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c© 2006 Birkhäuser Verlag Basel/Switzerland

1424-9286/010339-18, published online 30.5.2006

DOI 10.1007/s00032-006-0053-5 Milan Journal of Mathematics

Spacetime and the Geometry behind it

Shing-Tung Yau

Abstract. This is the Leonardo da Vinci Lecture given in Milan in March
2006. It is a survey on the concept of space-time over the last 3000 years:
it starts with Euclidean geometry, discusses the contributions of Gauss
and Riemannian geometry, presents the dynamic concept of space-time
in Einstein’s general relativity, describes the importance of symmetries,
and ends with Calabi-Yau manifolds and their importance in today’s
string theories in the attempt for a unified theory of physics.
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This is the da Vinci Lecture I gave in Milan in March 2006. I would like to
thank J. Fu and L. Tseng for their help in preparing the talk.

Einstein: Subtle is the Lord, but malicious he is not.

Geometric problems that reveal the true nature of space-time are always
exciting and rewarding, no matter how difficult they are.

In the past three thousand years, our concept of space-time has evolved
according to our understanding of nature. Geometry is the basic tool for
such investigations. It is often hard to distinguish geometry from physical
nature. Over the years, the development of geometry had a deep influence
on our understanding of space-time. On the other hand, new concepts of
space-time always give breakthroughs in geometry.

This research is supported in part by NSF grands DMS-0244464, DMS-0354737 and
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In ancient days, people believed that space was static and flat. This was
partially due to the limitation in our understanding of geometry. In fact,
Plato and the Greeks did consider geometry to be part of nature. We shall
describe how our concept of spacetime evolves according to our understand-
ing of geometry.

Aristole thought that there are four basic elements that made up the uni-
verse while Democritus proposed the theory of atoms. In mathematics,
axioms for geometry were formulated. Such a unique development in ge-
ometry is perhaps based on the belief of the Greek philosopher that the
building blocks of nature should be elegant and simple.

1. Euclidean Geometry

Euclid (325 BC∼265 BC) gave a systematic treatment of geometry which
is governed by lines, planes, circles and spheres. The concept of axiom laid
the foundation of modern science that complicated phenomena can be un-
derstood systematically by simple hypotheses.

There are two most basic theorems:

1. Pythagoras theorem: For the right angle triangle,

c2 = a2 + b2
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2. The sum of inner angles of triangle is π.

The first theorem is the most important statement of geometry. Up to now,
modern geometry demands this statement to be true infinitesimally.

The second theorem is a statement that amounts to the fact that the plane
is flat and has no curvature. It is equivalent to the following statement
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which was observed by Legendre.

Euclid’s Fifth Postulate: If a straight line falling on two straight lines make
the interior angles on the same side less than two right angles, the two
straight lines if produced indefinitely meet on that side on which the angles
are less than two right angles.

The following people hoped to prove it from the other axiom of Euclid:

Ptolemy (168), Proclos (410-485), Nasir al din al Tusi (1300), Levi ben
Gerson (1288-1344), Cataldi (1548-1626), Giovanni Alfonso Borelli (1608-
1679), Giordano Vitale (1633-1711), John Wallis (1616-1703), Geralamo
Saccheri( 1667-1733), Johann Heinrich Lambert (1728-1777), Adrien Marie
Legendre (1752- 1833).

Finally Gauss (1777-1855), Bólyai (1802-1860) and Nikolai Ivanovich Lo-
bachevski (1793-1856) independently discovered hyperbolic geometry: two
dimensional surfaces with constant negative curvature. It was a myth that
Gauss surveyed a triangle in the Harz Mountains formed by Inselberg,
Brocken and Hoher Hagen to see if the sum of its interior angles was 180
degrees. Finally Felix Klein ( 1849-1925) created an analytic method to
describe a model of hyperbolic geometry by giving a formula for distance
between any pair of points on the unit disk. (This is called the Klein model.)
Euclid’s fifth postulate was finally proved to be independent of the other
postulates.

In addition to its contribution to the foundation of mathematics, the dis-
covery of hyperbolic geometry shows us a new abstract geometry that is
not intuitively clear in day to day life.

In hyperbolic geometry, the sum of inner angles minus π is equal to the
curvature of the surface times the area of the triangle. This was general-
ized by Gauss to an integral formula of curvature. This formula is called
Gauss-Bonnet formula and plays a fundamental role in modern geometry
and topology as it relates a local quantity (curvature) to a global topolog-
ical quantity (the Euler number). The formula was eventually generalized
to the index formula of Atiyah-Singer, which plays an important role in
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modern physics.

There is a great deal of limitation for geometric objects built solely by
planes and spheres. However, the concept is completely changed once we
know how to construct curved geometric objects by infinite process of ap-
proximation. This was invented by Archimedes who, for example, computed
areas cut by straight lines with a parabola. This infinite process is the seed
for the invention of Calculus which was achieved by Newton and Leibniz
much later.

2. Analytic geometry

An important breakthrough in geometry is due to Rene Descartes whose
invention of analytic geometry allows geometric figures to be described by
Cartesian coordinates. Geometry and Algebra are unified through the in-
troduction of coordinate systems. It would be difficult to solve classical
problems such as trisecting an angle without using algebra (through Galois
theory). Analytic geometry allows us to consider geometric figures without
using the classical axioms of Euclid. Only with a coordinate system, we can
visualize and calculate higher dimensional geometric figures.

3. Calculus

Combination of analytic geometry and calculus allowed Newton and as-
tronomers to do extensive calculations for the motion of celestial bodies.
The description of these bodies is based on a single coordinate system.
Newton thought that space is static and time is independent of space.

Newton (Philosophiae Naturalis Principia Mathematica): Absolute space,
in its own nature and with regard to anything external, always remains sim-
ilar and unmovable. Relative space is some movable dimension or measure
of absolute space, which our senses determine by its position with respect
to other bodies, and is commonly taken for absolute space.

Newton’s idea was challenged by Leibniz (1646-1716).
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The great success of calculus and Newtonian mechanics kept physicists and
mathematicians busy until the nineteenth century. Euler was the major
contributor to geometry in this period. He was the major founder of the
calculus of variations and combinatorial topology.

4. Gauss and Riemannian geometry

When classical geometers (such as Euler) described a surface in three space,
they found two directions at each point where curvatures should be mea-
sured. For example, on the cylinder, one is the direction along the circle and
the other is along the straight line. Gauss (1827) found that the product of
these two curvatures has a remarkable property. It is the same even if we
deform the surface as long as we do not stretch it. It is called the Gauss
curvature.

4.1. Intrinsic geometry of Gauss

Gauss published this theorem in his Disquisitiones generales circa superfi-

cies curvas where he distinguished the inner properties of a surface, that is
the geometry experienced by small flat bugs living in the surface, from its
outer properties, the way that it embeds in a higher dimensional space. He
said that this inner property is “most worthy of being diligently explored
by geometers”. The inner geometry is what we call intrinsic geometry.

Gauss noticed that when the Gauss curvature is a positive constant the
surface is a piece of the sphere. When the Gauss curvature is minus one, it
is a piece of the hyperbolic surface, which was developed by Lobachevsky
and himself.

Gauss: I am becoming more and more convinced that the necessity of our
geometry cannot be proved, at least not by human reason nor for human
reason. Perhaps in another life we will be able to obtain insight into the
nature of space which is now unattainable.

Gauss: Until then we must place geometry not in the same class with arith-
metic which is purely a priori, but with mechanics.
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4.2. Riemannian geometry

While Gauss described his geometry for two dimensional surfaces, it was
Georg Friedrich Bernhard Riemann (1826-1866) who presented intrinsic ge-
ometry for higher dimensional manifolds in his Göttingen inaugural lecture:
Über die Hypothesen, welche der Geometrie zu Grunde liegen. Riemann for-
mally introduced the concept of an abstract space which is defined by some
infinitesimal form of a metric. The concept of Gauss curvature was then
given a proper meaning. This is an important event as we have finally for-
mulated the concept of a space with no reference to flat Euclidean (linear)
space.

In his address, Riemann mentioned the influence of Newtonian mechanics
and physics on his thinking in the formulation of the abstract space.

Riemann’s new discovery did radically change the mathematician’s view of
geometry. It was followed by Christoffel, Ricci, Levi-Civita, Beltrami. They
developed calculus on manifolds: tensor calculus. On the other hand, this
was considered to be not interesting by many contemporary mathemati-
cians.

5. Global and local symmetries

When Riemann created his geometry, he had a vague idea of its relation to
Newtonian Mechanics and he knew that any meaningful geometric quantity
should be independent of the choice of coordinate systems. The concept of
the Riemann curvature tensor was introduced for that purpose. Nowadays
we say that the group of diffeomorphisms provides a gauge symmetry for
geometry.

At around the same time, S. Lie introduced the concept of a continuous
group. F. Klein outlined his famous Erlangen program in 1887. They be-
lieved that geometry should be dictated by a global group of symmetries.
E. Cartan introduced the concept of a connection on fiber bundles. By
doing so, he succeeded in merging the concept of global symmetry with
Riemannian geometry. Local gauge symmetries started to appear in geom-
etry. Geometers would create quantities invariant with respect to such local
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symmetries.

In the process, Cartan developed exterior differential calculus based on
Grassmann’s work on exterior algebra and Frobenius’ work on integrability
conditions for solving differential equations.

Then Poincaré discovered the Poincaré lemma and de Rham proved the iso-
morphism of de Rham cohomology with singular cohomology. This enabled
Hodge to apply harmonic theory to topology. While Hodge was motivated
by equations of two dimensional fluid dynamics and Maxwell’s equations,
his theory has contributed to an important part of particle physics and
string theory.

6. Relativity: Einstein’s view of spacetime

The first constructive criticism of Newtonian absolute space was by the
Austrian Philosopher Ernst Mach (1836-1916). He put forth the hypothesis
that one must take into account the influence of the mass of the earth and
the other celestial bodies to determine the inertial frames. This is called
Mach’s principle.

By 1905, special relativity was found, by Einstein (with contribution by
Poincare, Lorentz and Minkowski). A very important fact is that space and
time are unified (under Lorentz transformation).

In 1908, Minkowski said that “from now on, we cannot discuss space and
time independently.”

However, Newton’s basic concept of gravity, action at a distance, is incon-
sistent with the basic principle of special relativity that information cannot
travel faster than light.

In 1907, Einstein introduced the principle of equivalence of gravitation and
inertia. He realized the importance of relative motion to gravity and that
there is a similarity of gravity with electricity and magnetism.
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Gravity has the effect of making physical bodies accelerate. According to
special relativity, when we measure length, it will stretch according to the
velocity if the measurement is parallel to the velocity vector. However, the
length will not change if the direction is perpendicular to the velocity vec-
tor. The changes in the metric according to direction and position gives
rise to a metric tensor according to Riemannian geometry.

Einstein tried for about ten years to combine this fundamental concept of
general relativity with Newton’s theory of gravity. One of the reasons it
took some time for him to achieve such a goal was his lack of knowledge of
mathematics of abstract space. Until he was informed by his friend Gross-
mann, he did not realize the powerful meaning of Riemann’s curvature
tensor, which he later used to describe gravitational force. The equivalence
principle of physics requires the laws of gravity to be independent of choice
of coordinate systems.

The quantity given by Riemann has exactly this property. The trace of the
curvature tensor is called the Ricci tensor which was developed by Ricci.
Einstein found that he could construct from the Ricci tensor the kind of
tensor he needed to satisfy the classical conservation law of matter. (Bianchi
found the identity that Einstein needed.) So the abstract space of Riemann
is exactly suitable for description of gravity. (Hilbert found the Hilbert ac-
tion, which is the integral of scalar curvature, to be the action principle
behind the Einstein equation.)

The gravitational field must be identified with the 10 components of the
metric tensor of Riemannian space-time geometry. He presented to the
Prussian Academy of Sciences a series of papers in which he worked out
the metric tensor and calculated the gravitational deflection of light and
the precession of the perihelia of Mercury. This was summarized in “the
foundation of the general theory of relativity” in Annalen der Phys. 1916.

Hence space-time fits beautifully well into the framework of Riemannian
geometry. The effect of gravity can be expressed by curvature. Geometry
and gravity cannot be distinguished any more. Since space and time are
now merged together, the universe is dynamically driven by gravity con-
stantly and is no more static.
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When celestial bodies move, the geometry and topology of space-time move
according to the velocity of light. This solves the puzzle of the contradiction
which arose in Newtonian mechanics and special relativity.

7. Symmetry dictates dynamics in physics

Besides the inspiration of Mach’s principle, Einstein observed the impor-
tance of symmetry in formulating dynamical equations in physics. The fact
that Maxwell’s equations admit the Lorentz group as group of symmetry is
a foundation for special relativity. The derivation of Einstein’s equation is
based on the invariance of coordinate change. Conservation laws in physics
are linked to the conserved quantity of continuous groups of symmetries.

8. Quantum Mechanics and a unified theory of Physics

The great discovery of quantum mechanics led to the understanding of par-
ticles in high energy physics. It requires spinors and gauge theory to under-
stand the basic building blocks of forces in nature. However, these concepts
also appeared in geometry. In fact, E. Cartan studied the theory of fiber
bundles (twisted spaces) before physicists. Herman Weyl introduced abelian
gauge theory for electromagnetism while Yang-Mills introduced non-abelian
gauge theory. Strong and weak interactions are dictated by such gauge the-
ories.

The success of quantum field theory also changed our understanding of
the geometry of space-time. However, there is still great a difficulty to un-
derstand space-time when the radius is below the Planck scale. Quantum
physics contradicts general relativity at small scales. It is clear that space
should not be made up merely of points. The very difficult task of quan-
tizing gravity led physicists to build many different models. This is part of
the ambitious goal of unifying all forces in nature (a dream that Einstein
wanted to accomplish).
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8.1. Birth of string theory

The physicist Veneziano [24] found that the Γ functions of Euler can be re-
lated to functions appearing in the description of strong force phenomena.
Afterwards, Nambu [15], Nielsen [16] and Susskind [22] suggested that if
fundamental particles are strings instead of points, the Γ function can in-
deed be derived in the theory of strong interactions. However, the tremen-
dous success of the standard model show that this interpretation is not
needed.

Thus string theory was quiet for a long time although Scherk and Schwarz
[18] did propose string theory to include strong forces and gravity in this
period. The first breakthrough occured in 1984 when Green and Schwarz [7]
found that in a consistent quantized string theory (with supersymmetries),
there are only two gauge groups SO(32) and E8×E8 and space-time is ten
dimensional. With the anomaly cancellation, the field theory converge in
one loop term.

8.2. Kaluza-Klein model

What we observe in the real world is four dimensional, and so we need
a mechanism to reduce ten dimensional string theory to an effective four
dimensional theory. This was provided by Kaluza-Klein [12, 13] who discov-
ered such mechanism right after the discovery of general relativity. Kaluza
and Klein looked at the five dimensional space by thickening standard
space-time by a circle.

A good example is a line thickened to be a circular cylinder. If the circle is
very tiny, we may think of that cylinder as a straight line.

Kaluza-Klein consider the equation for geometry (with no matter) on this
thickened space-time and conclude that when the circle is very small, the
vacuum Einstein equation on five-dimensional space-time will give rise to a
coupled system of Maxwell’s equations with the four-dimensional gravita-
tional equation on the four-dimensional space-time. Hence it gives a unified
theory of gravity with electricity and magnetism. Einstein thought highly
of this theory. Unfortunately there was an extra scalar particle that did not
have a good physical meaning at the time when it was introduced.
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9. Geometry of string theory

For a consistent quantized string theory, spacetime is ten-dimensional.
We would like to imitate what Kaluza-Klein did by looking at the four-
dimensional spacetime thickened with a six-dimensional space. This six-
dimensional space would be tiny. String theorists believe that when the
energy is very high, there is a symmetry relating bosons and fermions.
Such a correspondence is called supersymmetry. It provides parallel spinors
on the six-dimensional internal space.

9.1. Calabi-Yau space

The requirement of space-time to be supersymmetric gives a strong con-
straint on this six dimensional space. It must be a vacuum space with a
complex structure. This was discovered by Candelas, Horowitz, Strominger
and Witten [3]. It turns out that such a space was constructed by me many
years ago. This class of spaces are called Calabi-Yau spaces. In the last
twenty years, a great deal of activities have been devoted to the study of
such spaces. It has been a major place for interactions for string theory and
mathematics.

In this compactification theory of Candelas, Horowitz, Strominger and Wit-
ten [3], the space-time is proposed to be

R3,1 ×M,

where the metric is taken to be a product metric. They also took the Yang-
Mills gauge bundle to be the tangent bundle of M and the scalar field to
be constant.

Supersymmetries of M require M to admit parallel spinors and they ob-
served that M must be Kähler and the holonomy group is SU(3) (Calabi-
Yau manifold).

Kählerian means that we have coordinate charts (z1, z2, z3) on M so that
the metric tensor can be written as

∑
gij̄dzidz̄j and the (1, 1)-form ω =√−1

∑
gij̄dzi∧dz̄j is closed. The holonomy group being SU(3) means that

there is a globally defined holomorphic 3-form

Ω = fdz1 ∧ dz2 ∧ dz3,
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where f is a non-vanishing holomorphic function. Conversely, given a Kähler
manifold with such a holomorphic three form Ω, we want to deform ω to a
new Kähler metric g̃ such that

det(g̃ij̄)
| f |2 = constant

in order for the holonomy group to be SU(3). I was able to prove that
g̃ can be deformed uniquely in the same cohomology class of ω. This pro-
duces a way to parametrize the space of all SU(3) structures on the complex
manifold. They are parametrized by those complex structures which admit
holomorphic three forms and also Kähler classes of such manifolds.

10. Calabi-Yau phenomenology

Around 1984, during the first string revolution, string theorists thought
that there are only a couple of Calabi-Yau manifolds. And they believed
that by the Kaluza-Klein idea, one could compute fundamental constants
for particles (Yukawa Coupling) by the topology and complex structure of
these manifolds.

In principle, the wave functions ψ(x, y) for Dirac operators on R3,1 ×M
are written as ∑

ψi(x) ψi(y),

where ψi and ψi are eigenfunctions of the Dirac operators on R3,1 and M

respectively. When M is very small, the non-zero spectrum of the the Dirac
operator is very large. They should not be observable and we are only in-
terested in harmonic spinors on M . Since for Calabi-Yau manifolds, the
canonical line bundle is trivial, the Dirac spinors can be identified with the
Hodge groups of M . The Yukawa Couplings can be computed in terms of
geometry of interesections of elements in the Hodge groups [19].

10.1. Many Calabi-Yau’s

The theory would be great to explain particle physics if there were only a
few models. Then there were some disappointments when I demonstrated
that there are large classes of Calabi-Yau manifolds which are complete in-
tersections of products of projection spaces. The program was carried out
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effectively by Candelas et al [4] by using a computer. I soon realized that
toric method can be used to construct more CY manifolds. (This was car-
ried out in my paper with Roan [17] and followed by Batyrev [1] and others.)

It is possible that all CY 3-folds can be constructed from complete inter-
sections of suitable toric varieties. If that is the case, it will point into a
good direction to classify all three-dimensional CY manifolds.

10.2. Calabi-Yau standard model

During the Argonne Lab Conference, I constructed a CY manifold in re-
sponse to a question asked by Strominger and Witten. Find a CY manifold
which has the following properties:

1. Euler number χ = ±6;
2. Nontrivial fundamental group.

1
2 | χ | accounts for the number of families of fermions which is known to
be three. The fundamental group can be used to construct a flat bundle
which can be used to break symmetries. (By embedding the fundamental
group into the gauge group E8 × E8, the commutant of the discrete group
will be a small group.)

During the conference, I constructed such a manifold by taking complete
intersections of three hypersurfaces in CP 3 ×CP 3 given by:

∑

i

z3
i = 0,

∑

i

w3
i = 0,

∑

i

ziwi = 0.

Then I took a quotient of this manifold by an automorphism of order three.
The quotient manifold satisfies the properties (1) and (2).

This manifold was used by B. Greene in his thesis to study string phe-
nomenology. Greene et al [8] demonstrated that such a model is consistent
with standard model. Greene also observed that the later models I con-
structed with Tian can all be deformed to this manifold I constructed. Later
there were several constructions related to this manifold. The mirror con-
struction gave another class of manifolds with the opposite Euler number.
Tian and I applied flop constructions. However, all of these constructions
give rise to the same conformal field theory attached to the manifold. Thus
it is possible that the conformal field theory attached to this manifold is
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rather unique.

10.3. Cosmic strings and black holes

Based on the inputs of string theorists, we now know quite a bit about the
mathematics of Calabi-Yau spaces. One hopes that eventually one can com-
pute fundamental constants in particle physics in terms of these spaces. We
may construct models of cosmology or black holes based upon continuous
evolution among these spaces. A particularly interesting question is related
to the construction of a stringy cosmic string due to Greene-Shapere-Vafa-
Yau [11]. It is a half K3 surface fibered over C with elliptic curves as fibers.
A Ricci flat metric is constructed which is singular along some singular
elliptic curves. (the construction of noncompact Calabi-Yau manifolds was
outlined by me in my talk in the 1978 Congress of Mathematics.) However,
it is still a major question to construct a Calabi-Yau manifold which admits
a fibration given by a special Lagrangian torus.

One can construct a ten-dimensional black hole solution by fibering the
space over a spherical symmetric spacetime with fibers given by a com-
pact Calabi-Yau metric. This gives rise to a path in the moduli space of
Calabi-Yau spaces and hence the attractor mechanism [6]. Many physicists,
including Strominger, Vafa, Moore, Horowitz, Ooguri, Donglas, Kalloh and
others, contributed to this fascinating subject of stringy black hole physics.
A very major work was due to Strominger-Vafa [20] on the verification of
the black hole entropy formula of Bekenstein-Hawking.

11. Mirror symmetry

While Calabi-Yau is a building block for the vacuum structure of string
theory, it is not thought to be the last microstructure to be found in study-
ing space-time. A very important symmetry for space-time called T duality
shows that microstructure of space-time is complicated. The duality says
that the quantum field theory based on a circle of radius R is the same as
the quantum field theory based on the circle of radius 1

R . This fact comes
from the duality between space and momentum.
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On the other hand, T duality gives rise to a concept called Mirror symmetry.
It provides a deep mathematical insight into CY manifolds. The concept
of conformal field theory defined by CY manifolds led Dixon and Lerche-
Vafa-Warner [14] to ask whether one can associate a completely new CY
to a given CY manifold so that the Hodge number is interchanged:

Hp,q(M)←→ Hn−p,q(M̌)

and such that the conformal field theory attached to M is isomorphic to
the one on M̌ . Such a duality is called mirror symmetry.

11.1. Mirror manifolds

Greene-Plesser [10] and Candelas et al [2] demonstrated a construction of
the mirror manifold by the quintic

M =
{∑

z5
i = 0

}

in CP 4.

They found that the mirror manifold M̌ is a quotient of M by a group
Z5 × Z5 × Z5.

Under the mirror correspondence, the cubic coupling for the deformation
of complex structures on M corresponds to the cubic coupling of the sym-
plectic theory on M̌ with quantum corrections given by pseudoholomorphic
curves of various degrees and genus. Since there is a rich classical literature
on the computation of the cubic coupling for the deformation of complex
structure based on computations of period of integrals, it is possible to
compute symplectic invariants by “counting” the number of pseudoholo-
morphic rational curves.

The spectacular work of Candelas et al was finally established with mathe-
matical rigor by completely different arguments due to the efforts of Kontse-
vich, Givental and Lian-Liu-Yau. Many more examples of mirror manifolds
were later constructed by Batyrev [1]. Large number of calculations were
given by various groups led by Candelas, Hosano, Katz, Klemm, Morrison
and myself.
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11.2. Quantum geometry

Mirror symmetry has produced a major way to calculate strongly cou-
pled quantum field theory over spacetime which allows one to test many
interesting possible phenomena. For example, the possibility of topologi-
cal change for quantum spacetime, due to Greene-Morrison-Strominger [9],
is an achievement based on such calculations. Geometric explanation of
mirror manifolds due to Strominger-Yau-Zaslow [21] has produced many
interesting questions in quantum geometry. Homological mirror symmetry
of Kontsevich and the Fukaya category of symplectic geometry is still being
explored. One expects many further developments in quantum geometry.

12. Three- and four-manifolds

While quantum geometry is being pursued through the understanding of
Black hole physics and the theory of duality, the geometry of space is mak-
ing big steps forward in the theory of three manifolds led by Hamilton’s
Ricci flow. The Hamilton-Perelman theory gives a complete structure the-
orem for three manifolds. This deep work, as was completed by Zhu and
his group, should be considered as a crowning achievement of geometric
analysis developed in the past thirty years. We expect the geometry of
three-dimensional manifold to have deep developments in the near future.
Its role in mathematics could be as central as the theory of Riemann sur-
faces in late nineteenth century and twentieth century.

The geometry of four dimensional manifolds will clearly play an important
role. However, it is a subject of much more difficulty as there is no well
formulated structure theorem yet. New understanding of space-time will
clearly give excitement to this subject. Manifolds with holonomy group G2

and Spin(7) have arisen from M theory. They should be one of the funda-
mental building blocks for low dimensional geometry.

Chuang Tzu said: “Heaven and earth and I co-exist; the myriad things and

I are one.”
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