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Abstract

For a toric Calabi-Yau (CY) orbifold X whose underlying toric
variety is semi-projective, we construct and study a non-toric La-
grangian torus fibration on X , which we call the Gross fibration.
We apply the Strominger-Yau-Zaslow (SYZ) recipe to the Gross
fibration of X to construct its mirror with the instanton correc-
tions coming from genus 0 open orbifold Gromov-Witten (GW)
invariants, which are virtual counts of holomorphic orbi-disks in
X bounded by fibers of the Gross fibration.

We explicitly evaluate all these invariants by first proving an
open/closed equality and then employing the toric mirror theorem
for suitable toric (parital) compactifications of X . Our calcula-
tions are then applied to
(1) prove a conjecture of Gross-Siebert on a relation between genus

0 open orbifold GW invariants and mirror maps of X – this is
called the open mirror theorem, which leads to an enumerative
meaning of mirror maps, and

(2) demonstrate how open (orbifold) GW invariants for toric CY
orbifolds change under toric crepant resolutions – an open ana-
logue of Ruan’s crepant resolution conjecture.

1. Introduction

1.1. SYZ mirror construction. In 1996, Strominger-Yau-Zaslow [75]
proposed an intrinsic and geometric way to understand mirror symmetry
for Calabi-Yau (CY) manifolds via T -duality. Roughly speaking, the
Strominger-Yau-Zaslow (SYZ) conjecture asserts that a mirror pair of
CY manifolds X and X̌ admit fiberwise dual special Lagrangian torus
fibrations.

Mathematical approaches to SYZ mirror symmetry have since been
extensively studied by many researchers including Kontsevich-Soibelman
[64, 65], Leung-Yau-Zaslow [70], Leung [69], Gross-Siebert [52, 53, 54,
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55], Auroux [3, 4], Chan-Leung [19, 20], Chan-Lau-Leung [16] and
Abouzaid-Auroux-Katzarkov [1].

A very important application of the SYZ conjecture is to provide a
geometric construction of mirrors: Given a CY manifold X, a mirror
X̌ can be obtained by finding a (special) Lagrangian torus fibration
X → B and suitably modifying the complex structure of the total space
of the fiberwise dual by instanton corrections. For toric CY manifolds,
Gross [51] (and independently Goldstein [47]) constructed such a special
Lagrangian torus fibration which we call the Gross fibration. In [16],
the SYZ construction was applied to the Gross fibration to produce an
instanton-corrected mirror family of a toric CY manifold, following the
Floer-theoretic approach pioneered by Auroux [3, 4].

In this paper we consider the SYZ construction for toric CY orbifolds.
A toric CY orbifold is a (necessarily non-compact) Gorenstein toric
orbifold X whose canonical line bundle KX is trivial. We also assume
that the coarse moduli space of X is a semi-projective toric variety, or
equivalently, that X is as in Setting 4.2.

Following [51], we define in Definition 4.6 a special Lagrangian torus
fibration μ : X → B which we again call the Gross fibration of X . As
in the manifold case, the discriminant locus Γ ⊂ B can be described
explicitly. Γ is a real codimension 2 subset contained in a hyperplane
which we call the wall in the base B. The wall divides the smooth locus
B0 = B \ Γ into two chambers B+ and B−. Over B0, the fibration
μ restricts to a torus bundle μ : X0 → B0, and the dual torus bundle
μ̌ : X̌0 → B0 admits a natural complex structure, producing the so-
called semi-flat mirror of X .

This does not give the genuine mirror for X because the semi-flat
complex structure cannot be extended further to any partial compact-
ification of X̌0, due to nontrivial monodromy of the affine structure
around the discriminant locus Γ. According to the SYZ proposal, we
should deform the semi-flat complex structure by instanton corrections
so that it becomes extendable. More concretely, what we do is to modify
the gluing between the complex charts over the chambers B+ and B−
by wall-crossing formulas for genus 0 open orbifold GW invariants of X
(cf. the manifold case [3, 4, 16, 1]). The latter are virtual counts of
holomorphic orbi-disks in X with boundary lying on regular fibers of μ.
A suitable partial compactification then yields the following instanton-
corrected mirror, or SYZ mirror, of X :

Theorem 1.1 (See Section 5.3). Let X be a toric CY orbifold as
in Setting 4.2 and equipped with the Gross fibration in Definition 4.6.
Then the SYZ mirror of X (with a hypersurface removed) is the family
of non-compact CY manifolds

X̌ := {(u, v, z1, . . . , zn−1) ∈ C2 × (C×)n−1 | uv = g(z1, . . . , zn−1)},
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where the defining equation uv = g is given by

uv = (1+δ0)+

n−1∑
j=1

(1+δj)zj+

m−1∑
j=n

(1+δj)qjz
bj+

∑
ν∈Box′(Σ)age=1

(τν+δν)q
−D∨

ν zν .

Here 1 + δj and τν + δν are generating functions of orbi-disk invariants
of (X , Fr) (see Section 5.2 for the reasons why the generating functions
are of these forms).

Remark 1.2.

1) The SYZ mirror of the toric CY orbifold X , without removing
a hypersurface, is given by the Landau-Ginzburg model (X̌ ,W )
where W : X̌ → C is the holomorphic function W := u; this is
exactly like the manifold case as discussed in [16, Section 4.6] and
[1, Section 7].

2) Section 6.5 contains several explicit examples. For instance, let κj
be explicitly given by (6.21). Then the mirror of X = [C2/Zm] is

given by the equation uv =
∏m−1

j=0 (z − κj).

To the best of our knowledge, this is the first time the SYZ construc-
tion is applied systematically to construct mirrors for orbifolds.

1.2. Orbi-disk invariants. To demonstrate that X̌ is indeed mirror
to X , we would like to show that the family X̌ is written in canonical
coordinates. This can be rephrased as the conjecture that the SYZ map,
defined in terms of orbi-disk invariants, is inverse to the toric mirror map
of X (cf. [55, Conjecture 0.2], [16, Conjecture 1.1] and [18, Conjecture
2]). To prove this, knowledge about the orbi-disk invariants is absolutely
crucial.

One major advance of this paper is the complete calculation of these
orbi-disk invariants, or genus 0 open orbifold GW invariants, for mo-
ment-map Lagrangian torus fibers in toric CY orbifolds. Our calculation
is based on the following open/closed equality:

Theorem 1.3 (See Theorem 6.12 and Equation (6.1)). Let X be a
toric CY orbifold as in Setting 4.2 and equipped with a toric Kähler
structure. Let L ⊂ X be a Lagrangian torus fiber of the moment map
of X , and let β ∈ π2(X , L) be a holomorphic (orbi-)disk class of Chern-
Weil (CW) Maslov index 2. Let X̄ be the toric partial compactification
of X constructed in Construction 6.1 which depends on β. Then we have
the following equality between genus 0 open orbifold GW invariants of
(X , L) and closed orbifold GW invariants of X̄ :

(1.1) nX1,l,β([pt]L;1ν1 , . . . ,1νl) = 〈[pt],1ν̄1 , . . . ,1ν̄l〉X̄0,1+l,β̄.

The proof is by showing that the relevant moduli space of stable
(orbi-)disks in X is isomorphic to the relevant moduli space of stable
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maps to X̄ as Kuranishi spaces. The key geometric ingredients under-
lying the proof are that the toric compactification X̄ is constructed so
that (orbi-)disks in X can be “capped off” in X̄ to obtain (orbi-)spheres,
and that the deformations and obstructions of the two moduli problems
can naturally be identified.

The closed orbifold GW invariants of X̄ in (1.1) are encoded in the J-
function of X̄ . Evaluating these invariants via the toric mirror theorem
requires extra care since X̄ may be noncompact. Fortunately, X̄ is semi-
Fano (see Definition 2.3) and semi-projective, so the equivariant toric
mirror theorem of [27] still applies to give an explicit formula for the
equivariant J-function of X̄ . Extracting the relevant equivariant closed
orbifold GW invariants from this formula and taking non-equivariant
limits then yield explicit formulas for the genus 0 open orbifold GW
invariants of X and hence the generating functions which appear in the
defining equation of the SYZ mirror X̌ :

Theorem 1.4 (See Theorems 6.19 and 6.20). Let X be a toric CY
orbifold as in Setting 4.2. Let Fr be a Lagrangian torus fiber of the
Gross fibration of X lying above a point r in the chamber B+ ⊂ B0. Let
the functions AXi (y)’s be given explicitly in (6.14).

1) Let 1 + δi be the generating function of genus 0 open orbifold GW

invariants of X in classes βi(r) + α, with α ∈ Heff
2 (X ) satisfying

c1(X ) · α = 0 and βi(r) ∈ π2(X , Fr) the basic smooth disk class
corresponding to the primitive generator bi of a ray in Σ. Then

1 + δi = exp
(
−AXi (y)

)
,

after inverting the toric mirror map (6.16).
2) Let τν + δν be the generating function of genus 0 open orbifold

GW invariants of X in classes βν(r) +α, with α ∈ Heff
2 (X ) satis-

fying c1(X ) · α = 0 and βν(r) ∈ π2(X , Fr) the basic orbi-disk class
corresponding to a Box element ν of age 1. Then

τν + δν = yD
∨
ν exp

⎛⎝−
∑
i/∈Iν

cνiA
X
i (y)

⎞⎠ ,

after inverting the toric mirror map (6.16).

These generalize results in [18] to all semi-projective toric CY orb-
ifolds, including the toric CY 3-fold X = KF2 which cannot be handled
by [18] (see Example (4) in Section 6.5).

1.3. Applications. Our explicit calculations in Theorem 1.4 has two
major applications.

1.3.1. Open mirror theorems. The first application, as we men-
tioned above, is to show that the SYZ mirror family X̌ is written in
canonical coordinates. This concerns the comparison of several mirror
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maps for a toric CY orbifold X . More precisely, the SYZ construction
yields what we call the SYZ map FSYZ, defined in terms of genus 0 open
orbifold GW invariants (see the precise definition in (7.2)). In closed
GW theory, the toric mirror theorem of [27] involves a combinatorially
defined toric mirror map Fmirror (see Section 2.4 and (6.16)). We prove
the following open mirror theorem:

Theorem 1.5 (Open mirror theorem for toric CY orbifolds - Version
1). For a toric CY orbifold X as in Setting 4.2, the SYZ map is inverse
to the toric mirror map, i.e. we have

FSYZ =
(
Fmirror

)−1
near the large volume limit (q, τ) = 0 of X . In particular, this holds for
a semi-projective toric CY manifold.

We remark that an open mirror theorem was proved for compact
semi-Fano toric manifolds in [17] and some examples of compact semi-
Fano toric orbifolds in [14]. On the other hand, open mirror theorems
for 3-dimensional toric CY geometries relative to Aganagic-Vafa type
Lagrangian branes were proved in various degrees of generality in [50,
8, 36, 37].

By combining the above open mirror theorem together with the anal-
ysis of relations between period integrals and the GKZ hypergeometric
system associated to X done in [18], we obtain another version of the
open mirror theorem, linking the SYZ map to period integrals:

Theorem 1.6 (Open mirror theorem for toric CY orbifolds - Version
2). For a toric CY orbifold X as in Setting 4.2, there exists a collection
{Γ1, . . . ,Γr} ⊂ Hn(X̌ ;C) of linearly independent cycles such that

qa = exp

(
−
∫
Γa

Ω̌FSYZ(q,τ)

)
, a = 1, . . . , r′,

τbj =

∫
Γj−m+r′+1

Ω̌FSYZ(q,τ), j = m, . . . ,m′ − 1,

where qa’s and τbj ’s are the Kähler and orbifold parameters in the ex-
tended complexified Kähler moduli space of X .

We deduce the following relation between disk invariants and period
integrals in the manifold case:

Corollary 1.7 (Open mirror theorem for toric CY manifolds). For a
semi-projective toric CY manifold X , there exists a collection {Γ1, . . . ,
Γr} ⊂ Hn(X̌ ;C) of linearly independent cycles such that

qa = exp

(
−
∫
Γa

Ω̌FSYZ(q,τ)

)
, a = 1, . . . , r,
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where qa’s are the Kähler parameters in the complexified Kähler moduli
space of X , and FSYZ(q) is the SYZ map in Definition 7.1, now defined
in terms of the generating functions 1+δi of genus 0 open GW invariants
nX1,l,βi+α([pt]L).

Our results provide an enumerative meaning to period integrals, as
conjectured by Gross and Siebert in [55, Conjecture 0.2 and Remark
5.1]. One difference between our results and their conjecture is that we
use holomorphic disks while they considered tropical disks. In the case
of toric Calabi-Yau manifolds, our symplectic construction was proved
in [66] to be equivalent to the Gross-Siebert tropical construction by
using our explicit formula for open Gromov-Witten invariants given in
Theorem 1.4. On the other hand, their conjecture is much more general
and expected to hold even when X is a compact CY manifold. See [16,
Conjecture 1.1] (also [18, Conjecture 2]) for a more precise formulation
of the Gross-Siebert conjecture in the case of toric CY manifolds.

Corollary 1.7 proves a weaker form of [16, Conjecture 1.1], which con-
cerns periods over integral cycles in X̌ (while here the cycles Γ1, . . . ,Γr

are allowed to have complex coefficients), for all semi-projective toric
CY manifolds. The case when X is the total space of the canonical
line bundle of a toric Fano manifold was previous proved in [18]. (As
explained in [18, Section 5.2], to prove the original stronger form of the
conjecture, we need integral cycles whose periods have specific logarith-
mic terms. Such cycles have been constructed by Doran and Kerr in [34,
Section 5.3 and Theorem 5.1] when X is the total space of the canonical
line bundle KY over a toric del Pezzo surface Y . Doran suggested to
us that it should not be difficult to extend their construction to general
toric CY varieties. Hence the stronger form of the conjecture should fol-
low from Corollary 1.7 and their construction; cf. the discussion in [33,
Section 4]. In the recent paper [74], Ruddat and Siebert gave yet an-
other construction of such integral cycles by tropical methods. Though
they worked only in the compact CY case, Ruddat pointed out that the
method can be generalized to handle the toric CY case as well.)

1.3.2. Open crepant resolution conjecture. The second main ap-
plication concerns how genus 0 open (orbifold) GW invariants change
under crepant birational maps. String theoretic considerations suggest
that GW theory should remain unchanged as the target space changes
under a crepant birational map. This is known as the crepant resolution
conjecture and has been intensively studied in closed GW theory; see
e.g. [73, 10, 29, 26, 30] and references therein.

In [14], a conjecture on how generating functions of genus 0 open
GW invariants behave under crepant resolutions was formulated and
studied for compact Gorenstein toric orbifolds. In this paper, we apply
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our calculations to prove an analogous result for toric CY orbifolds (see
Section 8 for details):

Theorem 1.8 (See Theorem 8.1). Let X be a toric CY orbifold as
in Setting 4.2, and let X ′ be a toric orbifold which is a toric crepant
partial resolution of X (such an X ′ will automatically be as in Setting
4.2). Then we have

FSYZ
X = FSYZ

X ′ ,

after analytic continuation and a change of variables.

Open versions of the crepant resolution conjecture for Aganagic-Vafa
type Lagrangian branes in 3-dimensional toric CY orbifolds have been
considered in recent works of Brini, Cavalieri and Ross [12, 9], and of
Ke and Zhou [62].

1.4. Organization. The rest of the paper is organized as follows. Sec-
tion 2 contains a review on the basic materials about toric orbifolds
that we need. The (equivariant) mirror theorem for toric orbifolds is
discussed in Section 2.6. In Section 3 we give a summary on the theory
of genus 0 open orbifold GW invariants for toric orbifolds. In Section
4 we define and study the Gross fibration of a toric CY orbifold. In
Section 5 we construct the instanton-corrected mirror of a toric CY
orbifold by applying the SYZ recipe to the Gross fibration of a suitable
toric modification. The genus 0 open orbifold GW invariants which are
relevant to the SYZ mirror construction are computed in Section 6 via
an open/closed equality and an equivariant toric mirror theorem ap-
plied to various toric (partial) compactifications. In Section 7 we apply
our calculation to deduce the open mirror theorems which relate various
mirror maps associated to a toric CY orbifold. Our calculation is also
applied in Section 8 to prove a relationship between genus 0 open orb-
ifold GW invariants of a toric CY orbifold and those of its toric crepant
(partial) resolutions. Appendix A contains the technical discussions on
the analytic continuations of mirror maps.
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2. Preliminaries on toric orbifolds

In this section we review the construction and basic properties of
toric orbifolds. We also describe the closed mirror theorem for toric
orbifolds due to [27]. See [6, 60] for more details on toric orbifolds, and
see [58, 37, 27] for mirror theorems for toric orbifolds.

2.1. Construction. A toric orbifold, as introduced in [6], is associated
to a set of combinatorial data called a stacky fan: (Σ, b0, . . . , bm−1),
where Σ is a simplicial fan contained in the R-vector spaceNR := N⊗ZR
associated to a rank n lattice N , and {bi | 0 ≤ i ≤ m− 1} are integral
generators of 1-dimensional cones (rays) in Σ. We call bi the stacky
vectors. Denote by |Σ| ⊂ NR the support of Σ.

Let bm, . . . , bm′−1 ∈ N ∩ |Σ| be additional vectors such that the

set {bi}m−1i=0 ∪ {bj}m
′−1

j=m generates N over Z. Following [60], the data

(Σ, {bi}m−1i=0 ∪ {bj}m
′−1

j=m ) is called an extended stacky fan, and {bj}m
′−1

j=m

are called extra vectors. The flexibility of choosing extra vectors is im-
portant in the toric mirror theorem, see Section 2.6.

We describe the construction of toric orbifolds from extended stacky
fans. The fan map,

φ : Ñ :=
m′−1⊕
i=0

Zei → N, φ(ei) := bi for i = 0, . . . ,m′ − 1,

which is a surjective group homomorphism, gives an exact sequence (the
“fan sequence”)

(2.1) 0 −→ L := Ker(φ)
ψ−→ Ñ

φ−→ N −→ 0.

Note that L � Zm′−n. Tensoring with C× gives the following exact
sequence:
(2.2)

0 −→ G := L⊗Z C× −→ Ñ ⊗Z C× � (C×)m
′ φ

C×−→ T := N ⊗Z C× → 0.

Consider the set of “anti-cones”,

(2.3) A :=

{
I ⊂ {0, 1, . . . ,m′ − 1} |

∑
i/∈I

R≥0bi is a cone in Σ

}
.
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For I ∈ A, let CI ⊂ Cm′
be the subvariety defined by the ideal in

C[Z0, . . . , Zm′−1] generated by {Zi | i ∈ I}. Put

UA := Cm′ \
⋃
I /∈A

CI .

The algebraic torus G acts on Cm′
via the map G → (C×)m′

in (2.2).
Since N is torsion-free, the induced G-action on UA is effective and has
finite isotropy groups. The global quotient

XΣ := [UA/G]

is called the toric orbifold associated to (Σ, {bi}m−1i=0 ∪ {bj}m
′−1

j=m ). By

construction, the standard (C×)m
′
-action on UA induces a T-action on

XΣ.

Definition 2.1. Let XΣ be the toric variety which is the coarse mod-
uli space of a toric orbifold XΣ. We say that XΣ is semi-projective if XΣ

admits a T-fixed point, and the natural map XΣ → Spec H0(XΣ,OXΣ
)

is projective.

Toric orbifolds appearing in this paper all have semi-projective coarse
moduli spaces. We refer to [32, Section 7.2] for more detailed discussions
on semi-projective toric varieties.

2.2. Twisted sectors. For a d-dimensional cone σ ∈ Σ generated by
bσ = (bi1 , . . . , bid), put

Boxbσ :=

{
ν ∈ N | ν =

d∑
k=1

tkbik , tk ∈ [0, 1) ∩Q

}
.

Let Nbσ ⊂ N be the submodule generated by {bi1 , . . . , bid}. Then Boxbσ
is in bijection with the finite group Gbσ = N/Nbσ . It is easy to see that
if τ ≺ σ, then Boxbτ ⊂ Boxbσ . Define

Box◦bσ := Boxbσ −
⋃
τ�σ

Boxbτ , Box(Σ) :=
⋃

σ∈Σ(n)

Boxbσ =
⊔
σ∈Σ

Box◦bσ

where Σ(n) is the set of n-dimensional cones in Σ. We set Box′(Σ) =
Box(Σ) \ {0}.

By [6], Box′(Σ) is in bijection with the twisted sectors, i.e. non-trivial
connected components of the inertia orbifold of XΣ. For ν ∈ Box(Σ),
denote by Xν the corresponding twisted sector of X . Note that X0 = X
as orbifolds. See Figure 1a for an example of Box′(Σ).

The Chen-Ruan orbifold cohomology H∗
CR(X ;Q) of a toric obifold X ,

defined in [22], is

Hd
CR(X ;Q) =

⊕
ν∈Box

Hd−2age(ν)(Xν ;Q),
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where age(ν) is the degree shifting number or age of the twisted sector Xν

and the cohomology groups on the right hand side are singular cohomol-

ogy groups. If we write ν =
∑d

k=1 tkbik ∈ Box(Σ) where {bi1 , . . . , bid}
generates a cone in Σ, then age(ν) =

∑d
k=1 tk ∈ Q≥0.

The T-action on X induces T-actions on twisted sectors. This al-
lows one to define the T-equivariant Chen-Ruan orbifold cohomology
H∗

CR,T(X ;Q) as

Hd
CR,T(X ;Q) =

⊕
ν∈Box

H
d−2age(ν)
T (Xν ;Q),

where H∗
T(−) denotes T-equivariant cohomology. The trivial T-bundle

over a point pt defines a map pt → BT, inducing a map H∗
T(pt,Q) =

H∗(BT,Q) → H∗(pt). Let Y be a space with a T-action. By con-
struction the T-equvariant cohomology of Y admits a map H∗

T(pt) →
H∗

T(Y,Q). This defines a natural map

H∗
T(Y,Q) → H∗

T(Y,Q)⊗H∗
T
(pt) H

∗(pt) � H∗(Y,Q).

For a class C ∈ H∗
T(Y,Q), its image under this map, which is a class

in H∗(Y,Q), is called the non-equivariant limit of C. In Section 6,
we will need to consider non-equivariant limits of certain classes in
H∗

CR,T(X ;Q).

2.3. Toric divisors, Kähler cones, and Mori cones. Let X be a

toric orbifold defined by an extended stacky fan (Σ, {bi}m−1i=0 ∪{bj}m
′−1

j=m ).

Let A be the set of anticones given in (2.3). Applying HomZ(−,Z) to
the fan sequence (2.1) gives the following exact sequence:

0 −→ M
φ∨

−→ M̃
ψ∨

−→ L∨ −→ 0,

called the “divisor sequence”. Here M := N∨ = Hom(N,Z), M̃ :=

Ñ∨ = Hom(Ñ ,Z) and L∨ = Hom(L,Z) are dual lattices. The map

ψ∨ : M̃ → L∨ is surjective since N is torsion-free.
By construction, line bundles on X correspond to G-equivariant line

bundles on UA. Because of (2.2), T-equivariant line bundles on X cor-

respond to (C×)m
′
-equivariant line bundles on UA. Because ∪I /∈ACI ⊂

Cm′
is of codimension at least 2, we have the following descriptions of

the Picard groups:

Pic(X ) � Hom(G,C×) � L∨,

P icT(X ) � Hom((C×)m
′
,C×) � Ñ∨ = M̃.

Moreover, the natural map PicT(X ) → Pic(X ) is identified with ψ∨ :

M̃ → L∨.
Let {e∨i |i = 0, 1, . . . ,m′ − 1} ⊂ M̃ be the basis dual to {ei|i =

0, 1, . . . ,m′ − 1} ⊂ Ñ . For i = 0, 1, . . . ,m′ − 1, we denote by DT
i the
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T-equivariant line bundle on X corresponding to e∨i under the identifi-

cation PicT(X ) � M̃ . Also put

Di := ψ∨(e∨i ) ∈ L∨.

The collection {Di | 0 ≤ i ≤ m − 1} are toric prime divisors corre-
sponding to the generators {bi | 0 ≤ i ≤ m − 1} of rays in Σ, and
{DT

i | 0 ≤ i ≤ m − 1} are their T-equivariant lifts. There is a natural
commutative diagram and isomorphisms

M̃ ⊗Q

��

ψ∨⊗Q
�� L∨ ⊗Q

��(
M̃ ⊗Q

)/(∑m′−1
j=m QDT

j

)
�� (L∨ ⊗Q)

/(∑m′−1
j=m QDj

)
� �

H2
T(X ,Q) H2(X ,Q).

As explained in [58, Section 3.1.2], there is a canonical splitting of
the quotient map L∨ ⊗ Q → H2(X ;Q), which we now describe. For
m ≤ j ≤ m′ − 1, bj is contained in a cone in Σ. Let Ij ∈ A be the
anticone of the cone containing bj . Then we can write bj =

∑
i/∈Ij cjibi

for cji ∈ Q≥0.
By the fan sequence (2.1) tensored with Q, there exists a unique

D∨j ∈ L⊗Q such that

(2.4) 〈Di,D
∨
j 〉 =

⎧⎨⎩ 1 if i = j,
−cji if i /∈ Ij ,
0 if i ∈ Ij \ {j}.

Here and henceforth 〈−,−〉 denotes the natural pairing between L∨ and
L (or relevant extensions of scalars). This defines a decomposition
(2.5)

L∨ ⊗Q = Ker
((

D∨m, . . . ,D∨m′−1
)
: L∨ ⊗Q → Qm′−m

)
⊕

m′−1⊕
j=m

QDj .

Moreover, the term Ker
((

D∨m, . . . ,D∨m′−1
)
: L∨ ⊗Q → Qm′−m

)
is nat-

urally identified with H2(X ;Q) via the quotient map L∨⊗Q → H2(X ;
Q), which allows us to regard H2(X ;Q) as a subspace of L∨ ⊗Q.

The extended Kähler cone of X is defined to be

C̃X :=
⋂
I∈A

(∑
i∈I

R>0Di

)
⊂ L∨ ⊗R.
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The genuine Kähler cone CX is the image of C̃X under the quotient map
L∨ ⊗ R → H2(X ;R). The splitting (2.5) of L∨ ⊗ Q induces a splitting

of the extended Kähler cone in L∨ ⊗ R: C̃X = CX +
∑m′−1

j=m R>0Dj .

Recall that the rank of L∨ is r := m′ − n while the rank of H2(X ;Z)
is given by r′ := r − (m′ − m) = m − n. We choose an integral ba-

sis {p1, . . . , pr} ⊂ L∨ such that pa is in the closure of C̃X for all a

and pr′+1, . . . , pr ∈ ∑m′−1
i=m R≥0Di. Then the images {p̄1, . . . , p̄r′} of

{p1, . . . , pr′} under the quotient map L∨ ⊗ Q → H2(X ;Q) gives a nef
basis for H2(X ;Q) and p̄a = 0 for r′ + 1 ≤ a ≤ r.

Choose {pT1 , . . . , pTr } ⊂ M̃ ⊗ Q such that ψ∨(pTa ) = pa for all a, and

p̄Ta = 0 for a = r′ + 1, ..., r. Here, for p ∈ M̃ ⊗ Q, denote by p̄ ∈
H2

T(X ,Q) the image of p under the natural map M̃ ⊗ Q → H2
T(X ,Q).

By construction, for a = 1, ..., r′, p̄a is the non-equivariant limit of p̄Ta .
Define a matrix (Qia) by Di =

∑r
a=1 Qiapa, Qia ∈ Z. Denote by D̄i

the image of Di under L
∨ ⊗Q → H2(X ;Q). Then for i = 0, . . . ,m− 1,

the class D̄i of the toric prime divisor Di and its equivariant lift D̄T
i are

given by

D̄i =

r′∑
a=1

Qiap̄a, D̄T
i =

r′∑
a=1

Qiap̄
T
a + λi, where λi ∈ H2(BT;Q),

and for i = m, . . . ,m′ − 1, D̄i = 0 in H2(X ;R), D̄T
i = 0.

Let 1 ∈ H0(X ,Q) be the fundamental class. For ν ∈ Box with
age(ν) = 1, let 1ν ∈ H0(Xν ,Q) be the fundamental class. It is then
straightforward to see that

H0
CR,T(X ,KT) = KT1, H2

CR,T(X ,KT) =
r′⊕

a=1

KTp̄
T
a ⊕

⊕
ν∈Box,age(ν)=1

KT1ν ,

where KT is the field of fractions of H∗
T(pt,Q), and H∗

T(−,KT) :=
H∗

T(−,Q)⊗H∗
T
(pt,Q) KT.

The dual basis of {p1, . . . , pr} ⊂ L∨ is given by {γ1, . . . , γr} ⊂ L

where γa =
∑m′−1

i=0 Qiaei ∈ Ñ . Then {γ1, . . . , γr′} provides a basis of

Heff
2 (X ;Q). In particular, we have Qia = 0 when m ≤ i ≤ m′ − 1 and

1 ≤ a ≤ r′.
Set

K := {d ∈ L⊗Q | {j ∈ {0, 1, . . . ,m′ − 1} | 〈Dj , d〉 ∈ Z} ∈ A},
Keff := {d ∈ L⊗Q | {j ∈ {0, 1, . . . ,m′ − 1} | 〈Dj , d〉 ∈ Z≥0} ∈ A}.

Roughly speaking Keff is the set of effective curve classes. In particu-
lar, the intersection Keff ∩ H2(X ;R) consists of classes of stable maps
P(1,m) → X for some m ∈ Z≥0. See e.g. [58, Section 3.1] for more
details.
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For a real number λ ∈ R, let �λ�, �λ� and {λ} denote the ceiling,
floor and fractional part of λ respectively. Now for d ∈ K, define

(2.6) ν(d) :=

m′−1∑
i=0

�〈Di, d〉�bi ∈ N,

and let Id := {j ∈ {0, 1, . . . ,m′ − 1} | 〈Dj , d〉 ∈ Z} ∈ A. Then since we
can rewrite

ν(d) =

m′−1∑
i=0

({−〈Di, d〉} + 〈Di, d〉)bi

=
m′−1∑
i=0

{−〈Di, d〉}bi =
∑
i/∈Id

{−〈Di, d〉}bi,

we have ν(d) ∈ Box, and hence ν(d), if nonzero, corresponds to a twisted
sector Xν(d) of X .

2.4. The I-function. We now define the following combinatorial ob-
ject.

Definition 2.2. The T-equivariant I-function of a toric orbifold X
is an H∗

CR,T(X )-valued power series defined by

IX ,T(y, z) =

e
∑r

a=1 p̄
T
a log ya/z

⎛⎝ ∑
d∈Keff

yd
m′−1∏
i=0

∏∞
k=
〈Di,d〉(D̄

T
i + (〈Di, d〉 − k)z)∏∞

k=0(D̄
T
i + (〈Di, d〉 − k)z)

1ν(d)

⎞⎠ ,

where yd = y
〈p1,d〉
1 · · · y〈pr,d〉r and 1ν(d) ∈ H0(Xν(d)) ⊂ H

2age(ν(d))
CR (X )

is the fundamental class of the twisted sector Xν(d). The I-function
of X is an H∗

CR(X )-valued power series IX (y, z) defined by the above

equation with p̄Ta (resp. D̄T
i ) replaced by p̄a (resp. D̄i). Clearly the

non-equivariant limit of IX ,T is IX .

Definition 2.3. A toric orbifold X is said to be semi-Fano if ρ̂(X ) :=∑m′−1
i=0 Di is contained in the closure of the extended Kähler cone C̃X

in L∨ ⊗ R.

We remark that this condition depends on the choice of the extra
vectors bm, . . . , bm′−1. It holds if and only if the first Chern class
c1(X ) ∈ H2(X ;Q) of X is contained in the closure of the Kähler cone CX
(i.e. the anticanonical divisor −KX is nef) and age(bj) :=

∑
i/∈Ij cji ≤ 1

for m ≤ j ≤ m′ − 1, because ρ̂(X ) = c1(X ) +
∑m′−1

j=m (1 − age(bj))Dj

by [58, Lemma 3.3]. In particular, when X is a toric manifold, the
condition is equivalent to requiring the anticanonical divisor −KX to
be nef.
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The orbifolds that we consider in this paper satisfy the following
assumption.

Assumption 2.4. The set {b0, . . . , bm−1} ∪ {ν ∈ Box(Σ) | age(ν) ≤
1} generates the lattice N over Z.

Under this assumption, we choose the extra vectors bm, . . . , bm′−1 ∈
{ν ∈ Box(Σ) | age(ν) ≤ 1} so that {b0, . . . , bm′−1} generates N over Z.
Then the fan sequence (2.1) determines the elements D0, . . . ,Dm′−1 and
ρ̂(X ) = D0+ · · ·+Dm′−1 holds (see [58, Remark 3.4]). Furthermore, we

can then identify L∨⊗C with the subspace H2(X )⊕
⊕m′−1

j=m H0(Xbj
) ⊂

H≤2
CR(X ).
If X is semi-Fano, then its I-function is a convergent power series

in y1, . . . , yr by [58, Lemma 4.2]. Moreover, it can be expanded as

IX (y, z) = 1 + τ(y)
z + O(z−2), where τ(y) is a (multi-valued) function

with values in H≤2
CR(X ) which expands as

τ(y) =
r′∑

a=1

p̄a log ya +
m′−1∑
j=m

yD
∨
j 1bj + higher order terms.

We call q(y) = exp τ(y) the toric mirror map, and it defines a local
embedding near y = 0 (it is a local embedding if we further assume that
{bm, . . . , bm′−1} = {ν ∈ Box(Σ) | age(ν) ≤ 1}); see [58, Section 4.1] for
more details. Similar discussion is valid for equivariant I-functions.

2.5. Equivariant GW invariants. In this subsection we discuss the
construction of equivariant GW invariants. We refer to [21] and [2]
for the basics of GW theory of orbifolds, and to e.g. [46] and [71] for
generalities on equivariant GW theory.

The T-action on X induces T-actions on moduli spaces of stable maps
to X . It is well-known that in this situation we can define T-equivariant
GW invariants of X as integrals against T-equivariant virtual funda-
mental classes of these moduli spaces.

Let Mcl
n (X , d) be the moduli space of n-pointed genus 0 orbifold

stable maps to X of degree d ∈ H2(X ;Q). For i = 1, ..., n, we have an
evaluation map evi : Mcl

n (X , d) → IX , and a complex line bundle Li →
Mcl

n (X , d) whose fibers are cotangent lines at the i-th marked point of
the coarse domain curves. Suppose Mcl

n (X , d) is compact. Then there
is a virtual fundamental class [Mcl

n (X , d)]virt ∈ H∗(Mcl
n (X , d),Q). For

cohomology classes φ1, ..., φn ∈ H∗
CR(X ,Q) and integers k1, ..., kn ≥ 0,

genus 0 closed orbifold GW invariants of X are defined as

(2.7)
〈
φ1ψ

k1
1 , ..., φnψ

kn
n

〉X
0,n,d

:=

∫
[Mcl

n (X ,d)]virt

n∏
i=1

(ev∗i φi ∪ ψki
i ) ∈ Q,

where ψi := c1(Li) ∈ H2(Mcl
n (X , d),Q).



SYZ AND OPEN GW FOR TORIC CY ORBIFOLDS 221

The T-action on X induces a T-action onMcl
n (X , d). WhenMcl

n (X , d)
is compact, there is a T-equivariant virtual fundamental class
[Mcl

n (X , d)]virt,T ∈ H∗,T(Mcl
n (X , d),Q). For cohomology classes φ1,T, ...,

φn,T ∈ H∗
CR,T(X ,Q) and integers k1, ..., kn ≥ 0, T-equivariant genus 0

closed orbifold GW invariants of X are defined as〈
φ1,Tψ

k1
1 , ..., φn,Tψ

kn
n

〉X ,T

0,n,d
(2.8)

:=

∫
[Mcl

n (X ,d)]virt,T

n∏
i=1

(ev∗i φi,T ∪ ψki
i ) ∈ H∗

T(pt,Q),

where ψi := cT1 (Li) ∈ H2
T(Mcl

n (X , d),Q) are T-equivariant first Chern
classes.

Suppose again that Mcl
n (X , d) is compact. Also suppose that

φ1, ..., φn ∈ H∗
CR(X ,Q) are non-equivariant limits of φ1,T, ..., φn,T ∈

H∗
CR,T(X ,Q). Then by construction of virtual fundamental classes, the

non-equivariant limit of
〈
φ1,Tψ

k1
1 , ..., φn,Tψ

kn
n

〉X ,T

0,n,d
, i.e. its image un-

der the natural map H∗
T(pt,Q) → H∗(pt) = Q, is equal to

〈
φ1ψ

k1
1 , ...,

φnψ
kn
n

〉X
0,n,d

.

If Mcl
n (X , d) is noncompact but the locus Mcl

n (X , d)T ⊂ Mcl
n (X , d) of

T-fixed points is compact, then the T-equivariant invariant
〈
φ1,Tψ

k1
1 , ...,

φn,Tψ
kn
n

〉X ,T

0,n,d
can still be defined by (2.8), with the integration∫

[Mcl
n (X ,d)]virt,T

defined by the virtual localization formula [49]:∫
[Mcl

n (X ,d)]virt,T

(−) :=
∑

F⊂Mcl
n (X ,d)T

∫
[F ]virt

ι∗F (−)

eT(N
virt
F )

∈ KT,

where F runs through all connected components of Mcl
n (X , d)T, ιF :

F → Mcl
n (X , d)T is the inclusion, [F ]virt is the natural virtual funda-

mental class on F , and eT(N
virt
F ) is the T-equivariant Euler class of the

virtual normal bundle Nvirt
F of F ⊂ Mcl

n (X , d). It follows easily from

the virtual localization formula that if both Mcl
n (X , d)T and Mcl

n (X , d)
are compact, the two definitions of T-equivariant invariants agree.

Remark 2.5. If X is projective, then Mcl
n (X , d) is compact. If X

is not projective but semi-projective, then it is easy to show that the
locus Mcl

n (X , d)T ⊂ Mcl
n (X , d) of T-fixed points is compact. In this

case, T-equvariant GW invariants are still defined.
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2.6. Toric mirror theorem. We give a review of the mirror theorem
for toric orbifolds proven in [27] in the case of semi-Fano toric orbifolds.
Our exposition follows [58] and [37].

Let X be a toric orbifold as in Section 2.1.

Definition 2.6. The T-equivariant (small) J-function of a toric orb-
ifold X is an H∗

CR,T(X )-valued power series defined by

JX (q, z)= eτ0,2/z

(
1 +

∑
α

∑
(d,l)�=(0,0)

d∈Heff
2 (X )

qd

l!

〈
1, τtw, . . . , τtw,

φα

z − ψ

〉X ,T

0,l+2,d

φα

)
,

where τ0,2 =
∑r′

a=1 p̄
T
a log qa ∈ H2

T(X ), τtw =
∑m′−1

j=m τbj1bj ∈⊕m′−1
j=m H0

T(Xbj
), qd = e〈τ0,2,d〉 = q

〈p̄1,d〉
1 · · · q〈p̄r′ ,d〉r′ , {φα}, {φα} are dual

basis of H∗
CR,T(X ). The (small) J-function of X is an H∗

CR(X )-valued

power series JX (q, z) defined by the above equation, with p̄Ta replaced
by p̄a and {φα}, {φα} replaced by dual basis of H∗

CR(X ). The non-
equivariant limit of JX ,T is JX .

Roughly speaking, the (equivariant) mirror theorem for the toric orb-
ifold X states that the (equivariant) J-function coincides with the (equi-
variant) I-function via the mirror map.

Theorem 2.7 (Equivariant mirror theorem for toric orbifolds [27];
see also [37], Conjecture 4.1). Let X be a semi-projective semi-Fano
toric Kähler orbifold. Then

eq0(y)1/zJX ,T(q, z) = IX ,T(y(q, τ), z),

where y = y(q, τ) is the inverse of the toric mirror map q = q(y),
τ = τ(y) determined by the expansion of the equivariant I-function:

IX ,T(y, z) = 1 +
q0(y)1+ τ(y)

z
+O(z−2), τ(y) ∈ H2

CR,T(X ).

Taking non-equivariant limits gives (note that the non-equivariant
limit of q0(y) is 0):

Theorem 2.8 (Closed mirror theorem for toric orbifolds [27]; see
also [58], Conjecture 4.3). Let X be a compact semi-Fano toric Kähler
orbifold. Then

JX (q, z) = IX (y(q, τ), z),

where y = y(q, τ) is the inverse of the toric mirror map q = q(y),
τ = τ(y).
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3. Orbi-disk invariants

We briefly review the construction of genus 0 open orbifold GW in-
variants of toric orbifolds [24].

Let (X , ω) be a toric Kähler orbifold of complex dimension n, equipped
with the standard toric complex structure J0 and a toric Kähler struc-
ture ω. Suppose that X is associated to the stacky fan (Σ, b), where
b = (b0, . . . , bm−1) and bi = civi. As before, Di (i = 0, . . . ,m − 1)
denotes the toric prime divisor associated to bi. Let L ⊂ X be a La-
grangian torus fiber of the moment map μ0 : X → MR := M ⊗Z R, and
consider a relative homotopy class β ∈ π2(X , L) = H2(X , L;Z).

3.1. Holomorphic orbi-disks and their moduli spaces. A holo-
morphic orbi-disk in X with boundary in L is a continuous map w :
(D, ∂D) → (X , L) such that the following conditions are satisfied:

1) (D, z+1 , . . . , z
+
l ) is an orbi-disk with interior orbifold marked points

z+1 , . . . , z
+
l . Namely D is analytically the disk D2 ⊂ C, together

with orbifold structure at each marked point z+j for j = 1, . . . , l.

For each j, the orbifold structure at z+j is given by a disk neigh-

borhood of z+j which is uniformized by a branched covering map

br : z → zmj for some (if mj = 1, z+j is a smooth interior marked

point) mj ∈ Z>0.
2) For any z0 ∈ D, there is a disk neighborhood of z0 with a branched

covering map br : z → zm, and there is a local chart (Vw(z0), Gw(z0),
πw(z0)) of X at w(z0) and a local holomorphic lifting w̃z0 of w
satisfying w ◦ br = πw(z0) ◦ w̃z0 .

3) The map w is good (in the sense of Chen-Ruan [21]) and repre-
sentable. In particular, for each marked point z+j , the associated
homomorphism

(3.1) hp : Zmj
→ Gw(z+j )

between local groups which makes w̃z+j
equivariant, is injective.

Denote by νj ∈ Box(Σ) the image of the generator 1 ∈ Zmj
under hj

and let Xνj be the twisted sector of X corresponding to νj. Such a map
w is said to be of type x := (Xν1 , . . . ,Xνl).

There are two notions of Maslov index for an orbi-disk. The desin-
gularized Maslov index μde is defined by desingularizing the interior
singularities (following Chen-Ruan [21]) of the pull-back bundle w∗TX
in [24, Section 3]. The Chern-Weil (CW) Maslov index is defined in
[25] as the integral of the curvature of a unitary connection on w∗TX
which preserves the Lagrangian boundary condition. We will mainly
use the CW Maslov index in this paper. The following lemma, which
generalizes results in [23, 3, 24], can be used to compute the Maslov
index of disks.
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Lemma 3.1. Let (X , ω, J) be a Kähler orbifold of complex dimension
n, equipped with a non-zero meromorphic n-form Ω on X which has at
worst simple poles. Let D ⊂ X be the pole divisor of Ω. Suppose also
that the generic points of D are smooth. Then for a special Lagrangian
submanifold L ⊂ X , the CW Maslov index of a class β ∈ π2(X , L) is
given by

(3.2) μCW (β) = 2β ·D.

Proof. Suppose β is a homotopy class of a smooth disk. Given a
smooth disk representative u : D2 → X of β, note that the pull-back
of the canonical line bundle u∗(KX ) is an honest vector bundle over
D2, and hence, the proof in [3] applies to this case. Also since the CW
Maslov index is topological, we can write any class β which is repre-
sented by an orbi-disk as a (fractional) linear combination of homotopy
classes of smooth disks. Hence (3.2) for an orbi-disk class β also follows.

q.e.d.

Orbi-disks in a symplectic toric orbifold have been classified [24, The-
orem 6.2]. Among them, the following basic disks corresponding to the
stacky vectors and twisted sectors play an important role.

Theorem 3.2 ([24], Corollaries 6.3 and 6.4). Let X and L be as in
the beginning of this section.

1) The smooth holomorphic disks of Maslov index two (modulo T n-
action and automorphisms of the domain) are in a one-to-one cor-
respondence with the stacky vectors {b0, . . . , bm−1}, whose homo-
topy classes are denoted as β0, · · · , βm−1.

2) The holomorphic orbi-disks with one interior orbifold marked point
and desingularized Maslov index zero (modulo T n-action and au-
tomorphisms of the domain) are in a one-to-one correspondence
with the twisted sectors ν ∈ Box′(Σ) of the toric orbifold X , whose
homotopy classes are denoted as βν.

Lemma 3.3 ([24], Lemma 9.1). For X and L as above, the rela-
tive homotopy group π2(X , L) is generated by the classes βi for i =
0, . . . ,m− 1 together with βν for ν ∈ Box′(Σ).

We call these generators of π2(X , L) the basic disk classes; they are
the analogue of Maslov index two disk classes in toric manifolds. Ba-
sic disk classes were used in [24] to define the leading order bulk orbi-
potential, and it can be used to determine the Floer homology of torus
fibers with suitable bulk deformations.

Let Mmain
k+1,l(L, β,x) be the moduli space of good representable stable

maps from bordered orbifold Riemann surfaces of genus zero with k+1
boundary marked points z0, z1 . . . , zk and l interior (orbifold) marked
points z+1 , . . . , z

+
l in the homotopy class β of type x = (Xν1 , . . . ,Xνl).
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Here, the superscript “main” indicates that we have chosen a connected
component on which the boundary marked points respect the cyclic
order of S1 = ∂D2. By [24], Mmain

k+1,l(L, β,x) has a Kuranishi structure
of real virtual dimension

(3.3) n+ μCW (β) + k + 1 + 2l − 3− 2

l∑
j=1

age(νj).

By [24, Proposition 9.4], if Mmain
1,1 (L, β) is non-empty and if ∂β is

not in the sublattice generated by b0, . . . , bm−1, then there exist ν ∈
Box′(Σ), ki ∈ N (i = 0, . . . ,m − 1) and α ∈ Heff

2 (X ) such that β =

βν +
∑m−1

i=0 kiβi + α, where α is realized by a union of holomorphic
(orbi-)spheres. The CW Maslov index of β written in this way is given

by μCW (β) = 2age(ν) + 2
∑m−1

i=0 ki + 2c1(X ) · α.

3.2. The invariants. Let Xν1 , . . . ,Xνl be twisted sectors of the toric
orbifold X . Consider the moduli space Mmain

1,l (L, β,x) of good repre-
sentable stable maps from bordered orbifold Riemann surfaces of genus
zero with one boundary marked point and l interior orbifold marked
points of type x = (Xν1 , . . . ,Xνl) representing the class β ∈ π2(X , L).
By [24], Mmain

1,l (L, β,x) carries a virtual fundamental chain, which van-
ishes unless the following equality holds:

(3.4) μCW (β) = 2 +

l∑
j=1

(2age(νj)− 2).

Definition 3.4. An orbifold X is called Gorenstein if its canonical
divisor KX is Cartier.

For a Gorenstein orbifold, the age of every twisted sector is a non-
negative integer. Now we assume that the toric orbifold X is semi-Fano
(see Definition 2.3) and Gorenstein. Then a basic orbi-disk class βν has
Maslov index 2age(ν) ≥ 2, and hence every non-constant stable disk
class has at least Maslov index 2.

We further restrict to the case where all the interior orbifold marked
points are mapped to age-one twisted sectors, i.e. the type x consists
of twisted sectors with age = 1. This will be enough for our purpose
of constructing the mirror over H2

CR(X ). In this case, the virtual fun-
damental chain [Mmain

1,l (L, β,x)]vir is non-zero only when μCW (β) = 2,
and in fact we get a virtual fundamental cycle because β attains the min-
imal Maslov index and thus disk bubbling does not occur. Therefore
the following definition of genus 0 open orbifold GW invariants (also
termed orbi-disk invariants) is independent of the choice of perturba-
tions of the Kuranishi structures (in the general case one may restrict to
torus-equivariant perturbations to make sense of the following definition
following Fukaya-Oh-Ohta-Ono [41, 42, 38]):
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Definition 3.5 (Orbi-disk invariants). Let β ∈ π2(X , L) be a relative
homotopy class with Maslov index given by (3.4). Suppose that the
moduli space M1,l(L, β,x) is compact. Then we define nX1,l,β([pt]L;
1ν1 , . . . ,1νl) ∈ Q to be the push-forward

nX1,l,β([pt]L;1ν1 , . . . ,1νl) := ev0∗
(
[M1,l(L, β,x)]

vir
)
∈ Hn(L;Q) ∼= Q,

where ev0 : Mmain
1,l (L, β,x) → L is evaluation at the boundary marked

point, [pt]L ∈ Hn(L;Q) is the point class of the Lagrangian torus fiber

L, and 1νj ∈ H0(Xνj ;Q) ⊂ H
2age(νj)
CR (X ;Q) is the fundamental class of

the twisted sector Xνj .

Remark 3.6. For the cases we need in this paper, compactness of
the disk moduli space M1,l(L, β,x) will be proved in Proposition 6.10
and Corollary 6.11.

Remark 3.7. The Kuranishi structures in this paper are the same
as those defined in [41, 42] (we refer the readers to [40, Appendix] and
[39] for the detailed construction, and also to [72] (and its forthcoming
sequels) for a different approach). But the moduli spaces considered
here are in fact much simpler than those in [41, 42] (and [40]) because
we only need to consider stable disks with just one disk component
which is minimal, and hence disk bubbling does not occur. Also, we
consider only disk counting invariants, but not the whole A∞ structure;
this reduces the problem to studying moduli spaces of virtual dimensions
0 or 1, which simplifies several issues involved.

For a basic (orbi-)disk with at most one interior orbifold marked
point, the corresponding moduli space M1,0(L, βi) (or M1,1(L, βν , ν)
when βν is a basic orbi-disk class) is regular and can be identified with
L. Thus the associated invariants are evaluated as follows [24]:

1) For ν ∈ Box′, we have nX1,1,βν
([pt]L;1ν) = 1.

2) For i ∈ {0, . . . ,m− 1}, we have nX1,0,βi
([pt]L) = 1.

When there are more interior orbifold marked points or when the disk
class is not basic, the corresponding moduli space is in general non-
regular and virtual theory is involved in the definition, making the in-
variant much more difficult to compute. One primary aim of this paper
is to compute all these invariants for toric CY orbifolds.

4. Gross fibrations for toric CY orbifolds

The first ingredient needed for the SYZ construction is a Lagrangian
torus fibration. For a toric CY manifold, such fibrations were con-
structed by Gross [51] and Goldstein [47] independently. In this section
we generalize their constructions to toric CY orbifolds; cf. the manifold
case as discussed in [16, Sections 4.1-4.5].



SYZ AND OPEN GW FOR TORIC CY ORBIFOLDS 227

4.1. Toric CY orbifolds.

Definition 4.1. A Gorenstein toric orbifold X is called Calabi-Yau
(CY) if there exists a dual vector ν ∈ M = N∨ = Hom(N,Z) such that
(ν, bi) = 1 for all stacky vectors bi.

Let X be a toric CY orbifold associated to a stacky fan (Σ, b0, . . . ,
bm−1). Since bi = civi for some primitive vector vi ∈ N and (ν, vi) ∈ Z,
we have ci = 1 for all i = 0, . . . ,m− 1. Therefore toric CY orbifolds are
always simplicial.

For the purpose of this paper, we will always assume that the coarse
moduli space of the toric CY orbifold X is semi-projective (Definition
2.1).

Setting 4.2 (Partial resolutions of toric Gorenstein canonical singu-
larities). Let σ ⊂ NR be a strongly convex rational polyhedral Goren-

stein canonical cone with primitive generators {b̃i} ⊂ N . Here, strongly
convex means that the cone σ is convex in NR and does not contain
any whole straight line; while Gorenstein canonical means that there

exists ν ∈ M such that
(
ν , b̃i

)
= 1 for all i, and (ν , v) ≥ 1 for all

v ∈ σ∩ (N \{0}). We denote by P ⊂ NR the convex hull of {b̃i} ⊂ N in
the hyperplane {v ∈ NR | (ν, v) = 1} ⊂ NR. P is an (n−1)-dimensional
lattice polytope.

Let Σ ⊂ NR be a simplicial refinement of σ obtained by taking the
cones over a triangulation of P (where all vertices of the triangulation
belong to P ∩N). Then Σ together with the collection

{bi | i = 0, . . . ,m− 1} ⊂ N

of primitive generators of rays in Σ is a stacky fan. The associated toric
orbifold X = XΣ is Gorenstein and CY.

By relabeling the bi’s if necessary, we assume that {b0, . . . , bn−1}
generates a top-dimensional cone in Σ and hence forms a rational basis
of NQ := N ⊗Z Q.

Proposition 4.3. The coarse moduli space of a toric CY orbifold X
is semi-projective if and only if X satisfies Setting 4.2.

Proof. If X satisfies Setting 4.2, it is clear that its fan has full-
dimensional convex support. Moreover, X can be constructed by using
its moment map polytope, so its coarse moduli space is semi-projective.

Conversely, suppose that the coarse moduli space of X is semi-projec-
tive. Since X is Gorenstein, there exists ν ∈ M such that (ν , bi) = 1
for all primitive generators bi of rays in Σ. Then the convex hull of bi’s
in the hyperplane {(ν , ·) = 1} ⊂ NR defines a lattice polytope P, and
the support of the fan is equal to the cone σ over this lattice polytope
by convexity of the fan. Obviously, the cone σ is strongly convex and
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Gorenstein. Also the fan of X is obtained by a triangulation of the
lattice polytope P. q.e.d.

For the rest of this paper, X will be a toric CY orbifold as in Setting
4.2. This implies that Assumption 2.4 is satisfied: If P has no inte-
rior lattice points, then clearly {0} ∪ (P ∩ N) generate the lattice N .
Otherwise we can inductively find a minimal simplex contained in P
which does not contain any interior lattice points, and it follows that
{0} ∪ (P ∩N) generate the lattice N .

Without loss of generality we may assume that ν = (0, 1) ∈ M �
Zn−1⊕Z so that P is contained in the hyperplane {v ∈ NR | ((0, 1) , v) =
1}. We enumerate

Box′(Σ)age=1 := {ν ∈ Box′(Σ) | age(ν) = 1} = {bm, . . . , bm′−1}
and choose bm, . . . , bm′−1 to be the extra vectors so that

P ∩N = {b0, . . . , bm−1, bm, . . . , bm′−1}.
4.2. The Gross fibration. In this section we construct a special La-
grangian torus fibration on a toric CY orbifold X . This is a fairly
straightforward generalization of the constructions of Gross [51] and
Goldstein [47] to the orbifold setting.

To begin with, notice that the vector ν ∈ M corresponds to a holo-
morphic function on X which we denote by w : X → C. The following
two lemmas are easy generalizations of the corresponding statements
for toric CY manifolds [16], so we omit their proofs.

Lemma 4.4 (cf. [16], Proposition 4.2). The function w on X corre-
sponding to ν ∈ M is holomorphic, and its zero divisor (w) is precisely

the anticanonical divisor −KX =
∑m−1

i=0 Di.

Lemma 4.5 (cf. [16], Proposition 4.3). For the dual basis {u0, . . . ,
un−1} ⊂ MQ := M ⊗Z Q of the basis {b0, . . . , bn−1}, denote by ζj the
corresponding meromorphic function to uj . Then dζ0 ∧ · · · ∧ dζn−1 ex-
tends to a nowhere-zero holomorphic n-form Ω on X .

Next, we equip X with a toric Kähler structure ω and consider the
associated moment map μ0 : X → P , where P is the moment polytope
defined by a system of inequalities:

(bi, ·) ≥ ci, i = 0, . . . ,m− 1.

Consider the subtorus T⊥ν := N
⊥ν
R /N⊥ν ⊂ NR/N . The moment map

of the T⊥ν action is given by composing μ0 with the natural quotient
map:

[μ0] : X
μ0−→ MR → MR/R〈ν〉.

The following is a generalization of the Gross fibration for toric CY
manifolds [47, 51], which gives a Lagrangian torus fibration (SYZ fi-
bration).
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Definition 4.6. Fix K2 > 0. A Gross fibration of X is defined to be

μ : X → (MR/R〈ν〉)× R≥−K2
2
, x �→ ([μ0(x)], |w(x) −K2|2 −K2

2 ).

We denote by B := (MR/R〈ν〉)×R≥−K2
2
the base of the Gross fibration

μ.

Since the holomorphic function w vanishes on the toric prime divisors
Di ⊂ X , the images of Di ⊂ X under the map μ have second coordinate
zero. Moreover, the hypersurface defined by w(x) = K2 maps to the
boundary of the image of μ.

Proposition 4.7. With respect to the holomorphic volume form Ω/
(w−K2) defined on μ−1(Bint) and the toric Kähler form ω, the map μ
is a special Lagrangian torus fibration.

This proposition can be proved in exactly the same way as in the
manifold case (cf. [51, Theorem 2.4] or [16, Proposition 4.7]). It follows
from the construction of symplectic reduction: The function w descends
to the symplectic reduction X//T⊥ν → C; since the circles centered at
K2 are special Lagrangian with respect to the volume form d log(w−K2),
it follows that their preimages are also special Lagrangian in X with
respect to the holomorphic volume form Ω/(w −K2).

4.2.1. Discriminant locus and local trivialization. For each ∅ �=
I ⊂ {0, . . . ,m − 1} such that {bi | i ∈ I} generates a cone in Σ, we
define

(4.1) TI := {ξ ∈ P | (bi, ξ) = ci, i ∈ I} ⊂ ∂P.

TI is a codimension-(|I| − 1) face of ∂P . Let [TI ] := [μ0](TI).

Proposition 4.8. The discriminant locus of the Gross fibration μ is
given by

Γ := {r ∈ B | r is a critical value of μ} = ∂B ∪

⎛⎝⎛⎝ ⋃
|I|=2

[TI ]

⎞⎠× {0}

⎞⎠ .

Proof. This is similar to the proof of [16, Proposition 4.9] in the
manifold case: A fiber degenerates when the T⊥ν-orbit degenerates or
|w − K2| = 0. A T⊥ν-orbit degenerates if and only if w = 0 and

[μ0] ∈
(⋃

|I|=2[TI ]
)
; |w−K2| = 0 implies that the base point is located

in ∂B. q.e.d.

Put B0 := B\Γ. By the arguments in [16, Section 2.1], the restriction
μ : X0 := μ−1(B0) → B0 is a torus bundle. For facets T0, . . . , Tm−1 of
P , consider the following open subsets of B0:

(4.2) Ui := B0 \
⋃
k �=i

([Tk]× {0}).
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The torus bundle μ over each Ui can be explicitly trivialized. Without
loss of generality we describe this explicit trivialization over U0.

Definition 4.9. We choose v1, . . . , vn−1 ∈ N such that

1) {b0} ∪ {v1, . . . , vn−1} is an integral basis of N ;
2) (vi, ν) = 0 for 1 ≤ i ≤ n− 1.

Let {ν0, . . . , νn−1} ⊂ M be the dual basis of {b0} ∪ {v1, . . . , vn−1}.

Definition 4.10. Denote

T⊥b0 :=
NR/R〈b0〉
N/Z〈b0〉

.

Then, over U0, we have a trivialization

μ−1(U0) ∼= U0 × T⊥b0 × (R/2πZ).

Here the first map is given by μ, the last map is given by arg(w−K2), and
the second map is given by the argument over 2π of the meromorphic
functions corresponding to ν1, . . . , νn−1.

4.2.2. Generators of homotopy groups. Fix r0 := (q1, q2) ∈ U0

with q2 > 0. Consider the fiber Fr0 := μ−1(q1, q2). By the trivialization
in Definition 4.10, we have Fr0 � T⊥b0 × (R/2πZ). Hence π1(Fr0) �
N/Z〈b0〉 × Z has the following basis (over Q)

{λi | 0 ≤ i ≤ n− 1}, λ0 = (0, 1), λi = ([vi], 0) for 1 ≤ i ≤ n− 1.

Recall that for a regular fiber L of the moment map X → P , the basic
disk classes form a natural basis of π2(X , L) (Lemma 3.3). Then the
explicit Lagrangian isotopy between Fr0 and L:

(4.3) Lt := {x ∈ X | [μ0(x)] = q1, |w(x)− t|2 = K2
2 + q2}, t ∈ [0,K2]

allows us to identify π2(X , Fr0) with π2(X , L) and view the basic disk
classes in π2(X , L) as classes in π2(X , Fr0). By abuse of notation, we
still denote these classes by β0, . . . , βm−1 and {βν | ν ∈ Box′(Σ)}. For
a general r ∈ U0, a basis for π2(X , Fr) may be obtained by identifying
Fr with Fr0 using the trivialization in Definition 4.10.

Lemma 4.11. For a fiber Fr of μ where r ∈ U0, the boundary of the
disk classes are

∂βj = λ0 +
n−1∑
i=1

(νi, bj)λi, 0 ≤ j ≤ m− 1

∂βν = λ0 +
n−1∑
i=1

(νi, ν)λi, ν =
n−1∑
i=1

(νi, ν)vi ∈ Box′(Σ).

Proof. Similar to the proof of [16, Proposition 4.12]. q.e.d.
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4.2.3. Wall-crossing of orbi-disk invariants. Like the manifold case,
the behavior of disk invariants with boundary conditions on a fiber Fr

depends on the location of r. In this section we study this behavior for
the Gross fibration μ : X → B of a toric CY orbifold.

Let β ∈ π2(X , Fr) be a class represented by a stable disk. Then
β =

∑
i ui+α where ui’s are disk classes and α is the class of a rational

curve, so that μCW (β) =
∑

i μCW (ui) + 2c1(X ) · α. Since X is CY,
c1(X )·α = 0. The fiber Fr ⊂ X is special Lagrangian with respect to the
meromorphic form Ω/(w−K2). Since the pole divisor of Ω/(w−K2) is

D̃0 := {w(x) = K2} ⊂ X , Lemma 3.1 implies that μCW (ui) = 2ui ·D̃0 ≥
0. Thus we have

Lemma 4.12. If a class β ∈ π2(X , Fr) is represented by a stable
disk, then μCW (β) ≥ 0.

The following result describes when the minimal Maslov index 0 can
be achieved.

Lemma 4.13. Let r = (q1, q2) ∈ B0. Consider the fiber Fr.

1) Fr bounds a non-constant stable disk of CW Maslov index 0 if and
only if q2 = 0.

2) If q2 �= 0, then Fr has minimal CW Maslov index at least 2, i.e.
Fr does not bound any non-constant stable disks with CW Maslov
index less than 2.

Proof. By the observation that for a holomorphic orbi-disk u : D →
X , the composition w ◦ u : D → C is a holomorphic function on every
local chart of D and is invariant under the action of the local groups and
by the maximum principle, this lemma can be proved as in the manifold
case; cf. [16, Lemma 4.27 and Corollary 4.28]. q.e.d.

By definition, the wall of a Lagrangian fibration μ : X → B is the
locus H ⊂ B0 of all r ∈ B0 such that the Lagrangian fiber Fr bounds
a non-constant stable disk of CW Maslov index 0. The above lemma
shows that

H = MR/R〈ν〉 × {0}.
The complement B0 \H is the union of two connected components

B+ := MR/R〈ν〉 × (0,+∞), B− := MR/R〈ν〉 × (−K2
2 , 0).

For r ∈ B0 \ H, orbi-disk invariants with arbitrary numbers of age-
one insertions are well-defined for relative homotopy classes with CW
Maslov index 2. We need to consider the two possibilities, namely r ∈
B+ and r ∈ B−.
Case 1: r ∈ B+. Let r = (q1, q2) ∈ B+, namely q2 > 0. Then (4.3) gives
a Lagrangian isotopy between the fiber Fr and a regular Lagrangian
torus fiber L. Furthermore, since q2 > 0, for each t ∈ [0,K2], w is
never 0 on Lt. It follows that the Lagrangians Lt in the isotopy do not
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bound non-constant disks of CW Maslov index 0. Hence for r ∈ B+,
the orbi-disk invariants of (X , Fr) with arbitrary numbers of age-one
insertions and CW Maslov index 2 coincide with those of (X , L), which
are reviewed in Section 3.2.
Case 2: r ∈ B−. In this case we have the following

Proposition 4.14. Let r = (q1, q2) ∈ B−, namely q2 < 0. Let
β ∈ π2(X , Fr). Suppose 1ν1 , . . . ,1νl ∈ H∗

CR(X ) are fundamental classes
of twisted sectors Xν1 , . . . ,Xνl such that age(ν1) = · · · = age(νl) = 1.
Then we have

nX1,l,β([pt]Fr ;1ν1 , . . . ,1νl) =

{
1 if β = β0 and l = 0
0 otherwise .

Proof. By dimension reason, we may assume that μCW (β) = 2.
Let u : (D, ∂D) → (X , Fr) be a non-constant holomorphic orbi-disk.

Then the composition (w−K2) ◦ u descends to a holomorphic function

(w −K2) ◦ u : |D| → C on the smooth disk |D| underlying D. Since
r ∈ B−, |w − K2| is constant on Fr with value less than K2. Since

u(∂|D|) = u(∂D) ⊂ Fr, we have |(w −K2) ◦ u| < K2 on ∂|D|. By the

maximum principle, |(w −K2) ◦ u| < K2 on the whole |D|. Hence the
image of u is contained in S− := μ−1({(q1, q2) ∈ B | q2 < 0}). Also

observe that u(D) must intersect D̃0 := {w(x) = K2} ⊂ X . Since
the hypersurface w(x) = K2 does not contain orbifold points, we have

u(D) · D̃0 ∈ Z>0. Lemma 3.1 implies that u is of CW Maslov index at
least 2.

Let h : C → X be a non-constant holomorphic map from an orbifold
sphere C. Then h(C) ∩ S− = ∅. To see this, we consider w ◦ h, which
descends to a holomorphic function w ◦ h on the P1 underlying C. Since
w ◦ h must be a constant function, the image h(C) is contained in a level
set w−1(c) for some c ∈ C. For c �= 0, we have w−1(c) � (C×)n−1 which
does not support non-constant holomorphic spheres, so c = 0. Now we
conclude by noting that w−1(0) ∩ S− = ∅.

Now let v ∈ Mmain
1,l (Fr, β, (Xν1 , . . . ,Xνl)) be a stable orbi-disk of CW

Maslov index 2. As explained above, each orbi-disk component con-
tributes at least 2 to the CW Maslov index. Hence v can have only one
orbi-disk component. Also, a non-constant holomorphic orbi-sphere in
X cannot meet an orbi-disk, so v does not have any orbi-sphere com-
ponents. This shows that for any β ∈ π2(X , Fr) of Maslov index 2, the
moduli space Mmain

1,l (Fr, β, (Xν1 , . . . ,Xνl)) parametrizes only orbi-disks,
and all these orbi-disks are contained in S− and do not meet the toric
divisorsD1, . . . ,Dm−1. Since each orbifold point on the orbi-disk of type
ν ∈ Box′(Σ) contributes 2age(ν) to the CW Maslov index μCW (β), and
we assumed age(ν) = 1 and μCW (β) = 2, there are no orbifold points
on the disk.
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Recall that relative homotopy classes βν can be written as (frac-
tional) linear combinations of β0, . . . , βm−1 with non-negative coeffi-
cients. Thus, the class β of any orbi-disk can be written as a linear
combination of β0, . . . , βm−1 with non-negative coefficients. Hence, from
the fact that intersection numbers of β with the divisors D1, . . . ,Dm−1
are zero, we may conclude that β = kβ0 for some k ≥ 0, and μ(β) = 2
implies that k = 1 and β = β0. Holomorphic smooth disks representing
the class β0 are confined in an affine toric chart. The argument analo-
gous to that in the proof of [16, Proposition 4.32] then shows that the
invariant is 1 in this case. This concludes the proof. q.e.d.

4.3. Examples.

1) X = [C2/Zm]. This is the Am−1 surface singularity. The stacky
fan is a cone generated by (0, 1) and (m, 1) in N = Z2 (Figure
1a). By subdividing the cone by the rays generated by (k, 1) for
k = 1, . . . ,m− 1, one obtains a resolution of the singularity. The
age-one twisted sectors of X are in a one-to-one correspondence
with the lattice points (k, 1) ∈ Box′ for k = 1, . . . , n − 1. The
Gross fibration of this orbifold is depicted in Figure 1b.

(m,1)(0,1)

(m,1)(0,1)

(a) Fans for [C2/Zm]
and its resolution.
The crosses represent
twisted sectors.

(b) Gross fibration on
[C2/Zm]. The dotted
line is the wall and the
cross is the discrimi-
nant locus.

Figure 1. [C2/Zm].

2) X = [C3/Z2g+1] for g ∈ N. Let N be the lattice Z3+Z
〈
(1,1,2g−1)

2g+1

〉
.

The stacky fan is a cone generated by (1, 0, 0), (0, 1, 0), (0, 0, 1) ∈
N , which is a cone over the convex hull of these 3 vectors in the
hyperplane {(a, b, c) ∈ NR : a + b + c = 1}. Using the triangula-
tion of the polygon by the lattice points (k, k, 2g+1−2k)/(2g+1)
(Figure 2a), one obtains a resolution of the orbifold singularity,
which is the mirror manifold of a Riemann surface of genus g
(see [61, 35]). (The mirror of a Riemann surface of genus g is a
Landau-Ginzburg model, which is a holomorphic function defined
on the manifold described here [61, 35].) The age-one twisted
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sectors of X are in a one-to-one correspondence with the lattice
points (k, k, 2g + 1 − 2k)/(2g + 1) ∈ Box′ for k = 1, . . . , g. See
Figure 2b for the Gross fibration this orbifold.

(0,1,0)

(1,0,0)(0,0,1)

(0,1,0)

(1,0,0)(0,0,1)

(a) Cones over the
polytopes give the fans
for [C3/Z2g+1] and its
resolution; the crosses
represent twisted sec-
tors. This figure is for
g = 3.

(b) Gross fibration on
[C3/Z2g+1] with base
an upper-half-space.
The plane in the
middle is the wall; the
dotted line and the
plane at the bottom are
the discriminant loci,
with singular fibers as
shown.

Figure 2. [C3/Z2g+1].

3) X = [Cn/Zn] for n ∈ Z. The stacky fan is a cone generated by
(e1, 1), . . . , (en−1, 1), (−e1 − · · · − en−1, 1) ∈ N = Zn−1 × Z, where
{ei} is the standard basis of Zn−1. One obtains a resolution of the
orbifold singularity by subdividing the cone by the ray generated
by (0, 1) ∈ N , and the resulting manifold is the total space of
canonical line bundle over Pn−1. There is only one age-one twisted
sector, namely the lattice point (0, 1) ∈ Box′.

5. SYZ mirror construction

In this section we carry out the SYZ mirror construction for toric CY
orbifolds; cf. the manifold case as discussed in [16, Sections 4.6]. The
procedure may be summarized as follows. Let X be a toric CY orbifold
as in Setting 4.2, and μ : X → B be the Gross fibration in Definition
4.6.
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Step 1: Consider the torus bundle μ : X0 → B0. Take the dual
torus bundle μ̌ : X̌0 → B0. The total space X̌0 together with its
canonical complex structure is called the semi-flat mirror of X .

Step 2: Construct instanton corrections to the semi-flat complex co-
ordinates by taking family Fourier transforms of generating func-
tions of genus 0 open orbifold GW invariants.

Step 3: Take the spectrum of the coordinate ring generated by the
instanton-corrected complex coordinates to be the mirror.

More precisely, we need a toric partial compactification of X and the
corresponding Lagrangian fibration to obtain sufficiently many complex
coordinates of the mirror. This was explained for the manifold case in
[16, Section 4.3], and will not be repeated here.

Realizing the SYZ construction by using symplectic geometry and
open GW invariants was pioneered by Auroux in [3, 4]. The above pro-
cedure was proposed in [16] and applied to all toric CY manifolds; see
also Abouzaid-Auroux-Katzarkov [1]. We carry out this construction
for toric CY orbifolds in the remainder of this section.

5.1. The semi-flat mirror. We construct the semi-flat mirror of X as
follows. Consider the torus bundle μ : X0 := (μ)−1(B0) → B0. Let X̌0

be the space of pairs (Fr,∇), where Fr := μ−1(r), r ∈ B0 and ∇ is a flat
U(1)-connection on the trivial complex line bundle over Fr up to gauge.
There is a natural projection map μ̌ : X̌0 → B0. We write F̌r := μ̌−1(r)
for r ∈ B0. According to [16, Proposition 2.5], μ̌ : X̌0 → B0 is a torus
bundle.

Recall that B0 has an open cover {Ui} defined by (4.2). We focus on
the open set U = U0 and describe the semi-flat complex coordinates on
the chart μ̌−1(U). Fix a base point r0 ∈ U . For r ∈ U , consider the
class λi ∈ π1(Fr) as in Section 4.2.2. Define cylinder classes [hi(r)] ∈
π2((μ)

−1(U), Fr0 , Fr) as follows. Recall the trivialization in Definition
4.10: (μ)−1(U) ∼= U × T⊥b0 × (R/2πZ). Pick a path γ : [0, 1] → U with
γ(0) = r0 and γ(1) = r. Define

hj : [0, 1]×R/Z → U×T⊥b0×(R/2πZ), hj(R,Θ) :=

(
γ(R),

Θ

2π
[vj ], 0

)
for j = 1, . . . , n− 1, and

h0 : [0, 1] × R/Z → U × T⊥b0 × (R/2πZ), h0(R,Θ) := (γ(R), 0, 2πΘ).

The classes [hi(r)] are independent of the choice of γ. Now the semi-
flat complex coordinates of (μ)−1(U) are given by z0, z1, . . . , zn−1 where
zi(Fr,∇) := exp(ρi + 2π

√
−1θ̌i). The semi-flat holomorphic volume

form is the nowhere vanishing form dz1 ∧ dz2 ∧ · · · ∧ dzn−1 ∧ dz0 on
(μ)−1(U). Semi-flat complex coordinates on the other charts μ̌−1(Uj)
can be similarly described.
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5.2. Instanton corrections. The semi-flat complex coordinate z0 re-
ceives instanton corrections by taking a family version of Fourier trans-
formations of generating functions of genus 0 open orbifold GW in-
variants which count orbi-disks with CW Maslov index 2. The result
is a complex-valued function z̃0 : (μ̌)−1(B0 \ H) → C such that for
(Fr,∇) ∈ (μ̌)−1(B0 \H), the value of z̃0 is given by
(5.1)

z̃0 =
∑

β∈π2(X ,Fr)

∑
l≥0

1

l!
nX1,l,β([pt]Fr ; τ, . . . , τ) exp

(
−
∫
β
ω

)
Hol∇(∂β),

where τ ∈ H2
CR(X ) ⊂ H∗

CR(X ) and μCW (β) = 2.
When r ∈ B−, Proposition 4.14 shows that the only non-vanishing

genus 0 open GW invariant is n1,0,β = 1 for β = β0. Therefore (5.1) has

only one term: z̃0 = exp
(
−
∫
β0(r0)

ω
)
z0. To simplify notations, we put

C0 := exp
(
−
∫
β0(r0)

ω
)
.

When r ∈ B+, there are non-trivial open GW invariants and (5.1)
reads

z̃0 = z0

m−1∑
j=0

Cj(1+δj)

n−1∏
i=1

z
(νi,bj)
i +z0

∑
ν∈Box′(Σ)age=1

Cν(τν+δν)

n−1∏
i=1

z
(νi,ν)
i ,

where Cj := exp
(
−
∫
βj(r0)

ω
)

for 0 ≤ j ≤ m − 1 and Cν :=

exp
(
−
∫
βν(r0)

ω
)
for ν ∈ Box′(Σ)age=1, and

1 + δj :=∑
α

∑
l≥0

∑
ν1,...,νl∈Box′(Σ)age=1

∏l
i=1 τνi
l!

n1,l,βj(r)+α([pt]L;
l∏

i=1

1νi) exp

(
−
∫
α
ω

)
,

(0 ≤ j ≤ m− 1),

τν + δν :=∑
α

∑
l≥0

∑
ν1,...,νl∈Box′(Σ)age=1

∏l
i=1 τνi
l!

n1,l,βν(r)+α([pt]L;

l∏
i=1

1νi) exp

(
−
∫
α
ω

)
,

(ν ∈ Box′(Σ)age=1)

(5.2)
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are generating functions of genus 0 open orbifold GW invariants. Here
we use the relation

−βj(r) = −βj(r0)− [h0(r)]−
n−1∑
i=1

(νi, bj)[hi(r)];

also, the generating functions can be written as in the left-hand-sides
of (5.2) because n1,0,βj(r)([pt]L) = n1,1,βν(r)([pt]L;1ν) = 1 for any j and

ν. Notice that n1,l,βν(r)+α([pt]L;
∏l

i=1 1νi) is nonzero only when l ≥ 1,
so the generating function τν + δν has no constant term.

The above discussion may be summarized as follows. For 0 ≤ j ≤
m − 1 and ν ∈ Box′(Σ)age=1 we put zbj :=

∏n−1
i=1 z

(νi,bj)
i and zν :=∏n−1

i=1 z
(νi,ν)
i .

Proposition 5.1. We have

z̃0 =

⎧⎪⎪⎨⎪⎪⎩
z0
∑m−1

j=0 Cj(1 + δj)z
bj

+z0
∑

ν∈Box′(Σ)age=1 Cν(τν + δν)z
ν for r ∈ B+,

C0z0 for r ∈ B−.

5.3. The mirror. Let C[[q, τ ]] be the ring of formal power series in the
variables

{q1, . . . , qr} ∪ {τν | ν ∈ Box′(Σ)age=1},
which are parameters in the complexified extended Kähler moduli space
of X (see Section 7.1.1 for precise definitions of these parameters), with
coefficients in C. Consider R+ = R− := C[[q, τ ]][z±0 , . . . , z

±
n−1]. Let R0

be the localization of C[[q, τ ]][z±0 , . . . , z
±
n−1] at

g :=
m−1∑
j=0

Cj(1 + δj)z
bj +

∑
ν∈Box′(Σ)age=1

Cν(τν + δν)z
ν .

Let [Id] : R− → R0 be the localization map. Also define R+ → R0 by
zk �→ [zk] for k = 1, . . . , n− 1 and z0 �→ [g−1z0].

Using these two maps, we put R := R− ×R0 R+. We identify z̃0 with
u := (C0z0, z0g) ∈ R. Setting v := (C−10 z−10 g, z−10 ) ∈ R, we have

R � C[[q, τ ]][u±, v±, z±1 , . . . , z
±
n−1]/〈uv − g〉.

Taking the relative spectrum Spec(R), we obtain

X̌ = {(u, v, z1, . . . , zn−1) ∈ C2 × (C×)n−1 : uv = g(z1, . . . , zn−1)}.
This gives the SYZmirror of the complement of the hypersurface {w(x) =
K2} in X . The SYZ mirror of the toric CY orbifold X itself is given by
the Landau-Ginzburg model (X̌ ,W ), where W : X̌ → C is the Fourier
transformation of the generating function orbi-disk invariants for classes
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with CW Maslov index 2, which is simply the holomorphic function de-
fined by W := u; see [16, Section 4.6] and [1, Section 7] for related
discussions in the manifold case.

It is not difficult to see that

Proposition 5.2. There exists a coordinate change such that under
the new coordinates, the defining equation uv = g of X̌ can be written
as

uv = (1+δ0)+

n−1∑
j=1

(1+δj)zj+

m−1∑
j=n

(1+δj)qjz
bj+

∑
ν∈Box′(Σ)age=1

(τν+δν)q
−D∨

ν zν,

where qj := qξj and ξj ∈ H2(X ;Q) is the class defined by bj =
∑n−1

i=0 ajibi

for j = n, . . . ,m−1, and q−D∨
ν :=

∏r
a=1 q

−〈pa,D∨
ν 〉

a for ν ∈ Box′(Σ)age=1.

Remark 5.3 (Convergence). A priori the Kähler parameters qa’s and
the variables τν ’s keeping track of stacky insertions in the generating
functions (5.2) are only formal. However, in our case, the generating
functions can be shown to be convergent; see Corollary 6.21 below.

5.4. Examples. (1) X = [C2/Zm]. The stacky fan and Gross fibration
are shown in Figure 1a and 1b respectively. It has m−1 twisted sectors
of age 1 which are in bijection with the vectors νi = (i, 1) for i =
1, . . . ,m − 1. Each twisted sector νi has a corresponding basic orbi-
disk class βνi . The SYZ mirror constructed in this section is uv =

1 + zm +
∑m−1

j=1 (τj + δνj (τ))z
j , where

τj + δνj(τ) =∑
k1,...,km−1≥0

τk11 . . . τ
km−1

m−1
(k1 + . . .+ km−1)!

n1,l,βνj
([pt]L; (1ν1)

k1 × . . .× (1νm−1)
km−1),

(5.3)

l = k1+ . . .+kg and τ =
∑m−1

i=1 τi1νi ∈ H2
CR(X ). All Kähler parameters

τi are contributed from twisted sectors in this case, and the non-triviality
of orbi-disk invariants is also due to the presence of twisted sectors.

The Am−1 singularity X = C2/Zm has a resolution X̃ whose fan and
Gross fibration are shown in Figure 1a and 1b. It has m− 1 irreducible
(−2) curves li’s which have Chern number 0, and they are in bijection
with the primitive generators (i, 1), i = 1, . . . ,m − 1. The SYZ mirror

of the resolution X̃ is
(5.4)

uv = 1+ zm +

m−1∑
j=1

(1 + δj(q))z
j , 1 + δj(q) =

∑
k1,...,km−1≥0

n1,0,βj+αk
qαk ,

and αk =
∑m−1

i=1 kili in the above expression. The Kähler parameters

qli ’s are given by exp(−
∫
li
ω), and the non-triviality of disk invariants is
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due to the presence of rational curves of Chern number zero. The SYZ
construction for toric CY surfaces X̃ has been studied in [68], where δj
has been computed explicitly.
(2) X = [C3/Z2g+1] for g ∈ N. See Figure 2a and 2b for the fan and
Gross fibration. It has g twisted sectors of age one which are in one-to-
one correspondence with the vectors νi = (i, i, 2g+1−2i)/(2g+1) ∈ N
for i = 1, . . . , g. Let z1 be the affine complex coordinate corresponding
to the vector (1, 0,−1) ∈ N , z2 to (1, 1,−2)/(2g + 1) and u to (0, 0, 1).
Then the SYZ mirror of X is

(5.5) uv = 1 + z1 + z−11 z2g+1
2 +

g∑
j=1

(τj + δνj (τ))z
j
2,

where

τj+δνj (τ) =
∑

k1,...,kg≥0

τk11 . . . τ
kg
g

(k1 + . . .+ kg)!
n1,l,βνj

([pt]L; (1ν1)
k1×. . .×(1νg )

kg),

l = k1 + . . .+ kg and τ =
∑g

i=1 τi1νi ∈ H2
CR(X ).

The orbifold X = C3/Z2g+1 has a toric resolution X̃. Figure 3 shows
the codimension-two skeleta of its moment map polytope, which is also
the discriminant locus of the Gross fibration. Its Mori cone is generated
by C1, . . . , Cg as shown in Figure 3. The SYZ mirror of the resolution

X̃ is

uv = 1+ z1 + q
∑g

i=1(2i−1)Ciz−11 z2g+1
2 +

g∑
j=1

(1 + δj(q))q
∑j−2

i=0 (j−1−i)Cg−izj2,

where

1 + δj(q) =
∑

k1,...,kg≥0
n1,0,βj+αk

qαk ,

αk =
∑g

i=1 kiCi, and βj is the basic disk class corresponding to the toric
divisor Dj .
(3) X = [Cn/Zn] for n ∈ Z. Its fan has been described in Section 4.3.
It has a twisted sector of age one which corresponds to ν = (0, 1) ∈
Zn−1 × Z. Its SYZ mirror is

uv = (τ + δν(τ)) + z1 + . . .+ zn−1 + z−11 . . . z−1n−1,

τ + δν(τ) =
∑
k≥1

τk

k!
n1,k,βν

([pt]L; (1ν)
k).

When n = 3, this mirror is the same as the one given in (5.5) as we can
make change of variables vnew = v

z2
, znew1 = z1

z2
, znew2 = 1

z2
in (5.5) to

obtain the above equation.
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C1

C2

Cg

D1

Dg-1

Dg

Figure 3. A toric resolution of C3/Z2g+1. The diagram
shows the 1-strata of its moment map polytope. Ci’s
are labelling the holomorphic spheres which are mapped
to the corresponding edges by the moment map. Di’s
are labelling the toric divisors which are mapped to the
corresponding facets.

The total space of the canonical line bundle KPn−1 of the projective
space Pn−1 gives a crepant resolution, whose SYZ mirror is

uv = (1+ δ) + z1 + . . .+ zn−1 + qz−11 . . . z−1n−1, 1+ δ =
∑
k≥0

qkn1,k,β0+kl,

where l is the line class inKPn−1 and its corresponding Kähler parameter
is q. When n = 3, this serves as one of the first nontrivial examples for
the SYZ construction for toric CY 3-folds in [16].

Note that in the above examples, the mirror of X and its crepant reso-
lution almost have the same expressions, except that they have different
coefficients. This motivates the Open Crepant Resolution Theorem 8.1
which gives a precise relation between their mirrors.

6. Computation of orbi-disk invariants

In this section we compute the orbi-disk invariants of a toric CY
orbifold relative to a Lagrangian torus fiber of the moment map.

Let X be a toric CY orbifold as in Setting 4.2. Let L ⊂ X be a
Lagrangian torus fiber of the moment map. Let β ∈ π2(X , L) be such
that μCW (β) = 2. Let x = (Xν1 , . . . ,Xνl) be a collection of twisted
sectors of X such that νi ∈ Box′ satisfies age(νi) = 1 for all i. Sup-
pose that the moduli space Mmain

1,l (L, β,x) is non-empty. We would
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like to compute the corresponding genus 0 open orbifold GW invariant
nX1,l,β([pt]L;1ν1 , . . . ,1νl) (Definition 3.5).

The approach we take here is to construct a suitable toric partial
compactification X̄ of X for each β ∈ π2(X , L) with μCW (β) = 2, prove
that the above invariants are equal to certain genus 0 closed orbifold GW
invariants of X̄ , and evaluate them by toric mirror theorems, general-
izing the approach in [18]. The proof of such an open/closed equality,
which is geometric in nature, is by comparing moduli spaces of stable
(orbi-)disks to X with moduli spaces of stable orbi-maps to X̄ , as Ku-
ranishi spaces. The key geometric idea, namely, “capping off” the disk
component to form a genus 0 closed Riemann surface, was first em-
ployed in [13, 67] and later in [68] (for toric CY surfaces) and [15, 17]
(for compact semi-Fano toric manifolds). It was also applied in [14] to
calculate orbi-disk invariants for certain compact toric orbifolds.

6.1. Toric (partial) compactifications. We begin with the construc-
tion of the toric partial compactification X̄ . According to our discussion
in Section 3.1, the class β ∈ π2(X , L) must be of the form β = β′ + α,
where β′ ∈ π2(X , L) is a basic (orbi) disk class with CW Maslov index
2 and α ∈ Heff

2 (X ) is an effective curve class such that c1(X ) · α = 0.
We have ∂β′ = bi0 ∈ N for some i0 ∈ {0, 1, . . . ,m′ − 1}.

Construction 6.1. Let b∞ := −bi0 ∈ N. Let Σ̄ ⊂ NR be the smallest
complete simplicial fan that contains Σ and the ray R≥0b∞ ⊂ NR. More
concretely, the fan Σ̄ consists of cones in Σ together with additional
cones, each is spanned by the ray R≥0b∞ together with a cone over a
face of the polytope P (recall the definition of P in Setting 4.2). The
data (Σ̄, {bi}m−1i=0 ∪ {b∞}) gives a stacky fan. Consider the associated
toric orbifold: X̄ := XΣ̄. We choose the extra vectors to be the same as
that for X , namely, {bm, . . . , bm′−1} ⊂ N .

Remark 6.2. We emphasize that, although not reflected in the no-
tation, the compactification X̄ depends on the class β ∈ π2(X , L).

Since Σ satisfies the Assumption 2.4, so does the stacky fan Σ̄. The
fan Σ̄ has more primitive generators than Σ. We also have X ⊂ X̄ and
the toric prime divisor D∞ := X̄ \X corresponding to b∞. The inclusion
X ⊂ X̄ divides the toric prime divisors in X̄ into two kinds: the set of
generators {bi}m−1i=0 is a disjoint union {bi} = I

∐
J , where for bi ∈ I

the corresponding toric prime divisor Di ⊂ X̄ is contained entirely in
X (these correspond to the compact toric prime divisors in X ), and for
bj ∈ J the corresponding toric prime divisor Dj ⊂ X̄ has non-empty
intersection with D∞ (these correspond to the non-compact toric prime
divisors in X ).

Let β∞ ∈ π2(X̄ , L) be the basic disk class corresponding to b∞. As
∂(β′ + β∞) = bi0 + b∞ = 0 ∈ N , the class β̄′ := β′ + β∞ belongs to
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H2(X̄ ;Q) (see [24, Section 9.1]), and we have c1(X̄ ) · β̄′ = 2. Moreover
we have the decompositions

H2(X̄ ;Q) = H2(X ;Q)⊕Qβ̄′ and Heff
2 (X̄ ) = Z≥0β̄′ ⊕Heff

2 (X ).

Denote by L̄, K̄ and K̄eff respectively the counterparts for X̄ of the
spaces L, K and Keff for X . Then we have the corresponding decompo-
sitions

L̄ = L⊕ Zd∞, K̄ = K⊕ Zd∞, K̄eff = Keff ⊕ Z≥0d∞,

where d∞ = ei0 + e∞ ∈ Ñ ⊕ Ze∞ =
⊕m′−1

i=0 Zei ⊕ Ze∞.
Since α can be represented by a holomorphic map to X̄ whose image

is contained entirely in X and misses D∞ = X̄ \X , we have D∞ ·α = 0,
and hence c1(X̄ ) · α = 0. Moreover, each νi ∈ Box′(Σ) with age(νi) = 1
determines uniquely an element ν̄i ∈ Box′(Σ̄) with age(ν̄i) = 1.

We make some important observations about X̄ .

Proposition 6.3. The toric orbifold X̄ with the extra vectors
{bm, . . . , bm′−1} is semi-Fano in the sense of Definition 2.3.

Proof. To show that X̄ is semi-Fano, we need to prove that c1(X̄ ) =∑m−1
i=0 Di + D∞ is nef (since age(bj) = 1 for j = m, . . . ,m′ − 1), i.e.

every rational orbi-curve C satisfies

(D0 + . . . +Dm−1 +D∞) · C ≥ 0.

Let C · D∞ = k ∈ Z. We must have k ≥ 0. Otherwise, C has a
component contained in D∞ whose intersection with D∞ is negative.
Now D∞ = {ν = ∞} is linearly equivalent to the divisor D̃ = {ν = c}
for any c �= 0. (Two divisors D1 and D2 are said to be linear equivalent
if there exists a meromorphic function φ such that D1 and D2 are the
zero and pole divisors of φ respectively. In such a case given a rational
curve C, the intersection number of C with D1 is the same as that
with D2. In our situation we take the meromorphic function φ to be
ν − c for a fixed complex number c.) A rational curve in D∞ has

transverse intersections with D̃, and hence the intersection number is
non-negative. Since intersection number is topological, this implies D∞
has non-negative intersection with any curve contained in D∞ itself.
Thus k cannot be negative.

Now consider C−kC0, where C0 is a holomorphic sphere representing
the class β′+β∞ which has Chern number c1(X̄ ) ·C0 = 2. C− kC0 has
zero intersection with the divisor D∞. Moreover it can be written as a
linear combination of one-dimensional toric strata of X . Since X is CY,
(C − kC0) · (D0 + . . .+Dm−1) = 0. Then

(D0 + . . .+Dm−1 +D∞) · C
= (D0 + . . .+Dm−1 +D∞) · (C − kC0) + 2k = 2k ≥ 0.

This completes the proof. q.e.d.
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Proposition 6.4. The toric variety X̄ underlying X̄ is semi-projec-
tive.

Proof. By [32, Proposition 7.2.9], the toric variety X is semi-projec-
tive, as its moment map image is a full-dimensional lattice polyhedron
P . The toric variety X̄ corresponds to intersecting P with a half space
normal to b∞. The result is still a full dimensional lattice polyhedron.
Hence X̄ is semi-projective again by [32, Proposition 7.2.9]. q.e.d.

Proposition 6.5. Suppose that bi0 ∈ N lies in the interior of the
support |Σ|. Then the fan Σ̄ is complete, and hence the toric variety X̄
underlying X̄ is projective.

Proof. To prove that Σ̄ is complete, it suffices to see that any vector
v ∈ NR can be written as a non-negative linear combination of genera-
tors of the fan Σ̄. Since bi0 lies in the interior of the support |Σ|, there
exists t ∈ R>0 large enough such that v + tbi0 ∈ |Σ|. Thus v + tbi0 =∑m−1

i=0 aibi for ai ∈ R≥0. Then v =
∑m−1

i=0 aibi−tbi0 =
∑m−1

i=0 aibi+tb∞.
q.e.d.

Remark 6.6. If bi0 ∈ N lies on the boundary of |Σ|, then the fan Σ̄ in
Construction 6.1 is incomplete, so the toric orbifold X̄ is not projective
but only semi-projective.

We will need the following lemma when we analyze the curve moduli.

Lemma 6.7. Given a generic point in X̄ , there exists a unique non-
constant holomorphic sphere of Chern number two passing through the
point.

Proof. Choose local toric coordinates (ν, z1, . . . , zn−1) such that
z1, . . . , zn−1 are not identically zero when restricted on Di0 . We take
the point to be in the open toric orbit (C×)n ⊂ X̄ . Suppose it has
coordinates (c0, c1, . . . , cn−1), where ci �= 0 for all i = 0, . . . , n−1. Then
the holomorphic sphere defined by zi = ci for all i = 1, . . . , n− 1 passes
through the point, and it only intersects Di0 and D∞ once but not any
other divisors. Thus it intersects with the anti-canonical divisor (which
is the sum over all toric prime divisors) twice and hence has Chern
number two.

To show uniqueness, suppose we have a non-constant holomorphic
sphere of Chern number two passing through a point in the open toric
orbit. It must intersect D∞, since otherwise, it will be entirely con-
tained in the toric CY X , and by the maximum principle applied to the
holomorphic function ν on the sphere, the sphere must lie entirely in the
toric divisors of X , and hence cannot pass through a point in the open
toric orbit. Since it has Maslov index two, it intersects D∞ at most two
times (counted with multiplicity). The meromorphic function ν on the
sphere must have both zeroes and poles, and thus it must have one zero
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and one pole. This means that the sphere intersects both D0 and D∞
once, and that it cannot intersect other divisors since it only has Maslov
index two. Thus the functions zi’s on the sphere have neither poles nor
zeroes, and hence can only be constants. We conclude that it is precisely
the holomorphic sphere defined by zi = ci for all i = 1, . . . , n− 1. q.e.d.

Example 6.8. The fan of the Hirzebruch surface F2 has primi-
tive generators (−1, 1), (0, 1), (1, 1), (0,−1). The total space of the
canonical line bundle X = KF2 is again a toric manifold, whose fan
has primitive generators b0 = (0, 0, 1), b1 = (−1, 1, 1), b2 = (0, 1, 1),
b3 = (1, 1, 1) and b4 = (0,−1, 1). The polytope P is the convex hull of
(−1, 1), (1, 1), (0,−1) in the plane R2. The generator (0, 1) lies in the
boundary of P but is not a vertex of P, so the toric compactification X̄
corresponding to b2 (see Construction 6.1) is noncompact.

The toric prime divisor D2 in X corresponding to b2 is noncompact
and biholomorphic to P1 × C. The inclusion (z, c) : P1 ↪→ P1 × C ∼= D2

for any constant c ∈ C gives a (0,−2) rational curve in X = KF2 , whose
class is denoted by l ∈ H2(X ;Z). It has Chern number zero and does
contribute to sphere bubbling so that the open GW invariants nXβ2+kl

for k ∈ Z≥0 are non-trivial. We will see in Section 6.5 that in fact

nXβ2+kl = 1 when k = 0, 1 and zero otherwise. Hence nXβ2+kl = nF2
β2+kl

where β2 and l on the right hand side of the equality denote the basic
disk class corresponding to D2 ⊂ F2 and the class of the (−2)-curve in
F2 respectively.

6.2. An open/closed equality. Let ι : {p} → L be the inclusion of a
point.

Definition 6.9. Let X and X̄ be as in Construction 6.1. Consider
three moduli spaces:

1) Let Mop
1,l(X , β,x) := Mmain

1,l (L, β,x) be the moduli space of stable

maps from genus 0 bordered orbifold Riemann surfaces with one
boundary component to (X , L) of class β = β′+α such that there
is one boundary marked point and l interior marked points of
type x = (Xν1 , . . . ,Xνl). Let ev0 : Mop

1,l(X , β,x) → L denote the
evaluation map at the boundary marked point. Consider the fiber
product Mop

1,l(X , β,x, p) := Mop
1,l(X , β,x)×ev0,ι {p}.

2) Let Mop
1,l(X̄ , β,x′) := Mmain

1,l (L, β,x′) be the moduli space of sta-

ble maps from genus 0 bordered orbifold Riemann surfaces with
one boundary component to (X̄ , L) of class β such that there is
one boundary marked point and l interior marked points of type
x
′ = (X̄ν1 , . . . , X̄νl). Let ev0 : M

op
1,l(X̄ , β,x′) → L denote the eval-

uation map at the boundary marked point. Consider the fiber
product Mop

1,l(X̄ , β,x′, p) := Mop
1,l(X̄ , β,x′)×ev0,ι {p}.
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3) Let Mcl
1+l(X̄ , β̄, x̄) be the moduli space of stable maps from genus

0 orbifold Riemann surfaces to X̄ of class β̄ := β̄′ + α such that
the 1 + l interior marked points of are type x̄ = (X̄ , X̄ν1 , . . . , X̄νl).
Let ev0 : Mcl

1+l(X̄ , β̄, x̄) → X̄ denote the evaluation map at the

first marked point. Consider the fiber productMcl
1+l(X̄ , β̄, x̄, p) :=

Mcl
1+l(X̄ , β̄, x̄)×ev0,ι {p}.

Proposition 6.10 (Compactness).

(a) Let D be a toric prime divisor of the toric CY orbifold X , α ∈
H2(D;Z) and p ∈ D. Then the moduli space of rational curves
in D representing α with one marked point passing through p is
compact.

(b) Let α ∈ H2(X ;Z) and p ∈ X . Then the moduli space of rational
curves in X representing α with one marked point passing through
p is compact.

(c) The moduli Mop
1,l(X , βi + α,x) for i = 0, . . . ,m′ − 1 and α ∈

H2(X ;Z) is compact.

Proof.

(a) The statement certainly holds when the divisor D is compact.
Now suppose that D is a non-compact divisor. We are going to
prove that all rational curves representing α with one marked point
passing through pmust lie in a compact subvariety ofD, and hence
the moduli space is compact.

The toric divisor D ⊂ X itself is a toric orbifold, whose fan ΣD

is given by the quotient of Σ in the v-direction and localization at
zero, where v is the primitive generator of Σ corresponding to D.
Since D is non-compact, v lies in the boundary of the polytope
P. Thus there exists a half space defined by {ν ≥ 0} ⊂ (N/〈v〉)R
for some ν ∈ M⊥v containing |ΣD|. Then the function on D
corresponding to ν is holomorphic, and by abuse of notation we
also denote it by ν. By the maximum principle, ν is constant on
each sphere component of a rational curve in D. Since the rational
curve is connected, ν takes the same constant on the whole rational
curve. Let ν(p) = c ∈ C. Then any rational curve with one marked
point passing through p lies in the level set {ν = c} ⊂ D.

The above is true for all ν ∈ M⊥v such that the corresponding
half space {ν ≥ 0} contains |ΣD|. Let ν1, . . . , νk be the extremal
ones, meaning that each of the corresponding half spaces con-
tains |ΣD| and a codimension-one face of |ΣD|. Then there exist
c1, . . . , ck ∈ C such that any rational curve with one marked point
passing through p lies in {νi = ci for all i = 1, . . . , k}, which is
a compact subvariety of D. Hence the moduli space of rational
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curves representing α with one marked point and passing through
p is compact.

(b) We may assume that p lies in a toric divisor of X , or otherwise the
moduli space is empty since X is a toric CY orbifold. All rational
curves in X lie in toric divisors of X . Thus the moduli space can
be written as a fiber product of moduli spaces of rational curves
in prime divisors of X . By part (a) the moduli space of rational
curves in a toric prime divisor passing through a fixed target point
is compact. Hence the fiber product is also compact.

(c) The disk moduli Mop
1,l(X , βi + α,x) is equal to the fiber product

Mop
1,1(X , βi) ×ev Mcl

•+l(X , α,x), where Mop
1,1(X , βi) is the moduli

space of stable disks in X representing the basic disks class βi
with one interior marked point and one boundary marked point,
Mcl
•+l(X , α,x) is the moduli space of rational curves in X rep-

resenting α with one marked point • and l other marked points
of type x, and the fiber product is over evaluation maps at the
interior marked point of the disk and the marked point • of the
rational curve. Now, the moduli space Mop

1,1(X , βi) is known to be

compact by the classification result of Cho-Poddar [24]. By part
(b), Mcl

•+l(X , α,x) ×ev {pt} is compact. Thus the fiber product

Mop
1,1(X , βi)×ev Mcl

•+l(X , α,x) is also compact.

q.e.d.

Corollary 6.11. The moduli space Mop
1,l(X , β,x, p) in Definition 6.9

is compact. Hence, the open orbifold GW invariant nX1,l,β([pt]L;1ν1 , . . . ,
1νl) in Definition 3.5 is well-defined.

The main result of this subsection is the following

Theorem 6.12.

(a) The moduli spaces Mop
1,l(X , β,x, p) and Mop

1,l(X̄ , β,x′, p) are iso-
morphic as Kuranishi spaces. Hence we have the following equality
between genus 0 open orbifold GW invariants:

nX1,l,β([pt]L;1ν1 , . . . ,1νl) = nX̄1,l,β([pt]L;1ν̄1 , . . . ,1ν̄l).

(b) The moduli spaces Mop
1,l(X̄ , β,x′, p) and Mcl

1+l(X̄ , β̄, x̄, p) are iso-

morphic as Kuranishi spaces. Hence we have the following equality
between genus 0 open and closed orbifold GW invariants, called the
open/closed equality:

(6.1) nX1,l,β([pt]L;1ν1 , . . . ,1νl) = 〈[pt],1ν̄1 , . . . ,1ν̄l〉X̄0,1+l,β̄.

Proof. We begin with part (a). The inclusion X ⊂ X̄ gives a natural
map

Mop
1,l(X , β,x, p) → Mop

1,l(X̄ , β,x′, p),
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which is clearly injective. To show that this map is surjective, we need
to prove that a stable disk in Mop

1,l(X̄ , β,x′, p) is indeed contained in X .

This means there are no stable disk maps f : (C, ∂C) → (X̄ , L) of class
β = β′ + α such that C = D ∪ C0 ∪ C∞ is a union where D is the disk
component; C0 is a closed (orbifold) Riemann surface whose components
are contained in

⋃
bi∈I Di; and C∞ is a non-empty closed (orbifold)

Riemann surface whose components are contained in D∞ ∪ ⋃
bj∈J Dj

and have non-negative intersections with divisors Di, bi ∈ I (via f).
Suppose there is such a stable disk map. Let A := f∗[C0] and B :=

f∗[C∞]. Then α = A + B. Since c1(X̄ ) · α = 0 and −KX̄ is nef, we
have c1(X̄ ) · A = 0 = c1(X̄ ) · B. Writing B =

∑
k bkBk as an effective

linear combination of the classes Bk of irreducible 1-dimensional torus-
invariant orbits in X̄ , we have c1(X̄ )·(bkBk) = 0 for all k (again using the
fact that −KX̄ is nef). Each Bk corresponds to an (n− 1)-dimensional
cone σk ∈ Σ̄, and by construction, either σk contains b∞, or σk and b∞
together span an n-dimensional cone in Σ̄.

Since f(C∞) ⊂ D∞ ∪ ⋃
bj∈J Dj, we see that if bi ∈ I then bi /∈

σk. Also, since D · (bkBk) ≥ 0 for every toric prime divisor of X̄ not
corresponding to a ray in σk, we have by (their argument extends to
the simplicial cases needed here) [48, Lemma 4.5] that D · (bkBk) = 0
for every toric prime divisor D corresponding to an element in ({bi} ∪
{b∞}) \ F (σk); here F (σk) is the minimal face in the fan polytope of
Σ̄ that contains rays in σk. As the divisors D corresponding to ({bi} ∪
{b∞}) \ F (σk) span H2(X̄ ), we must have bkBk = 0. We conclude that
B = 0.

Therefore we have a bijection between moduli spaces Mop
1,l(X , β,x, p)

∼= Mop
1,l(X̄ , β,x′, p). Since every stable disk in Mop

1,l(X̄ , β,x′, p) is sup-

ported in (a compact region of) X , it is clear that it has the same defor-
mations and obstructions as the corresponding stable disk in Mop

1,l(X , β,

x, p). By the same arguments as in Part(C) of the proof of [17, Pro-
postion 5.6] (which can be adapted to the orbifold setting here in a
straightforward way), it follows that the above bijection gives an iso-
morphism of Kuranishi structures. This proves (a).

The proof of part (b) is basically the same as that of [14, Theorem
35]. First of all, for a stable disk map in Mop

1,l(X̄ , β,x′, p), it consists

of a unique disk component u0 and a rational curve component C ′. We
denote such a stable disk by u0 + C ′. The disk component represents
a basic (orbi-)disk class and hence is regular by [24, Propositions 8.3
and 8.6]. Thus the obstruction merely comes from the rational curve
component.

On the other hand, by Lemma 6.7, there is a unique holomorphic
sphere C0 with Chern number two in X̄ passing through a generic point
p ∈ X̄ . So for a stable curve in Mcl

1+l(X̄ , β̄, x̄, p), since it passes through
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p and it has Chern number two, it has C0 as one of its components, and
the rest is a rational curve C ′ with Chern number zero contained in the
toric divisors. We denote such a rational curve by C0+C ′. Since C0 is a
holomorphic sphere whose normal bundle is trivial, it is unobstructed.
Thus the obstruction of C0 + C ′ merely comes from C ′. A bijective
map between Mop

1,l(X̄ , β,x′, p) and Mcl
1+l(X̄ , β̄, x̄, p) is given by sending

u0 + C ′ to C0 + C ′ and vice versa. They have the same deformations
and obstructions (which are contributed from the same rational curve
component C ′), and hence, as Kuranishi structures, we have

Mop
1,l(X̄ , β,x′, p) ∼= Mcl

1+l(X̄ , β̄, x̄, p).

The identification of the two Kuranishi structures can be done as
explained in Step 3 of the proof of [14, Theorem 35], except that the
choices of obstruction bundles have to be suitably modified in order
to obtain smoothly compatible Kuranishi charts which can be glued
together to obtain a global structure (see [72, 39]).

Recall that in the general scheme developed by Fukaya, Oh, Ohta and
Ono in constructing Kuranishi structures of a moduli space, one first
constructs a Kuranishi neighborhood for each point of the moduli space.
To obtain a global Kuranishi structure which is smoothly compatible,
one then chooses a sufficiently dense finite set of points in the moduli
space, and redefines the Kuranishi neighborhood by considering a new
obstruction bundle obtained as the direct sum of parallel transports of
the obstruction bundles over the finite set of points. When the domain
of the stable map is not stable, however, one has to further consider
a stabilization of the domain and extra care is needed in choosing the
obstruction bundles. See [39, Section 3.2] for a brief description and
[39, Sections 15-18] for the detailed construction.

The construction of Kuranishi neighborhoods given in the proof [14,
Theorem 35] corresponds to the case where the domain of a stable map
is also stable, in which the above description of the obstruction bundles
already suffices. But for the moduli spaces we consider here, the domain
of a stable map may not be stable, so we need the general construction as
described in [39, Part 4]. Nevertheless, we emphasize that all these (or
any such) constructions can be carried out in the same way for the open
and closed moduli spaces because the obstruction bundles on the disk
component u0 and the sphere component C0 both vanish, and therefore
the Kuranishi structures are naturally identified with each other. q.e.d.

Remark 6.13. The proof of Theorem 6.12 identifies the moduli space
Mcl

1+l(X̄ , β̄, x̄, p) with the moduli space Mop
1,l(X , β,x, p), which is com-

pact by Corollary 6.11. So Mcl
1+l(X̄ , β̄, x̄, p) is also compact, and hence

the closed orbifold GW invariant 〈[pt],1ν̄1 , . . . ,1ν̄l〉X̄0,1+l,β̄
is well-defined

even when X̄ is noncompact.
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6.3. Calculation via mirror theorem. By the open/closed equality
(6.1), the open orbifold GW invariants of X we need may be computed
by evaluating the genus 0 closed orbifold GW invariants 〈[pt],1ν̄1 , . . . ,
1ν̄l〉X̄0,1+l,β̄

of X̄ . These closed orbifold GW invariants are certain co-

efficients of the J-function of X̄ . We evaluate them by extending the
approach developed in [18] to the orbifold setting.

The idea is to use closed mirror theorems for toric orbifolds to explic-
itly compute these coefficients via the combinatorially defined I-function
of X̄ . However, since X̄ may not be compact, we cannot directly ap-
ply the closed mirror theorem (Theorem 2.8) to X̄ as in [18]. We get
around this by first applying the equivariant mirror theorem (Theorem
2.7) to evaluate the genus 0 equivariant closed orbifold GW invariants

of X̄ : 〈[pt]T,1ν̄1 , . . . ,1ν̄l〉
X̄ ,T
0,1+l,β̄

, where [pt]T ∈ H∗
T(X̄ ) is the equivariant

lift of [pt] ∈ H∗(X̄ ) represented by a T-fixed point, and then evaluating

〈[pt],1ν̄1 , . . . ,1ν̄l〉X̄0,1+l,β̄
by taking non-equivariant limits.

6.3.1. Identifying the invariants. We now begin the computation
of the relevant equivariant orbifold GW invariants. The T-equivariant
J-function of X̄ (cf. Definition 2.6) expands as a series in 1/z as follows:

JX̄ ,T(q, z)

= eτ0,2/z
(
1 +

∑
α

∑
(d,l)�=(0,0)

d∈Heff
2 (X̄ )

qd

l!

1

z

∑
k≥0

〈
1, τtw, . . . , τtw, φαψ

k
〉X̄ ,T

0,l+2,d

φα

zk

)

=

(
1 +

τ0,2
z

+O

(
1

z2

))
(
1 +

∑
α

∑
(d,l)�=(0,0)

d∈Heff
2 (X̄ )

qd

l!

1

z

∑
k≥0

〈
τtw, . . . , τtw, φαψ

k−1
〉X̄ ,T

0,l+1,d

φα

zk

)
,

where we use the string equation in the second equality. Note that
τ0,2 ∈ H2

T(X̄ ), and φα = [pt]T if and only if φα = 1 ∈ H0(X̄ ). If we
consider

(6.2) τtw =
∑

ν∈Box′(Σ)age=1

τν1ν̄ ,

then the closed equivariant orbifold GW invariants 〈[pt]T,1ν̄1 , . . . ,
1ν̄l〉

X̄ ,T
0,1+l,β̄

occur as the coefficients of qβ̄τν1 · · · τνl in the 1/z2-term of

JX̄ ,T(q, z) that takes values in H0(X̄ ).

Since X̄ is semi-Fano (by Proposition 6.3) and semi-projective (by
Proposition 6.4), we can apply the equivariant toric mirror theorem
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(Theorem 2.7) which says that

eq0(y)/zJX̄ ,T(q, z) = IX̄ ,T(y(q, τ), z)

via the inverse y = y(q, τ) of the toric mirror map. Recall that the
equivariant I-function here is the one defined using the extended stacky
fan

(Σ̄, {bi | 0 ≤ i ≤ m− 1} ∪ {b∞} ∪ {bj | m ≤ j ≤ m′ − 1}),
where

{bj | m ≤ j ≤ m′ − 1} = {ν ∈ Box′(Σ) | age(ν) = 1}.
Therefore our next task is to explicitly identify the part of the 1/z2-
term of the equivariant I-function of X̄ that takes values in H0(X̄ ).
According to the definition of the equivariant I-function in Definition
2.2, the part taking values in H0(X̄ ) arises from terms with d ∈ K̄eff

such that

(6.3) ν(d) = 0, i.e. 1ν(d) = 1 ∈ H0(X̄ ).

And for d ∈ K̄eff to satisfy (6.3), we must have

〈Di, d〉 ∈ Z, for i ∈ {0, . . . ,m′ − 1} ∪ {∞}.
This follows from the definition of ν(d).

Let d ∈ K̄eff be such that ν(d) = 0. We examine the (1/z)-series
expansion of the corresponding term in the equivariant I-function of X̄ :

(6.4) yd
∏

i∈{0,...,m′−1}∪{∞}

∏∞
k=
〈Di,d〉(D̄

T
i + (〈Di, d〉 − k)z)∏∞

k=0(D̄
T
i + (〈Di, d〉 − k)z)

.

Recall that D̄T
0 , . . . , D̄

T
m−1, D̄

T∞ ∈ H2(X̄ ) are T-divisor classes corre-

sponding to b0, . . . , bm−1, b∞, and D̄T
j = 0 in H2

T(X̄ ) for m ≤ j ≤ m′−1.

We may factor out copies of z to rewrite (6.4) as

(6.5)
yd

z〈ρ̂(X̄ ),d〉
∏

i∈{0,...,m′−1}∪{∞}

∏∞
k=
〈Di,d〉(D̄

T
i /z + (〈Di, d〉 − k))∏∞

k=0(D̄
T
i /z + (〈Di, d〉 − k))

where ρ̂(X̄ ) =
∑m−1

i=0 Di +D∞ +
∑m′−1

j=m Dj. So we need

(6.6) 〈ρ̂(X̄ ), d〉 =
m−1∑
i=0

〈Di, d〉+ 〈D∞, d〉+
m′−1∑
j=m

〈Dj , d〉 ≤ 2.

Since we need the part taking values in H0(X̄ ), we need the terms in
(6.5) in which the divisor classes D̄T

0 , . . . , D̄
T
m−1, D̄

T∞ do not occur. For
0 ≤ i ≤ m− 1 or i = ∞, the fraction∏∞

k=
〈Di,d〉(D̄
T
i /z + (〈Di, d〉 − k))∏∞

k=0(D̄
T
i /z + (〈Di, d〉 − k))
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is proportional to D̄T
j if 〈Dj , d〉 = �〈Dj , d〉� < 0. Thus we need

(6.7) 〈Di, d〉 ≥ 0, i ∈ {0, . . . ,m− 1} ∪ {∞}.
Also observe that since d ∈ K̄eff , 〈Dj , d〉 ≥ 0 for m ≤ j ≤ m′ − 1. So
there are only two possible cases: either

• there is exactly one j such that 〈Dj , d〉 = 2 in (6.6) and 〈Di, d〉 = 0
for i �= j; or

• there are j1, j2 such that 〈Dj1 , d〉 = 〈Dj2 , d〉 = 1 in (6.6) and
〈Di, d〉 = 0 for i �= j1, j2.

By the fan sequence (2.1), an element d ∈ K̄eff corresponds to an
element ∑

0≤i≤m−1
〈Di, d〉ei + 〈D∞, d〉e∞ +

∑
m≤j≤m′−1

〈Dj , d〉ej

∈
⊕

0≤j≤m−1
Zej ⊕ Ze∞ ⊕

⊕
m≤j≤m′−1

Zej

such that∑
0≤i≤m−1

〈Di, d〉bi + 〈D∞, d〉b∞ +
∑

m≤j≤m′−1
〈Dj , d〉bj = 0.

In order for this equality to hold, we cannot have 〈Di, d〉 = 0 for all
but one i. So we must be in the other case, namely, there are exactly
two indices j1, j2 such that 〈Dj1 , d〉 = 〈Dj2 , d〉 = 1, and 〈Di, d〉 = 0 for
i �= j1, j2. Since the vectors b0, . . . , bm−1, bm, . . . , bm′−1 belong to the
half-space in NR⊕R opposite to the half-space containing b∞, we must
have ∞ ∈ {j1, j2}. As noted in Remark 6.2, the fan Σ̄ depends on the
disk class β ∈ π2(X , L) in question. There are two possibilities:

• Case 1: β is a smooth disk class. This means that β = β′+α
with α ∈ H2(X ) and β′ ∈ π2(X , L) is the class of a basic smooth
disk. In this case ∂β′ = bi0 for some 0 ≤ i0 ≤ m−1 and b∞ = −bi0 .
So the only possible d ∈ K̄eff comes from the relation bi0+b∞ = 0.
In this case the necessary term in the equivariant I-function of X̄
is yd∞ , where d∞ = ei0 + e∞ = β̄′ ∈ H2(X̄ ;Q).

• Case 2: β is an orbi-disk class. This means that β = β′ + α
with α ∈ H2(X ) and β′ = βνj0 ∈ π2(X , L) is the class of a basic

orbi-disk corresponding to bj0 ∈ Box′(Σ)age=1 for some m ≤ j0 ≤
m′ − 1. In this case ∂β′ = bj0 and b∞ = −bj0 . So the only
possible d ∈ K̄eff comes from the relation bj0 + b∞ = 0. In this

case the necessary term in the equivariant I-function of X̄ is yd∞ ,
where d∞ = ej0 + e∞. Note that in this case, d∞ is not a class in
H2(X̄ ;Q).
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Equating the relevant 1/z2-terms in the equivariant I- and J-functions
yields

yd∞ =
q0(y)

2

2
+(6.8)

∑
d∈Heff

2 (X̄ )

∑
l≥0

∑
ν1,...,νl∈Box′(Σ)age=1

∏l
i=1 τνi
l!

〈[pt]T,
l∏

i=1

1ν̄i〉X̄ ,T
0,l+1,dq

d.

6.3.2. Computing toric mirror maps. To explicitly evaluate (6.8),
we compute the toric mirror map for X̄ , which is part of the 1/z-term
in the expansion of the equivariant I-function.

Let d ∈ K̄eff . Similar to the calculations in the previous section, we
first examine the (1/z)-series expansion of the corresponding term in
the equivariant I-function of X̄ :

yd
∏

i∈{0,...,m′−1}∪{∞}

∏∞
k=
〈Di,d〉(D̄

T
i + (〈Di, d〉 − k)z)∏∞

k=0(D̄
T
i + (〈Di, d〉 − k)z)

1ν(d) =

yd

z〈ρ̂(X̄ ),d〉+age(ν(d))

∏
i∈{0,...,m′−1}∪{∞}

∏∞
k=
〈Di,d〉(D̄

T
i /z + (〈Di, d〉 − k))∏∞

k=0(D̄
T
i /z + (〈Di, d〉 − k))

1ν(d).

We need the 1/z-term that takes value in H≤2
CR,T(X̄ ). There are three

types.

• degree 0 term: This requires that ν(d) = 0. As noted above,
this implies 〈Di, d〉 ∈ Z for all i. Furthermore, we must have
〈Di, d〉 ≥ 0 for all i in order for the term to be of cohomological

degree 0. Also, we need 1/z〈ρ̂(X̄ ),d〉+age(ν(d)) = 1/z, which means
that 〈ρ̂(X̄ ), d〉 = 1. Consequently 〈Di, d〉 = 1 for exactly one Di

and = 0 otherwise. As we have seen, such a class d ∈ K̄eff does
not exist. So there is no H0(X̄ )-term.

• degree 2 term from untwisted sector: This means terms
proportional to T-divisors D̄T

i . Again this requires that ν(d) =
0, which implies 〈Di, d〉 ∈ Z for all i. Furthermore, we must
have exactly one D̄T

j /z, which requires 〈Dj , d〉 < 0 for this j

and 〈Di, d〉 ≥ 0 for all i �= j. To get the 1/z-term, we need
〈ρ̂(X̄ ), d〉+ age(ν(d)) = 0, so we should have 〈ρ̂(X̄ ), d〉 = 0.

For each j ∈ {0, 1, . . . ,m− 1} ∪ {∞}, we define

ΩX̄j := {d ∈ K̄eff | 〈ρ̂(X̄ ), d〉 = 0, ν(d) = 0, 〈Dj , d〉 ∈ Z<0

and 〈Di, d〉 ∈ Z≥0 ∀i �= j},
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and set

AX̄j (y) :=
∑
d∈ΩX̄

j

yd
(−1)−〈Dj ,d〉−1(−〈Dj , d〉 − 1)!∏

i �=j〈Di, d〉!
.

Then the degree 2 term from untwisted sector is given by

m−1∑
j=0

AX̄j (y)D̄
T
j /z +AX̄∞(y)D̄T

∞/z.

• degree 2 term from twisted sectors: This requires that ν(d) =
ν. Since age(ν) = 1, we must have 〈ρ̂(X̄ ), d〉 = 0. In order to avoid
being proportional to a T-divisor, 〈Di, d〉 cannot be a negative
integer for any i.

For each j ∈ {m,m+ 1, . . . ,m′ − 1}, we define

ΩX̄j := {d ∈ K̄eff | 〈ρ̂(X̄ ), d〉 = 0, ν(d) = bj and 〈Di, d〉 /∈ Z<0 ∀i},
and set

AX̄j (y) :=
∑
d∈ΩX̄

j

yd
∏

i∈{0,...,m′−1}∪{∞}

∏∞
k=
〈Di,d〉(〈Di, d〉 − k)∏∞

k=0(〈Di, d〉 − k)
.

Then the degree 2 term from twisted sectors is

m′−1∑
j=m

AX̄j (y)1bj/z.

The fan sequence of X̄ is given by 0 → ker → Ñ− := Ñ⊕Z → N → 0,

and the divisor sequence of X̄ is given by 0 → M → M̃− := (Ñ−)∨ →
L̄∨ → 0. Observe that rk(L̄∨) = rk(L∨) + 1 = r + 1 = m′ + 1 − n and
rk(H2(X̄ )) = rk(H2(X ))+1 = r′+1 = m+1−n. We choose an integral
basis

{p1, . . . , pr, p∞} ⊂ L̄∨

such that pa is in the closure of C̃X̄ for all a and pr′+1, . . . , pr ∈∑m′−1
i=m R≥0Di so that the images {p̄1, . . . , p̄r′ , p̄∞} of {p1, . . . , pr′ , p∞}

under the quotient L̄∨ ⊗ Q → H2(X̄ ;Q) form a nef basis of H2(X̄ ;Q)

and p̄a = 0 for a = r′ + 1, . . . , r. And we pick {pT1 , ..., pTr , pT∞} ⊂ M̃− in
the way described in Section 2.3. We further assume that {p1, . . . , pr}
gives the original basis of L∨ chosen for X .

Expressing Di in terms of the basis {pa} defines an integral matrix
(Qia) by

Di =
∑

a∈{1,...,r}∪{∞}
Qiapa, Qia ∈ Z.
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As above, the image of Di under the quotient L̄∨ ⊗ Q → H2(X̄ ;Q) is
denoted by D̄i. Then for i ∈ {0, . . . ,m− 1} ∪ {∞}, the class D̄T

i of the
toric prime T-divisor DT

i is given by

D̄T
i = λi +

∑
a∈{1,...,r′}∪{∞}

Qiap̄
T
a , λi ∈ H2

T(pt);

and for i = m, . . . ,m′ − 1, D̄T
i = 0 in H2(X ;R).

Hence the coefficient of the 1/z-term in the equivariant I-function
can be expressed as

∑
a∈{1,...,r′}∪{∞}

p̄Ta log ya +
∑

j∈{0,...,m−1}∪{∞}
AX̄j (y)D̄

T
j +

m′−1∑
j=m

AX̄j (y)1bj

=
∑

a∈{1,...,r′}∪{∞}

⎛⎝log ya +
∑

j∈{0,...,m−1}∪{∞}
QjaA

X̄
j (y)

⎞⎠ p̄Ta

+

m′−1∑
j=m

AX̄j (y)1bj +
∑

j∈{0,...,m−1}∪{∞}
λjA

X̄
j (y).

(6.9)

On the other hand, the coefficient of the 1/z-term in the J-function is
given by

(6.10)
∑

a∈{1,...,r′}∪{∞}
p̄Ta log qa + τtw =

r∑
a=1

p̄Ta log qa +
m′−1∑
j=m

τbj1bj .

The toric mirror map for X̄ is obtained by comparing (6.9) and (6.10):

log qa = log ya +
∑

j∈{0,...,m−1}∪{∞}
QjaA

X̄
j (y), a ∈ {1, . . . , r′} ∪ {∞},

τbj = AX̄j (y), j = m, . . . ,m′ − 1,

(6.11)

and set q0(y) :=
∑

j∈{0,...,m−1}∪{∞} λjA
X̄
j (y).

Let us have a closer look at the toric mirror map (6.11) for X̄ . First of
all, recall that K̄eff = Keff⊕Z≥0d∞, so we can decompose any d ∈ K̄eff as
d = d′+kd∞, where d′ ∈ Keff and k ∈ Z≥0. Suppose that 〈ρ̂(X̄ ), d〉 = 0.

Then we have 0 =
∑m′−1

i=0 〈Di, d
′〉+ 〈D∞, d〉 = 〈ρ̂(X ), d′〉 + k. But X is

semi-Fano, so 〈ρ̂(X ), d′〉 ≥ 0. This implies that 〈D∞, d〉 = k = 0, and
hence d = d′ ∈ Keff.

As an immediate consequence, we have AX̄∞ = 0, since d ∈ ΩX̄∞ implies

that 〈ρ̂(X̄ ), d〉 = 0 and 〈D∞, d〉 < 0 which is impossible and so ΩX̄ =

∅. Also for j ∈ {0, 1, . . . ,m − 1,m, . . . ,m′ − 1}, d ∈ ΩX̄j implies that
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〈ρ̂(X̄ ), d〉 = 0, so d lies in Keff and hence we have ΩX̄j = ΩXj , where

ΩXj := {d ∈ Keff | ν(d) = 0, 〈Dj , d〉 ∈ Z<0 and 〈Di, d〉 ∈ Z≥0 ∀i �= j},
j = 0, 1, . . . ,m− 1,

ΩXj := {d ∈ Keff | ν(d) = bj and 〈Di, d〉 /∈ Z<0 ∀i},
j = m,m+ 1, . . . ,m′ − 1.

Here we have used the fact that ρ̂(X ) = 0.

Proposition 6.14. The toric mirror map of the toric compactifica-
tion X̄ is of the form

log qa =log ya +
m−1∑
j=0

QjaA
X
j (y), a = 1, . . . , r′,

log q∞ =log y∞ +AXi0(y),

τbj =AXj (y), j = m, . . . ,m′ − 1,

(6.12)

when β = βi0 + α is a smooth disk class, and of the form

log qa =log ya +
m−1∑
j=0

QjaA
X
j (y), a = 1, . . . , r′,

log q∞ =log y∞,

τbj =AXj (y), j = m, . . . ,m′ − 1,

(6.13)

when β = βνj0 + α is an orbi-disk class, where

(6.14) AXj (y) :=
∑
d∈ΩX

j

yd
(−1)−〈Dj ,d〉−1(−〈Dj , d〉 − 1)!∏

i �=j〈Di, d〉!
,

j = 0, 1, . . . ,m− 1,

(6.15) AXj (y) :=
∑
d∈ΩX

j

yd
m′−1∏
i=0

∏∞
k=
〈Di,d〉(〈Di, d〉 − k)∏∞

k=0(〈Di, d〉 − k)
,

j = m,m+ 1, . . . ,m′ − 1.

Proof. We already have ΩX̄∞ = ∅ and ΩX̄j = ΩXj for j = 0, . . . ,m′ − 1.

Also, d ∈ ΩX̄j = ΩXj implies that 〈D∞, d〉 = 0. Thus we have AX̄∞ = 0

and AX̄j = AXj for j = 0, . . . ,m′ − 1. Finally, when β = βi0 + α is

a smooth disk class, we have Qj∞ = 1 for j ∈ {i0,∞} and Qj∞ = 0
for j /∈ {i0,∞}; whereas when β = βνj0 + α is an orbi-disk class, we

have Qj∞ = 1 for j ∈ {j0,∞} and Qj∞ = 0 for j /∈ {j0,∞}, and in
particular, Qj∞ = 0 for all j = 0, . . . ,m − 1. The result now follows
from (6.11). q.e.d.
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A key observation is that in both cases (6.12) and (6.13), the toric
mirror map of X̄ contains parts which depend only on X :

Proposition 6.15. The toric mirror map for the toric CY orbifold
X is given by

log qa = log ya +

m−1∑
j=0

QjaA
X
j (y), a = 1, . . . , r′,

τbj =AXj (y), j = m, . . . ,m′ − 1,

(6.16)

where the functions AXj (y) are defined in (6.14) and (6.15) in Proposi-
tion 6.14.

Proof. This can be seen by exactly the same calculations as in this
subsection applied to the equivariant I-function of X ; see also [37, Sec-
tion 4.1]. q.e.d.

Remark 6.16.

1) In the non-equivariant limit H∗
T(pt) → H∗(pt), we have λi → 0.

Hence q0(y) → 0 in the non-equivariant limit.
2) It is clear from the description that (6.12), (6.13), (6.16) do not de-

pend on T-actions, and remain unchanged in the non-equivariant
limit H∗

T(pt) → H∗(pt).
3) Also note that, for j = m,m+ 1, . . . ,m′ − 1,

AXj (y) = yD
∨
j + higher order terms,

where D∨j ∈ Keff is the class described in (2.4).

6.4. Explicit formulas. In this subsection we combine previous dis-
cussions to derive explicit formulas for generating functions of genus
0 open orbifold GW invariants of X . First we discuss non-equivariant
limits.

Proposition 6.17. The non-equivariant limit of 〈[pt]T,∏l
i=1 1ν̄i〉

X̄ ,T
0,l+1,d is 〈[pt],

∏l
i=1 1ν̄i〉X̄0,l+1,d.

Proof. If X̄ is projective (this is the case when bi0 ∈ N lies in the
interior of the support |Σ| by Proposition 6.5), then moduli spaces of
stable maps to X̄ of fixed genus, degree, and number of marked points
is compact. In this case the result follows by the discussion in Section
2.5.

Suppose that X̄ is semi-projective but not projective. As noted in
Remark 6.13, the moduli space Mcl

1+l(X̄ , β̄, x̄, p) used to define the in-

variant 〈[pt],∏l
i=1 1ν̄i〉X̄0,l+1,d is compact for p ∈ L. In fact it is straight-

forward to check that Mcl
1+l(X̄ , β̄, x̄, p) is compact for any p, using the

arguments in the proof of Proposition 6.10. A standard cobordism
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argument shows that the invariant 〈[pt],∏l
i=1 1ν̄i〉X̄0,l+1,d does not de-

pend on the choice of p. If p ∈ X̄ is a T-fixed point, then T acts on
Mcl

1+l(X̄ , β̄, x̄, p) and for such p the moduli space Mcl
1+l(X̄ , β̄, x̄, p) can

be used to define T-equivariant GW invariant 〈[pt]T,
∏l

i=1 1ν̄i〉
X̄ ,T
0,l+1,d.

Choose p ∈ X̄ to be a T-fixed point and argue as in Section 2.5, the
result follows. q.e.d.

This proposition allows us to obtain the following

Proposition 6.18. Using the notations in Section 6.2, we have
(6.17)

yd∞ = qβ̄
′
∑

α∈Heff
2 (X )

∑
l≥0

∑
ν1,...,νl∈Box′(Σ)age=1

∏l
i=1 τνi
l!

nX1,l,β′+α([pt]L;
l∏

i=1

1νi)q
α.

Proof. In view of Remark 6.16 and Proposition 6.17, the non-equivari-
ant limit of (6.8) gives
(6.18)

yd∞ =
∑

d∈Heff
2 (X̄ )

∑
l≥0

∑
ν1,...,νl∈Box′(Σ)age=1

∏l
i=1 τνi
l!

〈[pt],
l∏

i=1

1ν̄i〉X̄0,l+1,dq
d.

By dimension reason, the invariant 〈[pt],∏l
i=1 1ν̄i〉X̄0,l+1,d vanishes unless

c1(X̄ ) ·d = 2. Now we have Heff
2 (X̄ ) = Z≥0β̄′⊕Heff

2 (X ). Also X̄ is semi-
Fano and c1(X̄ ) · β̄′ = 2. So c1(X̄ ) · d = 2 implies that d must be of the
form β̄′ + α where α ∈ Heff

2 (X ) has Chern number c1(X̄ ) · α = 0. The
formula (6.17) then follows from the open/closed equality (6.1). q.e.d.

Recall the choice of τtw in (6.2). (6.17) can also be written in a more
succinct way as

yd∞ = qβ̄
′

∑
α∈Heff

2 (X )

∑
l≥0

1

l!
nX1,l,β′+α([pt]L;

l∏
i=1

τtw)q
α,

where τtw =
∑

ν∈Box′(Σ)age(ν)=1 τν1ν̄ .

Recall that (4.3) gives a Lagrangian isotopy between a moment map
fiber L and a fiber Fr of the Gross fibration when r lies in the chamber
B+. Hence (6.17) also computes the generating functions of genus 0
open orbifold GW invariants defined in (5.2):

yd∞ = qβ̄
′
(1 + δj),

when β′ corresponds to βj(r) under the isotopy (4.3), and

yd∞ = qβ̄
′
τν(1 + δν),

when β′ corresponds to βν(r) under the isotopy (4.3).



258 K. CHAN, C.-H. CHO, S.-C. LAU & H.-H. TSENG

The formula (6.17) identifies the generating function of genus 0 open

orbifold GW invariants with yd∞q−β̄
′
. We can now derive an even more

explicit formula for computing the orbi-disk invariants using our results
in the previous subsection.

Theorem 6.19. If β′ = βi0 is a basic smooth disk class corresponding
to the ray generated by bi0 for some i0 ∈ {0, 1, . . . ,m−1}, then we have

∑
α∈Heff

2 (X )

∑
l≥0

∑
ν1,...,νl∈Box′(Σ)age=1

∏l
i=1 τνi
l!

nX1,l,βi0
+α([pt]L;

l∏
i=1

1νi)q
α

= exp
(
−AXi0(y(q, τ))

)
(6.19)

via the inverse y = y(q, τ) of the toric mirror map (6.16) of X .

Proof. Recall that in this case, we have d∞ = β̄′. Also, D∞ = p∞.
So 〈p∞, d∞〉 = 1. On the other hand, since d∞ ∈ H2(X̄ ;Q), we have
〈D̄i, d∞〉 = 〈Di, d∞〉 for any i and 〈p̄a, d∞〉 = 〈pa, d∞〉 for any a. Using
the toric mirror map (6.12) for X̄ , we have

log qd∞ =

r′∑
a=1

〈p̄a, d∞〉 log qa + 〈p̄∞, d∞〉 log q∞

=

r′∑
a=1

〈p̄a, d∞〉
(
log ya +

m−1∑
i=0

QiaA
X
i (y)

)
+
(
log y∞ +AXi0(y)

)
= log yd∞ +AXi0(y) +

m−1∑
i=0

(〈Di, d∞〉 −Qi∞)AXi (y).

But 〈Di, d∞〉 = Qi∞ for i = 0, . . . ,m − 1, so we arrive at the desired
formula. q.e.d.

Theorem 6.20. If β′ = βνj0 is a basic orbi-disk class corresponding

to νj0 ∈ Box′(Σ)age=1 for some j0 ∈ {m,m + 1, . . . ,m′ − 1}, then we
have

∑
α∈Heff

2 (X )

∑
l≥0

∑
ν1,...,νl∈Box′(Σ)age=1

∏l
i=1 τνi
l!

nX1,l,βνj0
+α([pt]L;

l∏
i=1

1νi)q
α

= y
D∨

j0 exp

⎛⎝−
∑
i/∈Ij0

cj0iA
X
i (y(q, τ))

⎞⎠ ,

(6.20)

via the inverse y = y(q, τ) of the toric mirror map (6.16) of X , where
D∨j0 ∈ Keff is the class defined in (2.4), Ij0 ∈ A is the anticone of the
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minimal cone containing bj0 = νj0 and cj0i ∈ Q ∩ [0, 1) are rational
numbers such that bj0 =

∑
i/∈Ij0 cj0ibi.

Proof. In this case, the class β̄′ ∈ H2(X̄ ;Q) is given by

β̄′ =

⎛⎝∑
i/∈Ij0

cj0iei

⎞⎠+ e∞ ∈ Ñ ⊕ Ze∞ =

m′−1⊕
i=0

Zei ⊕ Ze∞;

while d∞ = ej0 + e∞ (recall that this d∞ is not a class in H2(X̄ ;Q)).
Hence d∞ − β̄′ is precisely the class D∨j0 ∈ Keff. So we can write

yd∞q−β̄′
= y

D∨
j0yβ̄

′
q−β̄′

.
Now,

log yβ̄
′
=

r∑
a=1

〈pa, β̄′〉 log ya + 〈p∞, β̄′〉 log y∞,

and using the toric mirror map (6.13) for X̄ , we have

log qβ̄
′

=
r′∑

a=1

〈p̄a, β̄′〉 log qa + 〈p̄∞, β̄′〉 log q∞

=
r′∑

a=1

〈p̄a, β̄′〉 log ya +
m−1∑
i=0

(
r′∑

a=1

Qia〈p̄a, β̄′〉
)
AXi (y) + 〈p̄∞, β̄′〉 log y∞.

Since Qi∞ = 0 for i = 0, . . . ,m−1, we have
∑r′

a=1 Qia〈p̄a, β̄′〉 = 〈D̄i, β̄
′〉.

Also, since β̄′ ∈ H2(X̄ ;Q), we have 〈D̄i, β̄
′〉 = 〈Di, β̄

′〉 for any i (and
〈p̄a, β̄′〉 = 〈pa, β̄′〉 for any a), so

m−1∑
i=0

(
r′∑

a=1

Qia〈p̄a, β̄′〉
)
AXi (y) =

∑
i/∈Ij0

cj0iA
X
i (y),

and hence log yβ̄
′ − log qβ̄

′
= −∑

i/∈Ij0 cj0iA
X
i (y). The formula follows.

q.e.d.

As a by-product of our calculations, we obtain the following conver-
gence result:

Corollary 6.21. The generating series of genus 0 open orbifold GW
invariants∑

α∈Heff
2 (X )

∑
l≥0

∑
ν1,...,νl∈Box′(Σ)age=1

∏l
i=1 τνi
l!

nX1,l,β′+α([pt]L;

l∏
i=1

1νi)q
α.

in (6.17) and hence those in (5.2) are convergent power series in the
variables qa’s and τνi’s.
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Proof. As noted in [58, Section 4.1], the toric mirror map (6.16) is
a local isomorphism near y = 0. The inverse of (6.16) is therefore also
analytic near q = 0, which allows us to express the variables ya’s as
convergent power series in the variables qa’a and τνi ’s. Also note that
the expressions in (6.19) and (6.20) are convergent power series in the
variables ya. The result follows. q.e.d.

6.5. Examples. (1) X = [C2/Zm] (Example (1) in Section 5.4). There
are m − 1 twisted sectors νj , j = 1, . . . ,m − 1, and each corresponds
to a basic orbi-disk class βνj . The generating functions of genus 0 open
orbifold GW invariants are τj + δνj(τ) given in (5.3). By Theorem 6.20,
this is equal to the inverse of the toric mirror map. The toric mirror
map for X was computed explicitly in [28]: τr = gr(y), where

gr(y) =
∑

k1,...,km−1≥0
〈b(k)〉=r/m

yk11 . . . y
km−1

n−1
k1! . . . km−1!

Γ(〈D0(k)〉)
Γ(1 +D0(k))

Γ(〈Dm(k)〉)
Γ(1 +Dm(k))

,

b(k) =

m−1∑
i=1

i

n
ki, D0(k) = − 1

m

m−1∑
i=1

(m− i)ki, Dm(k) = − 1

m

m−1∑
i=1

iki.

Denote the inverse of (g1(y), . . . , gm−1(y)) by (f1(τ), . . . , fm−1(τ)). Then
fj(τ) = τj + δνj (τ) for j = 1, ...,m − 1. The inverse mirror map
(f1(τ), . . . , fm−1(τ)) was computed in [28, Proposition 6.2]:

fj(τ) = (−1)m−jem−j(κ0, ..., κm−1), j = 1, ...,m − 1,

where ej is the j-th elementary symmetric polynomial in m variables,
and
(6.21)

κk(τ1, ..., τm−1) = ζ2k+1
m−1∏
r=1

exp

(
1

m
ζ(2k+1)rτr

)
, ζ := exp(π

√
−1/m).

Using these calculations, the SYZ mirror of [C2/Zm] can be written in a
nice form as follows. Recall that the mirror curve is given by uv = 1 +
zm+

∑m−1
j=1 (τj+δνj(τ))z

j . As τj+δνj (τ) = fj(τ) = (−1)m−jem−j(κ0, ...,
κm−1) and it is easy to check that 1 = (−1)mκ0 · · · κm−1, the SYZ mirror
of [C2/Zm] is given by

(6.22) uv =

m−1∏
j=0

(z − κj).

For the crepant resolution Y of X = C2/Zm, its genus 0 open GW
invariants have been computed in [68]. The result can be stated as
follows. Let D0, . . . ,Dm be the toric prime divisors corresponding to
the primitive generators (0, 1), . . . , (m, 1) of the fan, β1, . . . , βm be the
corresponding basic disks, and qi for i = 1, . . . ,m − 1 be the Kähler
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parameters corresponding to the (−2)-curves Di. It turns out that the
generating functions of genus 0 open GW invariants

qj−1q2j−2 . . . q
j−1
1 (1 + δj(q)) = qj−1q2j−2 . . . q

j−1
1

(∑
α

nβj+αq
α

)

are equal to the coefficients of zj of the polynomial (1+ z)(1 + q1z)(1+
q1q2z) . . . (1 + q1 . . . qm−1z).
(2) X = [C3/Z2g+1] (Example (2) in Section 5.4). In this case [C3/Z2g+1]
is obtained as the quotient orbifold of C3 by the Z2g+1-action with
weights (1, 1, 2g − 1). The standard (C∗)3-action on C3 commutes with
this Z2g+1-action and induces a (C∗)3-action on the quotient [C3/Z2g+1].

There is an alternative route to derive the mirror map of [C3/Z2g+1] as
follows. The J-function of (C∗)3-equivariant GW theory of [C3/Z2g+1]
coincides with a suitable twisted J-function of the orbifold BZ2g+1, con-
sidered in [76] and [28]. The J-function of BZ2g+1 has been computed
in [59] (see also [28, Proposition 6.1]):

JBZ2g+1(y, z) =
∑

k0,...,k2g≥0

1

zk0+...+k2g

yk00 ...y
k2g
2g

k0!...k2g !
1〈∑2g

i=0 i
ki

2g+1
〉.

The twisted GW theory we need is the GW theory of BZ2g+1 twisted
by the inverse (C∗)3-equivariant Euler class and the vector bundle L1⊕
L1 ⊕ L2g−1, where Lk is the line bundle on BZ2g+1 defined by the 1-
dimensional representation Ck of Z2g+1 on which 1 ∈ Z2g+1 acts with

eigenvalue exp(2π
√−1k
2g+1 ). The generalities of twisted GW theory are

developed in [76]. The J-function of the twisted GW theory can be
computed by applying [28, Theorem 4.8]:

Itw(y, z) =
∑

k0,...,k2g≥0

M1,kM2,kM3,k

zk0+...+k2g

yk00 ...y
k2g
2g

k0!...k2g !
1〈∑2g

i=0 i
ki

2g+1
〉,

where

M1,k =

�b(k)�−1∏
m=0

(λ1 − (〈b(k)〉 +m) z) ,

M2,k =

�b(k)�−1∏
m=0

(λ2 − (〈b(k)〉 +m) z) ,

M3,k =
∏

N(k)+1≤m≤0
(λ3 + (m− (1− 〈c(k)〉)) z) ,
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and

b(k) :=

2g∑
i=1

iki
2g + 1

,

c(k) := −
2g∑
i=1

iki
2g + 1

(2g − 1),

N(k) := 1 +

2g∑
i=1

� i(2g − 1)

2g + 1
�ki + �c(k)�.

Here λk, k = 1, 2, 3 is the weight of the k-th factor of (C∗)3 acting on
the k-th factor of C3. By [28, Theorem 4.8] it is then straightforward
to extract the J-function of [C3/Z2g+1], the mirror map, and generating
functions of orbi-disk invariants from Itw(y, z). We leave the details to
the readers.
(3) X = [Cn/Zn] (Example (3) in Section 5.4). In this case there is only
one twisted sector ν of age one. Let τ be the corresponding orbifold
parameter. The toric mirror map has been computed explicitly in [14]:

τ = g(y) =

∞∑
k=0

((− 1
n) . . . (1− k − 1

n))
n

(kn+ 1)!
ykn+1.

Then Theorem 6.20 tells us that the generating function τ + δν(τ) =∑
k≥1

τk

k! n1,k,βν
([pt]L; (1ν)

k) of genus 0 open orbifold GW invariants is

equal to the inverse series of g(y).
The total space of the canonical line bundle of Pn−1, Y = KPn−1 , is a

crepant resolution of X = Cn/Zn. Its cohomology is generated by the
line class l of Pn−1; let q denote the corresponding Kähler parameter.
Let β0 be the basic disk class corresponding to the zero-section. The gen-
erating function of genus 0 open GW invariants 1+δ(q) =

∑
k≥0 nβ0+klq

k

is equal to exp g(y), where

g(y) =
∑
k>0

(−1)nk
(nk − 1)!

(k!)n
yk,

and q and y are related by the mirror map q = y exp(−ng(y)).
(4) X = KF2 (Example 6.8). X is a smooth toric manifold whose fan
has primitive generators b0 = (0, 0, 1), b1 = (−1, 1, 1), b2 = (0, 1, 1),
b3 = (1, 1, 1) and b4 = (0,−1, 1). Note that the Hirzebruch surface F2

is not Fano (but semi-Fano). We remark that X = KF2 is a new example
whose open GW invariants were not computed in previous works.

The primitive generators which are not vertices of P (the convex hull
of b1, b3 and b4) are b0 and b2. Hence nβi+α = 0 for i = 1, 3, 4 and
α �= 0. Also nβi

= 1 for i = 0, . . . , 4. Only the open GW invariants
nβ0+α and nβ2+α for α �= 0 can be non-trivial.
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Take p1 = D0, p2 = D2 to be the basis of H2(X ,Q), and let C1, C2

be the dual basis. Denote the (−2) exceptional curve class of F2 by e,
and denote the fiber curve class of F2 by f . e and f form a basis of
H2(X ;Z). By computing the intersection numbers of e and f with p1
and p2, we obtain the relations f = C2 − 2C1 and e = −2C2.

The Kähler parameters of C1 and C2 are denoted as q1 and q2 re-
spectively, while that of e and f are denoted as qe and qf respec-
tively. we have qf = q2q

−2
1 , qe = q−22 . The corresponding parame-

ters of the complex moduli of the mirror are denoted by (y1, y2), and
we have yf = y2y

−2
1 , ye = y−22 . The mirror map is given by q1 =

y1 exp(A
X
1 (y1, y2)), q2 = y2 exp(A

X
2 (y1, y2)), where

AXj (y) :=
∑
d∈ΩX

j

yd
(−1)−〈Dj ,d〉−1(−〈Dj , d〉 − 1)!∏

i �=j〈Di, d〉!

by Equation (6.14), and ΩXj := {d ∈ Keff | 〈Dj , d〉 ∈ Z<0 and 〈Di, d〉 ∈
Z≥0 ∀i �= j}.

First consider AX2 . For C = ae+bf where a, b ∈ Z, C ·D2 = −2a+b <
0 and C ·D0 = −2b ≥ 0 imply that b = 0 and a ≥ 0. Also C · Di ≥ 0
for i �= 2. Hence ΩX2 = {ke : k ∈ N}, and

AX2 (y1, y2) =
∞∑
k=1

yke
(−1)2k−1(2k − 1)!

(k!)2
= − log 2 + log(1 +

√
1− 4ye).

Thus

qe = q−22 = ye exp(−2AX2 (y1, y2)) =
4ye

(1 +
√
1− 4ye)2

.

Taking the inverse, we obtain

ye =
qe

(1 + qe)2
, y2 = y−e/2 = (1 + qe)q2.

Comparing with y2 = q2 exp(−AX2 (y1, y2)), this implies
exp(−AX2 (y1, y2)) = 1+ qe under the mirror map. By Theorem 6.19, we
have

∑
α nβ2+αq

α = 1+ qe. Thus nβ2+α = 1 when α = 0, e, and zero for
all other classes α.

The hypergeometric series AX2 above also gives the mirror map of F2.
This is the analytic reason why the open GW invariants above are the
same as those of F2: nXβ2+α = nF2

β2+α. It is geometrically intuitive: the
bubbling contributions of the curve class e to β2 in F2 are the same as
that in KF2 , because D2 in KF2 is just the product of the corresponding
divisor in F2 with the complex line C.

Now consider AX1 . For C = ae+bf where a, b ∈ Z, C ·D2 = −2a+b ≥
0, C ·D0 = −2b < 0 imply that b ≥ 2a > 0. Also C ·Di ≥ 0 for i �= 2.
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Hence ΩX1 = {kf + a(e+ 2f) : a ∈ N, k ∈ Z≥0}, and

AX1 (y1, y2) =
∞∑
a=1

∞∑
k=0

ykf+a(e+2f) (−1)2(2a+k)−1(2(2a + k)− 1)!

(k!)(a!)2(2a+ k)!
.

By Theorem 6.19, this gives
∑

α nβ0+αq
α = exp(−AX1 (y1(q), y2(q)))

where the mirror map q(y) is

qf = yf exp(−2A1(y
e, yf ) +A2(y

e)), qe = ye exp(−2A2(y
e)).

The following table can be obtained by inverting the mirror map us-
ing computers:

nβ0+ae+bf a = 0 a = 1 a = 2 a = 3 a = 4 a = 5 a = 6
b = 0 1 0 0 0 0 0 0
b = 1 0 0 0 0 0 0 0
b = 2 0 −3 0 0 0 0 0
b = 3 0 −20 −20 0 0 0 0
b = 4 0 −105 −294 −105 0 0 0
b = 5 0 −504 −2808 −2808 −504 0 0
b = 6 0 −2310 −21835 −42867 −21835 −2310 0

7. Open mirror theorems

In this section we define the SYZ map, and prove an open mirror
theorem which says that the SYZ map coincides with the inverse of the
toric mirror map. For toric CY manifolds, this theorem implies that
the inverse of a mirror map defined using period integrals (so this is not
the toric mirror map) can be expressed explicitly in terms of generating
functions of genus 0 open GW invariants defined by Fukaya-Oh-Ohta-
Ono [41]. This confirms in the affirmative a conjecture of Gross-Siebert
[55, Conjecture 0.2], which was later made precise in [16, Conjecture
1.1] in the toric CY case.

7.1. The SYZ map.

7.1.1. Kähler moduli. As before, X is a toric CY orbifold as in Set-

ting 4.2. Let C̃X ⊂ L∨ ⊗ R be the extended Kähler cone of X as

defined in Section 2.6. Recall that there is a splitting C̃X = CX +∑m′−1
j=m R>0Dj ⊂ L∨ ⊗ R, where CX ⊂ H2(X ;R) is the Kähler cone of

X . We define the complexified (extended) Kähler moduli space of X as

MK(X ) :=
(
C̃X +

√
−1H2(X ,R)

)
/H2(X ,Z) +

m′−1∑
j=m

CDj .

Elements of MK(X ) are represented by complexified (extended) Kähler

class ωC = ω +
√
−1B +

∑m′−1
j=m τjDj, where ω ∈ CX , B ∈ H2(X ,R)

and τj ∈ C.
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We identify MK(X ) with (Δ∗)r′ × Cr−r′ , where Δ∗ is the punc-

tured unit disk, via the coordinates qa = exp
(
−2π

∫
γa

(
ω +

√
−1B

))
for a = 1, . . . , r′ and τj ∈ C, j = m, . . . ,m′ − 1, where {γ1, . . . , γr′}
is the integral basis of H2(X ;Z) we chose in Section 2.6. A partial

compactification of MK(X ) is given by (Δ∗)r
′ ×Cr−r′ ⊂ Δr′ × Cr−r′.

7.1.2. Complex moduli. On the mirror side, recall that

P ∩N = {b0, . . . , bm−1, bm, . . . , bm′−1}
and P is contained in the hyperplane {v ∈ NR | ((0, 1) , v) = 1}. Denote

by L(P) � Cm′
the space of Laurent polynomials G ∈ C[z±11 , . . . , z±1n−1]

of the form
∑m′−1

i=0 Ciz
bi , i.e. those with Newton polytope P. Let PP be

the projective toric variety defined by the normal fan of P. In Batyrev
[5], a Laurent polynomial G ∈ L(P) is defined to be P-regular if the
intersection of the closure Z̄f ⊂ PP , of the associated affine hypersurface
Zf := {(z1, . . . , zn−1) ∈ (C×)n−1 | f(z1, . . . , zn−1) = 0} in (C×)n−1,
with every torus orbit O ⊂ PP is a smooth subvariety of codimension 1
in O. Denote by Lreg(P) the space of all P-regular Laurent polynomials.

Following Batyrev [5] and Konishi-Minabe [63], we define the com-
plex moduli space MC(X̌ ) of the mirror X̌ to be the GIT quotient of
Lreg(P) by a natural (C×)n-action, which is nonempty and has complex
dimension r = m′ − n [5]. It parametrizes a family of non-compact CY
manifolds {X̌y}:
(7.1)
X̌y :=

{
(u, v, z1, . . . , zn−1) ∈ C2 × (C×)n−1 | uv = Gy(z1, . . . , zn−1)

}
,

where

Gy(z1, . . . , zn−1) =
m−1∑
i=0

Čiz
bi +

m′−1∑
j=m

Čνjz
νj ,

and the coefficients Či, Čνj ∈ C are subject to the following constraints:

m−1∏
i=0

ČQia

i = ya, a = 1, . . . , r′,

m−1∏
i=0

ČQia

i

m′−1∏
j=m

Č
Qja
νj = ya, a = r′ + 1, . . . , r.

Note that the non-compact CY manifolds in the family (7.1) may be-
come singular and develop orbifold singularities when some of the ya’s
go to zero.

To define period integrals, let Ω̌y be the holomorphic volume form on

X̌y defined by

Ω̌y = Res

(
1

uv −Gy(z1, . . . , zn−1)
d log z0 ∧ · · · ∧ d log zn−1 ∧ du ∧ dv

)
,
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where Gy(z1, . . . , zn−1) :=
∑m−1

i=0 Čiz
bi +

∑m′−1
j=m Čνjz

νj .

7.1.3. Two mirror maps.

Definition 7.1. We define the SYZ map as follows:

FSYZ : MK(X ) → MC(X̌ ), y �→ FSYZ(q, τ)

ya := qa

m−1∏
i=0

(1 + δi)
Qia , a = 1, . . . , r′,

ya :=
m−1∏
i=0

(1 + δi)
Qia

m′−1∏
j=m

(
q−D

∨
j
(
τνj + δνj

))Qja

, a = r′ + 1, . . . , r,

(7.2)

where q−D
∨
j :=

∏r′

a=1 q
〈pa,D∨

j 〉
a , and 1+δi and τνj +δνj are the generating

functions of genus 0 open orbifold GW invariants in X relative to a
Lagrangian torus fiber of a Gross fibration μ : X → B, defined in (5.2).

By Theorems 6.19 and 6.20, we have

(7.3) 1 + δi = exp
(
−AXi (y(q, τ))

)
, for i = 0, 1, . . . ,m− 1,

(7.4)

τνj+δνj = yD
∨
j exp

⎛⎝−
∑
i/∈Ij

cjiA
X
i (y(q, τ))

⎞⎠, for j = m,m+1, . . . ,m′−1.

On the other hand, recall that the toric mirror map (6.16) for X is
given by

Fmirror : MC(X̌ ) → MK(X ), (q, τ) �→ Fmirror(y)

qa = ya

m−1∏
j=0

exp
(
AXj (y)

)Qja
, a = 1, . . . , r′,

τbj = AXj (y), j = m, . . . ,m′ − 1.

7.2. Open mirror theorems.

7.2.1. Proof of Theorem 1.5. Recall that the toric mirror map Fmirror

is a local isomorphism near y = 0, so we can consider its inverse(
Fmirror

)−1
given by y = y(q, τ) near (q, τ) = 0.

For a = 1, . . . , r′, we have, by the formula (7.3),

log qa +

m−1∑
i=0

Qia(1 + δi) = log qa −
m−1∑
i=0

QiaA
X
i (y(q, τ)) = log ya.
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For a = r′ + 1, . . . , r, we have, by the formulas (7.3) and (7.4),

m′−1∑
j=m

Qja

(
log q−D

∨
j + log(τνj + δνj )

)

=

m′−1∑
j=m

Qja

(
−

r′∑
b=1

〈pb,D∨j 〉 log qb

+
r∑

b=1

〈pb,D∨j 〉 log yb −
∑
i/∈Ij

cjiA
X
i (y(q, τ))

)

=

r∑
b=r′+1

⎛⎝m′−1∑
j=m

Qja〈pb,D∨j 〉

⎞⎠ log yb

+

m′−1∑
j=m

Qja

(
r′∑
b=1

〈pb,D∨j 〉 log
(
ybq

−1
b

))

−
m′−1∑
j=m

Qja

⎛⎝∑
i/∈Ij

cjiA
X
i (y(q, τ))

⎞⎠ .

(7.5)

Now, the definition of D∨j implies that 〈Di,D
∨
j 〉 = δij for m ≤ i, j ≤

m′ − 1. Since Di =
∑r

a=1 Qiapa and Qia = 0 for 1 ≤ a ≤ r′ and
m ≤ i ≤ m′−1, we have

∑r
a=r′+1Qia〈pa,D∨j 〉 = δij form ≤ i, j ≤ m′−1.

This shows that the (r−r′)×(r−r′) square matrices (Qia) and (〈pa,D∨i 〉)
(wherem ≤ i ≤ m′−1 and r′+1 ≤ a ≤ r) are inverse to each other (note

that r− r′ = m′−m), so
∑m′−1

j=m Qja〈pb,D∨j 〉 = δab for r
′+1 ≤ a, b ≤ r.

Hence the first term of the last expression in (7.5) is precisely log ya.
On the other hand, we have

r′∑
b=1

〈pb,D∨j 〉 log
(
ybq

−1
b

)
=

r′∑
b=1

〈pb,D∨j 〉
(
−

m−1∑
k=0

QkbA
X
k (y)

)

= −
m−1∑
k=0

(
r′∑
b=1

Qkb〈pb,D∨j 〉
)
AXk (y),

and using the above formula
∑m′−1

j=m Qja〈pb,D∨j 〉 = δab again, we can
write
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m−1∑
k=0

Qka log(1 + δk) = −
m−1∑
k=0

QkaA
X
k (y)

= −
m−1∑
k=0

⎛⎝ r∑
b=r′+1

Qkb

⎛⎝m′−1∑
j=m

Qja〈pb,D∨j 〉

⎞⎠⎞⎠AXk (y)

= −
m′−1∑
j=m

Qja

(
r∑

b=r′+1

〈pb,D∨j 〉
(

m−1∑
k=0

QkbA
X
k (y)

))
We compute the sum

m−1∑
k=0

Qka log(1 + δk) +

m′−1∑
j=m

Qja

(
r′∑
b=1

〈pb,D∨j 〉 log
(
ybq

−1
b

))

=−
m′−1∑
j=m

Qja

(
r∑

b=r′+1

〈pb,D∨j 〉
(

m−1∑
k=0

QkbA
X
k (y)

))

−
m′−1∑
j=m

Qja

(
r′∑
b=1

〈pb,D∨j 〉
(

m−1∑
k=0

QkbA
X
k (y)

))

=−
m′−1∑
j=m

Qja

(
m−1∑
k=0

〈Dk,D
∨
j 〉AXk (y)

)
=

m′−1∑
j=m

Qja

⎛⎝∑
k/∈Ij

cjkA
X
k (y)

⎞⎠ ,

which cancels with the third term of the last expression in (7.5). Hence
we conclude that

m−1∑
i=0

Qia log(1 + δi) +

m′−1∑
j=m

Qja

(
log q−D

∨
j + log(τνj + δνj )

)
= log ya

for a = r′ + 1, . . . , r. This proves the theorem.

7.2.2. Connection with period integrals. Traditionally, mirror
maps are defined in terms of period integrals, which are integrals

∫
Γ Ω̌y

of the holomorphic volume form Ω̌y over middle-dimensional cycles

Γ ∈ Hn(X̌y;C) (see, e.g. [31, Chapter 6]). Theorem 1.6 shows that the
inverse of such a mirror map also coincides with the SYZ map. When
X is a toric CY manifold, we do not have extra vectors so that m′ = m
and r = r′, and there are no twisted sectors insertions in the invariants
nX1,l,βi+α([pt]L). Theorem 1.6 in this case specializes to Corollary 1.7.

Theorem 1.6 and Corollary 1.7 give an enumerative meaning to pe-
riod integrals, which was first envisioned by Gross and Siebert in [55,
Conjecture 0.2 and Remark 5.1] where they conjectured that period in-
tegrals of the mirror can be interpreted as (virtual) counting of tropical
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disks (instead of holomorphic disks) in the base of an SYZ fibration
for a compact CY manifold; in [56, Example 5.2], they also observed a
precise relation between the so-called slab functions, which appeared in
their program, and period computations for the toric CY 3-fold KP2 in
[50]. A more precise relation in the case of toric CY manifolds was later
formulated in [16, Conjecture 1.1]. (It was wrongly asserted that the
cycles Γ1, . . . ,Γr form a basis of Hn(X̌y;C) in [16, Conjecture 1.1] while
they should just be linearly independent cycles; see [18, Conjecture 2]
for the correct version.)

We point out that Corollary 1.7 is weaker than [16, Conjecture 1.1]
because the cycles Γ1, . . . ,Γr are allowed to have complex coefficients
instead of being integral. In the special case where X is the total space of
the canonical bundle over a compact toric Fano manifold, Corollary 1.7
was proven in [18]. As discussed in [18, Section 5.2], to enhance Corol-
lary 1.7 to [16, Conjecture 1.1], one needs to study the monodromy of
Hn(X̌y;Z) around the limit points in the complex moduli space MC(X̌ ).

Theorem 1.6 is essentially a consequence of Theorem 1.5 and the
analysis of the relationships between period integrals over n-cycles of
the mirror and GKZ hypergeometric systems in [18, Section 4]. Re-
call that the Gel’fand-Kapranov-Zelevinsky (GKZ) system [44, 45] of
differential equations (also called A-hypergeometric system) associated
to X , or to the set of lattice points Σ(1) = {b0, b1, . . . , bm−1}, is the
following system of partial differential equations on functions Φ(Č) of
Č = (Č0, Č1, . . . , Čm−1) ∈ Cm:

(
m−1∑
i=0

biČi∂i

)
Φ(Č) = 0,⎛⎝ ∏

i:〈Di,d〉>0

∂
〈Di,d〉
i −

∏
i:〈Di,d〉<0

∂
−〈Di,d〉
i

⎞⎠Φ(Č) = 0, d ∈ L,

(7.6)

where ∂i = ∂/∂Či for i = 0, 1, . . . ,m−1. Note that the first equation in
(7.6) consists of n equations, so there are n+ r = m equations in total.
By [18, Proposition 14], the period integrals

∫
Γ
Ω̌y, Γ ∈ Hn(X̌y;Z),

provide a C-basis of solutions to the GKZ hypergeometric system (7.6);
see also [57] and [63, Corollary A.16]. Now Theorem 1.6 follows from
the following
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Lemma 7.2. The components of the toric mirror map (6.16) of a
toric CY orbifold X ,

log qa = log ya +
m−1∑
j=0

QjaA
X
j (y), a = 1, . . . , r′,

τbj = AXj (y), j = m, . . . ,m′ − 1,

are solutions to the GKZ hypergeometric system (7.6).

Proof. The proof is more or less the same as that of [18, Theorem 12],
which in turn is basically a corollary of a result of Iritani [58, Lemma
4.6]. We first fix i0 ∈ {0, . . . ,m′ − 1}, and consider the corresponding
toric compactification X̄ . For i ∈ {0, . . . ,m− 1} ∪ {∞}, set

Di =
∑

a∈{1,...,r}∪{∞}
Qiaya

∂

∂ya
,

and, for d ∈ L̄, we define a differential operator

�d :=
∏

i:〈Di,d〉>0

〈Di,d〉−1∏
k=0

(Di − k)− yd
∏

i:〈Di,d〉<0

−〈Di,d〉−1∏
k=0

(Di − k).

Now [58, Lemma 4.6] says that the I-function IX̄ (y, z) satisfy the
following system of GKZ-type differential equations:

(7.7) �dΨ = 0, d ∈ L̄.

In particular, the components

log qa = log ya +
m−1∑
j=0

QjaA
X
j (y), a = 1, . . . , r′,

τbj = AXj (y), j = m, . . . ,m′ − 1,

of the toric mirror map of X , which are contained in the toric mirror
map (6.12) of X̄ , are solutions to the above system.

Hence, it suffices to show that solutions to the above system also
satisfy the GKZ hypergeometric system (7.6). This was shown in the
proof of [18, Theorem 12], so we will just describe the argument briefly.

First of all, we have
∑m′−1

i=0 Qia = 0 for a = 1, . . . , r. Together with the

fact that ya =
∏m−1

i=0 ČQia

i for a = 1, . . . , r, one can see that the first n
equations in (7.6) are satisfied by any solution of (7.7). On the other
hand, it is not hard to compute, using the fact that 〈D∞, d〉 = 0 for
d ∈ L⊕ 0 ⊂ L̄, that

∏
i:〈Di,d〉>0

∂
〈Di,d〉
i −

∏
i:〈Di,d〉<0

∂
−〈Di,d〉
i =

⎛⎝ ∏
i:〈Di,d〉>0

Č
−〈Di,d〉
i

⎞⎠�d
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for d ∈ L. Hence the other set of equations in (7.6) are also satisfied.
The lemma follows. q.e.d.

8. Application to crepant resolutions

Let Z be a compact Gorenstein toric orbifold. Suppose the underlying

simplicial toric variety Z admits a toric crepant resolution Z̃. In [14], a
conjecture on the relationship between genus 0 open GW invariants of

Z̃ and Z was formulated and studied. In this section we consider the
following setting. Let X be a toric CY orbifold as in Setting 4.2. It
is well-known (see e.g. [43]) that toric crepant birational maps to the
coarse moduli space X of X can be obtained from regular subdivisions
of the fan Σ satisfying certain conditions. More precisely, let X ′ = XΣ′

be the toric orbifold obtained from the fan Σ′, where Σ′ is a regular
subdivision of Σ. Then the morphism X ′ → X between the coarse
moduli spaces is crepant if and only if for each ray of Σ′ with minimal
lattice generator u, we have (ν, u) = 1. We prove the following:

Theorem 8.1 (Open crepant resolution theorem). Let X be a toric
CY orbifold as in Setting 4.2. Let X ′ be a toric orbifold obtained by a
regular subdivision of the fan Σ, such that the natural map X ′ → X be-
tween the coarse moduli spaces is crepant. Denoted by (q, τ) and (Q,T )
the flat coordinates on the Kähler moduli of X and X ′ respectively, and
r is the dimension of the extended complexified Kähler moduli space of
X (which is equal to that of X ′). Then there exists

1) ε > 0;
2) a coordinate change (Q(q, τ),T (q, τ)), which is a holomorphic map

(Δ(ε) − R≤0)r → (C×)r, and Δ(ε) is an open disk of radius ε in
the complex plane;

3) a choice of an analytic continuation of the SYZ map FSYZ
X ′ (Q,T )

to the target of the holomorphic map (Q(q, τ),T (q, τ)),

such that

FSYZ
X (q, τ) = FSYZ

X ′ (Q(q, τ),T (q, τ)).

Theorem 8.1 may be interpreted as saying that generating functions
of genus 0 open GW invariants of X ′ coincide with those of X after
analytical continuations and changes of variables. See [14, Conjecture
1, Theorem 3] for related statements for compact toric orbifolds.

Our proof of Theorem 8.1 employs the general strategy described
in [14]. Namely we use the open mirror theorem (Theorem 1.5) to
relate genus 0 open (orbifold) GW invariants of X and X ′ to their toric
mirror maps. These toric mirror maps are explicit hypergeometric series
and their analytic continuations can be done by using Mellin-Barnes
integrals techniques. See Appendix A.
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Proof of Theorem 8.1. We adapt the strategy used in [14] for proving
related results for compact toric orbifolds. By Theorem 1.5, we may

replace FSYZ by
(
Fmirror

)−1
, which are given by the toric mirror maps

(6.16). It suffices to show that an analytical continuation of the toric
mirror map exists. The necessary change of variables is given by com-
posing the inverse of the (analytically continued) toric mirror map of
X ′ with the toric mirror map of X .

Now the crepant birational map X ′ → X may be decomposed into a
sequence of crepant birational maps each of which is obtained by a regu-
lar subdivision that introduces only one new ray. If we can construct an
analytical continuation of the toric mirror map for each of these simpler
crepant birational maps, then we would obtain the necessary analytical
continuation of the toric mirror map of X ′ by composition. Therefore
we may assume that the fan Σ′ is obtained by a regular subdivision of
Σ which introduces only one new ray. In terms of secondary fans, this
means that X ′ → X is obtained by crossing a single wall. Therefore it
remains to construct an analytic continuation of the mirror map in case
of a crepant birational map corresponding to crossing a single wall in
the secondary fan. This is done in Appendix A. q.e.d.

Example 8.2. In the case when X = [C2/Zm] (see Example (1) of
Section 5.4), and X ′ the minimal resolution of X , an analytic continu-
ation of the inverse mirror map was explicitly constructed in [28]. We
reproduce the result here. Denote by g0X ′(y′), ..., gm−1X ′ (y′) the inverse
mirror map of X ′, and denote by g0(y), ..., gm−1(y) the inverse mirror
map of X . Then according to [28, Proposition A.7], for 1 ≤ i ≤ m− 1,
there is an analytic continuation of giX ′(y′) such that

giX ′(y′) = −2π
√
−1

m
+

1

m

m−1∑
k=1

ζ2ki(ζ−k − ζk)gk(y),

where ζ = exp
(
π
√−1
m

)
. It may be checked that this yields an identifi-

cation between the mirrors of X and X ′.
Remark 8.3. In the case when X = [Cn/Zn] (see Example (3) of

Section 5.4), and X ′ = OPn−1(−n), an analytic continuation of the
inverse mirror map was explicitly carried out in [14]. We refer the
readers to [14, Section 6.2] for more details.

Appendix A. Analytic continuation of mirror maps

We explicitly construct analytic continuations of the toric mirror
maps in case of crepant partial resolutions obtained by crossing a single
wall in the secondary fan. This is needed in the proof of Theorem 8.1.
The technique of constructing analytical continuations using Mellin-
Barnes integrals is well-known and has appeared in e.g. [11], [7], [29].
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A.1. Toric basics. In this subsection we describe the geometric and
combinatorial set-up that we are going to consider. Much of the toric
geometry needed here is discussed in Section 2 and repeated here in
order to properly set up the notations.

Let X1 be a toric CY orbifold given by the stacky fan

(A.1) (Σ1 ⊂ NR, {b0, . . . , bm−1} ∪ {bm, . . . , bm′−1})
whereN is a lattice of rank n, Σ1 ⊂ NR is a simplicial fan, b0, . . . , bm−1 ∈
N are primitive generators of the rays of Σ1, and bm, . . . , bm′−1 are extra
vectors chosen from Box(Σ1)

age=1. The CY condition means there exists
ν ∈ M := N∨ = Hom(N,Z) such that (ν, bi) = 1 for i = 0, . . . ,m − 1.
We also assume that X1 is as in Setting 4.2 so that Assumption 2.4 is
satisfied.

The fan sequence of this stacky fan reads 0 −→ L1 := Ker(φ1)
ψ1−→⊕m′−1

i=0 Zei
φ1−→ N −→ 0. Tensoring with C× yields 0 −→ G1 := L1 ⊗Z

C× −→ (C×)m
′ −→ N⊗ZC

× → 0. The set of anti-cones of the stacky fan
(A.1) is given by A1 :=

{
I ⊂ {0, . . . ,m′ − 1} | ∑i/∈I R≥0bi is a cone in

Σ1

}
. Note that {0, . . . ,m′−1}\{i} ∈ A1 if and only if i ∈ {0, . . . ,m−1}.

Hence if I ∈ A1, then {m, . . . ,m′ − 1} ⊂ I. Therefore we may define
the following

A′1 :=
{
I ′ ⊂ {0, . . . ,m− 1} | I ′ ∪ {m, . . . ,m′ − 1} ∈ A1

}
.

The divisor sequence 0 −→ M
φ∨
1−→⊕m−1

i=0 Ze∨i
ψ∨
1−→ L∨1 −→ 0 is obtained

by dualizing the fan sequence.
For each i = 0, . . . ,m′− 1, we put Di := ψ∨1 (e

∨
i ) ∈ L∨1 . The extended

Kähler cone C̃X1 of X1 and the Kähler cone CX1 of X1 are defined to be

C̃X1 :=
⋂

I∈A1

(∑
i∈I

R>0Di

)
⊂ L∨1 ⊗ R,

CX1 :=
⋂

I′∈A′
1

(∑
i∈I

R>0D̄i

)
⊂ H2(X1,R).

We understood that CX1 is the image of C̃X1 under the quotient map

L∨1 ⊗ R → L∨1 ⊗ R/
m′−1∑
i=m

RDi � H2(X1,R).

There is a splitting

L∨1 ⊗ R = Ker
((

D∨m, . . . ,D∨m′−1
)
: L∨1 ⊗R → Rm′−m

)
⊕

m′−1⊕
j=m

RDj,

and the extended Kähler cone is decomposed accordingly: C̃X1 = CX1 +∑m′−1
j=m R>0Dj .
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Let ω1 ∈ C̃X1 be an extended Kähler class of X1. According to
[58, Section 3.1.1], the defining condition of A1 may also be formu-
lated as ω1 ∈ ∑

i∈I R>0Di. The extended canonical class of X1 is

ρ̂X1 :=
∑m′−1

i=0 Di. By [58, Lemma 3.3], we have ρ̂X1 =
∑m−1

i=0 Di +∑m′−1
i=m (1− age(bi))Di. Since we choose bi, i = m, . . . ,m′ − 1 to have

age 1, we see that ρ̂X1 =
∑m−1

i=0 Di = c1(X1) = 0.

A.2. Geometry of wall-crossing. As mentioned earlier, we want to
consider toric crepant birational maps obtained by introducing a new
ray. We now describe this in terms of wall-crossing. We refer to [32,
Chapters 14–15] for the basics of wall-crossings in the toric setting.

By definition, a wall is a subspace

W̃ = W ⊕
m′−1⊕
j=m

RDj ⊂ L∨1 ⊗ R,

where W is a hyperplane given by a linear functional l, such that (1)
CX1 ⊂ {l > 0}, and (2) the intersection CX1 ∩W of the closure of CX1

with W is a top-dimensional cone in W . Let CX1(W ) ⊂ CX1 ∩ W be

the relative interior and let C̃X1(W ) := CX1(W )⊕⊕m′−1
j=m RDj .

We want to consider a crepant birational map obtained by introducing
one new ray. This means that there is exactly one Di lying outside the
Kähler cone CX1 . By relabeling the 1-dimensional cones, we may assume
that Dm−1 lies outside CX1 . More precisely, we assume

(A.2)

⎧⎨⎩ l(Di) > 0 for 0 ≤ i ≤ a− 1,
l(Di) = 0 for a ≤ i ≤ m− 2,
l(Dm−1) < 0.

Let ω2 be an extended Kähler class in the chamber (the chamber
structure is given by the secondary fan associated to Σ1) adjacent to

(CX1 ∩ W ) ⊕ ⊕m′−1
j=m RDj. Following [58, Section 3.1.1], we may use

ω2 to define another toric orbifold X2 as follows. The set of anti-cones
is defined to be A2 :=

{
I ⊂ {0, . . . ,m′ − 1} | ω2 ∈

∑
i∈I R>0Di

}
. The

toric orbifold X2 is then defined to be the following stack quotient

X2 :=

⎡⎣⎛⎝Cm′ \
⋃

I /∈A2

CI

⎞⎠ /G1

⎤⎦ ,

where CI := {(z0, . . . , zm′−1) ∈ Cm′ | zi = 0 for i /∈ I}. The fan Σ2 of
this toric orbifold is defined from A2 as follows:

∑
i/∈I R≥0bi is a cone of

Σ2 if and only if I ∈ A2. We also defineA′2 :=
{
I ′ ⊂ {0, . . . ,m−1} | I ′∪

{m, . . . ,m′ − 1} ∈ A2

}
.

Next we make a few observations about the two sets A1, A2 of anti-
cones.
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Lemma A.1. Let I ∈ A1. Then I ∈ A2 if and only if m− 1 ∈ I.

Proof. Suppose I ∈ A2. Then ω2 ∈
∑

i∈I R>0Di. Since l(Di) ≥ 0 for
all i except i = m− 1, and l(ω2) < 0, in order for ω2 ∈

∑
i∈I R>0Di we

must have m − 1 ∈ I. Suppose that I /∈ A2. Then ω2 /∈ ∑
i∈I R>0Di.

But this means that R>0ω2 /∈ ∑
i∈I R>0Di. This implies m− 1 /∈ I.

q.e.d.

Lemma A.2. Let I ∈ A1 and I /∈ A2. Then

1) (I ∪ {m− 1}) \ {0, . . . , a− 1} ∈ A2.
2) If |I| = dim G1, then I ∩ {0, . . . , a − 1} = {iI} is a singleton, so

(I ∪ {m− 1}) \ {iI} ∈ A2.

Proof. The statement (1) follows from the fact that l(Di) ≤ 0 for all
i ∈ (I ∪ {m− 1}) \ {0, . . . , a − 1}. The statement (2) follows from the
fact that the minimal size of an anti-cone is equal to dim G1. q.e.d.

Moving the Kähler class ω1 across the wall W to ω2 induces a bira-
tional map

(A.3) X1 → X2.

between the toric varieties underlying X1 and X2. In the theory of toric
GIT, this map is induced from the variation of GIT quotients by moving
the stability parameter from ω1 to ω2.

We may describe the birational map X1 → X2 in terms of the fans.
By Lemmas A.1 and A.2, if

∑
i/∈I R≥0bi is a cone in Σ1, then either this

cone is also in Σ2 (in which case R≥0bm−1 is not a ray of this cone), or∑
i/∈(I∪{m−1})\{0,...,a−1} R≥0bi is a cone in Σ2. This shows that the fan

Σ1 is an refinement of Σ2 obtained by adding a new ray R≥0bm−1. The
birational map X1 → X2 in (A.3) is induced from this refinement, in a
manner described more generally in e.g. [43, Section 1.4].

Lemma A.3. The birational map (A.3) contracts the divisor D̄m−1 ⊂
X1 and is crepant.

Proof. The fan sequence implies that (A.3) contracts the divisor
D̄m−1. Since X1 is toric CY, there exists ν ∈ N∨ such that (ν, bi) = 1
for i = 0, ...,m − 1. We conclude that X1 → X2 is crepant by applying
the criterion for being crepant (see e.g. [43, Section 3.4] and [6, Remark
7.2]) with the support function (ν,−). q.e.d.

A.3. Analytic continuations. Recall that

K1 := {d ∈ L1 ⊗Q | {i | 〈Di, d〉 ∈ Z} ∈ A1} ,
K2 := {d ∈ L1 ⊗Q | {i | 〈Di, d〉 ∈ Z} ∈ A2} .

As defined in (2.6), there are reduction functions

ν : K1 → Box(Σ1), ν : K2 → Box(Σ2),
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which are surjective and have kernels L1. This gives the identifications

K1/L1 = Box(Σ1), K2/L1 = Box(Σ2).(A.4)

We now discuss the toric mirror map. By (6.16), the toric mirror
map of X1 is given by

log qa = log ya +

m−1∑
j=0

QjaA
X
j (y), a = 1, . . . , r′,

τbj =AXj (y), j = m, . . . ,m′ − 1.

(A.5)

Some explanations are in order. Fix an integral basis {p1, . . . , pr} ⊂
L∨1 , where r = m′−n. For d ∈ L1⊗Q, we write qd =

∏r′

a=1 q
〈p̄a,d〉
a , yd =∏r

a=1 y
〈pa,d〉
a which define qa and ya, where r

′ = m−n and {p̄1, . . . , p̄r′}
are images of {p1, . . . , pr′} under the quotient map L∨1 ⊗Q → H2(X1;Q)
and they give a nef basis for H2(X1;Q). Also, Qia are chosen so that

(A.6) Di =

r∑
a=1

Qiapa, i = 0, . . . ,m− 1.

For j = 0, 1, . . . ,m− 1, we have

ΩX1
j = {d ∈ (K1)eff | ν(d) = 0, 〈Dj , d〉 ∈ Z<0 and

〈Di, d〉 ≥ 0 ∈ Z≥0 ∀i �= j},

AX1
j (y) =

∑
d∈ΩX1

j

yd
(−1)−〈Dj ,d〉−1(−〈Dj , d〉 − 1)!∏

i �=j〈Di, d〉!
.

For j = m, . . . ,m′ − 1, we have

ΩX1
j = {d ∈ (K1)eff | ν(d) = bj and 〈Di, d〉 /∈ Z<0 ∀i},

AX1
j (y) =

∑
d∈ΩX1

j

yd
m′−1∏
i=0

∏∞
k=
〈Di,d〉(〈Di, d〉 − k)∏∞

k=0(〈Di, d〉 − k)
.

To study the analytic continuation of (A.5), we first need to be more
precise about the variables involved. We pick p1, . . . , pr such that p1 is

contained in the closure of C̃X1 and p2, . . . , pr ∈ C̃X1(W ). Applying the
linear functional l ⊕ 0 to (A.6) gives

l(Di) = Qi1l(p1) +
∑
a≥2

Qial(pa).

By the choice of p1, . . . , pr, we have l(p1) > 0 and l(pa) = 0 for a ≥ 2.
The signs of l(Dj) are given in (A.2). This implies that⎧⎨⎩ Qi1 > 0 for 0 ≤ i ≤ a− 1,

Qi1 = 0 for a ≤ i ≤ m− 2,
Qm−1,1 < 0.
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Since 0 =
∑m′−1

i=0 Di =
∑m′−1

i=0

∑r
a=1 Qiapa, we have

∑m′−1
i=0 Qia = 0 for

all a = 1, . . . , r. Also note that Qia = 0 for 1 ≤ a ≤ r′ and m ≤ i ≤
m′ − 1.

We now proceed to construct an analytic continuation of Aj(y) where
j ∈ {0, . . . ,m′ − 1}. We do this in details only for j ∈ {m, . . . ,m′ − 1}
because the case when j ∈ {0, . . . ,m− 1} is similar.

Let j ∈ {m, . . . ,m′ − 1}. The element bj ∈ Box(Σ1)
age=1 corre-

sponds to a component X1,bj of the inertia orbifold IX1. According to
[6, Lemma 4.6], X1,bj is the toric Deligne-Mumford stack associated to
the quotient stacky fan Σ1/σ(bj), where σ(bj) is the minimal cone in
Σ1 that contains bj . Let dbj ∈ K1 be the unique element such that
ν(dbj ) = bj and 〈pa, dbj〉 ∈ [0, 1). Then by the identification of Box in
(A.4), every d ∈ K1 with ν(d) = bj can be written as

d = dbj + d0 with d0 ∈ L1.

We consider AX1
j (y). Put

A1,bj :=

{
I ⊂ {0, . . . ,m′ − 1} |

∑
i/∈I

R≥0bi is a cone in Σ1, 〈Di, dbj〉 ∈ Z for i ∈ I

}
⊂ A1,

and define C̃X1,bj
:=

⋂
I∈A1,bj

(∑
i∈I R>0Di

)
= CX1,bj

+
∑m′−1

i=m R≥0Di.

Clearly C̃X1 ⊂ C̃X1,bj
. Taking duals gives

NE(X1,bj ) := C̃∨X1,bj
⊂ C̃∨X1

=: NE(X1).

By definition, Aj(y) is a series in y whose exponents are contained in

Ωj. It is straightforward to check that Ωj ⊂ NE(X1,bj ). In this way

we interpret Aj(y) as a function on C̃X1,bj
and a function on C̃X1 by

restriction.
If we also have C̃X2 ⊂ C̃X1,bj

, then Aj(y) can also be interpreted as a

function on C̃X2 by restriction. So in this case no analytic continuation
is needed.

It remains to consider those bj such that C̃X2 is not contained in

C̃X1,bj
. First observe that Aj(y) can be rewritten as follows:

Aj(y) =
∑
d0∈L1

y
dbj yd0

m′−1∏
i=0

Γ({〈Di, dbj + d0〉}+ 1)

Γ(〈Di, dbj + d0〉+ 1)
.

We put Γbj
:=

∏m′−1
i=0 Γ({〈Di, dbj + d0〉}+ 1) so that we can write

Aj(y) =
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d0∈L1

y
dbj yd0Γbj

1

Γ(〈Dm−1, dbj + d0〉+ 1)

1∏
i �=m−1 Γ(〈Di, dbj + d0〉+ 1)

.

Since Γ(s)Γ(1− s) = π/ sin(πs), we have

1

Γ(〈Dm−1, dbj + d0〉+ 1)

= −
sin(π〈Dm−1, dbj + d0〉)

π
Γ(−〈Dm−1, dbj + d0〉),

and

Aj(y) =∑
d0∈L1

y
dbj yd0

Γbj

π
sin(π〈Dm−1, dbj + d0〉)

−Γ(−〈Dm−1, dbj + d0〉)∏
i �=m−1 Γ(〈Di, dbj + d0〉+ 1)

.

We put d0a := 〈pa, d0〉. In view of (A.6), we have

−Γ(−〈Dm−1, dbj + d0〉)∏
i �=m−1 Γ(〈Di, dbj + d0〉+ 1)

=
−Γ

(
− 〈Dm−1, dbj 〉 −Qm−1,1d01 −

∑
a�=1 Qm−1ad0a

)
∏

i �=m−1 Γ
(
〈Di, dbj 〉+ 1 +Qm−1,1d01 +

∑
a�=1 Qm−1ad0a

) .
Since yd0 =

∏r
a=1 y

〈pa,d0〉
a =

∏r
a=1 y

d0a
a , we have

Aj(y) =
Γbj

π

∑
d01,...,d0r≥0

y
dbj

⎛⎝∏
a≥2

yd0aa

⎞⎠ sin(π〈Dm−1, dbj + d0〉)

×
−Γ

(
− 〈Dm−1, dbj 〉 −Qm−1,1d01 −

∑
a�=1 Qm−1ad0a

)
∏

i �=m−1 Γ
(
〈Di, dbj 〉+ 1 +Qm−1,1d01 +

∑
a�=1 Qm−1ad0a

)
=

Γbj

π

∑
d02,...,d0r≥0

y
dbj

⎛⎝∏
a≥2

yd0aa

⎞⎠
sin

⎛⎝π〈Dm−1, dbj 〉+
∑
a�=1

Qm−1,ad0a

⎞⎠
×
( ∑

d01≥0

(
(−1)Qm−1,1y1

)d01
−Γ

(
− 〈Dm−1, dbj 〉 −Qm−1,1d01 −

∑
a�=1 Qm−1ad0a

)
∏

i �=m−1 Γ
(
〈Di, dbj 〉+ 1 +Qm−1,1d01 +

∑
a�=1 Qm−1ad0a

)).
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Now observe that

∑
d01≥0

(
(−1)Qm−1,1y1

)d01
−Γ

(
− 〈Dm−1, dbj 〉 −Qm−1,1d01 −

∑
a�=1 Qm−1ad0a

)
∏

i �=m−1 Γ
(
〈Di, dbj 〉+ 1 +Qm−1,1d01 +

∑
a�=1Qm−1ad0a

)

= Ress∈N∪{0}ds
(
− Γ(−s)((−1)Qm−1,1y1)

sΓ
(
− 〈Dm−1, dbj 〉

−Qm−1,1s−
∑
a�=1

Qm−1ad0a
))

/( ∏
i �=m−1

Γ
(
〈Di, dbj 〉+ 1 +Qm−1,1s+

∑
a�=1

Qm−1ad0a
))

.

(A.7)

Fix a sign of y1 so that (−1)Qm−1,1y1 ∈ R>0. By using the Mellin-Barnes
integral technique (see e.g. [7, Section 4] and [7, Lemma A.6]), we have
that the right-hand side of (A.7) is

∮
Cd02,...,d0r

ds
(
− Γ(−s)((−1)Qm−1,1y1)

sΓ
(
− 〈Dm−1, dbj 〉

−Qm−1,1s−
∑
a�=1

Qm−1ad0a
))

/( ∏
i �=m−1

Γ
(
〈Di, dbj 〉+ 1 +Qm−1,1s+

∑
a�=1

Qm−1ad0a
))

,

(A.8)

where Cd02,...,d0r is a contour on the plane with (complex) coordinate s

that runs from s = −
√
−1∞ to s = +

√
−1∞, dividing the plane into

two parts so that

(A.9) PoleL :=

{〈Dm−1, dbj 〉+
∑

a�=1 Qm−1ad0a − l

−Qm−1,1
| l = 0, 1, . . .

}

lies on one part and {0, 1, . . .} lies on the other part. Note that −Qm−1,1
> 0.

To analytically continue to the region where |y1| is large, we close the
contour Cd02,...,d0r to the left to enclose all poles in PoleL. This shows
that (A.8) is
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Ress∈PoleLds
(
− Γ(−s)

(
(−1)Qm−1,1y1)

sΓ(−〈Dm−1, dbj〉

−Qm−1,1s−
∑
a�=1

Qm−1ad0a
))

/( ∏
i �=m−1

Γ
(
〈Di, dbj 〉+ 1 +Qm−1,1s+

∑
a�=1

Qm−1ad0a
))

,

which is equal to

∑
l≥0

(−1)l

l!

(
Γ

(〈Dm−1, dbj〉+
∑

a�=1 Qm−1ad0a − l

Qm−1,1

)
(
(−1)Qm−1,1y1

) 〈Dm−1,dbj
〉+

∑
a �=1 Qm−1ad0a−l

−Qm−1,1

)
/( ∏

i �=m−1
Γ

(
〈Di, dbj 〉+ 1 +Qm−1,1×

〈Dm−1, dbj〉+
∑

a�=1 Qm−1ad0a − l

−Qm−1,1
+
∑
a�=1

Qm−1ad0a

))

=
∑
l≥0

(−1)l

l!

((
(−1)Qm−1,1y1

) 〈Dm−1,dbj
〉+

∑
a �=1 Qm−1ad0a−l

−Qm−1,1

π

−Qm−1,1 sinπ
(
〈Dm−1,dbj 〉+

∑
a �=1 Qm−1ad0a−l

−Qm−1,1

))

/( ∏
i �=m−1

Γ

(
〈Di, dbj 〉+ 1 +Qm−1,1×

〈Dm−1, dbj〉+
∑

a�=1 Qm−1ad0a − l

−Qm−1,1
+
∑
a�=1

Qm−1ad0a

))

× 1

Γ

(
1− 〈Dm−1,dbj 〉+

∑
a �=1 Qm−1ad0a−l

Qm−1,1

) ,

where we again use Γ(s)Γ(1− s) = π/ sin(πs).
This gives an analytic continuation of Aj(y):



SYZ AND OPEN GW FOR TORIC CY ORBIFOLDS 281

Aj(y) =
Γbj

π

∑
d02,...,d0r≥0

y
dbj

⎛⎝∏
a≥2

yd0aa

⎞⎠
sin

⎛⎝π〈Dm−1, dbj 〉+ π
∑
a�=1

Qm−1,ad0a

⎞⎠
×
∑
l≥0

(−1)l

l!

((
(−1)Qm−1,1y1

) 〈Dm−1,dbj
〉+

∑
a �=1 Qm−1ad0a−l

−Qm−1,1

π

−Qm−1,1 sinπ
(
〈Dm−1,dbj 〉+

∑
a �=1 Qm−1ad0a−l

−Qm−1,1

))

/( ∏
i �=m−1

Γ

(
〈Di, dbj〉+ 1 +Qm−1,1

×
〈Dm−1, dbj 〉+

∑
a�=1 Qm−1ad0a − l

−Qm−1,1
+
∑
a�=1

Qm−1ad0a

))

× 1

Γ

(
1− 〈Dm−1,dbj 〉+

∑
a �=1 Qm−1ad0a−l

Qm−1,1

) .

(A.10)

It remains to show that the expression in (A.10) can be interpreted

as a function on C̃X2 . To do this, we need a new set of variables. Pick
another integral basis of {p̂1, . . . , p̂r} ⊂ L∨1 ⊗ Q such that p̂1 := Dm−1
and p̂a := pa for a = 2, . . . , r. Introduce the corresponding variables

ŷ1, . . . , ŷr, namely yd = ŷd =
∏r

a=1 ŷ
〈p̂a,d〉
a . From this it is easy to see

that ŷ1 = y
1/Qm−1,1

1 and ŷa = y
−Qm−1,a/Qm−1,1

1 ya for a = 2, . . . , r. We
may express Di in terms of p̂1, . . . , p̂r as follows:

Di =

r∑
a=1

Qiapa = Qi1p1 +
∑
a≥2

Qiapa

=
Qi1

Qm−1,1
p̂1 +

∑
a≥2

(
Qia −

Qi1Qm−1,a
Qm−1,1

)
p̂a.

Next we interpret the expression in (A.10) as a series in ŷ whose

exponents are contained in NE(X2) = Ĉ∨X2
. Define d̂bj ∈ L1 ⊗ Q to be

the unique class such that

(A.11) 〈p̂1, d̂bj 〉 = 0, 〈p̂a, d̂bj 〉 = 〈pa, dbj 〉, for a = 2, . . . , r.
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Given l, d02, . . . , d0r ≥ 0, define d̂0 ∈ L1 ⊗Q to be the unique class such
that

(A.12) 〈p̂1, d̂0〉 = l, 〈p̂a, d̂0〉 = d0a, for a = 2, . . . , r.

Lemma A.4. Given l, d02, . . . , d0r ≥ 0. Then d̂ := d̂bj + d̂0 is con-
tained in K2.

Proof. First note that 〈Dm−1, d̂〉 = 〈p̂1, d̂bj + d̂0〉 = l ∈ Z. Let

i ∈ {a, . . . ,m − 2}. We consider 〈Di, d̂〉. Let p̂∨1 , . . . , p̂
∨
r be such that

〈p̂a, p̂∨b 〉 = δab. We calculate 〈p̂1, d0〉 =
∑

a≥1 Qm−1,ad0a and 〈p̂a, d0〉 =
d0a for a ≥ 2. So

d0 =

⎛⎝∑
a≥1

Qm−1,ad0a

⎞⎠ p̂∨1 +
∑
a≥2

d0ap̂
∨
a .

By (A.11) and (A.12), we have

d̂ = d̂bj + d̂0 = dbj − 〈pa, dbj〉p̂∨1 + d0 +

⎛⎝l −
∑
a≥1

Qm−1,ad0a

⎞⎠ p̂∨1

= dbj + d0 +

⎛⎝l − 〈pa, dbj 〉 −
∑
a≥1

Qm−1,ad0a

⎞⎠ p̂∨1 .

Since i ∈ {a, . . . ,m − 2}, we have Di ∈ C̃X1(W ). So Di is a linear
combination of p̂2, . . . , p̂r. This implies that 〈Di, p̂

∨
1 〉 = 0, and hence

〈Di, d̂〉 = 〈Di, dbj + d0〉. We know that 〈Di, d0〉 =
∑r

a=1 Qia〈pa, d0〉 =∑r
a=1 Qiad0a ∈ Z. So 〈Di, d̂〉 = 〈Di, dbj + d0〉 ∈ Z if and only if

〈Di, dbj 〉 ∈ Z.

By assumption, C̃X2 is not contained in C̃X1,bj
. It follows easily

that
∑

i∈{a,...,m−2}
〈Di,dbj 〉∈Z

R>0Di must contain CX1 ∩ W . Thus R>0Dm−1 +∑
i∈{a,...,m−2}
〈Di,dbj 〉∈Z

R≥0Di contains the Kähler class ω2, and {m − 1} ∪ {i ∈

{a, . . . ,m − 2} | 〈Di, dbj〉 ∈ Z} is in A′2. Since 〈Di, d̂〉 ∈ Z for all
i ∈ {m − 1} ∪ {i ∈ {a, . . . ,m − 2} | 〈Di, dbj〉 ∈ Z}, we conclude that

d̂ ∈ K2 by the definition of K2. q.e.d.
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We calculate

〈Di, dbj 〉+ 1 +Qm−1,1

×
〈Dm−1, dbj〉+

∑
a�=1 Qm−1ad0a − l

−Qm−1,1
+
∑
a�=1

Qm−1ad0a

=
Qi1

Qm−1,1
l +

∑
a�=1

(
Qia −

Qi1Qm−1,a
Qm−1,1

)
d0a

− Qi1

Qm−1,1
〈Dm−1, dbj 〉+ 〈Di, dbj 〉

=〈Di, d̂0〉+ 〈Di −
Qi1

Qm−1,1
Dm−1, d̂bj 〉.

Also,(
(−1)Qm−1,1y1

) 〈Dm−1,dbj
〉+

∑
a �=1 Qm−1ad0a−l

−Qm−1,1

=(−1)
(〈Dm−1,dbj 〉+

∑
a �=1 Qm−1ad0a−l)ŷ

−(〈Dm−1,dbj 〉+
∑

a �=1 Qm−1ad0a−l)
1 ,

yd0aa = ŷd0aa ŷ
Qm−1,ad0a
1 for a ≥ 2,

which gives

y
dbj

⎛⎝∏
a≥2

yd0aa

⎞⎠(
(−1)Qm−1,1y1

) 〈Dm−1,dbj
〉+

∑
a �=1 Qm−1ad0a−l

−Qm−1,1

=(−1)
Qm−1,1×

〈Dm−1,dbj
〉+

∑
a �=1 Qm−1ad0a−l

Qm−1,1 ŷ
d̂bj ŷd̂0 .

Also

〈Dm−1, dbj 〉+
∑

a�=1 Qm−1ad0a − l

Qm−1,1

=〈 Dm−1
Qm−1,1

, dbj〉+ 〈
p̂1 −

∑
a�=1 Qm−1,ap̂a
Qm−1,1

, d̂0〉.

From these calculations it is easy to see that the expression in (A.10)
can be interpreted as a series in ŷ whose exponents are contained in

NE(X2) = Ĉ∨X2
. This completes the construction of the analytic con-

tinuation.
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