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NONLINEAR AND LINEAR ELASTIC IMPACT THEORY* 

SHING-TUNG YAU^ AND WEN ZHANG* 

Abstract. The elastic structure impact problems are studied in the paper. Not only the local 
impact regions are regarded as deformable, but also the whole structure is considered as a flexible 
one. At the local impact regions, the non-linear constitutive equation called Hertz law is used, while 
the deflection of the flexible structure is assumed to obey the linear Hooke's law. Both analytical 
and numerical studies have been done. For comparation, a simplified linear impact model is also 
introducted and studied in the paper. All the results show that the impact process has a foundamental 
pattern due to the local deformation at the impact regions and with some additional effects due to 
the influence of the structure flexibility. 

1. Introduction. Impact process is a very complex mechanical phenomenon 
indeed. The main property is that the time process is very short (10~3 sec. order) and 
the magnitude level of the impact force is very high. The simplest impact model is the 
rigid body impact model [3], in which, the time interval of impact process is assumed 
to be zero and the magnitude of the impact force is infinite, while the impulse remains 
limited. In this model, we only concern with some major integral quantities before 
and after the impaction and pay no attention on the impact process. Of course, in 
this model the local deformations at the two impact regions due to large impact force 
are also ignored. 

The better model is to count in the elastic or plastic deformation at the local 
impact regions, while the other regions are still regarded as the rigid parts. This 
model can be called local deformation model. In this model, it is revealed that any 
impact process has a short time interval. The impact force varies from zero to a 
large but finite value and then fall down to zero again during the whole short impact 
interval. The constitutive equation of impact force and relative deformation between 
two impact bodies, called Hertz law, is not a linear relationship. So the impact 
phenomenon is essentially a non-linear mechanical problem. 

If the impacted structure is so flexible that its lowest natural frequency has the 
same order of magnitude as, or even much lower than that of the impact frequency 
(the reciprocal of the impact period), the whole structure must be regarded as a 
deformable one during the impact process. This is called global deformation model 
Although the structure deflection is still assumed to obey the Hooke's law, the local 
deformation at the impact regions remains non-linear. 

In this paper we study the third model in detail. The general non-linear equation 
of motion is established. It is an integral equation of Voltera type. The general 
analytical solution is deduced by a perturbation method. The numerical computation 
is done by difference method. For comparision, a simplified linear impact constitutive 
equation is used to linearize the problem. In this case, the problem is reduced to a 
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initial problem of vibration which can be solved analytically. 

All the results obtained in the paper show that the major impact pattern of the 
global deformation model is not very far from the pattern of the local deformation 
model which can be called as fundamental pattern. And the additional effect of struc- 
ture flexibility is mainly due to these normal vibration models of the structure whose 
natural frequencies are not very far from the impact frequency of the local deformation 
model. 

2. Forced Motion Solution of Elastic System. The forced vibration solu- 
tion for multiple degree of freedom linear system is reviewed here briefly. The context 
described here is only those necessary fundamental material which is useful for devel- 
oping the following nonlinear impact theory of elastic system. 

The natural dynamics of an elastic system with n degrees of freedom is described 
by LJi and 0;(i = 1, • • • , n) of the following eigenvalue problem: 

(i) 

or 

(2) 

where 

(3) 

Kfc = ufMh 

K<f> = M$A 

A = w? 

(4) # = [01,^2," ■ ,4>n] , 

and $ satisfies the following orthogonal identities: 

(5) $TM$ = mi 

(6) $Tii'$ = fvi miUt 

All the <pi(i = 1, • • • ,n) are normalized by l^lmax = 1-  Here rrti is called the z-th 
model mass. 

If a set of external forces, /i(*), /bfa), • • • , /n(*)j act on the system, the equation 
of motion is given by 

(7) MX + KX = F(t) , 
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where FT(t) = [fi(t),f2(t),•■• , fn(t)]- fi(t) is the force acting on the i-th node. 

Now let 

(8) jr(t) = X>-&(*) = *s 

i=l 

where 

(9) s = K1,6,-.-^n]r 

Substituting (8) into (7) and multiplying by $T, we get 

(10) $TM$Z + $TK$Z = R(t) 

or 

(11) miii + h^i =ri(t) , (z = l,---,n) 

where 

(12) R(t) = [r1(t),r2(t),---,rn(t)}T = $TF 

The solution of (11) with the initial conditions &(0) = 0 and ^(0) = 0 is given by 

(13) 

or 

(14) 

&  /   ri(r) - sinuiit - r)dr , (i = 1, • • • ,n) 

/■•. 

sina;t(^—r) 
rriiUJi 

$TF(T)dT 

■••/ 

Substituting (14) into (8), we get the general solution of forced motion as follows: 

(15) X 
JO 

(■■ 

\ 

s\nuji{t — r) 
\ 

■■I 

$TF(T)dT 

If there is only a single force f(t) acting on the system, say, at the j'-th node, then 
F(t) = [0, • • • ,0, f(t), 0, • • • , 0]T. The elastic deflection xo at the j-th node, according 
to (15), is given by 

(16) 

where 

(17) 

Xo = T -4®-   f   f{T) ■ silLLUiit - T)d7 

$*> -& I at the j-th node. 
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3. Hertz Law for Elastic Impact Between Two Bodies. For the case of 
elastic impact between two bodies, the constitutive equation, namely, the Hertz law 
[1] is given by 

(18) /(t) = ajt(t) 

where 8{t) is the relative displacement between the two impact points, f(t) is the 
contact force during the impact time interval. Equation (18) expresses a nonlinear 
relation between the impact force and the relative displacement. The coefficient a is 
determined by the following formula [2]: 

(19) a = 

where ki(i = 1,2) are the average curvatures of the two local surfaces at the two 
impact points respectively. Ei and i/i(i = 1,2) are the Young's moduli and Poission's 
ratios of the two impact materials respectively. If the two local impact surfaces are a 
ball surface and a plane respectively, ki = l/Ri and fo = 0, then 

4 x/^T 
(20) a = - - -—a —2- 

Ei    ^  E-2 

where Ri is the radius of the local ball surface. 

4. Ball-Rigid Plate Impact. First, let us discuss the simplest case that a ball 
impacts towards a rigid plate with an initial velocity VQ. During the impact period, 
0 < t < tm j the displacement of the ball is 

(21) x(t) =vot-— [ dh f1 f(r)dT , (0 < t < tm) 
™>0 Jo Jo 

where f(t) is the impact force, mo is the mass of the ball. 

Note that (21) is just the relative displacement 5(t) between the ball and the wall, 
because the wall is rigidly fixed and cannot have any elastic displacement excited by 
the impact force f(t). So we have 

(22) 6(t) = vot - — [ dh [ 1 /(r)dr ,        (0 < t < tm) 
rno Jo        Jo 

Substituting the Hertz law (18) into (22), we get 

(23) vot - — f dh [ 1 Si(T)dT = 6(t) ,        (0 < * < tm) 
mo Jo        Jo 

This is the derived non-linear impact equation.  After twice derivatives of (23), the 
following non-linear differential equation of motion for S(i) is obtained: 

(24) m0S + a5i = 0 

with the following initial conditions: 

(25) 5(0) = 0 ,        S(t) = vo 
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The equation (24) can be easily integrated as 

(26) ^-vg + l—<S*=0 
5 mo 

or 

(27) t=^i-(zy 

where 

(28) 5m\4—)    -Ll67irV^rT + -^-jJ 
(27) can be further integrated to obtain 

(v0t 
sm       ax (^       r / . V^ 

0 < t < c 

^(2c-t)    c<i<2c 

(29) is the obtained complete solution of <5(£), which is sketched out in Fig. 1 by the 
solid line, where 

(30) c = / » 1.4716 
f1 __dt__ 

The impact interval, tm, then can be obtained as 

(31) tm = 2c^ « 2.9432^ « 3^ 

As the conclusion of this section, we list some exact results obtained above for 
ball-rigid plate impact: 

1. The maximum relative displacement: 

(32) sm=[-^-) 

2. The maximum amplitude of the impact force: 

(33) fm=aSk=a(5-^l)i 

3. The impact stiffness coefficient: 

(34) fcm = ^ = a^i 

4. The impact flexibility coefficient: 

(35) Q;m = — = — 

5. The impact period: 

(36) tm - 2c- 

6. The impact frequency: 

(37) c^o = 
VQ 7T VQ 7T 

Om «J Om tm 
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5. Impact Between Ball and Elastic Structure. Indeed the most common 
impact case is that a ball impacts to an elastic structure. Let the mass and the initial 
impact velocity of the ball be still denoted by mo and VQ respectively. During the 
impact period (0 < t < £m), the absolute displacement of the ball is 

(38) x^t) =vot-— [ dh [   f{T)dT ,     (0 < t < tm) , 
mo Jo        Jo 

whereas the absolute displacement of the impact point on the elastic structure, ac- 
cording to (16), is 

(39) x2(t) = Y ^ f /(r) • sinuiit - r)dr ,     (0 < t < tm) 
~1 rriiUi J0 

A2       rt 

The relative displacement of the two impact points is 

(40) 5 = xi - X2 

or 

(41) a;i = X2 + S 

Substituting (38) and (39) into (41), we come to the following equation: 

vot- — r dh r f^dT=y A f ft 
mo Jo       Jo ~{m^i Jo 

T) sin uji{t — T)dT + 5(t) 

(0 < t < tm) 
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or 

vot-— [ dh f1 6z(T)dT = aY-^ [     6i(T)8mu>i(t-T)dT + 5(t) , 
(42) rno J1        J0 ^mwiJo 

(0<t< tm) 

Equation (42) is the nonlinear impact equation deduced here, from which 6(t) can be 
solved. And the impact period tm can be obtained by following condition: 

(43) 6{tm) = 0 

It is difficult to find out analytical solution of (42). Usually it should be solved 
numerically step by step with time t by a difference method. For this reason, it is 
much convenient to alter (42) into a non-dimensional form. Taking the characteristic 
quantities of (32)-(37) for ball-rigid plate impact and the ball mass mo as the scale 
quantities, all the non-dimensional quantities can be defined as follows: 

/(*) -- 
m 

"   fm 

m-- m 
i = - Uot 

f = = ^0^ 

Oi = 

fhi - 
mi 

mo 

Substituting all above quantities into (42) and (18), the general non-dimensional 
impact equation and Hertz law are written as 

(44) 
t - T /" dti / 1 Si (f)df = ^y -^2- /     6§ (f) sin Qiii - f)df + 5(t) , 

4 Jo JO Ajr[ miu}i Jo 

(0<i<im) 

(45) ffl=sHi), 

where im satisfies 

(46) S(im) = 0 . 

6. Linear Theory. By virtue of the approximate simple linear theory, we can 
inspect some important impact properties analytically. It is also helpful to numerically 
solve the non-linear equation (44) as a comparison. 

6.1. Linear Impact Constitutive Equation. In the linear impact theory, the 
Hertz law (18) should be replaced by the following linear approximation 

(47) f(t) = ko-5(t) 
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where &o is an equivalent stiffness coefficient, which can be determined by the following 
strain energy balance consideration: 

(48) 

i.e., 

(49) 

kn f 3 2   5 
—5^ = /     aS^d5 = a • -5%, 
* Jo 5 

4     i       /4\f 
A:o = gQ:<Jm = (-)5a5(mo?;o)^ 

6.2. Equation of Motion. Substituting (47) into (42), the impact equation is 
reduced to 

(50) 

Letting 

Vot^['dtlf"S(T)dT = £&°f5( 
mo J0        J0 ^ rmui Jo 

r) smui{t — r)dr + 8{t) . 

(51) q^t) = ^^ / S(T) amuiit - r)dT 
m^iiUi JQ 

(50) then can be written as 

(52) vot - — f dh [ ' (J(r)dr - Y] &o</i(*) + 6(t) 
mo Jo        Jo ^ 

By differentiating (52) and (51) twice respectively with respect to time t, we get the 
following equivalent set of differential equations of motion 

(53) 

8 + U)l8 + §0q = 0 

$08 + q + 

■•■/ 

Uj 

\ 

9 = 0 

••/ 

where 

(54) 

(55) 

(56) 

It can be justified that UQ 

section 4. 

$0 = [010,020,-"•  ,0no] 

9= bl,92,--- ,gn]T 

C^o 

is equal to the impact frequency (37) defined in 

It should be pointed out that from (39) and (51) we have 

(57) ^2 = Yl ^i0 ' qi = ®0q 

i=l 
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So q = [qi, #25 * - • 5 <Zn]T is the set of n normal mode coordinates of the elastic structure. 
Thus the set of equations (53) can be obtained alternatively by Lagrange procedure 
with the following kinetic and potential energy expressions of the linear impact system: 

(58) 

(59) 

T = -moil + -±1 = -mo{8 + $o<?)2 + -^[m^Q , 

V = \kQ5
2 + \q 

(■. 

\ 

miU- 

J 

6.3. Solutions of the Linear Equations. Letting S = Seipt and q = qeivt and 
substituting them into (53), we get the eigenvalue problem of the linear system: 

(^-p2)5-V$o<7 = 0, 

(60) -a;n rrij 

V 
*?*+ 

■■■/ 

OJ^-P
2 

V 
g = 0 

••/ 

*rs 

Form the second equation of (60), we have 

(61) q = CJQ m^wj-pa) 

Substituting it into the first equation of (60), we get 

(62) WO-P
2
-P

2
WO*O mj(w?-p2) 

V 
n =0 

7 
This is the characteristic equation of the eigenvalue problem (60) 

Once all the n + 1 eigenvalues pi(i = 1,2, • • • , n + 1) are evaluated from (62), the 

corresponding eigenvectors Qi = [5 : qT]J(i = 1,2, • • • ,n + 1) can be given from (61) 
as 

(63) Qi = 
(• 

LV 

CJomO 

m7(wj-Pi) *^ 

•7 
or alternatively 

(64) 

(t = l,2,-.-,n + l). 
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6.4. Impact Solution. Now the impact problem of linear model is classified 
into the free vibration problem with the following initial conditions: 

(65) S(0)=0,q = 0 

(66) <&(0) = 0,g(0) = 0 

The solution satisfying (65) has the following general form: 

(67) 
Q(t) 

— [Qi,Q2r • • 5Qn+iJ 

ai sin pit 
a2sinp2^ 

dn+isinpn+it 

where coefficients a;(i = 1, 2, • • • ,n + 1) in (67) should be determined by the initial 
velocity conditions (66), i.e., 

n+l 

(68) ^2 Q>iPi = 0 
i=l 

(69) 
aiPi 

n+l 
y 
^rrij^-pf) 

0    (j = l,2,..-,n). 

After ai(i = 1,2, • • • , n + 1) have been determined from (68) and (69), S(t) and q(t) 
are then obtained from (67). The linear impact problem is thus completely solved. 

6.5. Perturbation Solution. It is difficult to get an explicit solution of a* from 
(68) and (69). However, mo/raj (j = l,--- ,n) are usually small comparing with 1. 
We can pursue a perturbation solution of a* from (68) and (69). 

First, iimo/rrij — 0, (j = 1, • • • , n), the 2-th eigensolution can be obtained directly 
from (60) and that 

(70) 

and 

(71) 

Pi = Wj, Qi = < 

'Si = 1, 
(^)t=0,    (j = l,- 

2 2 /~ \      a;0— Wj 

{i = !,••• ,n) 

.nj^i) 

Pn+l — ^Oj   Qn+1 — 
(<Zj)n+l = 0,      (j ■' ,ri)' 

Substituting (70) and (71) into (68) and (69), we get 

(72) a! 

And from (67), we have 

(73) 

= an = 0, an+i — 
UQ 

S(t) = — sintUQt 

q(t) = 0 
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It is obvious that (73) is the ball-rigid body impact solution for linear impact model. 

Now let the value of mo/mj(j — 1, • • • ,n) are all small 

(74) 
mo        _       ,. 
— = trrij , (.7 = 1, 
m 

where e is a small characteristic quantity.   Taking (70) and (71) as the zero order 
approximate solution, then consider the following perturbation solution Eq. (60): 

(75) 

and 

(76) 

UJ
2
 - u2 

Ui<PiO 

k(9j)< =€(©)» 

IPn+l =^0+^+1  > 
I feOn+l = e(<Zj)n+l 

where 6pf,e(gi)i,6(gj)i,ep^+1, and €(^j)n+i are first order perturbation terms which 
are undetermined. 

Now substituting (75) and (76) into (60), and reserving only all the first order 
terms, we obtain the following perturbation solutions: 

.,2,. ,2^2 

Pi — ^o i ■ mi    uf - u% 

(77) (&)» 
^o - u-      mo vfaio 

Wih iO mi    a;?(u;§ - w?)      fao ^ rrtj    u: 

2      n 

tf 

rrij    ujj - cot 

and 

(78) 

n ,2 
p2       _ , ,2       /  4 V^ m0       ^io 

/=i 
mi ^1 ~ ^0 

2 mo     ^o 
WiM+i — ^o rrtj UJ] - uZ 

, (j = I,--- ,n) 

Now consider the perturbation solutions of (68) and (69). Assuming 

| a* =cai , (j = I,--- ,n) 
(79) ^ ^o ^   _ 

an+i    — h ean+i 

Substituting (79), (77) and (78) into (68) and (69), we have 

(80) 

_ mp    ^ougcj^Q 
CCli — '   .    2 2\9'V^ — ■*■>''"> ^ 

mj    (wf - wg)2 

_ _     n    mo    uo^o^+c^fo 
n+1    "     ^^m/     2K?-a>0

2)2 
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At last, from (67) we get the first order solution of the relative displacement 

n+l 

S(t) — 2_. ciismpit 
i=l 

= vo_ 
^o       v ^   w ^ rrii u^ - cjg 

(81) + ± ^^^sin^t - (±^yi+i?f") slnu0t 
^ rm {u)} - ul)2 \ ^ mi     2(<J? - ul)2     ) 

From above solution (81) we come to the following conclusions: 

1. The major pattern of ball-elastic structure impact is not very far from that 
of the corresponding ball-rigid body impaction, which is expressed by 8(1) — 
^f- sinc^o^. This fundamental pattern is purely due to the local deformation 
at the impact regions. 

2. The additional effect of the structure elasticity is mainly due to these normal 
modes whose natural frequencies Ui are not very far from the impact frequency 
CJQ. 

7. Perturbation Solution for Non-linear Impact Equation. The pertur- 
bation method also can be used to solve the non-linear impact equation (44). For 
the sake of convenience, differentiate eq. (44) twice with respect to time t and then 
integrate it once with respect to space 5. The result is 

(82) f-l + ^-lf:^ A^G? /^(f)-cosu^--f)eZfW. 
Z ~[     rn3      JO V"S ./0 / 

When mo/rrij = 0, (j = 1, • • • , n), the zero order solution So(t) is just the solution 
(29) for ball-rigid body model. Its non-dimensional form is 

dx 
(83) /        r r 

The curve (83) is shown in Fig. 1 by the solid line, which can be approximated by a 
half period sine curve: 

(84) 6o(t)=sineoi 

where 

(85) eo = £- « 1.0674 

and c is defined by (30). The curve (84) is also shown in Fig. 1 by the line of dashes. 

Now let us consider the perturbation solution of (82).   Assuming mo/mj(j = 
1, • • • ,n) are small quantities just as before, set 

(86) 6(t) = So(i) + eS^t) 
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where eSi(t) is an unknown first order perturbation term. Substituting (86) into (82), 
reserving the first order terms only, we get 

(87)      'Sol + yih = -\^ M)(^fo 6$(f) J2 ^ cosQjd - f)df W 

mo^0cos^(f-f)df W 

From (83) we further have 

(88) $> = —$ 

Substituting above equation into (87), we get 

(89)   %UT) = A® fI- f *°(f)£ m 
which can be further integrated out as 

(90) Si(*)=$>(*) f ^-dfj 
Jo 80(fj) 

where 

(9i)       m = rkoi^ [il(f)£1^cosuj(z-f)df)dz 
Jo v^ Jo j_1    

mj ' 

Approximately substituting (84) into (91), j(f\) can be simply integrated out as 

,(-, 4V^m0</)i0r ^3 (- -   - -   , .     _   _      . _x 

(92) ^    ^     ^"^ 
^j sin2 eory  1 

- (el-Q]y~2(el-u,])\ ' 

Substituting it into (90) the first order perturbation term is obtained as 

(») Am^t^Gr^ro. 
J= 

where 

^•(f) = coseo^ 
2_-2 

(94) /•* ujj(uj cosQjfj - coseof} + eo sincj^^ • sineorj) — eo ^^ sin2 eorj - ^?   _ 
/    2—=  drl Jo cos2 eory 

It can be verified that Cj(t) is a bounded function. So eq. (93) shows that 
all those terms in the summation whose Qj is much larger than eo « 1.064 could 
be neglected because their attribution to the summation are too small to count in. 
Only those terms whose Qj is not very far from eo have essential effect on the value 
of Sj(t). This means that all the effect of the higher modes on the impact can be 
omitted. Meanwhile, if CJQ is large enough, the lower j-th modes LJJ = CJJ/UQ are also 
very small. In these cases, the effect of lower modes can also be neglected. These 
conclusions deduced from nonlinear theory are consistent with that of linear theory 
at the end of section 6. 
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