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HAUSDORFF DIMENSION OF DIVERGENT TRAJECTORIES ON

HOMOGENEOUS SPACE

LIFAN GUAN AND RONGGANG SHI

Abstract. For one parameter subgroup action on a finite volume homogeneous
space, we consider the set of points admitting divergent on average trajectories.
We show that the Hausdorff dimension of this set is strictly less than the manifold
dimension of the homogeneous space. As a corollary we know that the Hausdorff
dimension of the set of points admitting divergent trajectories is not full, which
proves a conjecture of Y. Cheung [6].

1. Introduction

Let G be a connected Lie group, Γ be a lattice of G1 and F = {ft : t ∈ R}
be a one parameter subgroup of G. The action of F on the homogeneous space
G/Γ by left translation defines a flow. In this paper we consider the dynamics of

the semiflow given by the action of F+ def
= {ft : t ≥ 0}. For x ∈ G/Γ we say the

trajectory F+x
def
= {ftx : t ≥ 0} is divergent if ftx leaves any fixed compact subset of

G/Γ provided t is sufficiently large. We say F+x is divergent on average if for any
characteristic function 1K of a compact subset K of G/Γ one has

lim
T→∞

1

T

∫ T

0

1K(ftx) dt = 0.

Clearly, if the trajectory F+x is divergent, then it is divergent on average. The aim
of this paper is to understand the set of divergent points

D′(F+, G/Γ)
def
= {x ∈ G/Γ : F+x is divergent},

and the set of divergent on average points

D(F+, G/Γ)
def
= {x ∈ G/Γ : F+x is divergent on average},

in terms of their Hausdorff dimensions. Here the Hausdorff dimension is defined by
attaching G/Γ with a Riemannian metric. It is well-known that different choices
of Riemannian metrics will not affect the Hausdorff dimension of subsets of G/Γ.
Indeed, specific Riemannian metric will be used later for the sake of convenience.
According to the work of Margulis [22] and Dani [9][10], it is well-known that

if F is Ad-unipotent then the space G/Γ admits no divergent on average trajec-
tories of F+. In other words, the set D(F+, G/Γ), hence the set D′(F+, G/Γ), is
empty. On the other hand, the set D(F+, G/Γ) can be complicated when F is
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Ad-diagonalizable. For example, it was proved by Cheung in [6] that the Hausdorff
dimension of D′(F+, SL3(R)/SL3(Z)) with F = {diag(et, et, e−2t) : t ∈ R} is equal
to 71

3
. Based on his results, Cheung raised the following conjecture in [6].

Conjecture 1.1. Let Γ be a lattice of a connected Lie group G and let F = {ft : t ∈
R} be a one parameter subgroup of G. Then the Hausdorff dimension of D′(F+, G/Γ)
is strictly less than the manifold dimension of G/Γ.

The conjecture is known to be true in the following cases where G is a semisimple
Lie group without compact factors and F is Ad-diagonalizable:

(1) G is of rank one [11].
(2) G =

∏n
i=1 SO(n, 1), Γ =

∏n
i=1 Γi with each Γi lattice in SO(n, 1) and F < G

the is diagonal embedding of any one parameter real split torus A of SO(n, 1)
[5][26].

(3) G/Γ = SLm+n(R)/SLm+n(Z) and F = Fn,m = {diag(ent, . . . , ent, e−mt, . . . , e−mt) :
t ∈ R} with m,n ≥ 1 [6][7][18].

Indeed, for all the cases listed above, the Hausdorff dimension of the corresponding
D′(F+, G/Γ) have been determined.
There are evidences that a stronger version of this conjecture is true. It was proved

by Einsiedler-Kadyrov in [13] that the Hausdorff dimension ofD(F+, SL3(R)/SL3(Z))
is at most 71

3
when F = F1,2 as in (3). Using the contraction property of the

height function introduced in [16], it was proved by Kadyrov, Kleinbock, Linden-
strauss and Margulis in [18] that for any m,n ≥ 1, the Hausdorff dimension of
D(F+, SLm+n(R)/SLm+n(Z)) is at most dimG− mn

m+n
when F = Fn,m as in (3). See

also [14][17][19][21][12][27] for related results.
Now we state the main result of this paper, from which Cheung’s conjecture

follows.

Theorem 1.2. Let Γ be a lattice of a connected Lie group G and let F = {ft : t ∈ R}
be a one parameter subgroup of G. Then the Hausdorff dimension of D(F+, G/Γ)
is strictly less than the manifold dimension of G/Γ.

We will reduce the proof of Theorem 1.2 to the special case whereG is a semisimple
linear group. Recall that a connected semisimple Lie group G contained in SLk(R)
has a natural structure of real algebraic group. So terminologies of algebraic groups
have natural meanings for G and are independent of the embeddings of G into
SLk(R). In particular, the one parameter group F has the following real Jordan
decomposition which is a special case of [3, Theorem 4.4].

Lemma 1.3. Let G ≤ SLk(R) be a connected semisimple Lie group. For any one
parameter subgroup F = {ft : t ∈ R}, there are uniquely determined one parameter
subgroups KF = {kt : t ∈ R}, AF = {at : t ∈ R} and UF = {ut : t ∈ R} with the
following properties:

• ft = ktatut.
• KF is bounded, AF is R-diagonalizable and UF is unipotent.
• All the elements of KF , AF and UF commute with each other.

The subgroups KF , AF and UF are called compact, diagonal and unipotent parts
of F , respectively. In §2 we will reduce the proof of Theorem 1.2 to its following
special case which contains the main unknown situations.
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Theorem 1.4. Let G ≤ SLk(R) be a connected center-free semisimple Lie group
without compact factors. Let F = {ft : t ∈ R} be a one parameter subgroup of G
such that the compact part KF is trivial but the diagonal part AF is nontrivial. We
assume the followings hold:

• G =
∏m

i=1Gi is a direct product of connected normal subgroups Gi.
• Γ =

∏m
i=1 Γi where each Γi is a nonuniform irreducible lattice of Gi.

• The group AF has nontrivial projection to each Gi.

Then the Hausdorff dimension of D(F+, G/Γ) is strictly less than the manifold di-
mension of G/Γ.

The proof of Theorem 1.4 is from §3 till the end of the paper. Indeed, the upper
bound of the Hausdorff dimension in the setting of Theorem 1.4 can be explicitly
calculated and we will make this point clear during the proof.
Our main tool will be the Eskin-Margulis height function (abbreviated as EM

height function) introduced in [15]. If F is diagonalizable, i.e. F = AF , Theorem
1.2 can be established using the strategy developed in [18] and the contraction
property of the proved in [25]. But when F has nontrivial unipotent parts, i.e. UF is
nontrivial, essential new ideas are needed. The following example contains the main
difficulties we need to handle in the proof of Theorem 1.4: G = SL4(R)×SL4(R),Γ =
SL4(Z[

√
2]) which embeds in G diagonally via Galois conjugates, and

ft =




et 0 0 0
0 e−t 0 0
0 0 1 t
0 0 0 1


×




1 t 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 .

There are two main difficulties. One is caused by the unipotent part of ft in the
first SL4(R) factor, and the other is caused by the unipotent part of ft in the second
SL4(R) factor. To overcome these difficulties, we will prove a uniform contraction
property for a family of one parameter subgroups in §3 and §4 with respect to the
EM height function. Then the last two sections are devoted to the proof of Theorem
1.4.

2. Proof of Theorem 1.2

In this section we prove Theorems 1.2 assuming Theorem 1.4. Let G,Γ, F be as
in Theorem 1.2. We choose and fix a Euclidean norm ‖ · ‖ on the Lie algebra g of G,
which induces a right invariant Riemannian metric dist(·, ·) on G. Moreover, this
metric naturally induce a metric on G/Γ, also denoted by “dist”, as follows:

dist(gΓ, hΓ) = inf
γ∈Γ

dist(gγ, h) where g, h ∈ G.

Let r be the maximal amenable ideal of the Lie algebra g of G, i.e. the largest ideal
whose analytic subgroup is amenable. The adjoint action of G on s = g/r defines
a homomorphism π : G 7→ Aut(s). Let S be the connected component of Aut(s).
It follows from the Levi decomposition of G that π(G) = S and S is a center-free
semisimple Lie group without compact factors. It is known that Γ ∩ Ker(π) is a
cocompact lattice in Ker(π) and π(Γ) is a lattice in S, see e.g. [1, Lemma 6.1].
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Therefore, the induced map π : G/Γ 7→ S/π(Γ) is proper, and consequently

π(D(F+, G/Γ)) = D(π(F+), S/π(Γ)).(2.1)

Let ϕ : s → g be an embedding of Lie algebras such that dπ ◦ ϕ is the identity
map. It follows from (2.1) that for any x ∈ G/Γ and any v ∈ s

exp(v)π(x) ∈ D(π(F+), S/π(Γ))

if and only if

exp(ϕ(v)) exp(v′)x ∈ D(F+, G/Γ) for all v′ ∈ r.

By Marstrand’s product theorem, the Hausdorff dimension of the product of two sets
of Euclidean spaces is bounded from above by the sum of the Hausdorff dimension of
one set and the packing dimension of the other, e.g. [4, Theorem 3.2.1]. So to prove
Theorem 1.2 it suffices to give a nontrivial upper bound of the Hausdorff dimension
of D(π(F+), S/π(Γ)).
We summarize what we have obtained as follows.

Lemma 2.1. Theorem 1.2 is equivalent to its special case where G is a center-free
semisimple Lie group without compact factors.

Proof of Theorem 1.2. According to Lemma 2.1, it suffices to prove the theorem
under the additional assumption thatG is a center-free semisimple Lie group without
compact factors. Under this assumption, the adjoint representation Ad : G → SL(g)
is a closed embedding. According to the real Jordan decomposition in Lemma 1.3,
the compact part KF does not affect the divergence on average property of the
trajectories. So we assume without loss of generality that KF is trivial.
There exist finitely many connected semisimple subgroups Gi such that G =

∏
i Gi

and Γi
def
= Γ ∩ Gi is an irreducible lattice of Gi for each i. It follows that

∏
i Γi is a

finite index subgroup of Γ and the natural quotient map G/
∏

i Γi → G/Γ is proper.
So we assume moreover that Γ =

∏
i Γi.

Denote by πj the projection of G to G/Gj =
∏

i 6=j Gi and denote by πj the induced

map from G/Γ to πj(G)/πj(Γ) =
∏

i 6=j Gi/Γi. Here if G = Gj we interpret
∏

i 6=j Gi

as a trivial group and
∏

i 6=j Gi/Γi as a singe point set. If Gj/Γj is compact or the
projection of AF to Gj contains only the neutral element, then

D(F+, G/Γ) = π−1
j

(
D
(
πj(F

+),
∏

i 6=j

Gi/Γi

))
.

So either D(F+, G/Γ) is an empty set or we finally can reduce the problem to the
setting of Theorem 1.4 where each Γi is a nonuniform lattice and the projection of
AF to each Gi is nontrivial. This completes the proof.

�

3. Preliminary on linear representations

From this section, we start the proof of Theorem 1.4. At the beginning of each
section we will set up some notation that will be used later. Let G and F be as in
Theorem 1.4. Let AF = {at : t ∈ R} and UF = {ut : t ∈ R} be the diagonal and
unipotent parts of F . Let H be the unique connected normal subgroup of G such
that AF ≤ H and the projection of AF to each simple factor of H is nontrivial.
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Since AF is nontrivial and G is center-free, H is (nontrivial) product of some simple
factors of G. Hence H is a semisimple Lie group without compact factors. Let S be
the product of simple factors of G not contained in H . Then S is also semisimple
normal subgroup of G that commutes with H . Moreover, G = HS and H ∩S = 1G,
where 1G is the neutral element of G.
In this section we prove a couple of auxiliary results for a finite dimensional linear

representation ρ : G → GL(V ) on a (nonzero real) normed vector space V . These
results will be used in the next section to prove the uniform contracting property of
EM height function. We will use ‖ · ‖ to denote the norm on V .
For λ ∈ R, we denote the λ-Lyapunov subspace of AF by

V λ = {v ∈ V : ρ(at)v = eλtv}.
Recall that if V λ 6= {0}, then λ is a called an Lyapunov exponent of (ρ, V ). Since
UF commutes with AF , every Lyapunov subspace V λ is UF -invariant. As AF is
R-diagonalizable, the space V can be decomposed as V + ⊕ V 0 ⊕ V − where

V + = ⊕λ>0V
λ and V − = ⊕λ<0V

λ.

Now we consider the adjoint representation of G on the Lie algebra g of G. It is

easily checked that g+, g− and gc
def
= g0 are subalgebras of g. The connected subgroup

G+ (resp. G−) with Lie algebras g+ (resp. g−) is called unstable (resp. stable) horo-
spherical subgroup of a1. We denote the connected component of the centralizer of
a1 in G by Gc whose Lie algebra is gc. Let d, dc, d− be the manifold dimensions of
G+, Gc and G−, respectively. It follows from the nontriviality of AF that d > 0.
For r ≥ 0 we let BG

r = {h ∈ G : dist(h, 1G) < r}, B±
r = {h ∈ G± : dist(h, 1G) < r}

and Bc
r = {h ∈ Gc : dist(h, 1G) < r}. By rescaling the Riemannian metric if

necessary, we may assume that:

(1) the product map B−
1 × Bc

1 ×B+
1 → G is a diffeomorhism onto its image,

(2) and the logarithm map is well-defined on BG
1 and is a diffeomorphism onto

its image.

According to (1), it is safe to identity the product B−
1 ×Bc

1×B+
1 with B−

1 B
c
1B

+
1 and

we will mainly use the later notation for sake of convenience. The same statement
as (2) also holds for B±

1 and Bc
1.

We fix a Haar measure µ on G+ normalized with µ(B+
1 ) = 1. Since the metric

“dist” is right invariant, any open ball of radius r in G+ has the form B+
r h (h ∈ G+)

and there exits C0 ≥ 1 such that

C−1
0 rd ≤ µ(B+

r h) = µ(B+
r ) ≤ C0r

d for all 0 ≤ r ≤ 1.(3.1)

For g, h ∈ G we let gh = h−1gh. For z ∈ Gc, let Fz = {f z
t : t ∈ R} and F+

z = {f z
t :

t ≥ 0}. Note that f z
t = atu

z
t and

{uz
1 : z ∈ Bc

1} is relatively compact.(3.2)

Lemma 3.1. Let ρ : G → GL(V ) be a representation on a finite dimensional normed
vector space V . Let λ be a Lyapunov exponent of (ρ, V ). For any 0 < δ < 1, there
exists Tδ > 0 such that, for all t ≥ Tδ, z ∈ Bc

1 and unit vector v ∈ V λ we have

(3.3) e(1−δ)λt ≤ ‖ρ(f z
t )v‖ ≤ e(1+δ)λt.
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Proof. For all v ∈ V λ with ‖v‖ = 1 we have ‖ρ(at)v‖ = eλt. On the other hand, in
view of (3.2), there exists C > 0 and n ∈ N2 such that

‖ρ(uz
t )‖ ≤ C(|t|+ 1)n

for all z ∈ Bc
1 and t ∈ R. Therefore, for any unit vector v ∈ V λ, z ∈ Bc

1 and
sufficiently large t,

‖ρ(f z
t )v‖ ≥ ‖ρ(uz

−t)‖−1‖ρ(at)v‖ ≥ C−1(|t|+ 1)−neλt ≥ e(1−δ)λt,

‖ρ(f z
t )v‖ ≤ ‖ρ(uz

t )‖‖ρ(at)v‖ ≤ C(|t|+ 1)neλt ≤ e(1+δ)λt.

�

From now on till the end of this section, we assume that ρ : G → GL(V ) is a
representation on a finite dimensional normed vector space V which has no nonzero
H-invariant vectors. As any two norms on V are equivalent, we also assume that
the norm is Euclidean without loss of generality.
Recall that a nonzeroH-invariant subspace V ′ of V is said to beH-irreducible if V ′

contains no H-invariant subspaces besides {0} and itself. The complete reducibility
of representations of H implies that there exists a unique decomposition (called
H-isotropic decomposition)

V = V1 ⊕ · · · ⊕ Vm(3.4)

such that irreducible sub-representations of H in the same Vi are isomorphic but
irreducible sub-representations in different Vi are non-isomorphic. Since S commutes
with H , each Vi is S-invariant, and hence G-invariant. Each Vi is called an H-
isotropic subspace of V .
Let λi be the top Lyapunov exponent of AF in (ρ, Vi), i.e.,

λi = max{λ ∈ R : V λ
i 6= {0}}.

Since the projection of AF to each simple factor of H is nontrivial, every λi is
positive. Let λ be the minimum of top Lyapunov exponents in each Vi, i.e.

λ = min{λi : 1 ≤ i ≤ m} > 0.(3.5)

Let πi : Vi → V λi
i be the AF -equivariant projection.

Lemma 3.2. For all v ∈ Vi r {0}, the map

ϕv : G
+ 7→ R where ϕv(h) = ‖πi(ρ(h)v)‖2(3.6)

is not identically zero.

Proof. Suppose ϕv is identically zero. Then ρ(G+)v ⊂ V ′
i where V ′

i ⊂ Vi is the
AF -invariant complimentary subspace of V λi

i . This implies that ρ(G−GcG+)v ⊂ V ′
i .

Since G−GcG+ contains an open dense subset of G, see e.g. [23, Proposition 2.7],
we moreover have that ρ(G)v ⊂ V ′

i . This is impossible since the intersection of V λi
i

with each H-invariant subspace of Vi is nonzero. This contradiction completes the
proof. �

2Here N = {1, 2, 3, . . .}.
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Lemma 3.3. For all v ∈ Vi r {0} and r ≥ 0, let

E(v, r) = {h ∈ B+
1 : ‖πi(ρ(h)v)‖ ≤ r}.

Then there exists θi > 0 such that

(3.7) Ci
def
= sup

‖v‖=1,v∈Vi

r−θiµ(E(v, r)) < ∞.

In particular, µ(E(v, 0)) = 0.

Proof. Since G+ is a unipotent group, it is simply connected and by [8, Theorem
1.2.10 (a)] there is an isomorphism of affine varieties Rd → G+ such that the
Lebesgue measure of Rd corresponds to the Haar measure µ. During the proof,
we will identify the group G+ with Rd for convenience.
By Lemma 3.2, for every nonzero v ∈ Vi the map ϕv in (3.6) is a nonzero polyno-

mial map. So ϕv|B+
1
is nonzero. Note that the degrees of ϕv (v ∈ Vi) are uniformly

bounded from above. Therefore, the (C, α)-good property of polynomials in [2, §3]
implies that there exist positive constants C and α such that

µ(E(v, r)) ≤ C

(
r2

suph∈B+
1
ϕv(h)

)α

(3.8)

for all nonzero v ∈ Vi. Since the set of unit vectors of Vi is compact,

inf
‖v‖=1,v∈Vi

sup
h∈B+

1

ϕv(h) > 0.(3.9)

So (3.7) follows from (3.8) and (3.9) by taking θi = 2α. �

Remark 3.4. According to [2, Lemma 3.2] we have α = 1
dl
where d is the manifold

dimension of G+ and l is a uniform upper bound of the degree of ϕv (v ∈ Vi). So
the constant θi can be calculated explicitly.

Lemma 3.5. Let θ0 = min1≤i≤m θi where θi > 0 so that Lemma 3.3 holds and let λ
be as in (3.5). Then for any 0 < δ < θ < θ0, there exists Tθ,δ > 0 such that for all
t ≥ Tθ,δ, z ∈ Bc

1 and v ∈ V with ‖v‖ = 1, we have

(3.10)

∫

B+
1

‖ρ(f z
t h)v‖−θdµ(h) ≤ e−(θ−δ)λt.

Proof. Without loss of generality, we assume further that the Euclidean norm ‖ · ‖
on V satisfies the following properties:

• Lyapunov subspaces of AF are orthogonal to each other.
• H-isotropic subspaces Vi (1 ≤ i ≤ m) are orthogonal to each other.

Let

(3.11) Ri = sup
v∈Vi,‖v‖=1,h∈B+

1

‖πi(ρ(h)v)‖ and R = max{Ri : 1 ≤ i ≤ m}.

Let C = max{Ci : 1 ≤ i ≤ m} where Ci is given in (3.7). Let θ′ = max{θi : 1 ≤ i ≤
m}.
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According to Lemma 3.1, there exists T δ
2θ

> 0 such that (3.3) holds for any

t ≥ T δ
2θ
, any nonzero v ∈ V λi (1 ≤ i ≤ m) and any z ∈ Bc

1, i.e.,

‖ρ(f z
t )v‖−θ ≤ e−(1− δ

2θ
)θλit‖v‖−θ ≤ e−(θ− δ

2
)λt‖v‖−θ.

This inequality and the assumption of the norm implies that for all nonzero v ∈ Vi

and t ≥ T δ
2θ

(3.12) ‖ρ(f z
t h)v‖−θ ≤ e−(θ− δ

2
)λt‖πi(ρ(h)v)‖−θ,

where 1
0
is interpreted as ∞. Let Tθ,δ ≥ T δ

2θ
be a large enough real number so that

t ≥ Tθ,δ implies

(3.13)
(2m)θ

′

CRθ′−θ

1− 2θ−θ0
e−(θ− δ

2
)λt ≤ e−(θ−δ)λt.

Let v be a unit vector of V . We write v = v1 + · · ·+ vm where vi ∈ Vi. Since we
assume different Vi are orthogonal to each other, there exists an integer i ∈ [1, m]
such that m‖vi‖ ≥ ‖v‖ = 1.
There is a disjoint union decomposition of B+

1 as

E(vi, 0) ∪
(
∪n≥0E

+(vi, 2
−nRi)

)
,

where

E+(vi, 2
−nRi) = E(vi, 2

−nRi)r E(vi, 2
−n−1Ri).

Since µ(E(vi, 0)) = 0, for any z ∈ Bc
1 and t ≥ Tθ,δ we have

∫

B+
1

‖ρ(f z
t h)v‖−θdµ(h) ≤

∞∑

n=0

∫

E+(vi,2−nRi)

‖ρ(f z
t h)vi‖−θdµ(h)

(by (3.12)) ≤ e−(θ− δ
2
)λt

∞∑

n=0

∫

E+(vi,2−nRi)

‖πi(ρ(h)vi)‖−θdµ(h)

(by (3.7)) ≤ e−(θ− δ
2
)λt

∞∑

n=0

Ci2
θ(2−nRi)

θi−θ‖vi‖−θi

≤ mθ′2θ
′

CRθ′−θ

1− 2θ−θ0
e−(θ− δ

2
)λt

(by (3.13)) ≤ e−(θ−δ)λt.

�

4. Eskin-Margulis height function

Let the notation be as in Theorem 1.4. In this section, we will establish a uniform
contraction property of the EM height function on G/Γ with respect to a family of
one parameter groups Fz (z ∈ Bc

1).
Recall that G/Γ =

∏m
i=1Gi/Γi where each Gi/Γi is a nonuniform irreducible

quotient of a semisimple Lie group without compact factors. Since we assume the
projection of AF to each Gi is nontrivial, we have H =

∏m
i=1Hi, where Hi = Gi∩H

is a connected normal subgroup of Gi with positive dimension.
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Let us recall the definition of the EM height function from [15]. The EM height
function is constructed on each Gi/Γi using a finite set ∆i of Γi-rational parabolic
subgroups of Gi. Recall that a parabolic subgroup P of Gi is Γi-rational if the
unipotent radical of P intersects Γi in a lattice. If the rank of Gi is bigger than one,
then Margulis’ arithmeticity theorem implies that there is a Q-structure on Gi such
that Γi is commensurable with Gi(Z). In this case the set ∆i consists of standard
Q-rational maximal parabolic subgroups of Gi with respect to a fixed Q-split torus
and fixed positive roots. So the irreducibility of Γi implies that no conjugates of
Hi is contained in any P ∈ ∆i. The same conclusion holds in the case where Gi

has rank one. The reason is that in this case Hi = Gi and ∆i = {P} where P is a
maximal parabolic subgroup defined over R.
For each Pi,j ∈ ∆i, there exists a representation ρi,j : Gi → GL(Vi,j) on a normed

vector space and a nonzero vector wi,j ∈ Vi,j such that the stabilizer of Rwi,j is Pi,j.
We consider ρi,j as a representation of G so that ρ(Gs) is the identity linear map if
s 6= i. Let V H

i,j be the H-invariant subspace of Vi,j consisting of H-invariant vectors.
Let πi,j be the projection of Vi,j to the H-invariant subspace V ′

i,j complementary

to V H
i,j . Since no conjugates of Hi is contained in Pi,j and Gi = KiPi,j for some

maximal compact subgroup Ki of Gi, there exists C ≥ 1 such that

‖v‖ ≤ C‖πi,j(v)‖
for all v ∈ ρi,j(G)wi,j. Note that V

′
i,j is G-invariant and it has no nonzero H-invariant

vectors. Therefore, Lemma 3.5 implies the following lemma which corresponds to
Condition A in [15].

Lemma 4.1. For each pair of index i, j there exist positive constants θi,j0 and λi,j

such that for any 0 < δ < θ < θi,j0 , any nonzero v ∈ ρi,j(G)wi,j and any z ∈ Bc
1 one

has ∫

B+
1

‖ρi,j(f z
t h)v‖−θ dh ≤ e−(θ−δ)tλi,j‖v‖−θ(4.1)

provided t ≥ T i,j
θ,δ where T i,j

θ,δ > 0 is a constant depending on θ and δ.

Proof. We assume without loss of generality that for all Vi,j the norm ‖·‖ is Euclidean
and V H

i,j and V ′
i,j are orthogonal to each other. According to Lemma 3.5, for each

representation ρi,j|V ′

i,j
, there exist positive constants θi,j0 and λi,j with the following

properties: for any 0 < δ < θ < θi,j0 there exists Tθ,δ > 0 such that for any t ≥
Tθ,δ, z ∈ Bc

1 and any nonzero v ∈ ρi,j(G)wi,j, one has
∫

B+
1

‖ρi,j(f z
t h)v‖−θ dh ≤

∫

B+
1

‖ρi,j(f z
t h)πi,j(v)‖−θ dh

≤ e−(θ−δ)tλi,j‖πi,j(v)‖−θ

≤ Cθe−(θ−δ)tλi,j‖v‖−θ.

It is not hard to see from above estimate that (4.1) holds for sufficiently large t. �

Besides ρi,j, the EM height function is constructed using positive constants ci,j
and qi,j which are combinatorial data determined by the root system, see [15,
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(3.22),(3.28)]. Let

ui,j(gΓ) = max
γ∈Γ

1

‖ρi,j(gγ)wi,j‖1/ci,jqi,j
(4.2)

where g ∈ G.3 Let

θ1 = max{θ > 0 :
θ

qijci,j
≤ θi,j0 for all i, j} and α1 = min

i,j
{ θ1
qijci,j

λi,j},(4.3)

where θi,j0 and λi,j are constants given by Lemma 4.1. We call α1 a contraction rate
for the dynamical system (G/Γ, F+).

Remark 4.2. We will see in next sections that α1 plays an important role in bound-
ing the Hausdorff dimension of D(F+, G/Γ). We believe that optimal α1 is possible
to give the sharp bound of the dimension. By Remark 3.4, the constant θi,j can be
explicitly calculated, so are the constants θ1 and α1. Consequently, it will be clear
in the proof in the next sections that the upper bound of the dimension we obtain
can also be explicitly calculated, although not optimal.

Lemma 4.3. For every α < α1, there exist 0 < θ < θ1 and T > 0 such that for all
t ≥ T and ǫ sufficiently small depending on t, the EM height function

u : G/Γ → (0,∞) defined by u(x) =
∑

i,j

(ǫ ui,j(x))
θ(4.4)

satisfies the following properties:

(1) u(x) → ∞ if and only if x → ∞ in G/Γ.
(2) For any compact subset K of G, there exists C ≥ 1 such that u(hx) ≤ Cu(x)

for all h ∈ K and x ∈ G/Γ.
(3) There exists b > 0 depending on t such that for all z ∈ Bc

1 and x ∈ G/Γ one
has

∫

B+
1

u(f z
t hx) dµ(h) < e−αtu(x) + b.(4.5)

(4) There exists ℓ ≥ 1 such that if u(x) ≥ ℓ, then for all z ∈ Bc
1

∫

B+
1

u(f z
t hx) dµ(h) < e−αtu(x).(4.6)

Proof. It follows from the corresponding results for each Gi/Γi proved in [15] that
the first two conclusions hold for any choice of θ and ǫ. Note that (4) is a direct
corollary of (3).
Now we prove (3). Let n the cardinality of the indices i, j appeared in the defini-

tion of u. We fix δ > 0 sufficiently small such that

α + δ +
δλi,j

ci,jqi,j
< α1 ∀ i, j.

3Although only the product ci,jqi,j is used in this paper, the constants ci,j and qi,j are given by
different combinatorial data and we use both of them for the consistency with [15].
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According to the definitions of θ1, α1 and the choice of δ above, there exists θ > 0
such that

θ < θ1 and
(θ − δ)λi,j

ci,jqi,j
≥ α + δ ∀ i, j.

Let δi,j = δ/ci,jqi,j , θi,j = θ/ci,jqi,j, then according to Lemma 4.1 there exists T i,j > 0
such that for t ≥ T i,j one has (4.1) holds with δ = δi,j and θ = θi,j. We will show

that Lemma 4.3 holds for T = log 2
δ

+maxi,j T
i,j.

Now we fix 0 < ǫ < 1, x = gΓ ∈ G/Γ, t ≥ T and i, j. According to the definition
of ui,j(x), there exists γ ∈ Γ such that ui,j(x) =

1

‖ρ(gγ)wi,j‖
1/ci,jqi,j

. For any h ∈ B+
1

and z ∈ Bc
1, if ui,j(f

z
t hx) = 1

‖ρ(fthgγ)wi,j‖
1/ci,jqi,j

, then we can use (4.1). Otherwise,

there exist 0 < κ < 1, b > 0 and C ′ ≥ 1 where b and C ′ depend on t such that

(ǫui,j(f
z
t hx))

θ ≤ C ′ǫκ(ǫu(x))θ +
b

n
.

These facts are proved in [15, §3.2]. In summary, we have

∫

B+
1

(ǫui,j(fthx))
θ dh ≤ ǫθ

∫

B+
1

1

‖ρi,j(fthgγ)wi,j‖θ/ci,jqi,j
dh + ǫκC ′u(x) +

b

n

≤ e−(θ−δ)tλi,j/ci,jqi,j(ǫui,j(x))
θ + ǫκC ′u(x) +

b

n

≤ e−(α+δ)t(ǫui,j(x))
θ + ǫκC ′u(x) +

b

n
.

Therefore, we have

∫

B+
1

u(fthx) dh ≤ e−(α+δ)tu(x) + nǫκC ′u(x) + b.

We choose ǫ sufficiently small so that nǫκC ′ ≤ e−(α+δ)t, then (4.5) holds. �

5. Applications of the uniform contraction property

In this section we will introduce and study some auxiliary sets closely related to
D(F+, G/Γ) using the uniform contraction property of the EM height function es-
tablished in Lemma 4.3. To be specific, we will prove some covering results for these
auxiliary sets in Proposition 5.1 and these covering results will play an important
role in bounding the Hausdorff dimension of D(F+, G/Γ).
Let α1 be a contraction rate of the dynamical system (G/Γ, F+) given by (4.3)

and let λ be the top Lyapunov exponent of AF in the representation (Ad, g). We
fix α < α1, t > 0 and a EM height function u : G/Γ → (0,∞) so that Lemma 4.3
holds. Let ℓ ≥ 1 so that (4.6) holds for all z ∈ Bc

1 if u(x) ≥ ℓ. By Lemma 4.3 (3),
there exists C ≥ 1 such that

C−1u(x) ≤ u(fshx) ≤ Cu(x) for all 0 ≤ s ≤ t, h ∈ BG
2 and x ∈ G/Γ.(5.1)
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We also fix an auxiliary δ > 0 (which will go to zero finally) and assume that t is
sufficiently large so that according to Lemma 3.1 for all r ≤ 1, z ∈ Bc

1

B+
e−(λ+δ)tr

⊂ f z
−tB

+
r f

z
t ⊂ B+

r/4;(5.2)

Bc
e−δtr ⊂ f z

−tB
c
rf

z
t ⊂ Bc

eδtr;(5.3)

2 < eδ(α+1)t/2.(5.4)

Note that the logarithm map from the metric space (B+
1 , dist) to the Lie algebra

g+ (with the fixed Euclidean structure) is a bi-Lipschitz homeomorphism to its
image. Therefore (B+

1 , dist) is Besicovitch, see [24], namely, for any subset D of B+
1

and a covering of D by balls centered at D, there is a finite sub-covering such that
each element of D is covered by at most E ′ times. Therefore, there exists E ≥ E ′

such that for all 0 < r ≤ 1, the set B+
1/2 can be covered by no more than Er−d open

balls of radius r, where d = dimG+.
We use |I| to denote the cardinality of a finite set I. The following is the main

result of this section.

Proposition 5.1. Let x ∈ G/Γ. There exists 0 < σ < 1 and E0 ≥ 1 such that for
z ∈ Bc

1 and N ∈ N, the set

(5.5) Dx(z,N, σ, C2ℓ)
def
= {h ∈ B+

1/2 : |{1 ≤ n ≤ N : u(f z
nthx) ≥ C2ℓ}| ≥ σN}

can be covered by no more than E0e
(dλ−α+δ(d+α))tN open balls of radius e−(λ+δ)tN in

B+
1 .

The rest of this section is devoted to show that Proposition 5.1 holds for

σ =
(1− δ/2)αt+ logC

αt+ logC
(5.6)

In the rest of this section we fix z ∈ Bc
1 and N ∈ N. We begin with the following

simple observation.

Lemma 5.2. If B ⊂ G+ is a ball of radius e−(λ+δ)tN centered at Dx(z,N, σ, C2ℓ),
then B ⊂ Dx(z,N, σ, Cℓ).

Proof. Let h0 be the center of B and h ∈ B. It suffices to show that for all 1 ≤ n ≤ N
if u(f z

nth0x) ≥ C2ℓ then u(f z
nthx) ≥ Cℓ. By (5.2) we have

dist(f z
nth0, f

z
nth) = dist(1G, f

z
nthh

−1
0 f z

−nt) < 1.

By (5.1)

u(fnthx) = u(fnthh
−1
0 f−nt · fnth0x) ≥ C−1u(fnth0x) ≥ C−1 · C2ℓ = Cℓ.

�

For a subset I ⊂ {1, . . . , N}, we let

(5.7) Dx(z, I, Cℓ) = {h ∈ B+
1/2 : u(f

z
nthx) ≥ Cℓ for all n ∈ I}.

Since Dx(z,N, σ, Cℓ) =
⋃

|I|≥σN Dx(z, I, Cℓ), one has

µ(Dx(z,N, σ, Cℓ)) ≤
∑

|I|≥σN

µ(Dx(z, I, Cℓ)).(5.8)

The following lemma will play an important role in the proof of Proposition 5.1.
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Lemma 5.3. Suppose that I ⊂ {1, . . . , N} and |I| ≥ σN . Then

µ(Dx(z, I, Cℓ)) ≤ C2u(x)e−(1−δ/2)αtN .(5.9)

We fix I as in the statement of Lemma 5.3. Our strategy is to estimate the
measure of Dx(z, I, Cℓ) by relating it to a subset coming from random walks on
G/Γ with alphabet f z

t B
+
1 . Let p = sup I and for 1 ≤ k ≤ p let

Zk = {(h1, . . . , hk) ∈ (B+
1 )

k : u(f z
t hn . . . f

z
t h1x) ≥ ℓ ∀ n ∈ (I ∩ [1, k])}.

Define η : (B+
1 )

p → G+ by

η(h1, . . . , hp) = h̃p · · · h̃1, where h̃n = f z
−(n−1)thnf

z
(n−1)t.(5.10)

We remark here that the image of η is contained in B+
2 by (5.2). The following two

lemmas are needed in the proof of Lemma 5.3.

Lemma 5.4. For all h ∈ Dx(z, I, Cℓ) one has η−1(h) ⊂ Zp.

Proof. Suppose that η(h1, . . . , hp) = h where hi ∈ B+
1 . Then for all n ≤ p

dist(f z
nth, f

z
t hn · · · f z

t h1) = dist(f z
nth̃p · · · h̃n+1f

z
−nt, 1G) < 2,

where we use (5.2), (5.10) and the right invariance of dist(·, ·). Therefore by (5.1)
we have for n ∈ I

u(f z
t hn · · · f z

t h1x) ≥ C−1u(f z
nthx) ≥ ℓ.

So (h1, . . . , hp) ∈ Zp and the proof is complete. �

Let µ̃n be the Radon measure on G+ defined by
∫

G+

ϕ(h) dµ̃n(h) =

∫

B+
1

ϕ(f z
−nthf

z
nt)) dh(5.11)

for all ϕ ∈ Cc(G
+). For any positive integer n let µn = µ̃n−1 ∗ · · · ∗ µ̃1 ∗ µ̃0 be the

measure on G+ defined by the n convolutions. Clearly, µn is absolutely continuous
with respect to µ and µp is the pushforward of (µ|B+

1
)⊗p by the map η. The following

lemma shows that µn has density bigger than or equal to one at every h ∈ B+
1/2.

Lemma 5.5. For all n ≤ N and h ∈ B+
1/2 we have dµn

dµ
(h) ≥ 1.

Proof. The conclusion is clear if n = 1. Now we assume n > 1 and let

ν = µ̃n−1 ∗ µ̃n−2 ∗ · · · ∗ µ̃1.

It follows from (5.2) and (5.11) that for k > 0 the probability measure µ̃k is supported
on B+

1/4k
. Since the metric on G+ is right invariant, the measure ν is supported on

B+
1/2. Suppose ν = ϕ dµ, then µn = ν ∗ µ̃0 = ϕ ∗ 1B+

1
dµ. So for any h ∈ B+

1/2, we

have

ϕ ∗ 1B+
1
(h) =

∫

G+

ϕ(h1)1B+
1
(h−1

1 h)dµ(h1) ≥
∫

B+
1/2

ϕ(h1)dµ(h1) = 1.

�

Now we are ready to prove Lemma 5.3.
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Proof of Lemma 5.3. By Lemmas 5.4 and 5.5,

µ(Dx(z, I, Cℓ)) ≤ µℓ(Dx(z, I, Cℓ)) ≤ µp(Zp).(5.12)

Now we are left to estimate µp(Zp). For 1 ≤ k ≤ p let

s(k) =

∫

Zk

u(f z
t hk · · · f z

t h1x)dµ
⊗k(h1, · · · , hk).

Let

s(p+ 1) =

∫

Zp

[∫

B+
1

u(f z
t hp+1f

z
t hp · · · f z

t h1x) dµ(hp+1)

]
dµ⊗p(h1, · · · , hp).(5.13)

Then for every 1 < k ≤ p+ 1,

s(k) ≤
∫

Zk−1

[∫

B+
1

u(f z
t hkf

z
t hk−1 · · · f z

t h1x) dµ(hk)

]
dµ⊗(k−1)(h1, · · · , hk−1).

If k − 1 ∈ I, then s(k) ≤ e−αts(k − 1) by (4.6). If k − 1 6∈ I, then by (5.1) we
have s(k) ≤ Cs(k − 1). We apply this estimate to k = p+ 1, p, · · · , 2, then we have

s(p+ 1) ≤ C(N−|I|)e−|I|αt

∫

B+
1

u(fthx dµ(h)) ≤ C1+(1−σ)Ne−σαtNu(x).

The choice of σ in (5.6) implies that

s(p+ 1) ≤ Ce−(1−δ/2)αtNu(x).(5.14)

On the other hand, in view of (5.13), (5.1) and the fact p = sup I we have

s(p+ 1) ≥ C−1s(p) ≥ C−1ℓ · µp(Zp).(5.15)

Therefore, (5.9) follows from (5.12), (5.14) and (5.15) and the observation ℓ ≥ 1.
�

Proof of Proposition 5.1. As before we fix z and N as in the statement. Let σ be as
in (5.6). Since (B+

1 , dist) is Besicovitch, there exists a covering U of Dx(z,N, σ, C2ℓ)
by open balls of radius e−(λ+δ)tN centered at Dx(z,N, σ, C2ℓ) such that each element
of Dx(z,N, σ, C2ℓ) is covered by at most E times. By Lemma 5.2, each B ∈ U is
contained in Dx(z,N, σ, Cℓ), so in view of (3.1)

µ(Dx(z,N, σ, Cℓ)) ≥ |U|
E

µ(B+
e−(λ+δ)tN ) ≥

|U|
C0E

e−(λ+δ)dtN .(5.16)

On the other hand, since there are 2N subsets I ⊂ {1, . . . , N}, by (5.8), (5.4) and
Lemma 5.3, we have

(5.17) µ
(
Dx(z,N, σ, Cℓ)

)
≤ C22Ne−(1−δ/2)αtNu(x) ≤ e−(1−δ)αtNu(x).

By (5.16) and (5.17),

|U| ≤ u(x)C0C
2E · e(dλ−α+δ(d+α))tN .

The conclusion now follows by taking E0 = u(x)C0C
2E.

�
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6. Upper bound of Hausdorff dimension

In this section, we finish the proof of Theorem 1.4. We will use the same notation
as in §5 prior to Proposition 5.1. For (z, h) ∈ Bc

1B
+
1 , ℓ

′ > 0 and N ∈ N, let IN,ℓ′(z, h)
denote the set of n ∈ {1, . . . , N} satisfying u(fntzhx) ≥ ℓ′. For x ∈ G/Γ, let

(6.1) D0
x(F

+, N, σ, ℓ′) = {(z, h) ∈ Bc
1/2B

+
1/2 : |IN,ℓ′(z, h)| ≥ σN}.

Lemma 6.1. Let x ∈ G/Γ. Then there exist 0 < σ < 1 and E2 ≥ 1 such
that for any N ∈ N the set D0

x(F
+, N, σ, C4ℓ) can be covered by no more than

E2e
(dcλ+dλ−α+δ(dc+d+α))tN open balls of radius e−(λ+δ)tN in GcG+.

Proof. Let 0 < σ < 1 and E0 ≥ 1 so that Proposition 5.1 holds. We fix N ∈ N.
We claim that: for W = Bc

e−(λ+δ)tN · z ⊂ Bc
1, we have

(6.2)
(
D0

x(F
+, N, σ, C4ℓ) ∩ (WB+

1 )
)
⊂
(
WDx(z,N, σ, C2ℓ)

)
.

Let (z1, h1) ∈ WB+
1 . Suppose that 1 ≤ n ≤ N and u(fntz1h1x) ≥ C4ℓ. In view of

(5.3) and (5.1) we have

u(f z
nth1x) = u(z−1fntzh1x) ≥ C−1u(fntzh1x)

= C−1u(fnt(zz
−1
1 )f−nt · fntz1h1x) ≥ C−2u(fntz1h1x) ≥ C2ℓ.

In other words, we have proved that if n ∈ IN,C4ℓ(z1, h1), then u(f z
nth1x) ≥ C2ℓ.

Therefore, if (z1, h1) belongs to the left hand side of (6.2) then it also belongs to the
right hand side.
Since (Bc

1, dist) is also Besicovitch, there exists E1 ≥ 1 such that for all 0 < r ≤ 1,
Bc

1/2 can be covered by no more than E1r
−dc open balls of radius r. We fix a cover Uc

of Bc
1/2 that consists of open balls of radius e−(λ+δ)Nt with |Uc| ≤ E1e

dc(λ+δ)Nt. We
assume each element of Uc has nonempty intersection with Bc

1/2, then it is contained

in Bc
1 in view of (5.4). Let Wz ∈ Uc be a ball centered at z ∈ Bc

1. Proposition 5.1
implies that there exists a covering Uz of Dx(z,N, σ, C2ℓ) by open balls of radius
e−(λ+δ)tN such that

|Uz| ≤ E0e
dλ−α+δ(d+α).

In view of claim (6.2), the following class of sets

{WzB : Wz ∈ Uc, B ∈ Uz}(6.3)

forms an open cover of D0
x(F

+, N, σ, C4ℓ). It is easily checked that there exists
E ′

1 ≥ 1 not depending on N such that each element WzB of (6.3) can be covered
by E ′

1 open balls of radius e−(λ+δ)Nt in GcG+. Therefore the lemma holds with
E2 = E0E1E

′
1. �

Theorem 6.2. For any x ∈ G/Γ, the Hausdorff dimension of D0
x
def
= {(z, h) ∈

Bc
1/2B

+
1/2 : zhx ∈ D(F+, G/Γ)} is at most dc + d− α1

λ
.

Proof. For each α < α1 and 0 < δ < 1 we first choose t > 0, a height function u and
ℓ, C ≥ 1 so that Lemma 4.3, (5.1), (5.2), (5.3) and (5.4) hold. Then there exists
0 < σ < 1 and E2 ≥ 1 so that Lemma 6.1 holds.
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It follows from Lemma 4.3 (1)(2) and the definition of D(F+, G/Γ) that

D0
x ⊂

⋃

M≥1

WM where WM =
⋂

N≥M

D0
x(F

+, N, σ, C4ℓ).

Recall that for any metric space S,

dimH S = inf

{
s > 0 : inf

{Bi}

∑
ρ(Bi)

s = 0

}
,

where the latter “ inf ” is taken over all the countable coverings {Bi} of S that
consist of open metric balls. Then in view of Lemma 6.1, we have

dimH WM ≤ lim inf
N→∞

[dcλ+ dλ− α + δ(d+ dc + α)]tN + logE2

λtN

= dc + d− α

λ
+ δ

d+ dc + α

λ
.

Therefore

dimH D0
x ≤ dc + d− α

λ
+ δ

d+ dc + α

λ
.

The conclusion follows by first letting δ → 0 and then letting α → α1.
�

Lemma 6.3. If x ∈ D(F+, G/Γ) and h ∈ G−, then hx ∈ D(F+, G/Γ).

Proof. Note that by Lemma 3.1,

dist(fthx, ftx) ≤ dist(fthf−t, 1G) → 0

as t → ∞. Therefore the lemma holds. �

Proof of Theorem 1.4. We will show that

dimH D(F+, G/Γ) ≤ d− + dc + d− α1

λ
.

In view of the local nature of Hausdorff dimension and the definition of the metric
on G/Γ, it suffices to prove that for any x ∈ G/Γ

dimH{g ∈ BG
r : gx ∈ D(F+, G/Γ)} ≤ d− + dc + d− α1

λ
.

where r < 1 so that BG
r ⊂ B−

1 B
c
1/2B

+
1/2. By Lemma 6.3,

{g ∈ BG
r : gx ∈ D(F+, G/Γ)} ⊂ B−

1 D
0
x,

whose Hausdorff dimension is bounded from above by dimH D0
x + d−.4 In view of

Theorem 6.2, the Hausdorff dimension of D(F+, G/Γ) is less than d+ dc + d− − α1

λ
which is strictly less than the manifold dimension of G/Γ.

�

Remark 6.4. It is worth to mention that, if F = AF , then the contraction property
of the Benoist-Quint height function proved in [25] will allow us to prove a stronger
result. Namely, we can get a nontrivial upper bound of the Hausdorff dimension
of the intersection of D(F+, G/Γ) and orbits of the so-called (F+,Γ)-expanding
subgroups introduced in [20]. But unfortunately, we are not able to prove a uniform

4Here we are using Marstrand’s product theorem again.
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contracting property for the Benoist-Quint height functions even in the example
mentioned at the end of the introduction due to the existence of the unipotent part
in the second SL4(R) factor.
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