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As a continuation of [1], we study modular properties of the periods, the mirror maps and Yukawa couplings 
for multi-moduli Calabi-Yau varieties. In Part A of this paper, motivated by the recent work of Kachru-Vafa, we 
degenerate a three-moduli family of Calabi-Yau toric varieties along a codimension one subfamily which can be 
described by the vanishing of certain Mori coordinate, corresponding to going to the "large volume limit" in a 
certain direction. Then we see that the deformation space of the subfamily is the same as a certain family of K3 
toric surfaces. This family can in turn be studied by further degeneration along a subfamily which in the end is 
described by a family of elliptic curves. The periods of the K3 family (and hence the original Calabi-Yau family) 
can be described by the squares of the periods of the elliptic curves. The consequences include: (1) proofs of 
various conjectural formulas of physicists [2] [3] involving mirror maps and modular functions; (2) new identities 
involving multi-variable hypergeometric series and modular functions - generalizing [1]. In Part B, we study for 
two-moduli families the perturbation series of the mirror map and the type A Yukawa couplings near certain large 
volume limits. Our main tool is a new class of polynomial PDEs associated with Fuchsian PDE systems. We 
derive the first few terms in the perturbation series. For the case of degree 12 hypersurfaces in P416, 2, 2, 1, 1], in 
one limit the series of the couplings are expressed in terms of the j function. In another limit, they are expressed 
in terms of rational functions. The latter give explicit formulas for infinite sequences of "instanton numbers" nd. 

This paper  is a continuation of [1]. There we 
study the modular  properties of a multi-moduli 
family of Calabi-Yau varieties degenerated along 
a dimension one subfamily. In this article, we 
s tudy properties of the mirror map, periods and 
the type A Yukawa couplings under a degenera- 
tion along a codimension one subfamily, and their 
per turbat ions around this subfamily. The prob- 
lem is clearly motivated by recent developments 
in the so-called heterotic-type II  string duality. 

1. P A R T  A: D E G R E E  24 H Y P E R S U R -  
F A C E S  I N  P411, 1,2,8, 12] 

The mirror symmet ry  of this family of Calabi- 
Yau toric varieties X has been studied in detail 
in [4]. I ts  Picard-Fuchs system is given by (Ox = 
x d etc.) 

L1 = Ox(Ox - 2 O z ) -  12x(60~ +5) (6Ox  + 1) 

L2 = 6)~ - y ( 2 0 y  - 0 ~  + 1)(2Oy - O~) 

L3 = Oz(O~ - 2Ou) - z ( O z  - Ox  + 1) 

(2Oz - O~). (1.1) 

The x, y, z are deformation coordinates, which we 
call the Mori coordinates (see [4] for definition), 
near the "large volume limit" in the family of 
Calabi-Yau varieties. 

Comparing the type I I  string compactification 
along X with a heterotic string theory, Kachru- 
Vafa suggest tha t  one should s tudy the limit y --~ 
0. When restricted to this subfamily with y = 0, 
a subset of the periods of this subfamily satisfy a 
new system given by 

L1 = Ox(Ox - 2Oz) - 12x(6Ox + 5)(6Oz + 1) 

L3 = 0 2 - z ( 2 O z - O z + l ) ( 2 O z - O x ) .  (1.2) 

This is identical to the Picard-Fuchs system for 
the family of toric K3 surfaces corresponding to 
degree 12 hypersurfaces in p3[1, 1, 4, 6]. (For the 
relevance of the appearance of K3 surfaces and 
their moduli spaces in heterotic-type II  duality, 
see the recent papers [3][5].) By further restrict- 
ing along z = 0, the Picard-Fuchs system reduces 
to a single equation 

L = 0 2 - 1 2 x ( 6 O x  + 5)(6Ox + 1). (1.3) 
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This is the Picard-Fuchs operator for a family of 
elliptic curves in P211,2, 3]. This suggests a close 
relationship between the curves and the above 2- 
moduli K3 family, and ultimately the 3-moduli 
family of Calabi-Yau varieties X. Indeed, it is 
found numerically in [3] that  the mirror map de- 
fined by the K3 family can be given in terms of 
the j-function. 

In this section, we will prove that  the solutions 
to (1.2) are given by "squares" of solutions to 
(1.3). This result (1) generalizes a theorem in 
[1] which we will review briefly; (2) proves some 
formulas of [3] as a consequence. 

Consider the differential operators 

m 

e = - Z + i/2)(e  + i /2  + . ,) 
i = l  

(O= + i /2 - u,) 
m 

[ = e~ - ~ A , x ' ( e ~  + i/4 + u,/2) 
i=1 

(O~ + i /4 - v~/2) (1.4) 

where the Ai, ui are arbi trary complex numbers. 
In [1], we prove that  if [ f ( x )  = 0 then gf(x)  2 = 0. 
Since the dimension of solution space of ~ is two, 
the span of f ( x )  2 with [ f (x )  = 0 has dimension 
three and so must be the full solution space of 
L This result was inspired by the observation in 
numerous examples (see [1]) that  the periods of 
certain 1-moduli K3 family are nothing but  prod- 
ucts of periods of some family of elliptic curves. 
This leads to nontrivial identities involving mod- 
ular functions and series solutions to an ODE of 
Fuchsian type. This suggests to us a 2-moduli 
analogue for the systems (1.2), (1.3): is the so- 
lution space to (1.2) given by the span of the 
f ( x )g(z )  where f ( x ) , g ( x )  are solutions to (1.3)? 
The answer turns out to be no, but almost. Note 
that  the span of the f(x)g(z) is 4 dimensional, 
which is the same as the dimension of the solu- 
tion space for (1.2) with at most Log singularities. 

T h e o r e m  1.1. Let L1,L3, L be as defined in 
(1.2), (1.3). There exists a rational map- 
ping C 2 --~ C 2, (R ,S)  ~ (x ,z) ,  such 
that i f  f ( x ) , g ( x )  are solutions to L, then 
f ( R ( x ,  z))g(S(x,  z)) is a solution to L1, L3, where 

(x, z) ~-~ (R(x, z), S(x,  z)) is (any branch of) the 
inverse mapping. 

Proof: We will construct the mapping using the 
condition that  

L l f ( R ( x ,  z ) ) f (S (x ,  z)) =_ 0 mod L f ( R ) ,  L f ( S ) .  

(1.5) 

It will be seen that  the mapping we will construct 
also satisfies the analogous condition for L2. 

Clearly by expanding the expression 
L l f ( R ( x , z ) ) f ( S ( z , z ) )  by chain rule, we get a 
homogeneuos quadratic polynomial of 
f (O(R) , f ( i ) (S) ,  whose coefficients are differen- 
tial polynomials of R ( x , z ) , S ( x , z ) .  Upon ap- 
plying the conditions that  L f ( R )  = 0 = 
L f ( S ) ,  we can eliminate any appearance of 
f " (R ) ,  f " (S ) .  Thus after the elimination, a suffi- 
cient condition for (1.8) to hold is tha t  coefficients 
of f ( R ) f ( S ) ,  f t ( R ) f ( S ) ,  f ( R ) f t ( S ) , f ' ( . R ) f t ( S ) ,  
each vanishes identically. Thus we want to solve 
the conditions of the vanishing of these coeffi- 
cients, and they are given by: 

(1) - R S x  + 1728R2Sx + 1728RS2x 
-2985984R2S2x - 2SRzRz  + 3456S2 RzRz  
+SR2 - 1728S2R~ - 432SxR~z 
+ 746496S2xR~ - 2RSzS~ 
+3456R2SzSx + RS~ 
-1728R2S 2 - 432RXS 2 + 746496R2xS 2 = 0 

(2) 432RxRx - 746496R2xR~ - 2RzR~ 
+5184RRzR~ + R 2 - 2592RR~ 
-432xR~ + l l19744RxR~ + 2 R R z z  
-3456R2Rxz - RRxx + 1728R2Rz~ 
+432RxRzz - 746496R2xRxz = 0 

(3) As in (2) with S, R interchanged. 
(4) - S z R ~  - RzS~ + RxSx - 432xR~S~ = 0 

(1.6) 

where Sx means OxS etc. This is an overdeter- 
mined system of polynomial PDEs. We claim 
that  the following relations define an algebraic 
solution to (1.6): 

R +  S -  8 6 4 R S -  x = 0 
RS(1 - 432R)(1 - 432S) - x2z = O. 

(1.7) 
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The proof is by direct computation. (This solu- 
tion is easy to motivated by the following con- 
sideration. Since we propose that  the periods of 
the K3 surfaces in question are symmetric squares 
of those of the elliptic curves, it is reasoable that 
the K3 moduli x, z are symmetric functions in the 
elliptic curve moduli R, S. The above solution 
makes x, z the simplest kinds of algebraic sym- 
metric functions of R, S.) Note that  (1.7) defines 
a rational mapping (R, S) ~-* (x, z). It is also easy 
to check that  given this solution, the condition 

L 2 f ( R ( x ,  z ) )g(S(x ,  z)) - 0 rood L f ( R ) ,  Lg(S)  

(1.8) 

holds automatically. This completes our proof. * 
As a first consequence, we prove a formula first 

conjectured to exist in [2] on physical ground, and 
then found numerically in [3]. 

C o r o l l a r y  1.2. The mirror map for (1.2) is 
given by 

2 1/j(ql)T1/j(qlqa)--1728/(j(ql)j(qlqa)) 
x(ql, q3) = l+%/1-1728/j(ql)~/1-1728/j(qlq3) 
z(ql, q3) = 1 j(ql )j(qlqa)x(ql ,q3) 2" 

(1.9) 

Proof: Recall tha t  (1.2) has a unique powers se- 
ries solution wo with leading term 1, unique solu- 
tions Wl,W3 of the form Wl = Log x + gl,w3 = 
Log z+g3 with gl,g3 ~ 0 as Ixl, Izl --* 0. (This is 
so because this is a holonomic PDE system with 
regular singularity at x = 0, z = 0. It is also 
straightforward to check this directly using (1.2) 
and the resulting recursion relations on the co- 
efficients of the power series.) The mirror map 
x(ql, q3), z(ql, q3) for (1.2) is then defined by the 
inverse of the power series relations: 

ql = eWe~W° 
q3 = eW3/w°. (1.10) 

Similarly, the ODE (1.3) has a power series so- 
lution w0 with leading term 1 and a solution Wl 

of the form Log x + ~ with g -~ 0 as Ixl -~ 0. 
The mirror map r(q) for (1.3) is then defined 
by the inverse of the power series relation q = 

e o3(r)/o°(r). It is also easy to prove that  (see [6]) 
j (q)  = 1 

r(q)(1-432r(q))" 
By the theorem above, the following are 

three solutions to (1.2): @o(R(x, z))@o(S(x, z)), 
~1 (R(X, Z))W0(S(X , Z)), ~)0 (R(x, z))wl (S(x , z)) - -  

@l(R(x , z ) )~o (S (x , z ) ) .  It is straightforward to 
solve (1.7) for R, S as power series in x, z, and 
we see there are four branches of solutions. One 
branch has leading terms R = x +O( h2), S = xz  + 
O(h3). (Here O(h k) means terms of total  degree 
k or higher.) The second branch has R = 1 /432+ 
O(h), S = 1 /432+0(h) .  The third and the fourth 
branches are obtained by interchanging the roles 
of R, S in the first two branches. We choose 
R(x,  z), S(x,  z) to be given by the first branch. 
Then it easy to see that  the three solutions 
?~)o(R(x, z))?~0(S(x, z)), ?~l(R(x, z))~)o(S(x, z)), 
?f3o(R(x , z))'t~l (S(x , z)) - -  Wl (R(X, Z))V30(S(X, Z)), 
have the leading behaviour identical to tha t  of the 
solutions w0, wl, w3 respectively. By uniqueness, 
we conclude that  

wo = eo(R(x,  z)) 
wl = (vl(R(x,  z))@o(S(x, z)) (1.11) 
w3 = z))@l(S(z, z)) 

z)). 

This implies that  

ql = e ~'(R(x'z))/~°(R(x'z)) 
qlq3 = e ~'(s(z'z))/~°(s(='z)). (1.12) 

Inverting these, applying (1.7), and using j (q)  = 
1 we see that  (1.9) follows. • r(q)(1-432r(q))' 

C o r o l l a r y  1.3. Let E4 be the normalized Eisen- 
stein series of weight 4. Then 

~¢ 6 k + 1 2 m  + 6 m ~ (  + 2 m  
2k + 4 m ]  \ k  

1 
j (ql)mj(q2) m 

J(ql)J(q2)+~J(ql)(J(ql)--l'[28)V/J(q2)(J(q2 )-1728) ] ) 

-- E4(ql)E4(q2). (1.13) 

Proof: Computing the power series solution w0 
to (1.2) with leading term 1, we get 
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z )  = xn  m 
E (3n) ! (2n) ! (m!)2(n_2m)!  z . 

n>2m>0  

(1.14) 

Now do a change of variable on the summation 
n = k+2m, put q2 = qlq3, and apply the corollary 
above. We see that  the left hand side of (1.13) is 
Wo( X( ql , q3), Z( ql , q3))- 

By the first equation in (1.11), it is enough to 
show that  @o(r(q)) 4 = E4(q) where wo(x) is the 
solution to (1.3) regular at x = 0. In [1], we have 
proved that  

Oqr(q) (1.15) 
v~°(r(q))2= r(q)(1 - 432r(q))' 

But we know that  

j ( q )  = i 
r(q)(1-432r~q)) (1.16) 

E4(q) = (OqJ(q))Z 
j(q)(j(q)--1728) 2" 

Combining the three equations, we get E4(q) = 
4 • 

2. G E N E R A L I Z A T I O N S  

The technique we have used to study the exam- 
ple above is clearly applicable to a more general 
class of PDEs. The only step which involves de- 
tails of the example is the system (1.6). It turns 
out that  even the form of our solution (1.7) to 
(1.6) has more general applicability as we now 
show.  

Consider the PDE system 

51 = Ox(Ox - 2Oz)  - Ax(Oz  + 1 /2  + u) 
(Ox + 1/2 - u) (2.1) 

L3 = 02 - z (20z  - Ox + 1)(2Oz - Ox) 

and the ODE 

L = 02 - Ax(Oz + 1/2 + u)(Oz + 1/2 - u) (2.2) 

where A, u are complex numbers. For (A, u) = 
(432, 1/3) we recover the case (1.2) above. We 
now have the following generalization. 

T h e o r e m  2.1. The rational mapping C 2 --~ 
C 2, (R, S) ~-* (x, z), defined by the relations 

R Jr S -  2 A R S -  x = 0 
RS(1  - AR)(1 - AS) - x2z  = 0 

( 2 . 3 )  

has the following property: i f  f ( x ) ,  g(x) are so- 
lutions to L, then f ( R ( x , z ) ) g ( S ( x , z ) )  is a solu- 
tion to L1,L3, where (x , z )  H ( R ( x , z ) , S ( x , z ) )  
is (any branch of) the inverse mapping. 

The proof is vitually word for. word similar to 
the proof of the special case above. 

Consider the following two families of toric 
K3 surfaces corresponding to degree 6 hyper- 
surfaces in p3[1, 1, 2, 2] and degree 8 hypersur- 
faces in p3[1, 1, 2, 4] respectively. Their Picard- 
Fuchs systems are exactly (2.1) with (A,u) = 
(27, 1/6), (64, 1/4) respectively. The correspond- 
ing ODEs are (2.2) with those parameter val- 
ues. It turns out that  they are exactly the 
Picard-Fuchs equations for two families of ellip- 
tic curves: degree 3 curves in P2[1, 1, 1] and de- 
gree 4 curves in p2[1, 1,2] respectively. As shown 
in [6], The mirror maps for these two families of 
curves are hauptmoduls for the genus zero groups 
F0 (2), F0 (3) respectively. 

Finally it is amusing to note that  the three 
examples above with parameter values (A, u) -- 
(27, 1/6), (64, 1/4), (432, 1/3) correspond to the 
so-called simple elliptic singularities of types 
E6, ET, Es respectively. (See introduction of 
[7].) That  is, the three families of elliptic 
curves mentioned above - degrees 3, 4, 6 hy- 
persurfaces in p2[1, 1, 1], p2[1, 1, 2], P2[1, 2, 3] re- 
spectively - correspond to singularities of these 
types. Note that  their two dimensional coun- 
terparts are the three families of K3 sur- 
faces above - degrees 6, 8, 12 hypersurfaces 
in p3[1, 1, 2, 2], P3[1, 1,2, 41, P311, 1, 4, 6] respec- 
tively.It turns out that  there is an explicit rela- 
tion between a generic member of the K3 family 
in P311, 1, 2, 2], and a cubic family in P211, 1, 1]. 
That  is, if we intersect the hypersurface 

+ + + + a y l y 2 y 3 y 4  + : o ( 2 . 4 )  

with the hyperplane Y2 - Ayl = 0 in p3[1, 1, 2, 2], 
the locus is the curve (1 + A 6 +bA 3) (y2)3 +y3 +y43 ÷ 
aAy21Y3Y4 = O. It is isomorphic to the following 
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cubic curve in P[1, 1, 1]: 

(1 + + + + + = 0 . ( 2 . 5 )  

The map is induced from natural isomorphism 
p2[1, 2, 2] --+ P2[1, 1, 1]. There is an analogous re- 
lation between the K3 family in p3[1, 1,2,4] and 
a quartic family in P2[1, 1, 2], and similarly for 
P311,1,4,6] and p2[1,2,3].  

There are also three dimensional Calabi-Yan 
varieties which bear the same relation to the 
above K3 families as these K3 surfaces bear 
with their elliptic curve counterparts. Namely 
the three K3 families above correspond respec- 
tively to the degrees 12, 16, 24 hypersurfaces in 
p4[1, 1,2, 4, 4], p4[1, 1,2, 4, 8], P4[1, 1,2, 8, 12] re- 
spectively. The intersection of the Calabi-Yau 
hypersurface 

Z 1 2 - -  12- -  6 - - Z 3 - -  3 - -  Z Z Z - - - "  6Z6 0(2.6) 1 ~-Z2 ~-Z3~- 42-z5~-azl  2 3 4~5-1-0Zl  2 = 

with the hyperplane z2-Azl  = 0 in p4[1, 1,2, 4, 4] 
is isomorphic to a sextic surface in p3[1, 1,2, 2], 
and similarly for the other two cases. 

3. PART B: S C H W A R Z I A N  
E Q U A T I O N S  F O R  L I N E A R  P D E s  

Since the periods, the mirror map and the 
Yukawa couplings are of fundamental importance 
for the prediction of the numbers of rational 
curves via mirror symmetry, one must understand 
these objects from as many points of views as 
one can. For example, can one give an analytic 
characterization for the mirror map? It has been 
shown in 1-modulus cases that  the answer is yes: 
the mirror map is characterized by some poly- 
nomial ODE near the "large volume limit" [6]. 
Motivated by this problem, we study in this sec- 
tion the analogues in 2-moduli cases. We will 
construct polynomial PDE systems naturally as- 
sociated with the Picard-Fuchs systems for the 
periods of Calabi-Yau varieties. Later we will see 
that  these PDEs give us powerful tool for doing 
perturbation theory on the periods, the mirror 
map and the type A Yukawa couplings. 

Consider fo'r fixed m _> 2 the following pair of 
linear partial differential operators: 

L1 EO<_iWj<_m .. i j = a~30~O.~ (3.1) 
L2 = EO<_iWj<2 bijO~O~ 

where the aij,  bij rational function of x, y. We as- 
sume that  b121-4bo2b20 is not identically zero, and 
that  near x = 0 = y the system admits unique 
series solutions w o , w l , w :  with the leading be- 
haviour 

wo(x ,y )  = 1 + O(h) 
w l ( x , y )  = w o i o g  x + O(h)  (3.2) 
w2(x ,y )  = woLog y + O(h)  

where O(h k) here means terms in powers of x, y 
which are of total degree at least k. We re- 
mark that  all known examples arising in mir- 
ror symmetry result in Picard- Fuchs systems of 
this kind, where x, y denotes the Mori coordi- 
nates for the complex structure deformation space 
near the large volume limit. Let s = w l / w o ,  
t = w2/wo as (locally defined) C2-valued maps 
of x, y. It is clear that  the Jacobian of this map 
is nonzero. Then inverting this map, we can re- 
gard x(s,  t), y(s,  t) as functions of s, t (or as power 
series in ql := eS,q2 := et) • We wish to derive a 
system of polynomial PDEs for these functions. 
Recall the transformation laws under a change of 
variables 

(3.3) 

Oyf = 

where [f, g] is the "Poisson bracket": 

[f, g] := OsfOtg - O~gOtf. (3.4) 

Under this change of variables, L1, L2 becomes 

z:l = (3.5) 

From the transformation laws, it is easy to 
see that  up to an overall factor the new co- 
efficients ci j ,di j  are differential polynomials of 
x ( 8 , t ) , y ( s , t )  

Now observe that  

~'(SWo) - 8~1W0 --- E icijo~--l~two = 0  
• i " - - 1  

Z l(two) - t z . l w o  = w o  = o 

~ : 2 ( S W 0 )  --  S•2WO -~ d l 0 W 0  -+- d110tWo 

+ 2d2008wo = 0 
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/:2(tw0) -- tf~2Wo = dolWo -~ dl lOsWo 

+ 2do2Otwo = 0 

£1w0  = 0 

£ 2 w 0  = O. 

(3.6) 

It  is easy to check tha t  (d121 -4do2d2o)[x,y] ~ = 
b121 - 4b02b20 which is nonzero. Thus we can solve 
for 0sWo, Otwo in terms of w0 and differential ex- 
pressions in x, y in the third and fourth equations 
in (3.6). We can hence use this to eliminate all 
higher derivatives OisO~wo in the first and second 
equations in (3.6). But  since w0 appears  linearly 
everywhere, we can factor it out and obtain a pair 
of coupled polynomial PDEs in x, y. Their order 
is at most  m. Thus we have 

P r o p o s i t i o n  3.1. Given  the l inear  P D E  sys-  
t e m  L1, L2 above, there  ex i s t  a pa i r  o f  p o l y n o mia l  

P D E s  f o r  x ,  y .  
Note tha t  the system (3.6) can be regarded as 

a (overdetermined) system of polynomial PDEs 
in x, y, w0. We will use this system to s tudy the 
mirror map  and the Yukawa couplings by means 
of per turbat ion theory in the next section. 

As an example, consider the system (2.1) which 
we can write in the form (3.1), where m = 2, 
hence (3.5) under a change of variables. As we 
have seen, such a system arises as the Picard- 
Fuchs system for certain 2-moduli families of toric 
K3 surfaces. The  hypotheses on the uniqueness of 
series solutions, and tha t  b121 - 4b02b20 is nonzero 
can be easily checked. In this case our polynomial 
PDEs for x ( s ,  t ) ,  y ( s ,  t)  becomes 

(b21 - 4bo2b2o)(2co2clo - c01c11) = 

(a21 - 4ao2a20)(2do2dlo - d01dll) (3.7) 
(b~l - 4bo2b2o)(2c2ocol - Cl0Cm) = 

(a21 - 4ao2a20)(2d20dm - dl0dm). 

4. P E R T U R B A T I O N S  

We have seen a nice description of the peri- 
ods and the mirror map  when one degenerates 
a certain family of Calabi-Yau threefolds along 
a codimension one subfamily. We would like to 
use per turbat ion theory to s tudy the Calabi-Yau 
threefolds in a neighborhood of the codimension 

one subfamily. Consider for example the mir- 
ror threefold X of the degree 12 hypersurfaces 
in P416, 2, 2, 1, 1] which has h 1,1 = 2. Let x, y be 
the Mori coordinates near the large volume limit 
of X.  I t  is now known tha t  the periods and the 
mirror map in this case admit  a description in 
terms of the j function in the limit y --~ 0. Can 
one give a similar description near y = 0? How 
about  near x = 0? 

We will give two descriptions in the case of the 
degree 12 hypersurface above. We show tha t  mir- 
ror map and the Yukawa couplings, order by order 
in q2, can be described by quadrature  in terms of 
the j function. In fact, we will compute  the first 
few terms. The  second description is by means of 
per turbat ion theory in the ql direction. Here re- 
markably, the first few terms are purely algebraic, 
rather than  transcendental.  

We briefly review what  is known for the degree 
12 hypersurfaces in P4[1, 1,2, 2, 6]. The  Picard- 
Fuchs system in the Mori coordinates x, y is given 
by 

L1 = O~(Ox - 20~) - 8x(60x + 5)(60x + 3) 

(6Ox + 1) 

L2 = e 2 - y ( 2 0  u - O~ + 1)(2e  u - Ox). 

(4.1) 
This motivates the s tudy of the following family 
of PDEs, where A, v are constants, (cf. [1] and 
see also Appendix B): 

L1 = 02(Ox - 20~) 
+ 1/2)(0  + 1/2 - + 1/2 + 

L2 = 0 2  - y ( 2 0 y  - O z  + 1)(20y - Ox). 

(4.2) 
As before there are unique solutions near x = 

y = 0 of the form wo = l + O ( h ) , w l  = w o L o g  x +  
O(h),  w2 = w o L o g  y + O ( h ) ,  and the coefficients 
of L2 satisfies b211 -4b02b20 = - 4 y  2 ~ 0. Thus 
the system (4.1) is of the type (3.1) with m = 
3. Associated to it is the nonlinear system (3.6). 
The "mirror map" (tl ,  t2 ) ~-~ ( x (  ql , q2 ), Y( ql , q2 ) ) 
is defined locally by the inverse of the power series 
relations 

ql = e wl(x 'y) /w°(x 'y)  = x(1 + O ( h ) )  (4.3) 
q2 = e w2(x'u)/w°(x'y) = y(1 + O ( h ) ) .  
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Thus we can write 

X(ql,q2) = ZieC=oXi(ql)q~ 
0(3 

Y(ql,q2) = Ei=lYi(ql)q~ (4.4) 
wo(x(q~, q~), y(q~, q2)) = Y~i~=0 gi(ql)q~ 

where the x i (q l ) , y i (q~) ,g i (q l )  are power series. 
We will use the PDEs (3.6) derived in the last 
section to compute the xi ,y~,9i ,  i _< 2. The re- 
sults turn out to have a universal form. 

T h e o r e m  4.1. F o r z i ,  Yi,9i as defined in (4.4), 
xo is the unique power series solution with 
xo = ql + O(q~) to the Sehwarzian equa- 
tion 2Q(xo)Jo 2 + {xo, s} = 0 with Q(x )  = 

1+(-~+'2)~+(1-~)(1+~)~2z~. We also have 
4 x 2 ( 1 - A x )  2 

x; 
90 = xo(l_Axop/2 

2 

x~ ~ .-9oXo 9o o~ 

Yl = exp (2  f f f dsdsds , , -  (~,~og 9o) ' (Lo 9 x o ) " -  

(Log go)"(Log Xo)' - (Log go)'2(Log x0)')) 
1 / t t2  2 t t t  2 t It 

91 = Z~o~XlgoXo + XoYlXogo -- xoY~goXo) 

(4.5) 

where pr ime here means  ~qi .  

Proof." For the proof of the s tatements  concern- 
ing x0,90, see [1]. We will s tudy the PDE system 
(3.6) associated to (4.1) up to first order in powers 
of q2 -- e t. We subst i tute x = Xo + q2xl + O(q~), 
Y = q2Yl + O(q2), wo = go + q2gl + O(q 2) into 
(3.6) where the xi, yi, gi are all power series in 
ql = e ~. To lowest order, the first equation in 
(3.6) is a polynomial ODE in g0, x0. Using the 

result [1] tha t  wo(x(qx),  0) 2 = 9o 2 = ~ x ~ ( 1 - 1 7 2 S x o )  

it is easy to show tha t  this ODE holds identi- 
cally. Now consider the second equation in (3.6). 
To leading order it is a complicated polynomial 
ODE in Yx, g0, x0. But  after we apply repeatedly 
the fact tha t  xo satisfies the Schwarzian equation 
to eliminate x~ ~, x~", ..., we see tha t  tL .  equation 
is solvable. The general solution is exactly the 
third equation in (4.5). There is a unique par- 
ticular solution which is a power series in ql with 
leading coefficient 1. Similarly the third and sixth 
equations in (3.6), to lowest order, gives respec- 
tively the second and fourth equations in (4.5). * 

We can also use the same system (3.6) to com- 
pute the higher order terms. At each order i >_ 2 
the triple (xi ,y~,gi) ,  can now be solved succes- 
sively in terms of the lower terms by applying 
the third, fourth and sixth equations in (3.6). I t  
appears  tha t  at each order i >_ 2, xi,  y i ,gi  are 
given by some differential rational functions of 
the lower order terms without solving a differ- 
ential equation. For example, x2, Y2,g2 in fact 
occurs linearly (with no derivative thereof) in the 
following equations. They are in fact the order 
O(q 2) terms of the third, fourth and sixth equa- 
tions respectively in (3.6): 

t t2 2 t t2 t3 
--2xlY19oXo + 4xoylgoXo + 291YlXo 

2 t 3  _90Y2Xlo 3 + 2 t t t -29oylxo  2xoY19oXoY1 
+ ~  X X ' 2 "  t ~ ~ 2 ~ ¢  . t 2  

Y0 1 O Yl  - -  Y0;b0a~0Yl - -  
2 / / l  2 f It 

- 9 o x o y x y l x  o + 9oxoylxoY 1 = 0 

2 / t2 2 , ,2  _ 2 X  2 .  . _ i x / 2  2XlYlgoXo - 12xoxlYlgoxo oyly2yo o 
o~2.2. ,  ~,2 _ 391XlYlXtO 3 _ 490X2YlXlO 3 - - ~ 0 Y l  y l -~0  

2 t3 6 ~ X ~ 2X~3 + 390xly2X~o 3 +4glXoYlXo + YO 191 O 
2 2 , t t t2  t 2 t2  / 

+4xoylgoXoXl + 3goxly lxo  x l  - 4goxoYlxo Xl 
2 t t t 2 t2  t 2 t 2  t 

-4XoXly lgoxoYl  - 39oXlxo Yl + 291xoYlXo Yl 
+49oXoxlylxtO2yll 2 t ! / 2 t t 2  - 29oxoYlXoxlY 1 + 2goxoXlXoYl 

2 t t t  2 2 t , t  2 t t /  
- 9 o x l y l x o X  o + 91xoylXoXo + 69oxoxlYlxoXo 

2 / t ,  2 2 t , /  2 t t /  
+goxoyly2XoXo - 39oxoYlXlX o + 3goxox ly l y l xo  

2 2 t t t  2 t t /  
+9oxoyl XoX 1 - 9oXoxlylxoY 1 = 0 

4x o _ , x t 3  2 t /3 / t3 
- -  2 y l Y 0  o + 6xlY19oXo + 3xlY29oXo 

, t3  2 t , 3  , 4  --3xlY191Xo + 4xoY19aXo + 492ylxo -- 691Y21Xto4 
~ t 4  + t t2  t 2 t t 2  t 

-391Y2~o 3xlY19oXo Xl - 4xoYx9oXo x l  
3x2 -t xt2~ t 4x x ~ ^' x t2" t 2 i ,2 , 

- 1~o OUl+  o lylyo oY1+2xoY191xoY1 
+ 3  X X ' 3 "  t 4 ~  X " X t3  " t 2 t t , t gl 1 0 y l -  yl  oyl O y l - 2 X o Y l g o x o X l Y l  
+ 2 X o X l 9 o Z o Y l  - -  z91a~Oa~O Yl + a ' lYla~O YO 

2 t2  t t  _ X 2 .  . X , 2 ^ t t  ,)~2~ 2 ~ ,  ~ t  ~, /  --6XoXlYlXo 9o 0YlY2  0 Y0 + ~a~0Yla~0a"l t /0 

--2XoxlYlxoY19o - -  x O Y l X O  Y l  - -  ;LlYlY0;b0"L0 
2 , , t ,  2 t t t ,  ~ 2 . 2 _ t ~ t  ~ t t  

+6xoxlylgoXoXo + xoYly2goXoXo + :C0YlYlJ-0a~ 0 
-,,~oyzyo,,z,~o + 3XoxlYlgoYlXo - 91xoYzXoylX o 
.~_ 2 2 / t t, 2 t t t/ 2 t2 t/ 

xoY19oXoxl - xoxlY19oXoY1 + 91xoYlXo Yl = 0 

(4.6) 

We have also checked that the order O(q 3) term of 
the third, fourth and sixth equations in (3.6) are 
linear in x3,Y3,93 (with no derivative thereof), 
which determines this triple in terms of the lower 
order terms. We emphasize tha t  the ODEs above 
are universal in the sense tha t  they are indepen- 
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dent of the parameters  ),, u of our linear PDEs. 

C o r o l l a r y  4.2.  For the case of the degree 12 hy- 
persurface in P416,2,2,1,1],  the xi,yi,g~, i <_ 3, 
are given in terms of the j function by quadra- 
ture. 

Proof: In this case, we have (A, u) = (1728, 1/3) 
and we check tha t  the unique solution to the 
Schwarzian equation 2Qx'o 2 + {x0, s} = 0 is given 
by Xo = 1/j .  By theorem above and the remarks 
following it, we see tha t  the xi, y~, g~, i < 3 can be 
expressed (explicitly!) in terms of j by quadra- 
ture. • 

~.1 Remarks 
1. When (A,v) = (1728,1/3), if we use the 

Schwarzian equation for j to further simplifies 
things, we get 

XO 

go = 

X l  z 

Y l  

E1/2 

Yl x°  (2xQ2-5184x°x~-x°x'o'-t-1728x~xg') 
( 1 - 1728xo) x~ "z 

e x p ( f  f f - ( ( 1  - 1728Xo)2x~x~ 2 

-2 (1  - 3456x0)(1 - 1728xo)xox'o2X~+ 
(1 - 6672x0 + 10782720x~)x'o4)/ 

- 1728xo)  'o)d d,ds) 

(4.7) 

2. I t  turns out tha t  in the example above, the 
O(q~) coefficient gk of wo(x(ql, q?), Y(ql, q2)) is al- 
ways a rational function of the lower order coef- 
ficients for x, y. More precisely, we have: 

L e m m a  4.3. For each k, gk as a 
power series is a rational func- 

f l! tion of go, x0, x 0, Xo, Xl,. . ,  xk, Yl,.. ,  Yk, which is 
polynomial in x l  , .., xk, Yl , .., Yk. 

Proof: Since go 2 = ~2 ~(1-172S~o) and since Xo = 

1/ j  satisfies a third order Schwaxzian equation, 
a rational function in go,g~, ..., Xo, X'o, ... can be 

' " It  is enough then reduced to one in go, x0, x0, x0. 
Okwo I to show tha t  ~ l q 2 = 0  = k!gk lives in the ring: 

! 
7¢ = C ( g 0 ,  . . . ,  x o ,  Xo, . . ,  x k ,  . . ,  y k ] . ( 4 . 8 )  

Observe tha t  

w0(x,y) = E c(n,m)x Y 
n>2m:>O 
: E ~ 1  ~'m~r2rn~c(2m)('r '~ w h e r e  

m_>o 
c(n ,m)  " -  (6n)! 

• - -  ( 3n ) !n !2m!2 (n_2rn ) !  

f ( x )  : :  E c(n,O)x n 
n>_O 

gO -~ f ( x o ( q l ) ) "  

It  follows tha t  °-~-QIq2=0 is a sum of te rms of Oq~ 

the form ° ° ~  °%2m °cf(2"~)(z) Oq~ ~ oq~ [q~=0, with 0 _< 

a ,b,c<_ k. But  q2=0 is zero for a l l m  > a, 

because ym = q~(1 + O(h)), and is a polyno- 
mial of Yl,-.,Yk for m _< a _< k, hence is in 

ObX 2m 
TO. Similarly, the --~-% [q2=0 axe polynomials of 

xo,Xa,..,Xk, hence are in T~. Finally (by ~ °  _- 

ocf(2m)(z) Ox d x[q2=0 = x0) the ]q2=0 are clearly 
Oq2 dx ~ Oq~ 

polynomials in xo, xl , . . ,  Xk and f (xo) ,  i f(x0),  .... 
f ! But since go = f (xo(ql ) )  and f ' (xo)  = go/Xo E 

C(go, xo, x~), it follows that  these polynomialsare 
also in 7-¢. • 

3. One of the consequences of the fact tha t  the 
restriction of the mirror map is given by the j 
function is tha t  the mirror map cannot be alge- 
braic. More precisely, there is no nontrivial poly- 
nomial relations 

P(x,  y, el, q2) = 0 (4.10) 
Q(x, y, ql, q2) -- 0 

along the graph of the mirror map  (ql,q2) F-, 
(x,y).  To see this, suppose both P , Q  are ir- 
reducible. Then from the resultants of the two 
polynomials we obtain two irreducible polynomial 
relations, along the graph: 

D ( x , q l , q 2 ) =  0 (4.11) 
= 0.  

By irreducibility, the polynomial in two variables 
/5(a, b, 0) is not identically zero. But  under the 
mirror map we have (ql, 0) ~-* (1/ j (ql ) ,  0), imply- 
ing that  15(1/j(ql), q~, 0) = 0 identically, which is 
absurd. 

However it turns out that  the mirror map in 
this case is very close to being algebraic in the 
sense we shall explain in the next section. 

( 4 . 9 )  
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4. What  we have effectively described above 
is a perturbation method for computing, order 
by order in one of the Kahler coordinates q2, the 
mirror map given by x(ql, q2), Y(ql, q2), and the 
special period given by w0. The perturbation se- 
ries (4.4) turn out to be useful also for comput- 
ing the Yukawa couplings via mirror symmetry. 
Recall that  the type A couplings of a Calabi-Yau 
variety X is given in terms of the type B coupling 
of the mirror variety Y via the formulas [8] [4] [9]: 

K~Ak = 1 ~ Oxt OXm OXnKBmn(X ) (4.12) 
otj otk l~rrGrt 

where the K s are rational functions. In the 2- 
moduli example above, these rational functions 
have been computed in [4] (up to multiplicative 
constants): 

K ~ ,  4 = ~-~ 

K B  2 : ~2(1-2) 

KB2 = ~ 2 2 - 1  

K~22 1-~+~-3~ 

(4.13) 

where D = (1 - 2) 2 - 22~, 2 = 1728x,~ = 4y. It 
follows that  in this case the K A are computable 
order by order in terms of modular functions sim- 
ply by computing the x, y, w0 using the pertur- 
bation method above. Up to order O(q2), the 
answers are given in Appendix A. 

Now on the other hand the type A coupling 
takes the form 

d " d _dl.d2 
KiAk = K°J k + E 7~dl,d 2 iaj ktll tl 2 _dl .d2 (4.14) 

1 -- t/l (/2 dl +d= >0 

where t h e  gOk are the classical cubic intersec- 
tion numbers of X,  and the ndl,d 2 is the mirror 
symmetry prediction for the number of rational 
curves of degrees (dl, d2). If we write 

m=0 
(4.15) 

where the Kijk[m] are power series in ql, then 

using (m > 0) 

(90; [q2=O 1 ----qf'qd2~--X'~d~ql q2 =- ( m[q~-~O 

it is easy to show that  

K jk [0l = 

Kijk[rnl = 

if d2lm 
otherwise 

(4.16) 

n d s dl all,0 lq 1 KOijk -[- (~/,l(~j,l(~k,1 E l_qf l  
dl>0 

n d l , d 2 d i d j d k q ~  
dl k0,d2 [m 

for m > O. 

(4.17) 

Thus using perturbat ion theory each of the 
Kijk[m] can now be expressed in terms of modu- 
lar functions. 

5.  P E R T U R B A T I O N S  A R O U N D  x = 0 

We now interchange the roles of (x, ql) and 
(Y, q2). One might expect that  the discussion 
above would carry over with few changes. It turns 
out that  while all the techniques carry over, the 
results have wast simplifications in this case. This 
consideration is motivated by a few observations. 

First note that  the Picard-Fuchs system (4.1) 
is highly asymmetric in x, y. Thus it is reason- 
able that  the two limits along y = 0 and x -- 0 
are qualitatively different. Second note tha t  along 
x = 0, the solutions w0, w2 degenerate to elemen- 
tary functions 

w0(0 ,y )  = 1 
w2(0, y) = Log(1 - v / Y ~ -  2y) - Log(2y), 

(5.1) 

and they are solutions to Oy 2 - 2y(2Oy + 1)O~. 
It is then easy to compute the mirror map re- 
stricted along x = 0: y(0, q2) = ~ which is 
rational rather than transcendental! Third from 
the definition of the series x, y, w0, we can write 
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P r o p o s i t i o n  5.1. Denote q := q2. Then 

oo 
X(ql,q2) ~ X i Go -- = i(q2)ql 

i = l  G 1  

oo Y~ i G2 ---- 
Y(ql,q2) = Z i(q2)qi 

i=o G3 = 
wO(x(ql, q2), Y(ql, q2)) = G4 = 

oo 

G c(n ,m)x(ql ,q2)ny(ql ,q2)  m = ~ i(q2)ql 
i=O G 5 ---- 

(5.2) 

where the Xi,Y/, Gi are power series. Let 's  de- 
scribe the Gi in terms of the Xi, Y/. The c(n, m) XI  = 
are such tha t  c(n, m)  = 0 for all 2m > n. (The X2 = 
same argument  below applies to any other 2- X3 = 
moduli family of Calabi-Yau toric varieties with X4 = 
fundamental  period having the form Wo(X, y) = 

c(n, m )xny m such tha t  for each n, c(n, m)  = 0 X5 = 
for m > >  n; see Appendix B for more exam- 
ples.) Since x(ql,  q2) n = q~(1 + O(h))  and since 
c(n ,m)  = 0 for m > >  n, at most finitely many 
terms in the sum ~ c(n ,m)x(q l ,  q2)ny(ql, q2) m 
contribute to a given Gk. Thus it is a finite lin- 
ear sum of X~Yj. In particular, if the X~, ~ are 
algebraic then so are the Gk. As seen above, 

G o =  1 
]I1 -- q2 (5.3) 

(1 + q2) 2 

In fact applying per turbat ion theory along the 
ql direction on the PDE system (3.6), we compute 
the first few terms. The  emerging pat tern  is clear 
evidence tha t  the Xi, Yi, Gi are in fact rational. 

1 
120(1+q)  
360(-17  + 268q - 17q 2) 
480(1 + q)(1537 + 135866q + 1537q 2) 
120(-893747 + 362384432q 
+1610384580q 2 + 362384432q 3 - 893747q a) 
720(1 + q)(24145921 + 38170176314q 
+411770251626q 2 + 38170176314q 3 
+24145921q 4) 

l + q  
-24(31 + 82q + 31q 2) 
36(1 + q)(9907 + 6130q + 9907q 2) 
-64(2193143 + 8342176q + 9151506q 2 
+8342176q 3 + 2193143q 4) 
30(1 + q)(1644556073 - 1014171566q 
_26082465678q 2 - 1014171566q 3 
+1644556073q a) 

Yo = q/(1 +q)2 
Y1 = -240q(1 - q)2/(1 + q)3 
]I2 -- -360q(1 - q)2(37 + 554q + 37q2)/(1 + q)a 
Y3 = -320q(1 - q)2(7747 + 393600q 

+ 1117306q 2 + 
+393600q3 + 7747q4)/(1 + q)5 

Y4 = -60q(1 - q)2(14352887 + 1931431324q 
+10227963073q 2 + 17727689272q 3 
+10227963073q a + 1931431324q 5 
+14352887q6)/(1 + q)6. 

(5.4) 

Proof: Xi, Yi, Gi, i _< 3, can be computed by solv- 
ing the differential equations (3.6) order by order 
as we have done before. But  this will be hard 
without first knowing the answers. So we use the 
following slightly different approach. Numerically 
it is easy to compute x, y, w0 as a power series in 
ql,q2 up total  order say O(h15). We first guess 
an ansatz (the list above) for the Xi, Yi, Gi based 
on the numerical results. Then we check tha t  our 
ansatz satisfies our differential equations derived 
from (3.6) (up to O(q6)) governing the Xi, Y/, Gi, 
Observe also tha t  the ODEs for the Xi, Y~, Gi de- 
rived from (3.6) can have three as the highest 
order in derivatives. This means tha t  the differ- 
ential equations together with the first three co- 
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efficients of each of the Xi, Yi, Gi determines the 
whole series Xi, Y~, Gi uniquely. The first three 
coefficients of our ansatz are easily check to be 
correct. * 

Clearly we can apply our perturbation argu- 
ment to the Yukawa couplings K~Ak as in the pre- 
vious section, with the roles of ql, q2 interchanged. 
Thus we can write 

oo 

KiAk = E Kijk[mJq? (5.5) 
r n = 0  

where now the Kijk[m] are power series in q2- 
Then 

d2>O l-q~2 
d ,n 

Kijk[m] = ~ nd~,d2didjdkq~ Y- for m > O. 
d2>_O,dllm 

(5.6) 

If the X~, Y~, G~, for i <_ l, are rational, then so 
are the couplings Kijk[m], for small m. In fact 
using the proposition above, we have 

KA1 = 4 + 2496(1 + q2)ql + 1152(1556 + 13481q2 
+1556q22)q~ 2 + 4768(1358353 + 46666143q2 
+46666143q~ + 1358353q~)q 3 + O(q 4) 

KA2 = 2 + 2496q2qi + 576q2(13481 + 3112q2)ql 2 
+768q2(15555381 + 31110762q2 
+1358353q~)q, ~ + O(q~) 

KA2 = 2496q2q1 + 288q2(13481 + 6224q2)ql ~ 
+768q2(5185127 + 20740508q2 
+1358353q2)q 3 + O(q 4) 

K~2A = ~-q~2q~ + 2496q2q~ + 144q2(13481 
+12448q2)q 2 + 256q~(5185127 
+41481016q: + 4075059¢I)ql + 

(5.7) 

These formulas give infinitely many na~,u: si- 
multaneously! For example, we have 

n0.d: = 25d~j. (5.8) 

For another example, for at least d~ = 0, 1, ..,4, 
we have nd~,d~ = 0 for all but finitely many da. 
The nonzero ones can be computed immediately 
from the formulas above. 

A c k n o w l e d g e m e n t s :  We thank A. Kachru, A. 
Klemm, S. Theisen and C. Vafa for helpful dis- 
cussions. 

6. A p p e n d i x  A 

In this appendix, we compute perturbatively 
the type A Yukawa couplings KAk (see discus- 
sions in section 4) for the family of Calabi-Yau 
toric varieties corresponding to the degree 12 hy- 
persurface in P416, 2, 2, 1, 1]. We perturb in the 
neighborhood of the codimension one subfamily 
with y = 0 up to O(y 2) or equivalently O(q~). 
We give KAk[O],KAk[1], as differential rational 
functions in xi, Yi, gi, i < 2, which in turn have 
been given explicitly in terms of the j function 
by quadrature in section 4. The computation 
for higher order terms is straightforward but te- 
dious. The KAk [0] have already been considered 
in [2][101 . 

KAI[0] ---- x0(1 1728x0) + 
- -  Y l  

-2g l  
KAI[1] 

(g0 (1 - 1728xo)  
+ 3456(Xl - 1728x0x1 + 3456x2yl) ) 

g02(-1 + 1728x0) a 

3 6(1 - 1728 o)x  vl 

+ x0 yl ) 
+ 

x0 

12(-1  + 3456x0)  y7 
xOYl 

KA2[0] = 2 

KA2[I] = 

+ 2(1 -- 1728X0)y~ 3 

12(-1 + 864xo)x~o2xlyl 
-~ x3yl 

t2 t 6(-1 + 1728xo)x o Y2Yl 
Jr X2~ 2 

0 ~ 1  

12(1 - 1728xo)x~oxlyl 
-~ x2yl 

6(1 - 1728Xo)XtoY~ )/(go2(1 _ 1728Xo)2 ) 
x~yl 

2(2glylx'o 2 - 691291xoYlx~o 2 

+ 5971968gl x2yl xlO 2 -- 5184gOx lYl XlO 2 

+895 7952gOxOX 1Yl X~o 2 
- -  11943936gOx2y 2 X~o 2 
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KA2[0] = 

KA2[1] = 

K 2[0] = 

KA2[1]  = 

-goY2X'o 2 + 3456goxsY2X~o 2 
2 t2 , t t 

-2985984goxoY2X o - 2goYlxox 1 
2 / l i z 

+5971968goxoYlXoX 1 - 2goxlxsY 1 

+6912goxoxlx~oyl - 5971968gox~xix'oyl  

+4goxoylxloYll 2 , , - 20736goxoYlXoY 1 

+23887872gox~ylx~oy~ 2. ,2 -- goxoY 1 
+3456gox3y~2 4 ,2 

- 2985984goxoY 1 ) /  

(g3x~( -1  + 1728Xo)3yl) 

0 

+ + 

-6912x2ylx~o - xoY 1 2 ' 1 7 2 8 x 3 y ~ ) ) / +  

( ( - 1  + 1728x0)x~ 2) 

0 
2yl 

go2(1 - 1728xo) 

(6.1) 

7. A p p e n d i x  B 

In this appendix ,  we will s tudy  using per tur -  
ba t ion  technique in t roduced  above,  the  pe r tu rba -  
t ions a round  y = 0 (q2 = 0) and x = 0 (ql = 0) 
for the  following five families Calabi -Yau toric va- 
rieties, all of  which have h 1'1 -- 2: 

a. degree 8 in P412, 2, 2, 1, 1] 
b. degrees ( 6 , 4 ) i n  P512 ,2 ,2 ,2 ,1 ,1 ]  
c. degrees ( 4 , 4 , 4 ) i n  P S [ 2 , 2 , 2 , 2 , 2 , 1 , 1 ]  (7.1) 
d. degrees 12 in P414,3 ,2 ,2 ,  1] 
e. degrees 14 in P417,2 ,2 ,2 ,  1]. 

T h r o u g h o u t  we will use the  same  nota t ions  as 
in our  previous  discussion above .  We can use the  
P icard-Fuchs  sys t ems  and their  associa ted poly- 
nomial  P D E s  to  compu te  the  first few coefficients 
xi,  Yi, gi of  the  pe r tu rba t i on  series of the  mirror  
m a p  (ql, q2) ~-* (x, y) and the  fundamen ta l  per iod 
w0 a round  q2 = 0 (cf. T h e o r e m  4.1). I t  tu rns  out  
t h a t  t heo rem T h e o r e m  4.1 also covers the  cases 
a, b, c. Hence  all the  formulas  proved in t ha t  
sect ion app ly  here. We won ' t  go into the  detai ls  
of  cases d, e, which are a bit more  tedious.  We 
will give the  coefficients Xi,  Y~, Gi of  the  per tur -  
ba t ion  series a round  ql = 0 (cf. Propos i t ion  5.1). 
Note  t h a t  one can now also compu te  the  type  A 

Yukawa coupling K A k  order  by  order  near  ei ther  
q2 -- 0 or ql -- 0, by  subs t i tu t ing  the  xi,  Yi,gi (or 
Xi ,  Y~, Gi) into (4.12) (see section 4). 

T h e  respect ive P icard-Fuchs  sys t ems  for the  
five families above are given by [4]: 

a. L1 -- O2x(Oz - 2Oy) - 4x(4Oz + 3) 
(40x  + 2)(4Oz + 1) 

L2 = O 2 - y ( 2 0 .  - O .  + 1 ) ( O .  - O.) 
b. L1 = O~(Ox - 20~)  - 6x(2Ox + 1) 

(30z  + 2 ) ( 3 0 .  + 1) 
52 = 02  - y ( 2 0 y  - Ox + 1)(Oy - Oz)  

c. L1 = O2x(Ox - 2Oy) - 8x(2Oz + 1) 3 
L2 = 0 2 - y(2Oy - O~ + 1)(Ou - Oz)  

d. L1 = O~(3Oz - 2Oy) - 36x (6e~  + 5) 
(60~ + 1)(0~ - Ox + 2y(1 
+ 6 O z  - 2Oy)) 

L2 = Oy(Oy - Ox) - y ( 3 0 z  - 2 0 y  - 1) 
( 3 o x  - 2 o y )  

e. L1 = O~(7Ox - 20~)  - 7 x ( y ( 2 8 0 x  - 40~  + 18) 
+ O y  - 30~  - 2) x (y(280~ - 4 0  u + 10) 
+ O y  - 30~  - 1 ) (y(280x  - 4 0 y  + 2) 
+ 0 ~  - 30x) 

L2 = Oy(Oy - 3Ox) - y(7Ox - 2 0  u -  1) 
(70z  - 2 0 y )  

(7.2) 

As shown in [3] using the  resul ts  of  [6], in cases 
a, b, c, the  x0(ql)  are h a u p t m o d u l s  for the  follow- 
ing genus zero groups: r0(2)+, r0(3)+, r0(4)+. 
Using a very  similar  a rgumen t  as for L e m m a  4.3, 
it is easy  to  show t h a t  the  l e m m a  holds for these  
th ree  cases as well. T h e  analogue in cases d, e 
are even easier because the  Fourier  coefficients 
c(n, m)  for the  fundamen ta l  per iod wo(x,  y) here 
have the  proper t ies  t h a t  for fixed n (or fixed m)  
all bu t  finitely m a n y  c(n, m)  vanish.  I t  follows 
tha t  the  gk are finite sums  of x iy j  in cases d, e 
(cf. a rgumen t  in sect ion 5). Similar ly  in all cases, 
the  Gi are finite sums  of XiYj.  
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case  a. 

Go = 

G2 = 

G3 = 
G4 = 

G5 = 

X1  = 

X 2  = 
x3= 
X 4  = 

X 5  

Yl= 
Y2= 
Y3= 

Y4 = 

1 
24(1 + q) 
24(1 + l16q + q2) 
96(1 ÷ q)(1 ÷ 3002q + q2) 
24(1 + 1226480q + 4864468q 2 

+1226480q3 + q4) 
48(1 + q)(3 
+60632494q + 547690558q 2 
+60632494q 3 + 3q a) 
l + q  
-8(13 + 38q + 13q 2) 
36(1 4- q)(179 ÷ 178q ÷ 179q 2) 
-64(4871 + 25120q + 28658q 2 + 25120q 3 
÷4871q 4) 
2(1 + q)(6509415 - 12918578q 
- 1 7 6 3 1 3 1 7 0 q  2 - 12918578q 3 
+6509415q 4) 
q / ( 1  + q)2 
- 4 8 ( - 1  + q)2q / (1  + q)3 
- 2 4 ( - 1  + q)2q(ll + 310q + 11q2)/(1 + q)4 
- 6 4 ( - 1  + q)2q(l15 + 7680q + 28954q 2 
+7680q3 + 115q4)/(1 + q)5 
- 1 2 ( - 1  + q)2q(37587 + 5539852q 
+32302789q 2 4- 62448408q 3 
+32302789q a + 5539852q ~ 
+37587q6)/(1 + q)6 

(7.3) 

case  b. 

Go = 1 
G I =  12(1+q) 
G2 = 36(1 + 16q + q2) 
G3 = 12(1 + q ) ( l +  2132q+ q2) 
G4 = 12(7 + 94760q + 347256q 2 

+94760q3+7q a) 
G5 = 36(1 + q)(2 + 1368046q + 10903287q 2 

+1368046q 3 + 2q 4) 
XI = 1 + q 
X2 = - 6 ( 7 +  22q+7q 2) 
X3 = 9(1 + q)(109 + 148q + 109q:) 
X 4 =  -4(4247 + 28450q + 33606q 2 

+28450q 3 + 4247q 4) 
X5 = 3(1 +q)(81410 - 367682q 

-3523185q 2 - 367682q 3 + 81410q 4) 
Yo = q/(1 + q)2 
Y1 = - 2 4 ( - 1 + q ) 2 q / ( l +  q)3 
Y 2 =  - 3 6 ( - l + q ) 2 q ( l + 5 0 q + q 2 ) / ( 1 + q )  4 

}73 = - 8 ( - 1  + q)2q(55 + 4890q + 23494q 2 
+4890q3 + 55q4)/(1 + q)5 

Y4 = - 6 ( - 1  + q)2q(2279 + 378364q 
+2348113q 2 + 5049976q3+ 
2348113q4 + 378364q5 + 2279q6)/(1 + q)6 

(7.4) 
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case c. 

Go = 
G1 =- 

G 2 =  
G3 = 
G 4 =  
G5 = 

X 1 

) (2= 
x 3 =  
X4 = 
x s =  

Yo 
y , =  
Y2= 
Y3= 

Y4 = 

case d. 
1 G o =  
8(1 + q) G1 = 
8(3 + 28q + 3q 2) G~. = 
32(1 + q)(1 + 186q + q2) G3 = 
8(3 + 20176q + 69500q 2 + 20176q 3 + 3q 4) 
48(1 + q)(1 + 88890q + 641386q 2 X1 = 
+88890q3 + q4) X2 = 
l + q  
- 8 ( 3  + q)(1 + 3q) X3 = 
20(1 + q)(15 + 26q + 15q 2) 
-64(41 + 352q + 430q 2 + 352q 3 + 41q 4) 
2(1 + q)(9063 Yo = 
-82738q - 620882q 2 -- 82738q 3 + 9063q 4) ]/1 = 
q/(1  + q)2 Y2 = 
- 1 6 ( - 1  + q)2q/(1 + q)3 
- 8 ( - 1  + q)2q(1 + 98q + q2)/(1 + q)a 
- 6 4 ( - 1  + q)2q(1 + 128q + 766q 2 ]I3 = 
+128q3 + q4)/(1 + q)5 
- 4 ( - 1  + q)2q(377 + 72740q 
+471887q 2 + 1126728q3+ 
471887q4 + 72740q5 + 377q6)/(1 + q)6 

(7.5) case  e. 

Go = 

G1 = 

G2 = 

X 1 

X2 = 

Y0 
Y~= 

1 
3 6 0 q ( l + q )  
1080q2(211 + 872q + 211q 2) 
720q2(1 + q)(2565 + 828158q 
+4510066q 2 + 828158q a + 2565q 4) 
( l + q )  3 
12(1 + q)2(5 - 196q - 642q 2 
-196q 3 + 5q 4) 
18(1 + q ) ( -85  - 6755q + 78932q 2 
+349843q 3 ÷ 682082q4+ 
349843q 5 ÷ 78932q 6 - 6755q 7 - 85q 8) 
q/(1 + 
- 6 0 ( - 1  +q)2q(1 + l O q + q 2 ) / ( l + q )  3 

90( -1  + q)2q(57 + 274q - 7341q 2 
-22796q 3 - 7341q4+ 
2 7 4 q S + 5 7 q 6 ) / ( l + q )  a 
40( -1  + q)2q(-16844 - 22047q 
+1066354q 2 - 38340920q 3 
-242849702q 4 - 428992850q 5 
-242849702q 6 - 38340920q 7 
+1066354q s - 22047q 9 
-16844q1°)/(1 + q)~ 

1 
840q3(1 + q )  
840q4(-2 + 28q 
+1491q2+3960q 3 + 1491q4+28q 5 - 2q 6) 

( l + q )  7 
2 ( 1 + q ) ° ( 3  - 46q + 434q 2 
_2562q 3 - 11466q 4 - 2562q 5 
+434q o - 46q 7 + 3q s) 
q / ( l + q )  2 

2 ( -1  + q)2q(-1 + 13q - 113q 2 
_638q3 _ 113q4 + 13q5 _ q6)/(1 + q)3 

(7.6) 
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