curves with a fundamental module to a projective variety: Topological D-strings as a master object for curves, arXiv:0809.2121 [math.AG]. (D (2))
[L-Y2] C.-H. Liu and S.-T. Yau, Azumaya structure on D-branes and resolution of ADE orbifold singularities revisited: Douglas-Moore vs. Polchinski-Grothendieck, arXiv:0901.0342 [math.AG]. (D(3))
[L-Y3] ——, Azumaya structure on D-branes and deformations and resolutions of a conifold revisited: Klebanov-Strassler-Witten vs. Polchinski-Grothendieck, arXiv:0907.0268 [math.AG]. (D(4))
[L-Y4] —— D-branes and Azumaya noncommutative geometry: From Polchinski to Grothendieck, arXiv:1003.1178 [math.SG]. (D(6))
[L-Y5] —, manuscript in preparation.
[Ma] H. Matsumura, Commutative ring theory, translated by M. Reid, Cambridge Stud. Math. 8, Cambridge Univ. Press, 1986.
[M-P] D.R. Morrison and M.R. Plesser, Non-spherical horizons, Adv. Theor. Math. Phys. 3 (1999), 1-81.
[Po1] J. Polchinski, Lectures on D-branes, in "Fields, strings, and duality", TASI 1996 Summer School, Boulder, Colorado, C. Efthimiou and B. Greene eds., World Scientific, 1997. (arXiv:hep-th/9611050)
[Po2] - String theory, vol. I: An introduction to the bosonic string; vol. II: Superstring theory and beyond, Cambridge Univ. Press, 1998.
[Wi] E. Witten, Bound states of strings and p-branes, Nucl. Phys. B460 (1996), 335-350. (arXiv:hep-th/9510135)
[Wu] B. Wu, Topics in the moduli theory of sheaves, course Math 265y given at Harvard University, fall 2011.
[W-K] K.G. Wilson and J. Kogut, The renormalization group and the ε expansion, Phys. Reports 12 (1974), 75-200.

[^0]: ${ }^{1}$ Unfamiliar readers are highly recommended to use keyword search to get a taste of the vast literature.
 ${ }^{2}$ In part, for a subsection of a talk under the title 'Azumaya noncommutative geometry and D-branes - an origin of the master nature of D-branes' to be delivered in the workshop Noncommutative algebraic geometry and D-branes, December 12 - 16, 2011, organized by Charlie Beil, Michael Douglas, and Peng Gao, at Simons Center for Geometry and Physics, Stony Brook University, Stony Brook, NY.
 ${ }^{3}$ For mathematicians: See [W-K] for the origin of the notion of Wilson's theory-space and, for example, [H-I-V] and $[\mathrm{H}-\mathrm{H}-\mathrm{P}]$ for the case of $d=2$ supersymmetric quantum field theories with boundary.

