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As a continuation of [1], we study modular properties of the periods, the mirror maps and Yukawa couplings
for multi-moduli Calabi-Yau varieties. In Part A of this paper, motivated by the recent work of Kachru-Vafa, we
degenerate a three-moduli family of Calabi-Yau toric varieties along a codimension one subfamily which can be
described by the vanishing of certain Mori coordinate, corresponding to going to the “large volume limit” in a
certain direction. Then we see that the deformation space of the subfamily is the same as a certain family of K3
toric surfaces. This family can in turn be studied by further degeneration along a subfamily which in the end is
described by a family of elliptic curves. The periods of the K3 family (and hence the original Calabi-Yau family)
can be described by the squares of the periods of the elliptic curves. The consequences include: (1) proofs of
various conjectural formulas of physicists [2][3] involving mirror maps and modular functions; (2) new identities
involving multi-variable hypergeometric series and modular functions ~ generalizing [1]. In Part B, we study for
two-moduli families the perturbation series of the mirror map and the type A Yukawa couplings near certain large
volume limits. Our main tool is a new class of polynomial PDEs associated with Fuchsian PDE systems. We
derive the first few terms in the perturbation series. For the case of degree 12 hypersurfaces in P4[6, 2,2,1,1], in
one limit the series of the couplings are expressed in terms of the j function. In another limit, they are expressed
in terms of rational functions. The latter give explicit formulas for infinite sequences of “instanton numbers” n4.

This paper is a continuation of [1]. There we
study the modular properties of a multi-moduli
family of Calabi-Yau varieties degenerated along
a dimension one subfamily. In this article, we
study properties of the mirror map, periods and
the type A Yukawa couplings under a degenera-
tion along a codimension one subfamily, and their
perturbations around this subfamily. The prob-
lem is clearly motivated by recent developments
in the so-called heterotic-type II string duality.

1. PART A: DEGREE 24 HYPERSUR-
FACES IN P*[1,1,2,8,12]

The mirror symmetry of this family of Calabi-
Yau toric varieties X has been studied in detail
in {4]. Its Picard-Fuchs system is given by (0, =
azgdi etc.)

L = ©,(8,-20,)-12z(60, +5)(60, + 1)
L, = ©2—y(20,-0,+1)(20, - ©,)
Ly = 6,(0,-20,)-2(6,-06,+1)

(20, - ©,). (1.1)

The z, vy, z are deformation coordinates, which we
call the Mori coordinates (see [4] for definition),
near the “large volume limit” in the family of
Calabi-Yau varieties.

Comparing the type II string compactification
along X with a heterotic string theory, Kachru-
Vafa suggest that one should study the limit y —
0. When restricted to this subfamily with y =0,
a subset of the periods of this subfamily satisfy a
new system given by

Ly = ©6,(0,-20,)—-12z(60, + 5)(60, + 1)
Ly = ©2-2(20,-0,+1)(20,-6,). (1.2)

This is identical to the Picard-Fuchs system for
the family of toric K3 surfaces corresponding to
degree 12 hypersurfaces in P3[1,1,4,6]. (For the
relevance of the appearance of K3 surfaces and
their moduli spaces in heterotic-type II duality,
see the recent papers [3][5].) By further restrict-
ing along z = 0, the Picard-Fuchs system reduces
to a single equation

L =02 —-12z2(60, + 5)(60, +1). (1.3)
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This is the Picard-Fuchs operator for a family of
elliptic curves in P?[1,2, 3]. This suggests a close
relationship between the curves and the above 2-
moduli K3 family, and ultimately the 3-moduli
family of Calabi-Yau varieties X. Indeed, it is
found numerically in (3] that the mirror map de-
fined by the K3 family can be given in terms of
the j-function.

In this section, we will prove that the solutions
to (1.2) are given by “squares” of solutions to
(1.3). This result (1) generalizes a theorem in
(1] which we will review briefly; (2) proves some
formulas of [3] as a consequence.

Consider the differential operators

¢ = 8- Na(O: +i/2)(8: +i/2+ 1)
=1

(O +i/2—-w)

oy
I

m
02 — Y Az’ (O +i/4+ 1/2)
i=1

(O +i/4—13/2) (1.4)

where the A;, 1; are arbitrary complex numbers.
In 1], we prove that if f(x) = 0 then £f(z)? = 0.
Since the dimension of solution space of fis two,
the span of f(z)? with £f(x) = 0 has dimension
three and so must be the full solution space of
£. This result was inspired by the observation in
numerous examples (see [1]) that the periods of
certain 1-moduli K3 family are nothing but prod-
ucts of periods of some family of elliptic curves.
This leads to nontrivial identities involving mod-
ular functions and series solutions to an ODE of
Fuchsian type. This suggests to us a 2-moduli
analogue for the systems (1.2), (1.3): is the so-
lution space to (1.2) given by the span of the
f(x)g(z) where f(z), g(x) are solutions to (1.3)?
The answer turns out to be no, but almost. Note
that the span of the f(x)g(z) is 4 dimensional,
which is the same as the dimension of the solu-
tion space for (1.2) with at most Log singularities.

Theorem 1.1. Let Ly,L3,L be as defined in
(1.2), (1.8). There exists a rational map-
ping C* — C2, (R,S) ~ (z,2), such
that if f(x),g(x) are solutions to L, then
f(R(z, 2))g9(S(z, 2)) is a solution to Ly, L3, where

(z,2) — (R(z,2),S8(z, 2)) is (any branch of) the
inverse mapping.

Proof: We will construct the mapping using the
condition that

L1f(R(z,2))f(S(z,z)) =0 mod Lf(R),Lf(S).
(L5)

It will be seen that the mapping we will construct
also satisfies the analogous condition for L.

Clearly by expanding the expression
L, f(R(x,2))f(S(z,z)) by chain rule, we get a
homogeneuos quadratic polynomial of
FO(R), f((8), whose coefficients are differen-
tial polynomials of R(x,z),S(z,2). Upon ap-
plying the conditions that Lf(R) = 0 =
Lf(S), we can eliminate any appearance of
f"(R), f"(S). Thus after the elimination, a suffi-
cient condition for (1.8) to hold is that coefficients
of f(R)f(S), f'(R)f(S), fF(R)F(S), f'(R)f'(S),
each vanishes identically. Thus we want to solve
the conditions of the vanishing of these coeffi-
cients, and they are given by:

(1) —RSz +1728R?Sz + 1728RS%x
—2985984R25%x — 2SR, R, + 3456S%R, R,
+SRZ - 172852 R2 — 4325z R?
+7464965%zR% — 2RS,S,
+3456R2S,S, + RS?

—~1728 RS2 — 432RxS? + 746496 R%xS2 = 0

(2) 432RzR, — T46496R%xR,; — 2R, R,

+5184RR, R, + RZ — 2592RR?
—432zR% + 1119744RzR2 + 2RR,,
—3456R?R,, — RR,,; + 1728R*R,,,
+432Rz R, — T46496R%zR,; = 0

(3) Asin (2) with S, R interchanged.

(4) —-S,R, — R,S; + RS, — 432zR,S, =0

(1.6)

where S, means ©.S5 etc. This is an overdeter-
mined system of polynomial PDEs. We claim
that the following relations define an algebraic
solution to (1.6):

R+S5—-84RS5—-z=0

RS(1 — 432R)(1 — 4325) — 2%z = 0. (L.7)
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The proof is by direct computation. (This solu-
tion is easy to motivated by the following con-
sideration. Since we propose that the periods of
the K3 surfaces in question are symmetric squares
of those of the elliptic curves, it is reasoable that
the K3 moduli z, 2z are symmetric functions in the
elliptic curve moduli R, 5. The above solution
makes z,z the simplest kinds of algebraic sym-
metric functions of R, S.) Note that (1.7) defines
a rational mapping (R, S) — (z, 2). It is also easy
to check that given this solution, the condition

2))g(S(z,2)) =0 mod Lf(R),Lg(S)

(1.8)

Lgf(R(LC,

holds automatically. This completes our proof. e

As a first consequence, we prove a formula first
conjectured to exist in [2] on physical ground, and
then found numerically in [3].

Corollary 1.2. The mirror map for (1.2) is

given by
_ 01/i(a1)+1/3(9193)—1728/(j(g1)5( qlqa}!
(q1,43) = 2 144/1— 1728/3((11 )4/1-1728/5(q143)
2(q1,93) = 55 J(qlqs)z(qwla)

(1.9)

Proof: Recall that (1.2) has a unique powers se-
ries solution wgy with leading term 1, unique solu-
tions wy,ws of the form wy = Log x + g1, w3 =
Log z+ g3 with g1,93 — 0 as |z|, |z|] — 0. (This is
so because this is a holonomic PDE system with
regular singularity at = 0,2 = 0. It is also
straightforward to check this directly using (1.2)
and the resulting recursion relations on the co-
efficients of the power series.) The mirror map
x(q1,93), 2(q1, q3) for (1.2) is then defined by the
inverse of the power series relations:

q = evi/wo

DT e, (1.10)

Similarly, the ODE (1.3) has a power series so-
lution Wy with leading term 1 and a solution
of the form Log x + § with g — 0 as |z| — 0.
The mirror map r(g) for (1.3) is then defined
by the inverse of the power series relation ¢ =

e@s(r)/Bo(r) Tt is also easy to prove that (see [6])
i(9) = sy

By the theorem above, the following are
three solutions to (1.2): we(R(z, 2))Wo(S(z, 2)),
D1 (R(z, 2))Wo(S(x, 2)), wo(R(z, 2))w1(S(z, 2)) ~
w1 (R(z, 2))Wo(S(x, 2)). It is straightforward to
solve (1.7) for R, S as power series in z,z, and
we see there are four branches of solutions. One
branch has leading terms R = z+O(h?), S = zz+
O(h®). (Here O(h*) means terms of total degree
k or higher.) The second branch has R = 1/432+
O(h), S = 1/4324+0(h). The third and the fourth
branches are obtained by interchanging the roles
of R,S in the first two branches. We choose
R(z, z),S(z,z) to be given by the first branch.
Then it easy to see that the three solutions
wo(R(z, 2))0(S(z, 2)), 61(R(z,2))50(S(c, 2)),
wo(R(z, 2))w1(S(z, 2)) — w1 (R(z, 2))ie(S(z, 2)),
have the leading behaviour identical to that of the
solutions wp, wy, w3 respectively. By uniqueness,
we conclude that

wy = ’lI)O( ( ))'lDO(S(.’IJ,Z))
wy = W1(R(z, 2))wo(S(x, 2)) (L.1)
ws = We( R(z, 2))W1{S(z, 2)) .
- (R(z, 2) )0 (S(z, 2))-
This implies that
= @1 (R(z,2))/Wo(R(z,z))
g = €
Qg = eD1(S@)/0e(8(z.2), (1.12)

Invertmg these, applying (1.7), and using j(q) =

m, we see that (1 9) follows. e

Corollary 1.3. Let E4 be the normalized Fisen-
stein series of weight 4. Then

6k+12m\ [/ 3k+6m\ [ k+2m)\ [ 2m
by 3k +6m 2k + 4dm 2m m

Ngl:
L M8

1
ia)™i(g2)™
o\ 4
X (2 J(91)+3(q)~1728 )
3(a1)3(e2)+/i(a1) (a1 ) — 1728)\/i(a3) (5 (a2) — 1728)
= Ba(q1)Ea(2). (1.13)

Proof: Computing the power series solution wg
to (1.2) with leading term 1, we get
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wo(z, z) = Z (6n)! z"z™.

S (3n)!(2n)!(m!)2(n — 2m)!

(1.14)

Now do a change of variable on the summation
n = k+2m, put g2 = q19s, and apply the corollary
above. We see that the left hand side of (1.13) is
wo(z(q1,93),2(q1,3))-

By the first equation in (1.11), it is enough to
show that @o(r(g))* = Es(q) where () is the
solution to (1.3) regular at z = 0. In [1], we have
proved that

) 3 B,r(9)
wo(T(Q))z = r(g)(1 j432¢(q))' (1.15)
But we know that

g = m (1.16)

- (9qi(q))
Ede) = s@ua-tmme
Combining the three equations, we get E4(q) =
wo(r(g))*.

2. GENERALIZATIONS

The technique we have used to study the exam-
ple above is clearly applicable to a more general
class of PDEs. The only step which involves de-
tails of the example is the system (1.6). It turns
out that even the form of our solution (1.7) to
(1.6) has more general applicability as we now
show.

Consider the PDE system

Ly =6,(0; —20,) — \z(8; +1/2 +v)
(0, +1/2 - v) (2.1)
Ly =02 — 2(20, — 0, + 1)(20, — 0,)

and the ODE
L=0%2-)2z(0, +1/24+v)(0, +1/2-v) (2.2)

where A,v are complex numbers. For (\,v) =
(432,1/3) we recover the case (1.2) above. We
now have the following generalization.

Theorem 2.1.  The rational mapping C? —
C?, (R, S) — (z,2), defined by the relations

R+S8-2\RS—2=0 9.3
RS(1-AR)(1 - )\S) —-z%2=0 (2.3)
has the following property: if f(z),g(z) are so-
lutions to L, then f(R(zx,z))g(S(x,2)) is a solu-
tion to Ly, L3, where (z,2) — (R(z,z),S(z, 2))
is (any branch of) the inverse mapping.

The proof is vitually word for word similar to
the proof of the special case above.

Consider the following two families of toric
K3 surfaces corresponding to degree 6 hyper-
surfaces in P3[1,1,2,2] and degree 8 hypersur-
faces in P3[1,1,2,4] respectively. Their Picard-
Fuchs systems are exactly (2.1) with (A, v) =
(27,1/6),(64,1/4) respectively. The correspond-
ing ODEs are (2.2) with those parameter val-
ues. It turns out that they are exactly the
Picard-Fuchs equations for two families of ellip-
tic curves: degree 3 curves in P?[1,1,1] and de-
gree 4 curves in P2[1,1, 2] respectively. As shown
in [6], The mirror maps for these two families of
curves are hauptmoduls for the genus zero groups
['9(2),T'6(3) respectively.

Finally it is amusing to note that the three
examples above with parameter values (A,v) =
(27,1/6),(64,1/4),(432,1/3) correspond to the
so-called simple elliptic singularities of types
K¢, E7, Eg respectively.  (See introduction of
[7].)  That is, the three families of elliptic
curves mentioned above — degrees 3, 4, 6 hy-
persurfaces in P2[1,1,1],P2[1,1,2],P?[1,2,3] re-
spectively — correspond to singularities of these
types. Note that their two dimensional coun-
terparts are the three families of K3 sur-
faces above — degrees 6, 8, 12 hypersurfaces
in P3(1,1,2,2],P3[1,1,2,4],P3[1,1,4,6] respec-
tively.It turns out that there is an explicit rela-
tion between a generic member of the K3 family
in P3[1,1,2,2], and a cubic family in P2[1,1,1].
That is, if we intersect the hypersurface

yo+us +u3 + U+ avyoyays + byl =0 (2.4)

with the hyperplane y — Ay; = 0 in P3[1,1,2,2],
the locus is the curve (1+A8+bA3)(y?)3+ 3 +y3i +
aly?ysys = 0. It is isomorphic to the following
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cubic curve in P[1,1,1]:
(14 X8 + 6233 + 23 4 23 + adz 2073 = 0.(2.5)

The map is induced from natural isomorphism
P2[1,2,2] — P?[1,1,1]. There is an analogous re-
lation between the K3 family in P3[1,1,2,4] and
a quartic family in P?[1,1,2], and similarly for
P3[1,1,4,6] and P?[1,2,3].

There are also three dimensional Calabi-Yau
varieties which bear the same relation to the
above K3 families as these K3 surfaces bear
with their elliptic curve counterparts. Namely
the three K3 families above correspond respec-
tively to the degrees 12, 16, 24 hypersurfaces in
P4[1,1,2,4,4],P4%[1,1,2,4,8],P4[1,1,2,8,12] re
spectively. The intersection of the Calabi-Yau
hypersurface

A4 222 S 23 22 az 20232425 +025 28 = 0(2.6)

with the hyperplane 2o —Az; = 0in P4[1,1,2,4, 4]
is isomorphic to a sextic surface in P3[1,1,2,2],
and similarly for the other two cases.

3. PART B: SCHWARZIAN
EQUATIONS FOR LINEAR PDEs

Since the periods, the mirror map and the
Yukawa couplings are of fundamental importance
for the prediction of the numbers of rational
curves via mirror symmetry, one must understand
these objects from as many points of views as
one can. For example, can one give an analytic
characterization for the mirror map? It has been
shown in 1-modulus cases that the answer is yes:
the mirror map is characterized by some poly-
nomial ODE near the “large volume limit” [6].
Motivated by this problem, we study in this sec-
tion the analogues in 2-moduli cases. We will
construct polynomial PDE systems naturally as-
sociated with the Picard-Fuchs systems for the
periods of Calabi-Yau varieties. Later we will see
that these PDEs give us powerful tool for doing
perturbation theory on the periods, the mirror
map and the type A Yukawa couplings.

Consider for fixed m > 2 the following pair of
linear partial differential operators:

Ly = Yocirjem %5050 (3.1)
Ly = 205i+j§2bija;aljl

where the a;;, b;; rational function of z,y. We as-
sume that b2, —4byabeg is not identically zero, and
that near x = 0 = y the system admits unique
series solutions wg,w;,we with the leading be-
haviour

wo(z,y) = 1+ O(h)
wy(x,y) = woLog x + O(h) (3.2)
wa(z,y) = woLog y + O(h)

where O(h*) here means terms in powers of z,y
which are of total degree at least k. We re-
mark that all known examples arising in mir-
ror symmetry result in Picard- Fuchs systems of
this kind, where z,y denotes the Mori coordi-
nates for the complex structure deformation space
near the large volume limit. Let s = wj/wo,
t = wo/wp as (locally defined) C2-valued maps
of x,y. It is clear that the Jacobian of this map
is nonzero. Then inverting this map, we can re-
gard x(s,t),y(s, t) as functions of s, (or as power
series in q; := €°,q2 := e'). We wish to derive a
system of polynomial PDEs for these functions.
Recall the transformation laws under a change of
variables

O f = %
o,f = 4

where [f, g] is the “Poisson bracket”:

[f,9] := 05 fOrg — DsgO.f. (34)

Under this change of variables, Lq, Ly becomes

(3.3)

L1 =ocitjcm cii‘?iag (3.5)
Ly = 20$i+j$2 dijagag-
From the transformation laws, it is easy to

see that up to an overall factor the new co-
efficients c;;,d;; are differential polynomials of

x(s,t),y(s,t).
Now observe that

Ly(swg) —sLiwg = Zz’c,-jai"lafwo =0
Lq(twy) —tLiwy = chijc')ja{_lwg =0

diowg + d110;wy
+2d200s,wo =0

LQ (S'w()) - .5'[.:211)0
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ﬁz(two) — tLowyg doi1wo + d119,wp
+2dg20,wp = 0
L:l’u}o = 0

EQ'LU() = 0.

I

(3.6)

It is easy to check that (d2; — 4dgadgo)[z,y)? =
b?, — 4bgabgo which is nonzero. Thus we can solve
for dswg, G;wq in terms of wy and differential ex-
pressions in z, y in the third and fourth equations
in (3.6). We can hence use this to eliminate all
higher derivatives 98] wo in the first and second
equations in (3.6). But since wp appears linearly
everywhere, we can factor it out and obtain a pair
of coupled polynomial PDEs in z,y. Their order
is at most m. Thus we have

Proposition 3.1. Given the linear PDE sys-
tem Ly, Lo above, there exist a pair of polynomial
PDEs for z,y.

Note that the system (3.6) can be regarded as
a (overdetermined) system of polynomial PDEs
in z,y,wy. We will use this system to study the
mirror map and the Yukawa couplings by means
of perturbation theory in the next section.

As an example, consider the system (2.1) which
we can write in the form (3.1), where m = 2,
hence (3.5) under a change of variables. As we
have seen, such a system arises as the Picard-
Fuchs system for certain 2-moduli families of toric
K3 surfaces. The hypotheses on the uniqueness of
series solutions, and that b3; — 4bg2bgg is nonzero
can be easily checked. In this case our polynomial
PDEs for x(s,t),y(s,t) becomes

(b3; — 4bo2bao)(2coz¢10 — core11) =
(af; — 4ao2a20)(2dozd10 — dordi1)

(b2, — 4bo2bao)(2ca0c01 — c10€11) =
(a%1 — 4ag2a20)(2dapdo; — di1od11).

(3.7)

4. PERTURBATIONS

We have seen a nice description of the peri-
ods and the mirror map when one degenerates
a certain family of Calabi-Yau threefolds along
a codimension one subfamily. We would like to
use perturbation theory to study the Calabi-Yau
threefolds in a neighborhood of the codimension

one subfamily. Consider for example the mir-
ror threefold X of the degree 12 hypersurfaces
in P4[6,2,2,1,1] which has A"l = 2. Let z,y be
the Mori coordinates near the large volume limit
of X. It is now known that the periods and the
mirror map in this case admit a description in
terms of the j function in the limit y — 0. Can
one give a similar description near y = 0?7 How
about near z = 07

We will give two descriptions in the case of the
degree 12 hypersurface above. We show that mir-
ror map and the Yukawa couplings, order by order
in g2, can be described by quadrature in terms of
the 7 function. In fact, we will compute the first
few terms. The second description is by means of
perturbation theory in the ¢; direction. Here re-
markably, the first few terms are purely algebraic,
rather than transcendental.

We briefly review what is known for the degree
12 hypersurfaces in P4(1,1,2,2,6]. The Picard-
Fuchs system in the Mori coordinates x, y is given
by

L, = ©i6e,-20,)-8z(60, +5)(60, +3)
(60, +1)
Ly = O] —-y(20, — 6, +1)(26, — 6,).

(4.1)

This motivates the study of the following family
of PDEs, where A,v are constants, (cf. [1] and
see also Appendix B):

L, = ©2(8, —26,)
~Az(O; +1/2)(8; +1/2 - v)(0; +1/2 + )
Ly =602 —y(20, — 6, +1)(26, — 6,).

(4.2)

As before there are unique solutions near z =
y = 0 of the form wp = 1+ O(h), w; = woLog z+
O(h),wy = woLog y + O(h), and the coefficients
of Lo satisfies b?; — 4bgabyg = —4y? # 0. Thus
the system (4.1) is of the type (3.1) with m =
3. Associated to it is the nonlinear system (3.6).
The “mirror map” (t1,t2) — (z(q1,92), ¥(q1, ¢2))
is defined locally by the inverse of the power series
relations

a= ewl(z,y)/wo(z’y) = x(l + O(h))

g = ews@w)/wly) — y(1 4 O(h)). (43)
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Thus we can write

2(q1,q2) = Zfoowz(q )
y(q1,42) = Zfol yilq1)gy (4.4)
wo(z(q1,92), ¥{q1,q2)) = Zfio !h(cu)flz

where the x;(q1),yi(q1),9:(q1) are power series.
We will use the PDEs (3.6) derived in the last
section to compute the z;,4;,9;, ¢ < 2. The re-
sults turn out to have a universal form.

Theorem 4.1. For z;,y;, g; as defined in (4.4),
zo 5 the unique power series solution with
x = q + O(ql) to the Schwarzian equa-
tion 2Q(zg)zf + {wo,s} = 0 with Q(z) =

1+(—Z+u2)>\x+(1 v)(14)A 222

EAw)r . We also have

’
xz

9 = ZHa—re
zp = 2 (—2g5Th + GoTg)

90%;
y1 = exp (2 IS J %42 ((Log g0)'(Log 20)"~
(Log go) '(Log wo) (Log go)"*(Log zp)'))
g1 = ($1go$o + YL THI0 — TFY19670)

(4.5)

where prime here means Oy, .

Proof: For the proof of the statements concern-
ing zg, go, see [1]. We will study the PDE system
(3.6) associated to (4.1) up to first order in powers
of go = et. We substitute & = zo + goz + O(g2),
y = gy + O(q2), wo = go + q201 + O(g3) into
(3.6) where the z;,y;,g; are all power series in
g1 = €¢*. To lowest order, the first equation in
(3.6) is a polynomial ODE in go,zg. Using the
2
result [1] that wo(z(q1),0)? = g§ = ;3(1—_?72—81?),
it is easy to show that this ODE holds identi-
cally. Now consider the second equation in (3.6).
To leading order it is a complicated polynomial
ODE in y1, go, 9. But after we apply repeatedly
the fact that o satisfies the Schwarzian equation
to eliminate zg’, z3”, ..., we see that th. cquation
is solvable. The general solution is exactly the
third equation in (4.5). There is a unique par-
ticular solution which is a power series in ¢; with
leading coefficient 1. Similarly the third and sixth
equations in (3.6), to lowest order, gives respec-
tively the second and fourth equations in (4.5). e

We can also use the same system (3.6) to com-
pute the higher order terms. At each order ¢ > 2
the triple (z;,v:,9:), can now be solved succes-
sively in terms of the lower terms by applying
the third, fourth and sixth equations in (3.6). It
appears that at each order ¢ > 2, x;,¥;,9; are
given by some differential rational functions of
the lower order terms without solving a differ-
ential equation. For example, z3,y2, 92 in fact
occurs linearly (with no derivative thereof) in the
following equations. They are in fact the order
O(g2) terms of the third, fourth and sixth equa-
tions respectively in (3.6):

—2x1ylgox0 + 4x0y1g0x + 2gly1x
~2g0y3zy — goyaTl + 225Y196%0Y1
+90Z12¢Y] — GoTHTHYL —
—g0T§y1Y1T0 + gozdyrzoyl =0

2'731111.‘10550 - 121170551111!]0“E - 29”0.1}19290550
‘25'30?/19155/2 391$1y1$o - 4903721/12303
+4g1xoyl$o + 6goz1yiTE + 390931.1;2330
+41‘oy1go$o$1 + 390151?!11‘0 $1 - 4909301/1580 zl
—45603511/190900?!1 39051711‘0 Y1+ 291330311330 v
+490$0331y1$o Y1 — 2go$oy1xorly1 + 290:vor1x0y1
—90351?/1150-% + 91-’150?/1930% + 6903150551.7113705”0
+gox0y1y21;0$0 — 3ggx0y1x1a: + 3goa:0m1y1ylx
+g0ziyizh! — gozdriy1zoyy =0

—4z2y19675 + 6$1y19037 + 35513/2901'
—3xlylglx + 4:zoy1gla:0 + 4gatrTh — 6g1y1:c
~3g1y224 + 3T119026 T — 4woy196w62$’1
-333%96%2?/1 + 4$0$1.11196~73629'1 + 2zéy1 91T Y
+3g1z12§ YL — 41Z0y1 26 Yy — 25501/1905”05512/1
+2$(2)37196'Toy1 — 2q1egxity? + $1y1$0 90

—6zoT Y3z g0 — $0913}2$6293 + 25‘701/1 $0x1g
—2$gm1y1x0'ylgg xoyﬂﬁ?gﬂ/ - I1ylgo$0$0
+6$0$1y190$6w6' + moylyzgo%l'o + xOylglexg
—33309190351% + 3330331?/1901/1330 N3N THY TG

+z3ylghTh — 23T 1y196T0YY + qrEhy1es Yyl =

(4.6)

We have also checked that the order O(g3) term of
the third, fourth and sixth equations in (3.6) are
linear in z3,¥s3,93 (with no derivative thereof),
which determines this triple in terms of the lower
order terms. We emphasize that the ODEs above
are universal in the sense that they are indepen-
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dent of the parameters A, v of our linear PDEs.

Corollary 4.2. For the case of the degree 12 hy-
persurface in P4[6,2,2,1,1], the z;,vi,9:, 1 < 3,
are given in terms of the j function by quadra-
ture.

Proof: In this case, we have (A,v) = (1728,1/3)
and we check that the unique solution to the
Schwarzian equation 2Qzg + {z¢,s} = 0 is given
by x¢ = 1/j. By theorem above and the remarks
following it, we see that the x;,¥;, g;, ¢ < 3 can be
expressed (explicitly!) in terms of j by quadra-
ture. o

4.1 Remarks

1. When (A, v) = (1728,1/3), if we use the
Schwarzian equation for j to further simplifies
things, we get

zo= 1/j
1/2
gO E4 2 2
xo(2z —5184zox) —Toxy +1728x2x))
T = Y1 0 0 0 0To

(1-1728z0)z(2
exp(f [ [~
—2(1 — 345624)(1 — 1728:1:0)m0x62x6’+
(1 — 6672x0 + 10782720x2)x4t)/
(z3(1 - 1728x0)3xg)dsdsds)

Il

A

2. It turns out that in the example above, the
O(g§) coefficient g of wo(z(q1,¢2), ¥(q1, g2)) is al-
ways a rational function of the lower order coef-
ficients for x,y. More precisely, we have:

Lemma 4.3. For each k, gr as a
power series 15 a rational  func-
tion of Go, Lo, Thy L0, T1y-rThy YL, - Yk, Which is
polynomial in xq, .., Tk, Y1, .-, Yk-

‘2
. 2 _ z : _
Proof: Since g§ = —Q——J—zo(l_lmgzo) and since g =
1/j satisfies a third order Schwarzian equation,
a rational function in gg,go,. .y Tp, Lg, --- Can be
reduced to one 1n 9o, Zg, g, £y 1t is enough then

to show that Tq,élquo = k!gx lives in the ring:
2

R = C(go,90: .- 0 Ly - ) [T1y s They Y15 - Yk .(4.8)

(1 — 1728x)%x2zl? (4.7)

QObserve that

wo(z,y) = 3 c(n,m)xnym
n>2m>
_ Z m_lf z?m f2m) (1) where
m2>0
e(n,m) = (3n)!n!2(7?17!12)('n—2m)! (®9)
fz) = z;oc(n,O)x"

90 = f(zolq1))-

It follows that Q—k—wﬁl|q2=g is a sum of terms of

b 2m 3Cf(2m)(z)
RS 9q5

a,b,c < k. But %,?;:lqﬁo is zero for all m > a,

the form ay gz lga=0, With 0 <

because y™ = ¢§*(1 + O(h)), and is a polyno-
mial of yq,.., ¥k for m < a < k, hence is in

_R. Similarly, the Tqr|q2=o are polynomials of
2

T9,Z1, -, Tk, hence are in R. Finally (by aiqz =

Oz 8° ™) ()
g7 d:c’ T|g,=0 = o) the o lg;=0 are clearly

polynomials in xg,x1,..,zx and f(zo), f'(zo), ---
But since go = f(zo(a1)) and f'(zo) = gb/h €
C(go, To, xp), it follows that these polynomialsare
alsoin R. e

3. One of the consequences of the fact that the
restriction of the mirror map is given by the j
function is that the mirror map cannot be alge-
braic. More precisely, there is no nontrivial poly-
nomial relations

P(x»yﬂh,(h) = 0
4.10
Q(xyy’ q1, q2) = 0 ( )

along the graph of the mirror map (g1,¢2) —
(z,y). To see this, suppose both P,Q are ir-
reducible. Then from the resultants of the two
polynomials we obtain two irreducible polynomial
relations, along the graph:

P(z,qi )= 0O
Qy,q,02) = 0

By irreducibility, the polynomial in two variables
f’(a,b, 0) is not identically zero. But under the
mirror map we have (q1,0} — (1/5(q1), 0}, imply-
ing that P(1/5(q1),q1,0) = 0 identically, which is
absurd.

However it turns out that the mirror map in
this case is very close to being algebraic in the
sense we shall explain in the next section.

(4.11)
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4. What we have effectively described above
is a perturbation method for computing, order
by order in one of the Kahler coordinates g2, the
mirror map given by z{q1,¢2),y(q1,42), and the
special period given by wg. The perturbation se-
ries (4.4) turn out to be useful also for comput-
ing the Yukawa couplings via mirror symmetry.
Recall that the type A couplings of a Calabi-Yau
variety X is given in terms of the type B coupling
of the mirror variety Y via the formulas [8][4][9]:

3:1:1 al'm axn B
Z B, _at—j_BEKlmn(x) (4.12)

l,m,n

z]k

where the KZ are rational functions. In the 2-
moduli example above, these rational functions
have been computed in [4] (up to multiplicative
constants):

B _ _4
K= p
2(1—%)
Kii2= Zmp

(4.13)
KB__ 22-1
122 Zg(1-5)D

B __ 1-Z4+y—3z%y
K = 30570

where D = (1 — £)? — 72§, 7 = 1728z, § = 4y. It
follows that in this case the K4 are computable
order by order in terms of modular functions sim-
ply by computing the z,y,wp using the pertur-
bation method above. Up to order O(g3), the
answers are given in Appendix A.

Now on the other hand the type A coupling
takes the form

N, do did; qu qs
Ki =K)+ > = 12 = 2 (4.14)
d1+da>0 - q

where the K ik are the classical cubic intersec-
tion numbers of X, and the ng, 4, is the mirror
symmetry prediction for the number of rational
curves of degrees (dy,dz). If we write

zgk - Z KUk (415)

where the Kji[m] are power series in ¢;, then

using (m > 0)

di d dym
- |42=0 ch lq i = m'Ql—:}z_ if lem
gz 1-qhgd 0 otherwise
(4.16)

it is easy to show that

Kil0] = KDy +8i18516k1 3 Mq—‘—

diso -4’
dym
Kijk[m] = > Ny d,dididig
d12>0,dz|m
for m > 0.
(4.17)

Thus using perturbation theory each of the
K jx[m] can now be expressed in terms of modu-
lar functions.

5. PERTURBATIONS AROUND z =0

We now interchange the roles of (z,¢1) and
(y,92). One might expect that the discussion
above would carry over with few changes. It turns
out that while all the techniques carry over, the
results have vast simplifications in this case. This
consideration is motivated by a few observations.

First note that the Picard-Fuchs system (4.1)
is highly asymmetric in z,y. Thus it is reason-
able that the two limits along y = 0 and z =0
are qualitatively different. Second note that along
z = 0, the solutions wy, w2 degenerate to elemen-
tary functions

w[)(O’ y) = 1
w(0,y) = Log(1 — /T —4y — 2y) — Log(2y),

(5.1)

and they are solutions to ©7 — 2y(20, + 1),
It is then easy to compute the mirror map re-
stricted along = = 0: ¥(0,¢2) = (l—féz—)g which is
rational rather than transcendental! Third from
the definition of the series x,y, wp, we can write
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Proposition 5.1. Denote q :=g5. Then

= X 1 G() = 1
z(q1,92) g:o:l i(g2)qi Gr— 1201+ q)
R V(o) Gy = 360(—17 + 268q — 17¢°
vlan @) = 2, Y@ Gs = 48021 + q)(1537 + 1358)66q +1537¢%)
wo(x(q1,g2), ¥(q1,92)) = Gy = 120(—893747 + 362384432¢
S c(n, m)a(q1, 42)"y(q1, a2)™ = 3 Gola2)dd +1610384580q% + 362384432¢° — 893747¢*)
i=0 Gs = T720(1 + q)(24145921 + 38170176314¢
59 +41177025162642 + 3817017631443
(5.2) +24145921¢%)
where the X,,Y;,G; are power series. Let’s de-
scribe the G; in terms of the X;,Y;. The c¢(n, m) X1= 1+g¢
are such that ¢(n,m) = 0 for all 2m > n. (The Xp = —24(31+82¢ +31¢%)
same argument below applies to any other 2- X3 = 36(1+¢)(9907 + 6130g + 9907¢%)
moduli family of Calabi-Yau toric varieties with X4 = —64(2193143 + 8342176 + 9151506¢>
fundamental period having the form wo(z,y) = +8342176¢° + 2193143¢%)
S c{n, m)z™y™ such that for each n, c(n,m) = 0 Xs = 30(1+ q)(1644556073 — 1014171566¢
for m >> n; see Appendix B for more exam- —26082465678¢° — 10141715664
ples.) Since z(g1,q2)" = ¢7(1 + O(h)) and since +1644556073¢%)
e(n,m) = 0 for m >> n, at most finitely many
terms in the sum »_ c(n,m)z(q1,¢2)"y(q1,92)™ Yo= ¢/(1+49)°
contribute to a given Gy. Thus it is a finite lin- Y1 = —240g(1 - q)?/(1+¢)°
ear sum of X;Y;. In particular, if the X;,Y; are Yo = —360g(1 —q)*(37 + 554¢ + 37¢%) /(1 + ¢)*
algebraic then so are the Gx. As seen above, Y3 = —320g(1 ~ q)*(7747 + 393600q
+1117306¢%+
Go= 1 +393600¢° + 7747¢%) /(1 + q)°
V= —2 . (5.3) Yi= —60g(1 — q)?(14352887 + 1931431324q
(1+¢2) +10227963073¢2 + 177276892724
In fact applying perturbation theory along the +10227963073¢* + 1931431324¢°
g1 direction on the PDE system (3.6), we compute +14352887¢%) /(1 + ¢)°.

the first few terms. The emerging pattern is clear
evidence that the X;,Y;, G; are in fact rational. (5.4)
Proof: X;,Y;, G, 1 < 3, can be computed by solv-
ing the differential equations (3.6) order by order
as we have done before. But this will be hard
without first knowing the answers. So we use the
following slightly different approach. Numerically
it is easy to compute x,y, wp as a power series in
1,42 up total order say O(h!®). We first guess
an ansatz (the list above) for the X;,Y;, G; based
on the numerical results. Then we check that our
ansatz satisfies our differential equations derived
from (3.6) (up to O(g$)) governing the X;,Y;, G;.
Observe also that the ODEs for the X, Y;, G; de-
rived from (3.6) can have three as the highest
order in derivatives. This means that the differ-
ential equations together with the first three co-
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efficients of each of the X;,Y;, G; determines the
whole series X, Y;, G; uniquely. The first three
coefficients of our ansatz are easily check to be
correct. o

Clearly we can apply our perturbation argu-
ment to the Yukawa couplings K Ak as in the pre-
vious section, with the roles of g;, g5 interchanged.
Thus we can write

Kf = Z Kijelm (5.5)
where now the Kj;i{m| are power series in g.
Then

d3
Kikl0] = K?jk + 6;,20,20k2 Y nlez_qu
d2>0 4 72
Kijglml = >0 nay4,didjdegy,™ for m > 0.
d220,d1|m
(5.6)

If the X;,Y;,G;, for ¢« < [, are rational, then so
are the couplings Kjjx[m], for small m. In fact
using the proposition above, we have

K{, = 4+2496(1 + g2)q1 + 1152(1556 + 13481q,
+1556¢2)g? + 4768(1358353 + 466661432
+46666143¢2 + 1358353¢3 )¢5 + O(g?)

2 + 2496g2q1 + 576¢2(13481 + 3112¢3)g?
+768¢2(15555381 + 31110762g2
+1358353¢2)q} + O(q)

249642q; + 288¢2(13481 + 6224¢5)q?
+768q2(5185127 + 20740508¢2
+1358353¢2)¢} + O(q})

T + 249642q1 + 144¢2(13481
+12448q2)q1 + 25642(5185127
+41481016q, + 4075059¢2)q3 + O(q}).

(5.7)

These formulas give infinitely many nq, 4, si-
multaneously! For example, we have

A
K112_

A
K122_

A
K222 -

(5.8)

For another example, for at least d; = 0,1, ..,4,
we have ng, 4, = 0 for all but finitely many ds.
The nonzero ones can be computed immediately
from the formulas above.

no,dy = 264%1.

Acknowledgements: We thank A. Kachru, A.
Klemm, S. Theisen and C. Vafa for helpful dis-
cussions.

6. Appendix A

In this appendix, we compute perturbatively
the type A Yukawa couplings K2 ik (see discus-
sions in section 4) for the famlly of Calabi-Yau
toric varieties corresponding to the degree 12 hy-
persurface in P4[6,2,2,1,1]. We perturb in the
neighborhood of the codimension one subfamily
with y = 0 up to O(y?) or equivalently O(g2).
We give ]k[()] K; ch[1] as differential rational
functions in z;, ¥, ¢;, ¢ < 2, which in turn have
been given explicitly in terms of the j function
by quadrature in section 4. The computation
for higher order terms is straightforward but te-
dious. The K ;?k [0] have already been considered
in [2]{10].

A 4z yi
Kinl0] = zo(1 — 1728x0) o
( —2q

g5(1 — 1728z0)2
+3456(351 — 172820z + 3456x3y1)

g3(—1+1728z0)*
4z 6(1 — 1728z9)zy}
1226 (—(z12p) + ToT})

q
)

Kfu(1)

)

+(

N 12(—1 + 345639 )xhy 2
Lol
+2(1 — 1728x9)y23
vt
12(—1 + 864xo) TR x1Y}
oyt
6( 1+ 17289:0)1:62y2y’1
zdyi
+12(1 - 172281'0)3:61:’13/1
ToY1

172820)3601/2 Y/ (g2(1 — 1728z0)?)
ziy

G

K{i,0) = 2

K501 22g1y128 — 6912g; 30y, TG
+5971968g1x0y1x
+8957952gom0m1y1m0
—~11943936goxiy?zf

— 5184goz1117¢
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—goy2$62 + 3456gox0y23:62
—2085984gozay2Ti — 2g0y1TH T}
+5971968goz2y, ThT, — 290214y,

+6912gozox1 Ty — 5971968g0z2x1 oY}

+4goZoy1Toy) — 2073690@%%"”6%
+23887872g0z3y1Thy, — goziy?
+3456g0z3y} — 2985984g0z3y7)/
(9873(—1 + 1728z0)3y1)

Ki{iz[ol =0

K4,[1) 2(—2z1x} + 34562011z + 2Toy1 T
—6912z3y175 — zhyy + 1728x5y1))/
((—=1 + 1728x0)z?)

Ké‘éz[o] =0

2y;

Kol =
2221] ge(1 — 1728z0)

(6.1)

7. Appendix B

In this appendix, we will study using pertur-
bation technique introduced above, the perturba-
tions around y =0 (g2 =0) and z = 0 (g1 = 0)
for the following five families Calabi-Yau toric va-
rieties, all of which have Al'! = 2:

degree 8 in P4[2,2,2,1,1]

degrees (6,4) in P?[2,2,2,2,1,1]

degrees (4,4,4) in P%(2,2,2,2,2,1,1] (7.1)
degrees 12 in P*4[4,3,2,2,1]

degrees 14 in P4[7,2,2,2,1].

® RS o8

Throughout we will use the same notations as
in our previous discussion above. We can use the
Picard-Fuchs systems and their associated poly-
nomial PDEs to compute the first few coeflicients
Zi,¥i, g; of the perturbation series of the mirror
map (q1,g2) — (z,y) and the fundamental period
wp around ¢z = 0 (cf. Theorem 4.1). It turns out
that theorem Theorem 4.1 also covers the cases
a, b, ¢. Hence all the formulas proved in that
section apply here. We won’t go into the details
of cases d, e, which are a bit more tedious. We
will give the coefficients X;,Y;, G; of the pertur-
bation series around ¢; = 0 (cf. Proposition 5.1).
Note that one can now also compute the type A

Yukawa coupling K 3‘k order by order near either
g2 = 0 or q; = 0, by substituting the z;, y;, g; (or
X:,Y;, G;) into (4.12) (see section 4).

The respective Picard-Fuchs systems for the
five families above are given by [4]:

a. Ly = ©2%(8, -20,) —45(46, + 3)
(40, + 2)(46, + 1)

Ly= ©2—y(20, -6, +1)(6, - 6,)
b.L, = ©2(0, —20,)—6z(20, + 1)
(36, +2)(30, +1)

02 — y(20, — O, + 1)(8, — 8;)
oo, - 20,) - 82(20, + 1)
Ly= ©2-y(20, -6, +1)(6, — O,)

b~
©
I

d.Li= ©2%(30,-20,) - 36z(60, +5)
(60, + 1)(8, — O, + 2y(1
+60, — 20,))
Ly= ©,(0,—0,)—y(36, —20, - 1)

(36, — 20,)

e. L, = 670, -20,) — Tz(y(280,; — 46, + 18)

+0, - 36, — 2) x (¥(280, ~ 46, + 10)
+6, — 30, — 1)(y(286, — 46, + 2)

+0, — 30,)
Ly= ©,(6,-30;)—y(710; — 20, 1)
(70, — 20,)

(7.2)

As shown in [3] using the results of [6], in cases
a, b, ¢, the zo(g1) are hauptmoduls for the follow-
ing genus zero groups: [o(2)+,T0(3)+,To(4)+.
Using a very similar argument as for Lemma 4.3,
it is easy to show that the lemma holds for these
three cases as well. The analogue in cases d, e
are even easier because the Fourier coefficients
c(n,m) for the fundamental period wo(z,y) here
have the properties that for fixed n (or fixed m)
all but finitely many ¢(n,m) vanish. It follows
that the gy are finite sums of z;y; in cases d, e
(cf. argument in section 5). Similarly in all cases,
the G; are finite sums of X;Y}.



X1

X3
X4

Xs
Yy
Yi
Yo
Y3

Yy

i

i
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1
24(1 + q)

24(1 4 116q + ¢?)

96(1 + ¢)(1 + 3002 + ¢?)

24(1 + 1226480q + 4864468¢>
+1226480¢° + ¢*)

48(1 +q)(3

+60632494¢ + 54769055842
+60632494q° + 3¢%)

1+¢

—8(13 + 38q + 13¢?)
36(1 +q)(179 + 178q + 1794?)

—64(4871 + 25120q + 2865842 + 25120¢°
+4871¢%)

2(1 + ¢)(6509415 — 12918578¢q
—176313170¢% — 12918578¢°
+6509415q4)
a/(1+4q)?

—48(-1+q)%¢/(1 + q)°

—24(—1 + q)%q(11 + 310q + 11¢%)/(1 + ¢)*
—64(~1 + q)%g(115 + 7680g + 289544>
+7680¢° + 115¢*)/(1 + q)°

—12(—1 + q)%q(37587 + 5539852¢
+32302789¢2 + 6244840843
+32302789¢* + 553985295

+37587¢%) /(1 + q)¢

(7.3)

il

il

1
12(1 +¢)

36(1 + 16q + ¢*)

12(1 + ¢)(1 4 2132¢ + ¢°)

12(7 + 94760q + 3472564

+94760¢° + 7¢*)

36(1 + ¢)(2 + 1368046q + 109032874>
+13680464° + 2¢%)

144¢

—6(7 + 229 + 7¢?)

9(1 + ¢)(109 + 148¢ + 1094?)

—4(4247 + 28450q + 336064>
+28450¢3 + 42474¢*)

3(1 + )(81410 — 367682¢

—3523185¢% — 367682¢> + 81410g¢%)
a/(1+4q)*

—24(-1+¢)*q/(1 + ¢)?
—36(—1+¢)%¢(1 + 50 + ¢*)/(1 + ¢)*
~8(—1 + q)2q(55 + 4890q + 234944°
+4890¢° + 55¢*)/(1 + q)°

—6(—1 + q)%q(2279 + 378364¢
+2348113¢* + 5049976¢>+

2348113¢* + 378364¢° + 2279¢%)/(1 + ¢)°

(7.4)
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1
8(1+4q)

8(3 + 28q + 3¢?)

32(1 + g)(1 + 186¢ + ¢°)

8(3 + 20176¢ + 69500¢% + 201764° + 3¢*)
48(1 + g)(1 + 88890q + 641386¢>
+88890q° + ¢%)

1+g¢

—-8(3+¢)(1+3q)

20(1 + ¢)(15 + 26g + 15¢?)

—~64(41 + 352¢ + 430q2 + 352¢° + 41q¢*)
2(1 + ¢)(9063

—82738q — 620882¢% -- 82738¢% 4 9063¢*)
a/(1 +q)°

~16(-1+¢)%q/(1 +q)*

—8(—1+¢)%q(1 + 98¢ +¢°)/(1 +¢q)*
—64(—1 + q)%q(1 + 128¢ + 76642

+128¢% + ¢*)/(1 + ¢)°

—4(—1 + ¢)2q(377 + 72740q

+471887¢2 + 1126728¢>+

471887¢* + 72740¢° + 3774¢%) /(1 + q)8

(7.5)

Yo
Y
Yo

Ys

I

261

1
360g(1 + q)

1080¢2(211 + 872q + 211¢%)

720¢%(1 + ¢)(2565 + 828158¢
+451006642 + 828158¢3 + 2565¢%)
(1+9)®

12(1 + ¢)%(5 — 196q — 642g>

—~196¢° + 5¢%)

18(1 + ¢)(—85 — 6755q + 78932¢°
+349843¢° + 682082¢*+

34984345 + 78932¢° — 6755¢ — 85¢%)
a/(1+ g)?

—60(—1 + q)%q(1 + 10g + ¢*)/(1 +¢)°
90(—1 + ¢)%q(57 + 274g — 7341¢°
—22796¢° — 7341¢%+

274¢5 + 57¢%) /(1 + q)*

40(—1 + q)2q(—16844 — 22047¢q
+1066354¢% — 38340920¢°
—242849702¢* — 428992850¢°
—92428497024% — 3834092047
+1066354¢% — 220474°

—~16844¢'%) /(1 + ¢)°

1
840¢%(1 + q)
840q¢*(—2 + 28¢
+1491¢2 + 3960g> + 1491¢* + 28¢° — 2¢°)
(1+4q)7
2(1 + q)%(3 — 46q + 43442
—2562¢3 — 11466¢* — 2562¢°
+434¢% — 464" + 3¢®)
g/(1+9)°
2(—1 4+ q)2g(—1 + 13¢ — 113¢*
—638¢3 — 113¢* + 13¢°> — ¢5)/(1 + ¢)®

(7.6)
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