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I have known Fedor for forty years. Actually I have heard about
many important works of his before I met him. Around 1976, I was
visiting UCLA. I got married there and I proved the Calabi
conjecture right after the marriage. I started to derive corollaries of
the theorem. Three years before that, I was trying to give
counterexamples to the Calabi conjecture. The approach was to
derive consequences of the conjecture and gave examples that the
consequences were wrong. Well, once we know the conjecture is in
fact right, all the consequences are in fact theorems. I was pleased
that it worked out that way.
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Just at that time, my friend David Gieseker in UCLA told me that
Mumford is visiting him and would give two seminars: one in UCLA
and one in UC Irvine. The topic in UCLA was on integrable system
and Abelian varities. The one in Irvine was on Bogomolov’s work. I
found the title attractive and decided to drive two and a half hours
to listen to Mumford in Irvine. I did not understand the talk
completely. But Mumford declared that the work of Bogomolov is
great and challenged the audience to prove the best Chern number
inequality for algebraic surfaces of general type : 3C2 ≥ C 2

1 .
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I found that attractive as I knew already that this follows from the
Calabi conjecture. But I was not sure about the constant. I told
Mumford about it. It was clear that he did not believe I can do it:
as I come from nowhere as far as the subject of algebraic geometry
is concerned. But I went home and worked out the constant
precisely. I sent a letter to Mumford telling him that not only the
constant can be achieved but also that it can only be achieved
when the algebraic surface is covered by the ball. Mumford was
very pleased and I think that was the reason that Harvard offered
me a job two years later.
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My friend Gieseker then showed me a manuscript circulated by
Reid on the inequality of Bogomolov. He told me that there is idea
of concept of stability which needs to be studied further. He wrote
a paper about reproving the inequality of Bogomolov for stable
bundles which I found fascinating and in fact I was very much
puzzled by it. The Chern number inequality is very natural in term
of curvature representation of Chern classes. Why would algebraic
method be useful to derive it? Clearly stability of bundles plays an
important role. Fedor’s originality in pioneering this direction
excited me.
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Since I have already used Kähler-Einstein metric to improve his
Chern number inequality for manifolds, I was sure that there is a
version of Kähler-Einstein metric for bundles I learnt from Singer
about the self-dual connection on bundles over four manifolds and
this seems to be a natural replacement of Kähler-Einstein metric.
At the same time, I learnt from C.N. Yang on how to rewrite the
anti-self dual equations in terms of Hermitian connections for
holomophic bundles. The formulation of the equation is readily
generalized to holomorphic bundles over Kähler manifolds. There
was no question in my mind that these equations and the concept
of stability are linked.
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The proof of the existence for the equation turned out to be highly
nontrivial. I spent a lot of time with Karen Uhlenbeck to solve the
problem. The global idea and some reasonable detail was obtained
by 1980. However the complete proof was achieved only a couple
of years later. In the meanwhile, Simon Donaldson used the
Bott-Chern form to solve the problem for stable bundles over
Kähler surfaces. But his argument cannot be generalized to higher
dimension. Upon seeing my paper with Uhlenbeck in higher
dimension, he used hypeplane section theorem to handle bundles
over algebraic manifolds. But up to now, the approach of
Uhlenbeck-Yau is still the only one that can handle Higgs bundle
and general complex manifolds.
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When the manifold is quasi-projective with a complete Kähler
metric with finite volume and behaves like Poincaré metric at the
divisor at infinity, Simpson solved the existence for the curve case
and O. Biquard proved it when the divisor is nonsingular while T.
Mochizuki settled the case when the divisor is normal crossing.
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A very important consequence of analytic approach to the
algebro-geometric problem is that some rather transcendental part
of the manifold or bundle can be detected. In the case of Kähler
manifold, I was able to derive that the equality of the Chern
number inequality for manifolds with ample canonical line bundle
implies that the manifold must be covered by the ball. Up to
present day, analytic method is still the only way to prove such a
statement.
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In the case of the bundle, the corresponding statement says that
polystable bundles are projective flat if the Chern number
inequality becomes equality. When the first Chern class is zero, the
bundle is unitary flat. The special case of curve was proved, using
algebraic method, by Narasimhan-Sesadri in the 1960s.
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An important consequence of Uhlenbeck-Yau theorem is that for a
complex manifold, its fundamental group has nontrivial projective
representation whenever we can find nontrivial polystable
holomorphic bundles over the manifold. Since representation
theory concerns unitary representation in an infinite dimensional
Hilbert space, it is natural to consider holomorphic bundle with
infinite dimensional fiber equipped with a unitary connection. The
original argument of Uhlenbeck-Yau can be carried out without
much difficulty. The interesting question is how to construct such
bundles over a Kähler manifold.
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A natural question is the following: Suppose M is a holomorphic
fiber space with base N and a generic fiber F such that for some
subvariety B of N, M is a topological fiber bundle over N −B. For
a unitary representation R of the fundament group of F , we look
at a topological map from N − B to the moduli space of unitary
representation of the fundamental group of F that is deformation
of R.
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We need to deform the map to be holomorphic map such that it
can be extended to a holomorphic map from N to the
compactification of the moduli space. From this map, we form a
holomorphic bundle over M whose restriction to each fiber is an
unitary flat bundle. On the other hand, we can also form a unitary
flat bundle over B which can be pulled back to a unitary flat
bundle over M. It is interesting to see how we use methods of
algebraic geometry to form an extension of the first bundle by this
last one. Hopefully the resulting holomorphic bundle can be made
to be stable with trivial second Chern class. In that case, we have
a unitary flat representation of the fundament group of M.
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The point here is to use methods of algebraic geometry to build
unitary representation of fundamental groups of Kähler manifolds.
One can extend unitary representation to representation of more
general group. The concept of Higgs field can be used. This was
used by Carlos Simpson in his thesis for handling local Hermitian
symmetric space. Simpson used the theory of Higgs bundle to
study deformation of Hodge structures. About 14 years ago, I
suggested Kang Zuo and Viehweg to continue this study in
relationship to my theorem on characterization of local Hermitian
symmetric space where symmetric power of bundle were used. This
idea went back to Bogomolov’s study of Chern number inequalities.
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In any case, moduli space of curves has many similar property as
local Hermitian symmetric space. In particular, it has
Deligne-Mumford compactification and we can study log version of
the Chern number inequality for holomorphic bundles over moduli
space which can be extended as coherent sheaf to the
compactification. If it is stable and if the relative first and second
Chern classes vanish, we can construct a unitary flat representation
of the modular group. The relationship between such
representations when genus of the curves changes would be an
interesting topic to study.

15 / 35



When the detail of the proof of the Uhlenbeck-Yau theorem was
finished in 1984, I proposed to Edward witten to use it to be part
of heterotic string theory, and this was carried out by him in a very
important paper in 1986. Since then, a great deal of physics
literature was devoted to explore heterotic string theory based on
the Uhlenbeck-Yau theorem. Because of the supersymmetric
nature of the Hermitian Yang-Mills connection, it has become a
central tool in string theory. The discovery of mirror symmetry in
string theory has enriched the understanding of Hermitian
Yang-Mills connection.
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In fact, in 1996, Strominger-Yau-Zaslow proposed a geometric
interpretation of the mysterious mirror symmetry that appears
among 3-dimensional Calabi-Yau manifolds. The interpretation is
based on duality of a special Lagrangian torus fibration of the
Calabi-Yau manifolds. The SYZ picture shows that, under mirror
transformation, stable holomorphic bundles will map to stable
Lagrangian submanifolds while Hermitian Yang-Mills connection
becomes special Lagrangian condition on the submanifold.
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This is a totally unexpected picture as classical geometry does not
show any such connections. But the connection is very fruitful
because it gives more interesting structures for either holomorphic
bundles or Lagrangian cycles . An important reason is that the
duality between stable holomorphic bundle and special Lagrangian
cycle is only exact at “large radius limit” of the Calabi-Yau
manifolds.
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In 1986, Jun Li and I generalized the work of Uhlenbeck-Yau to
non-Kähler manifolds which are Gauduchon. For holomorphic
bundles, one can define concept of stability. Stability is not easy to
be checked. But in some extreme case when there is no curves in a
compact complex surface, one can check that the tangent bundle
is always stable. If equality of the Chern number inequality holds,
tangent bundle admits projective flat connection. Hence for
complex surfaces of class VII0 which admits no curves,
Li-Yau-Zheng were able to give a proof of the classification of
Fedor on such surfaces.
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The problem of classification of complex surfaces of class VII0
would be complete if we can classify those class VII0 surfaces with
(finite number of) curves. Many years ago, I proposed that the
argument of Li-Yau-Zheng should be generalized to connections
with poles on the curves. So far, the approach has not been carried
out to finish the classification of class VII0 surfaces. But I still
hope this program can be furnished.
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The theory of Hermitian Yang-Mills connections has been greatly
enriched after the idea of Mirror symmetry appeared in string
theory. In 1996, Strominger-Yau-Zaslow gave the first geometric
interpretation of the concept of mirror symmetry between
Calabi-Yau manifolds. We proposed that each Calabi-Yau manifold
that has another Mirror partner must have a fibration whose fibers
are special Lagrangian tori. (These are middle dimension subtori of
the CY manifold, each of which are Lagrangian and the
holomorphic 3-form restricted to it is constant multiple of the
volume form. The constant is a complex number with norm one.)
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SYZ proposed that the mirror of the CY manifold is obtained by
taking the dual torus of each of the fiber of the fibration. This
geometric picture is very attractive as it helps to explain many
mysterious questions appeared in the theory of mirror symmetry.
This is especially true when the CY manifold is at the “large radius
limit”. In that case, the torus is supposed to be linear and mirror
symmetry for CY manifold is simply the T-duality along the torus.
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In fact, in 1999, Leung-Yau-Zaslow studied this picture in more
detail. When there is a special Lagragian submanifold intersecting
the special lagrangian torus at one point generically, we know that
this submanifold is mirror to a holomorphic line bundle in the
mirror CY manifold. This map is rather explicit. And we were able
to find a equation for an Hermitian connection defined on this
holomorphic line bundle which came from the equation of special
Lagrangian submanifold. Using the Fourier-Mukai transform, the
equation can be written as:

Im(ω − F )n = tan θ̂ Re(ω − F )n,

where ω is the Kähler form of the manifold, F is the curvature of
the connection A and θ is the phase of the special Lagrangian.
This equation can be interpreted as nonlinear instantons which are
supersymmetric, according to Marino, Minasian, Moore and
Strominger.
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We can also rewrite this equation in the following way:

Θα(ω) =
n∑

i=1

arctan(λi ) = Θ̂.

This equation in this form can be generalized to any compact
Kähler manifold without assuming it is CY. Jacob and I used a
parabolic flow to study the existence of solutions to this equation
when the Kähler manifold has positive bisectional curvature, and
the initial data is sufficiently positive.
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Later, Collins-Jacob-Yau provided more in-depth understanding of
the above equation. First of all, we observe that in the above
equation, we can take high power of the line bundle L. Letting the
power going to infinity, we obtain, after normalization, a limiting
equation which can be written as

cωn = nωn−1 ∧ α,

for ω ∈ c1(L) with c a topological constant.

This turns out to be an equation discovered by Donaldson in 1999.
He called it J-equation.
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Building on previous works of Weinkove, Song-Weinkove in 2008
showed that the existence of a solution to the J-equation is
equivalent to the existence of a Kähler metric χ ∈ [ω] with

cχn−1 − (n − 1)χn−2 ∧ α

in the sense of (n − 1, n − 1) forms.
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The J-equation was studied by Weinkove and Song-Weinkove.
Recently, Lejmi-Székelyhidi introduced a notion of K -stability and
made the following conjecture:

If V is a p-dimensional irreducible subvariety of X , define

cV =
p

∫
V ωp−1 ∧ α∫

V ωp
.

Then there exists a solution to the J-equation if and only
if cV > cX for all p-dimensional proper irreducible
subvariety V of X with p > 0.

Collins-Székelyhidi proved this conjecture in the case of toric
Kähler manifolds.
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Hence we made the following conjecture:

For every irreducible subvariety V of X , define

ΘV := Arg
∫

V
(α + iω)dim V

where we defined Arg
∫
V αdim V = 0. We conjecture that

if ΘX > (n − 2)π
2 , then there exists a solution to the

deformed Hermitian- Yang-Mills equation

Im(e−iΘ(α + iω)n) = 0

if and only if, for all irreducible analytic subvariety V of
X we have

ΘV > ΘX − codim(V )
π

2
.
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We proved that stability is necessary for the existence of a solution.
We verified the conjecture for Kähler surfaces. There is preliminary
evidence that this stability condition can be used to define a
Bridgeland stability condition on the derived category of coherent
sheaves and hence fit the general picture proposed in
Kontsevich-Soibelman. We hope to extend these ideas to higher
rank bundles and to formulate precisely the role of Bridgeland
stability.
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Suppose now that dimCX = 3. One important part of a Bridgeland
stability condition is the assignment to (semi)-stable objects of a
phase θ(L) ∈ R, which should be determined by numerical data.
We expect that, in the above setting, we should have

Im(α + iω)3 = tan(θ(L))Re(α + iω)3

but this only determines θ(L) mod 2π. By simple algebra, we can
locally write

θ(L) := θ(h) =
3∑

i=1

arctan(λi )

where λi are the eigenvalues of the relative endomorphism α−1ω.
But this is not obviously numerical.
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Proposition. If L has a solution of dHYM, and pointwise we have
θ(L) ∈ 2[π/2; 3π/2), then θ(L) is determined numerically by the
path

Z (t) = −
∫

X
e−t

√
−1αch(L)

where t ∈ [1,∞), and ArgRZ (∞) = Argp.v .Z (∞) = −π/2.
Specifically, we have θ(L) = ArgRZ (1) + π/2, and Z (1) lies in the
upper half-plane.

The statement of this proposition contains a hidden Chern number
inequality. Namely, Z (t) must never pass through the origin in
order for the angle to be well-defined.
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We have

Z (t) = −
∫

X
e−t

√
−1αch(L)

=

(
t2

2
α2.ch1(L)− ch3(L)

)
+
√
−1

(
tα.ch2(L)− t3

6
α3

)
.

If this path passes through the origin at some time T ≥ 1, then
since the real part is zero we have

T 2 =
2ch3(L)

ch1(L).α2

and plugging this into the equation for the imaginary part being
zero we get

ch3(L)α3 − 3(ch2(L).α)(ch1(L).α2) = 0.
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Proposition. If L has a solution of dHYM, and pointwise we have
θ(L) ∈ [π/2, 3π/2), then we have the Chern number inequality

(α3)(ch3(L)) < 3(ch2(L).α)(ch1(L).α2)

What about stability conditions? If C ⊂ X is a surface, then some
simple linear algebra shows that the metric h|C on the bundle L|C
has

θ(hC ) ≥ 0.
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From the above discussion, and the Hodge index theorem we get

If C ⊂ X is a curve or a surface, and L is as above, the
path

Z (t) =

∫
X

e−t
√
−1αch(L⊗OC )

never passes through the origin, and hence the angle
ArgRZ (1) ∈ R is well-defined, and we have

ArgRZ (L⊗OC ) > ArgRZ (L).

This statement corresponds to a Bridgeland-type stability
inequality coming from the exact sequence

0 → L⊗ IC → L → L⊗OC → 0.
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Thank you!
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