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Abstract

Gravitational waves are predicted by the general theory of relativity. In [6] D.
Christodoulou showed that gravitational waves have a nonlinear memory. We proved
in [3] that the electromagnetic field contributes at highest order to the nonlinear mem-
ory effect of gravitational waves. In the present paper, we study this electromagnetic
Christodoulou memory effect and compute it for binary neutron star mergers. These
are typical sources of gravitational radiation. During these processes, not only mass and
momenta are radiated away in form of gravitational waves, but also very strong mag-
netic fields are produced and radiated away. Thus the observed effect on test masses of
a laser interferometer gravitational wave detector will be enlarged by the contribution of
the electromagnetic field. Therefore, the present results are important for the planned
experiments. Looking at the null asymptotics of spacetimes, which are solutions of the
Einstein-Maxwell (EM) equations, we derived in [3] the electromagnetic Christodoulou
memory effect. Moreover, our results allow to answer astrophysical questions, as the
knowledge about the amount of energy radiated away in a neutron star binary merger
enables us to gain information about the source of the gravitational waves.

The main goal of this paper is to discuss the electromagnetic Christodoulou memory effect
of gravitational waves and to compute this effect for typical sources. In [6] D. Christodoulou
showed that gravitational waves have a nonlinear memory. In our paper [3] we proved that
for spacetimes solving the Einstein-Maxwell (EM) equations, the electromagnetic field con-
tributes at highest order to the nonlinear memory effect of gravitational waves. In the present
paper, we also calculate it for neutron star binary mergers. We find that for typical constel-
lations, very strong magnetic fields enlarge this effect considerably. Fields which are strong
enough have so far only been known to be produced during mergers of neutron star binaries.
The latter are well known to be frequent events. There is a vast astrophysical literature about
this.

Moreover, our results in [3] and in the present paper, are also important from a purely
astrophysical point of view. Namely, the knowledge about the amount of energy radiated
away in a neutron star binary merger allows to tell in the experiment what type of source the
gravitational waves are coming from. Thus, our findings in the gravitational wave experiment
will contribute to astrophysical results.

A major goal of general relativity (GR) and astrophysics is to precisely describe and fi-
nally observe gravitational radiation, one of the predictions of GR. We know from the work
[6] of Christodoulou that also these waves radiate. That is, in a laser interferometer grav-
itational wave detector, this will show in a permanent displacement of test masses after a
wave train passed. The latter is known as the Christodoulou nonlinear memory effect. In
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[6] Christodoulou showed how the nonlinear memory effect can be measured as a permanent
displacement of test masses in such a detector. He derived a precise formula for this per-
manent displacement in the Einstein vacuum (EV) case. The present authors proved in [3]
that when electromagnetic fields are present, they will contribute to this nonlinear effect at
highest order. In fact, we showed that for the EM equations this permanent displacement
exhibits a term coming from the electromagnetic field, which is at the same highest order as
the purely gravitational term that governs the EV situation. Moreover, we showed that the
instantaneous displacement of the test masses is not changed at leading order by the electro-
magnetic field. To see this, we investigated spacetimes of solutions of the Einstein-Maxwell
(EM) equations at null infinity.

Typical sources for gravitational waves are binary neutron star mergers and binary black
hole mergers. As the former are known to be much more frequent, it is likely that grav-
itational waves as well as the nonlinear memory effect will first be measured from binary
neutron star mergers. During such processes mass and momenta are radiated away. More-
over, large magnetic fields are produced and radiated away. The radiation travels at the speed
of light. That means, it moves along null hypersurfaces of corresponding spacetimes. There-
fore, in order to fully understand all the different situations, one has to investigate spacetimes
which are solutions of the Einstein equations. Taking into account the strong magnetic fields
which are generated during binary neutron star mergers, we consider spacetimes solving the
Einstein-Maxwell equations. As the sources are very far away, we can think of us as doing
the experiment at null infinity. Therefore it is very important to understand the geometry of
spacetimes especially at null infinity, that is when we let t → ∞ along null hypersurfaces in
the corresponding spacetimes.

In this paper, we discuss the electromagnetic Christodoulou memory effect and compute
concrete examples for binary neutron star mergers. In [3], we derived this effect in the
regime of the EM equations. First, we recall the Bondi mass loss formula obtained in [15] for
spacetimes solving the EM equations.

∂

∂u
M (u) =

1

8π

∫
S2

(
|Ξ|2 +

1

2
|AF |2

)
dµ◦

γ
(1)

Compared to the formula obtained in [8] for spacetimes solving the EV equations, we have
an additional term, |AF |2, from the electromagnetic field. (See [3].)

As shown in the work of Christodoulou [6], Σ+−Σ− is the term which governs the permanent
displacement of test particles. Using this fact, Christodoulou shows that the gravitational
field has a non-linear “memory” which can be detected by a gravitational-wave experiment
in a spacetime solving the EV equations. Here, Σ denotes the asymptotic shear of outgoing
null hypersurfaces Cu that are level sets of a foliation by an optical function u, which we will
discuss below. Σ+ and Σ− are the limits of Σ as u tends to +∞ respectively −∞.

In our paper [3], we study the permanent displacement formula for uncharged test parti-
cles of the same gravitational-wave experiment in a spacetime solving the EM equations. We
derive Σ+−Σ− in the EM case, and we find that the electromagnetic field changes the lead-
ing order term of the permanent displacement of test particles. Moreover, investigating the
experiment for our setting in [3], we prove that the electromagnetic field does not enter the
leading order term of the Jacobi equation. As a result, to leading order, it does not change the
instantaneous displacement of test particles. But the electromagnetic field does contribute
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at highest order to the nonlinear effect of the permanent displacement of test masses.

To study the effect of gravitational waves, we follow the method introduced by Christodoulou
in [6]. The analysis is based on the asymptotic behavior of the gravitational field obtained
at null and spatial infinity. These rigorous asymptotics allow us to study the structure of the
spacetimes at null infinity. To foliate the spacetime, we use a time function t and an optical
function u. We denote the corresponding lapse functions by φ respectively a. Whereas each
level set of t, Ht is a maximal spacelike hypersurface, each level set of u, Cu, is an outgoing
null hypersurface. Along the null hypersurface Cu, we pick a suitable pair of normal vectors.
The flow along these vector fields generates a family of diffeomorphisms φu of S2. Using
φu we pull back tensor fields in our spacetime. In this manner, we can study their limit at
null infinity along the null hypersurface Cu. Building on these, we then take the limit as u
goes to ±∞, which allows us to investigate the effect of gravitational waves. For a detailed
explanation of the structure at null infinity, see [6] by Christodoulou.

Understanding gravitational radiation and therefore null infinity heavily relies on the rig-
orous understanding of the corresponding spacetimes. The methods introduced in [8], used
in [14], [15] and [1], [2], reveal the structure of the null asymptotics of our spacetimes. In
these works, stability results were proven. The authors showed that under a smallness con-
dition on asymptotically flat initial data for the EV respectively EM equations, this can
be extended uniquely to a smooth, globally hyperbolic and geodesically complete spacetime
solving the EV respectively EM equations. The spacetime obtained is globally asymptotically
flat. The main achievements are generally two-fold: First, existence and uniqueness theo-
rems were proven. To ensure these, one has to impose smallness conditions. Second, precise
descriptions of the asymptotic behavior of the spacetimes were derived. We stress the fact,
that the results about null infinity are largely independent of the smallness. An elaborated
geometric-analytic procedure led to these results. And many mathematical theorems were
proven on the way. However, the outcome exhibits a physical result in point two from which
Christodoulou in [6] derived the Christodoulou memory effect of gravitational waves in the
EV case and the present authors in [3] in the EM case. In what follows, let us, discuss the
new physical results and compute the effects for different binary neutron star constellations.

First we recall the Einstein-Maxwell equation. The electromagnetic field is represented by a
skew-symmetric 2-tensor Fµν . The stress-energy tensor corresponding to Fµν is

Tµν =
1

4π

(
F ρ
µ Fνρ −

1

4
gµνFρσF

ρσ
)

The Einstein-Maxwell equations read:

Rµν = 8πTµν

DαFαβ =0

Dα ∗Fαβ =0.

(2)

Let St,u be the intersection of the hypersurface Ht and the null cone Cu. Let N be the space-
like unit normal vector of St,u in Ht and T be the timelike unit normal vector of Ht in the
spacetime. Let {ea}a=1,2 be an orthonormal frame on St,u. We have the following orthogonal
frame (T,N, e2, e1). This also gives us a pair of null normal vectors to St,u, namely L = T+N
and L = T −N . Together with {ea}a=1,2, they form a null frame. The following is a picture
of the null cone Cu together with the null frame (L,L, e2, e1).
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We can decompose the Weyl curvature tensor and the electromagnetic field with respect to
the null frame or the orthogonal frame. The asymptotics of these components are studied
in [14] and [15]. These asymptotics are important for the understanding of the geometry of
null infinity. For simplicity, we will only list the components of the spacetime curvature and
electromagnetic field that are used in our discussion. Please see [14] and [15] for more details
on the asymptotics.

Let X,Y be arbitrary tangent vectors to S at a point in S. Given the null frame e4 = L,
e3 = L and {ea}a=1,2, let χ(X,Y ) = g(∇XL, Y ) and χ(X,Y ) = g(∇XL, Y ) be the second
fundamental forms with respect to L and L, respectively. Let χ̂ and χ̂ be their traceless
parts. We also need the following null components of the Weyl curvature

αW (X,Y ) = R(X,L, Y, L)

and the electromagnetic field

FA3 = α(F )A FA4 = α (F )A
F34 = 2ρ (F ) F12 = σ (F )

(3)

We have the following limit of the above quantities at null infinity

lim
Cu,t→∞

r2χ̂ = Σ , lim
Cu,t→∞

rχ̂ = 2Ξ

lim
Cu,t→∞

rαW = AW , lim
Cu,t→∞

rαF = AF

As shown in [6], the permanent displacement of the test masses of a laser interferometer
gravitational-wave detector is governed by Σ+ − Σ− where

lim
u→±∞

Σ = Σ±

Theorem 1 [14], [15] We have the following equations for Σ, Ξ and AW

∂Σ

∂u
= −Ξ and

∂Ξ

∂u
= −1

4
AW
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In our paper [3], we prove that in a spacetime solving the Einstein–Maxwell equations,
Σ+ − Σ− is governed by the following relation.

Theorem 2 [3] Let

F (·) =

∫ ∞
−∞

(
| Ξ(u, ·) |2 +

1

2
| AF (u, ·) |2

)
du . (4)

Then Σ+ − Σ− is given by the following equation on S2:

◦
div/ (Σ+ − Σ−) =

◦
∇/ Φ . (5)

where Φ is the solution with Φ̄ = 0 on S2 of the equation

◦
4/ Φ = F − F̄ .

Comparing this with the EV case studied in the last chapter of [8] and used in [6], where the
corresponding formula was F (·) =

∫∞
−∞ | Ξ(u, ·) |2 du, we find that new the electromagnetic

part 1
2 | AF (u, ·) |2 appears in the integral. In fact, in our proof, we derive the limiting

formulas and obtain the said electromagnetic contribution in Σ+ − Σ−. (See [3].)

Gravitational Wave Experiment

How will our findings relate to experiment? In what follows, we are going to show how
the electromagnetic field enters the experiment. In particular, we will discuss the instan-
taneous and the permanent displacement of test masses. For a detailed explanation of the
experiment we refer to [6] and for a detailed derivation in the EM case we refer to [3].

Consider a laser interferometer gravitational-wave detector with three test masses. We denote
the reference mass by m0, this is also the location of the beam splitter. The masses m0, m1,
m2 are suspended by equal length pendulums of length d0. The motion of the masses in the
horizontal plane can be considered free for timelike scales much shorter than the period of
the pendulums. Now one measures the distance of the masses m1 and m2 from the reference
test mass m0 by laser interferometry. We observe a difference of phase of the laser light at
m0 whenever the light travel times between m0 and m1, m2, respectively, differ.

The motion of the masses m0, m1, m2 is described by geodesics γ0, γ1, γ2 in spacetime.
Denote by T the unit future-directed tangent vectorfield of γ0 and by t the arch length along
γ0. Let then Ht be for each t the spacelike, geodesic hyperplane through γ0(t) orthogonal
to T . At γ0(0) pick an orthonormal frame (E1, E2, E3) for H0. By parallelly propagating
it along γ0, we obtain the orthonormal frame field (T,E1, E2, E3) along γ0, where at each t
the (E1, E2, E3) is an orthonormal frame for Ht at γ0(t). Then we can assign to a point p in
spacetime close to γ0 and lying in Ht the cylindrical normal coordinates (t, x1, x2, x3).

Supoose that the distance d is much smaller than the time scale in which the curvature
of the spacetime varies significantly. Then the geodesic deviation from γ0, namely the Jacobi
equation (6), replaces the geodesic equation for γ1 and γ2. Let Rk0l0 = R(Ek, T, El, T ), then
we write

d2xk

dt2
= −Rk0l0x

l (6)
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We can decompose Rk0l0 into the Weyl curvature and the Ricci curvature

Rk0l0 = Wk0l0 +
1

2
(gklR00 + g00Rkl − g0lRk0 − g0kRl0).

From the EM equations (2) we find

R00 =
1

2
(| α(F ) |2 + | α(F ) |2) + ρ(F )2 + σ(F )2 (7)

The component R00 observes the term | α(F ) |2, where α(F ) is the electromagnetic field
component with worst decay behavior, but entering R00 as a quadratic. Hence, R00 is of the
order O(r−2). Whereas the leading order component of the Weyl curvature is of the order
O(r−1). We give a detailed proof in our paper [3]. Thus, the electromagnetic field does not
contribute at highest order to the deviation measured by the Jacobi equation. As a conse-
quence, it does only change at lower order the instantaneous displacement of the test masses.
However, we are going to see that it does change the nonlinear memory effect.

Using the relations from theorem 1 and our theorem 2 as well as the fact that Ξ → 0 for
u→∞ and taking the limit t→∞, we conclude that the test masses experience permanent
displacements after the passage of a wave train. In particular, this overall displacement of
the test masses is described by Σ+ − Σ−

∆xA(B) = −d0

r
(Σ+

AB − Σ−AB) (8)

where from our theorem 2 one sees that the right hand side of (8) includes the electromagnetic
field terms at highest order.

Let us now derive formula (8). We will use L = T − E3 and L = T + E3. Then we write
the leading components of the curvature αAB(W ) and of the electromagnetic field αA(F ) as
follows:

αAB(W ) = R (EA, L, EB, L) =
AAB(W )

r
+ o (r−2)

αA(F ) = F (EA, L) =
AA(F )

r
+ o (r−2)

Let xk(A) with A = 1, 2 denote the kth Cartesian coordinate of the mass mA. From [6] and

[3] one sees that there is no acceleration to leading order in the vertical direction. One starts
with m1, m2 being at rest at equal distance d0 from m0 at right angles from m0. Thus to
leading order it is

ẍA(B) = −1

4
r−1d0AAB (9)

In particular, the initial conditions are as t→ −∞:
xB(A) = d0δ

B
A , ẋB(A) = 0 , x3

(A) = 0 , ẋ3
(A) = 0.

Integrating gives

ẋA(B) (t) = − 1

4
d0 r

−1

∫ t

−∞
AAB (u) du . (10)

From theorem 1 equation ∂Ξ
∂u = −1

4AW and lim|u|→∞Ξ = 0, one substitutes and concludes

ẋA(B) (t) =
d0

r
ΞAB (t) . (11)
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As Ξ → 0 for u → ∞, the test masses return to rest after the passage of the gravitational
waves. Now, we use theorem 1 equation ∂Σ

∂u = −Ξ and integrate again to obtain

xA(B) (t) = − (
d0

r
) (ΣAB (t) − Σ−) . (12)

Finally, by taking the limit t→∞ one derives that the test masses obey permanent displace-
ments. This means that Σ+ −Σ− is equivalent to an overall displacement of the test masses
given by (8):

4 xA(B) = − (
d0

r
) (Σ+

AB − Σ−AB) .

The right hand side of (8) includes terms from the electromagnetic field at highest order as
given in our theorem 2.

In the next subsection, we are going to apply our results to astrophysical data for binary
neutron star mergers.

Binary neutron star mergers

We compute the electromagnetic Christodoulou memory effect for typical sources, that is
for different constellations of binary neutron star (BNS) mergers.

In a binary neutron star or binary black hole system, the two objects are orbiting each
other. In Newtonian physics, they would stay like that forever. However, according to the
theory of general relativity such a system must radiate away energy. Therefore, the radius of
the orbits must shrink and finally the objects will merge.

As binary neutron star systems are much more frequent than binary black hole systems,
it is very likely that gravitational waves as well as the nonlinear memory effect of gravita-
tional waves will be detected first from the former systems. The magnetic fields produced
and radiated away during the merger of two neutron stars are among the largest magnetic
fields known in astrophysics. In fact, in the electromagnetic Christodoulou memory effect
that we derived, the magnetic field enlarges the nonlinear displacement of (non-charged) test
masses significantly. As we are going to show in this subsection, the contribution from the
magnetic field is very important, as it is very big for a large part of the known constellations.

Astrophysical data gives for typical neutron star binaries a range of possible constellations
which allow the mass and the magnetic field to vary within given boundaries. Typically, the
mass of a neutron star is around slightly more than 1M◦· and the radius of a neutron star
is 3 - 30 km. Thus, the typical mass for a BNS system ranges between 2.6 and 2.8M◦· 1.
In such a system, as the neutron stars are spiraling around each other, they are radiating
away gravitational and magnetic energy. The inspiral goes with increasing speed and the
BNS system emits an increasing amount of electromagnetic and gravitational energy, which
becomes extremely large when the orbit radius is about 10 - 100km. For the detection of the
electromagnetic Christodoulou effect, the largest contribution will come from the last phase
of the inspiral, starting when the orbit radius is about 10 times the neutron star radius.
In the literature, we find that the merger times range from a few milli-seconds up to 1000
ms. We would like to compare the amount of gravitational energy radiated away during the

1M◦· = 1 solar mass ≈ 1.9891 · 1033 g
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merger to the amount of magnetic energy radiated away. On the one hand, the amount of
gravitational energy radiated away is well-known. In general, about 1% of the initial mass is
radiated away during a merger. This is about 1052 erg.2 On the other hand, the amount of
magnetic energy radiated away could vary drastically depending on different constellations.
Typically, the rate of change for the magnetic field is dB

dt ≈ 109 − 1017 G(ms)−1 and the
magnetic field produced in the merger is about 109 − 1017 G.3

Comparing the energy from the radiated mass, i.e. purely gravitational, and from the mag-
netic field, we observe that during the merger of BNS very large magnetic fields are produced
and radiated away in certain scenarios.

Consider the following data. Assume: Total mass of BNS is initially 2M◦· , 1% of the total
mass will be radiated away during the (whole) merger, radius of each neutron star is 10 km.
Under the assumption, the gravitational energy radiated away is about 3.56× 1052 erg.

In the physics literature, one finds many linearized models. However, the Einstein equations
being nonlinear, the main information usually gets lost in linearized models. As we do inves-
tigate the nonlinear problem here, and as the results of [6] and [3] show the Christodoulou
memory effect of gravitational waves to be a nonlinear phenomenon, we consider a corre-
sponding nonlinear model for the neutron star binary mergers. Thus, we use the results of
Zipser’s global stability work [14] and [15] for the initial value problem in spacetimes satisfy-
ing the Einstein-Maxwell equations. We assume that outside the neutron star, the magnetic
field decays like r−5/2. Such decay at spatial infinity is suggested by the decay obtained in
[14], [15]. One might want to consider situations with a slightly different decay of the mag-
netic field. This would not affect the main picture, as one finds during the computations that
the decay of the magnetic field does not play a role here. Thus, we work with the nonlinear
model explained in the following paragraph.

Now, consider such a BNS system with the magnetic field B initially being B = 1013 G
and dB

dt = 1013 G(ms)−1 on the surface of the neutron star. Assume that the merger time is
1000 ms. We estimate the total magnetic energy radiated away using the following model.
We assume that through the merger, the matter of the neutron star stays in a ball of radius
10 km. We compute the contribution from the magnetic field outside the support of the
matter of the neutron star. As a result, we simply use the vacuum magnetic constant when
computing the magnetic energy density. Moreover, we assume that outside the neutron star,
the magnetic field decays at the rate of r−5/2. Using this model, the energy radiated away
from the magnetic field is about 4.78 · 1049 erg. In this case, the addition of a magnetic field
has a small contribution to the memory effect.

Next, consider a BNS system with the above data, but where the magnetic field B is initially
B = 1015 G and dB

dt = 1015 G(ms)−1 on the surface of the neutron star. Assume that the
merger time is 1000 ms. We compute that the total magnetic energy radiated away is about
4.78 · 1053 erg. This will be one order of magnitude higher than the gravitational energy
radiated away. This situation is consistent with astrophysical data. Also, in the numeric
simulation in [9], [10] and [11], it is observed that the magnetic field could increase by two
orders of magnitude during merger when one starts with magnetic fields around 109 to 1012

G. When we start with a stronger magnetic field, the merger would take longer and allow

21 erg = 1g · cm2s−2 and 1M◦· ≈ 1.78 · 1054 erg
31 Gauss: 1G = 10−4 kg · C−1s−1 = 10−1 g · C−1s−1
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more time for the magnetic field to build up. Magnetic fields of similar initial strength are
used in the simulation of [12]. Their simulations suggest that the addition of the magnetic
field cause observable differences in the dynamics and gravitational waveforms. Moreover, it
is noticed that the most important role of magnetic fields are on the long term evolution. This
is similar to our conclusion from theorem 1 and 2. Namely, the addition of a magnetic field
does not change the system instantaneously but it does contribute to the nonlinear long-term
permanent change.

To compare, note that the amount of energy emitted in a binary black hole merger is expected
to be as follows: a binary black hole system with equal mass and no spin would lose about 4%
of the mass during merger. However, BNS mergers occur more often than black hole mergers.

Conclusions: We find that among the variety of different constellations of BNS systems
there is a large part for which the magnetic field contributes to the Christodoulou effect at
the same highest order as the purely gravitational term.

Acknowledgment: We thank Demetrios Christodoulou for fruitful discussions and his in-
terest in this work.

References

[1] L. Bieri. An Extension of the Stability Theorem of the Minkowski Space in General
Relativity. ETH Zurich, Ph.D. thesis. 17178. Zurich. (2007).

[2] L. Bieri. Extensions of the Stability Theorem of the Minkowski Space in General Rel-
ativity. Solutions of the Einstein Vacuum Equations. AMS-IP. Studies in Advanced
Mathematics. Cambridge. MA. (2009).

[3] L. Bieri, P. Chen, S.-T. Yau. Null Asymptotics of Solutions of the Einstein-Maxwell
Equations in General Relativity and Gravitational Radiation. Submitted. (2010).
http://arxiv.org/abs/1011.2267

[4] H. Bondi, M. G. J. van der Burg and A. W. K. Metzner. Gravitational Waves in General
Relativity. VII. Waves from Axi-Symmetric Isolated Systems. Proc. Roy. Soc. A. 269
(1962). 21-52

[5] M. G. J. van der Burg. Gravitational Waves in General Relativity X. Asymptotic Ex-
pansions for the Einstein-Maxwell Field Proc. Roy. Soc. A. 310 (1969). 221-230

[6] D. Christodoulou. Nonlinear Nature of Gravitation and Gravitational-Wave Experi-
ments. Phys.Rev.Letters. 67. (1991). no.12. 1486-1489.

[7] D. Christodoulou. Mathematical problems of general relativity theory I and II. Volume
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