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Abstract

We prove that generalized conifolds and orbifolded conifolds are mirror symmetric under
the SYZ program with quantum corrections. Our work mathematically confirms the gauge-
theoretic assertion of Aganagic–Karch–Lüst–Miemiec, and also provides a supportive evidence
to Morrison’s conjecture that geometric transitions are reversed under mirror symmetry.

1 Introduction

In [Mor], Morrison proposed that geometric transitions are reversed under mirror symmetry. A
geometric transition is a birational contraction followed by a complex smoothing, or in the reverse
way, applied to a Kähler manifold [Ros]. We will denote a geometric transition by X̂ 99K X ⇝ X̃,
where X̂ 99K X is a birational contraction and X ⇝ X̃ is a smoothing. The conjecture can be
formulated as follows.

Conjecture 1.1 (Morrison [Mor]). Let X̂ and X̃ be Calabi–Yau manifolds, and suppose they are
related by a geometric transition X̂ 99K X ⇝ X̃. Suppose Y1 and Y2 are the mirrors of X̂ and X̃
respectively. Then there exists a geometric transition Y2 99K Y ⇝ Y1 relating Y1 and Y2.

The present paper investigates mirror symmetry for geometric transitions of two specific types
of local singularities, namely generalized conifolds and orbifolded conifolds. Let us first recall mirror
symmetry for a conifold. A conifold is an isolated singularity defined by {xy− zw = 0} ⊂ C4. It is
an important singularity appearing in algebraic geometry and also plays a special role in superstring
theory. A folklore mirror symmetry for the conifold [Mor, Sze] that the deformed conifold is mirror
symmetric to the resolved conifold can be refined in the framework of SYZ mirror symmetry as
follows.

Theorem 1.2 (Conifold case of Theorem 3.1). Let X̂ := OP1(−1)⊕2 \ D be the resolved conifold
with a smooth anti-canonical divisor D removed, and

X̃ := {(x, y, z, w) ∈ C4 | xy − zw = 1} \ ({z = 1} ∪ {w = 1})

the deformed conifold with the anti-canonical divisor {z = 1} ∪ {w = 1} removed. Then X̂ and X̃
are SYZ mirror to each other.

Although removing the divisors certainly does not affect the local geometry of the singularity,
it is important for defining wrapped Fukaya categories and homological mirror symmetry1.

We now focus on two natural generalizations of the conifold: generalized conifolds and orbifolded
conifolds. For integers k, l ≥ 1, a generalized conifold is given by

G♯
k,l := {(x, y, z, w) ∈ C4 | xy − (1 + z)k(1 + w)l = 0}

1We are grateful to Murad Alim for informing us about the importance of this issue.
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and an orbifolded conifold is given by

O♯
k,l := {(u1, v1, u2, v2, z) ∈ C5 | u1v1 − (1 + z)k = u2v2 − (1 + z)l = 0}.

(We have made a change of coordinates, namely z 7→ 1 + z and w 7→ 1 +w, for later convenience.)
They reduce to the confold when k = l = 1. The punctured generalized conifold is defined as
Gk,l := G♯

k,l \ DG, where DG := {z = 0} ∪ {w = 0} is a normal-crossing anti-canonical divisor

of G♯
k,l, and the punctured orbifolded conifold as Ok,l := O♯

k,l \ DO, where DO := {z = 0} is a

smooth anti-canonical divisor of O♯
k,l. As is the case of the conifold, their symplectic structures

and complex structures are governed by the crepant resolutions and deformations respectively. The
main theorem of the present paper is the following.

Theorem 1.3 (Theorem 3.1). The punctured generalized conifold Gk,l is mirror symmetric to the
punctured orbifolded conifold Ok,l in the sense that the deformed punctured generalized conifold

G̃k,l is SYZ mirror symmetric to the resolved punctured orbifolded conifold Ôk,l, and the resolved

punctured generalized conifold Ĝk,l is SYZ mirror symmetric to the deformed punctured orbifolded

conifold Õk,l.

G̃k,lOO

SY Z
��

Gk,l
oo o/ o/ o/

OO

MS

��

Ĝk,l
oo

OO

SY Z
��

Ôk,l
// Ok,l

///o/o/o Õk,l.

According to Theorem 1.3 the mirror duality of the conifold is purely caused by the fact that the
conifold is a generalized and orbifolded conifold. The mirror duality of G♯

k,l and O♯
k,l has previously

been studied by physicists Aganagic, Karch, Lust and Miemiec in [AKLM], where they use gauge
theory and brane configurations.

In the present paper, we use the framework introduced by the second author with Chan and
Leung [CLL] for defining SYZ mirror pairs. Namely, generating functions of open Gromov–Witten
invariants of fibers of a Lagrangian fibration were used to construct the complex coordinates of the
mirror. The essential ingredient is wall-crossing of the generating functions, which was first studied
by Auroux [Aur]. We can also bypass symplectic geometry and employs the Gross–Siebert program
[GS] which uses tropical geometry instead for defining mirror pairs. This approach was taken by
Castano-Bernard and Matessi [CM] in the study of mirror symmetry for conifold transitions for
compact Calabi–Yau varieties. In this paper this would be unnecessary since symplectic geometry
can be handled directly.

One interesting feature of the present work is the involutive property of SYZ mirror symmetry.
Namely, taking SYZ mirror twice gets back to itself, which we believe is an important point but
often overlooked in literatures. We exhibit this feature by carrying out the SYZ construction for all
the four directions in Theorem 1.3, namely from Ĝk,l to Õk,l, and from Õk,l back to Ĝk,l; from G̃k,l

to Ôk,l, and from Ôk,l back to G̃k,l. The SYZ construction from Ĝk,l to Õk,l is a bit tricky and we
will discuss it in details. We will employ the various techniques developed in [Aur, CLL, AAK, Lau].

Another interesting feature is the dependence of the choice of a Lagrangian fibration, namely a
Lagrangian fibration has to be compatible with the choice of an anti-canonical divisor in order to
obtain the desired mirror. For example, Ĝk,l admits two different Lagrangian fibrations: the Gross
fibration and a ‘doubled’ Gross fibration. The former is not compatible with the anti-canonical
divisor DG, and does not produce the orbifold conifold as its SYZ mirror. Choosing appropriate
Lagrangian fibrations is a key step in our work.

Lastly, Theorem 1.3 not only unveils a connection between geometric transitions and SYZ mirror
symmetry, but also yields many interesting problems and conjectures that naturally extend what
is known for the conifolds.

2



Structure of Paper

Section 2 introduces generalized conifolds and orbifolded conifolds and basic properties thereof.
Section 3 begins with a review on the Lagrangian torus fibrations and the SYZ program. Then we
prove the main theorem (Theorem 1.3) by carrying out the SYZ constructions. Section 4 discusses
global geometric transitions and provides a few examples.

Acknowledgement

The authors are grateful to Murad Alim and Shing-Tung Yau for useful discussions and encourage-
ment. The first author is supported by the Center of Mathematical Sciences and Applications at
Harvard University. The second author is supported by Harvard University.

2 Generalized and orbifolded conifolds

In this section, we introduce two natural generalizations of the conifold, namely generalized conifolds
and orbifolded conifolds. These two singularities possess interesting geometries and were studied
by physicists in the context of gauge theory, for instance in [KKV, AKLM, Mie].

2.1 Generalized conifolds G♯
k,l

A toric Calabi–Yau threefold can be described by a lattice polytope ∆ ⊂ R2 whose vertices lie in
the lattice Z2 ⊂ R2. Its fan is produced by taking the cone over ∆×{1} ⊂ R3. A crepant resolution
of a toric Calabi–Yau threefold corresponds to a subdivision of ∆ into standard triangles2, which
gives a refinement of the fan. For instance, the total space of the canonical bundle KS of a smooth
toric surface S is a toric Calabi–Yau threefold. In this situation, the surface S is the toric variety
P∆ whose fan polytope is ∆.

The condition that a toric Calabi–Yau threefold contains no compact 4-cycles is equivalent to
the condition that the polytope ∆ contains no interior lattice points. The lattice polygons without
interior lattice point are classified, up to the action of GL(2,Z), into two types:

1. triangle with vertices (0, 0), (2, 0), (0, 2),

2. trapezoid ∆k,l with vertices (0, 0), (0, 1), (k, 0), (l, 1) for k ≥ l ≥ 0 with (k, l) ̸= (0, 0) (Figure
1(a)).

(0,0)

(0,1) (2,1)

(4,0)
(0,0)

(0,1) (l,1)

(k,0)

(a) (b)

Figure 1: (a) Trapezoid ∆k,l, (b) Crepant resolution Ĝ♯
4,2

The former is the quotient of C3 by the subgroup (Z2)
2 ⊂ SL(3,C) generated by the two elements

diag(−1,−1, 1) and diag(1,−1,−1). In this paper, we are interested in the latter, which corresponds
to the generalized conifold Gk,l for k ≥ l ≥ 1. We do not consider the case l = 0, where the toric

2A standard triangle in R2 is isomorphic to the convex hull of (0, 0), (1, 0), (0, 1) under the Z2 ⋊ GL(2,Z)-
transformation.
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singularity essentially comes from the Ak-singularity in 2-dimensions3. The dual cone of the cone
over the trapezoid ∆k,l is spanned by the vectors

ν1 := (1, 0, 0), ν2 := (0,−1, 1), ν3 := (−1, l − k, k), ν4 := (0, 1, 0) (1)

with relation ν1 − kν2 + ν3 − lν4 = 0. In equation the generalized conifold G♯
k,l is given by

G♯
k,l := {xy − zkwl = 0} ⊂ C4.

The coordinates x, y, z, w correspond to the dual lattice points ν1, ν3, ν2, ν4 respectively. For (k, l) ̸=
(1, 1), the generalized conifold G♯

k,l is a quotient of the conifold (which is given by (k, l) = (1, 1))

and has a 1-dimensional singular locus. A punctured generalized conifold is Gk,l := G♯
k,l \ DG,

where DG = {z = 1} ∪ {w = 1} is an anti-canonical divisor of G♯
k,l. A crepant resolution Ĝk,l

of Gk,l is called a resolved generalized conifold. We observe that Ĝk,l = Ĝ♯
k,l \ D

Ĝ
, where D

Ĝ
is

an anti-canonical divisor of Ĝ♯
k,l, and it uniquely corresponds to a maximal triangulation of the

trapezoid ∆k,l (Figure 1(b)). The resolved generalized conifold Ĝk,l is endowed with a natural

symplectic structure as an open subset of a smooth toric variety Ĝ♯
k,l.

Proposition 2.1. There are
(
k+l
k

)
distinct crepant resolutions of Gk,l (or equivalently G♯

k,l).

Proof. There is a bijection between the crepant resolutions of Gk,l and the maximal triangulations

of ∆k,l. The assertion easily follows by induction with the relation
(
k+l+1
k+1

)
=

(
k+l
k

)
+

(
k+l
k+1

)
.

We may also smooth out the punctured generalized conifold Gk,l by deforming the equation.

The deformed generalized conifold G̃k,l is defined as

G̃k,l :=
{
(x, y, z, w) ∈ C2 × (C \ {1})2

∣∣ xy − k∑
i=0

l∑
j=0

ai,jz
iwj = 0

}
for generic ai,j ∈ C. The symplectic structure of G̃k,l is given by the restriction of the standard
symplectic structure on C2 × (C \ {1})2. We observe that the complex deformation space has
dimension (k + 1)(l + 1) − 3 because three of the parameters can be eliminated by rescaling z, w
and rescaling the whole equation. On the other hand, the Kähler deformation space has dimension
(k + 1) + (l + 1) − 3, the number of linearly dependent lattice vectors in the polytope. It is the
number of the exceptional P1s’ and a Kähler form is parametrized by the area of these.

2.2 Orbifolded conifolds O♯
k,l

Let X♯ be the conifold {xy − zw = 0} ⊂ C4. For k ≥ l ≥ 1, the orbifolded conifold O♯
k,l is the

quotient of the conifold X♯ by the abelian group Zk × Zl, where Zk and Zl respectively act by

(x, y, z, w) 7→ (ζkx, ζ
−1
k y, z, w), and (x, y, z, w) 7→ (x, y, ζlz, ζ

−1
l w)

where ζk, ζl are primitive k-th and l-th roots of unity respectively (assume gcd(k, l) = 1 for simplicity

[AKLM]). Alternatively the orbifolded conifold O♯
k,l is realized as a hypersurface in C5:

O♯
k,l = {u1v1 = zk, u2v2 = zl} ⊂ C5.
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(0,0) (5,0)

(0,3) (5,3)

(0,0) (k,0)

(0,l) (k,l)

(a) (b)

Figure 2: (a) Rectangle □k,l, (b) Crepant resolution Ô♯
5,3

The orbifolded conifold O♯
k,l is an example of a toric Calabi–Yau threefold and the corresponding

polytope is given by the rectangle □k,l with the vertices (0, 0), (k, 0), (0, l), (k, l) (Figure 2(a)).
The dual cone of the cone over the rectangle □k,l is spanned by the following vectors

v1 := (1, 0, 0), v2 := (0,−1, l), v3 := (−1, 0, k), v4 := (0, 1, 0)

with relation lv1 − kv2 + lv3 − kv4 = 0.

A punctured orbifolded conifold is Ok,l := O♯
k,l \ DO, where DO = {z = 1} is a smooth

anti-canonical divisor of O♯
k,l. Then a resolved orbifolded conifold Ôk,l is defined to be a crepant

resolution of Ok,l. As before, Ôk,l = Ô♯
k,l \DÔ

, where D
Ô
is a smooth anti-canonical divisor of the

toric crepant resolution Ô♯
k,l, and it corresponds to a maximal triangulation of the trapezoid □k,l

(Figure 2(b)). It has a canonical symplectic structure as an open subset of a smooth toric variety

Ô♯
k,l. In contrast to Proposition 2.1, it is a famous open problem to find the number of the crepant

resolutions of the orbifolded conifold O♯
k,l [KZ]. The punctured orbifolded conifold Ok,l can also be

smoothed out by deforming the defining equations. Thus the deformed orbifolded conifold Õk,l is
given by

Õk,l :=
{
(u1, v1, u2, v2, z) ∈ C4 × (C \ {1})

∣∣ u1v1 = k∑
i=0

aiz
i, u2v2 =

l∑
j=0

bjz
j
}

for generic coefficients ai, bj ∈ C. The symplectic structure of Õk,l is the restriction of the standard

symplectic structure on C4 × (C \ {1}). The complex deformation space of Õk,l has dimension
(k+1)+(l+1)−3, while the Kähler deformation space has dimension (k+1)(l+1)−3. Therefore
the naive dimension counting is compatible with our claim that these two classes of singularities
are mirror symmetric. We will formulate this mirror duality in a rigorous manner by using SYZ
mirror symmetry in the next section.

3 SYZ mirror construction

The Strominger–Yau–Zaslow (SYZ) conjecture [SYZ] provides a foundational geometric under-
standing of mirror symmetry. It asserts that, for a mirror pair of Calabi–Yau manifolds X and
X∨, there exist Lagrangian torus fibrations π : X → B and π∨ : X∨ → B which are fiberwise-dual
to each other. In particular, it suggests an intrinsic construction of the mirror X∨ by fiberwise
dualizing a Lagrangian torus fibration on X. This is motivated by T-duality studied by string
theorists.

3Mirror symmetry of this class of singularities is discussed in [Sze, Section 5].
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The SYZ program has been carried out successfully in the semi-flat case [Leu] in which the
discriminant locus of the fibrations is empty. When singular fibers are present, quantum correc-
tions by open Gromov–Witten invariants of the fibers are necessary, and they exhibit wall-crossing
phenomenon. Wall-crossing of open Gromov–Witten invariants was first studied by Auroux [Aur].
Later on [CLL] gave an SYZ construction of mirrors with quantum corrections, which will be used
in this paper. In algebro-geometric context, the Gross–Siebert program [GS] gives a reformulation
of the SYZ program using tropical geometry, which provides powerful techniques to compute wall-
crossing and scattering order-by-order. In this paper we will use the symplectic rather than the
tropical approach.

We will first give a quick review of the setting of [CLL] for SYZ with quantum corrections in
Section 3.1. We say that X is SYZ mirror symmetric to Y if Y is produced from X as a SYZ mirror
manifold by this SYZ mirror construction. The later parts of this section prove the following main
theorem.

Theorem 3.1. The punctured generalized conifold Gk,l is mirror symmetric to the punctured orb-

ifolded conifold Ok,l in the sense that the deformed generalized conifold G̃k,l is SYZ mirror symmet-

ric to the resolved orbifolded conifold Ôk,l, and the resolved generalized conifold Ĝk,l is SYZ mirror

symmetric to the deformed orbifolded conifold Õk,l:

G̃k,lOO

SY Z
��

Gk,l
oo o/ o/ o/

OO

MS

��

Ĝk,l
oo

OO

SY Z
��

Ôk,l
// Ok,l

///o/o/o Õk,l.

This mathematically confirms the gauge-theoretic assertion of the string theorists Aganagic–
Karch–Lüst–Miemiec [AKLM] and also provides a supportive evidence to Morrison’s conjecture
[Mor] from the view point of SYZ mirror symmetry.

3.1 SYZ construction with quantum corrections

In this subsection we review the SYZ construction with quantum corrections given in [CLL]. We
add a clarification that we only use transversal disc classes (Definition 3.5) in the definition of the
mirror space.

Let π : X → B be a proper Lagrangian torus fibration of a Kähler manifold (X,ω) such that
the base B is a compact manifold with corners, and the preimage of each codimension-one facet
of B is a smooth irreducible divisor denoted as Di for 1 ≤ i ≤ m. We assume that the regular
Lagrangian fibers of π are special with respect to a nowhere-vanishing meromorphic volume form Ω
on X whose pole divisor is the boundary divisor D :=

∑m
i=1Di (and hence D is an anti-canonical

divisor). We denote by B0 ⊂ B the complement of the discriminant locus of π, and we assume that
B0 is connected4. We always denote by Fb a fiber of π at b ∈ B0.

Lemma 3.2 (Maslov index of disc classes [Aur, Lemma 3.1]). For a disc class β ∈ π2(X,Fb) where
b ∈ B0, the Maslov index of β is µ(β) = 2D · β.

Definition 3.3 (Wall [CLL]). The wall H of a Lagrangian fibrartion π : X → B is the set of point
b ∈ B0 such that Fb := π−1(b) bounds non-constant holomorphic disks with Maslov index 0.

4When the discriminant locus has codimension-two, B0 is automatically connected. Although the Lagrangian
fibrations of G̃k,l we study have codimension-one discriminant loci, B0 is still connected.
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The complement of H ⊂ B0 consists of several connected components, which we call chambers.
Over different chambers the Lagrangian fibers behave differently in a Floer-theoretic sense. Away
from the wallH, the one-point open Gromov–Witten invariants are well-defined using the machinery
of Fukaya–Oh–Ohta–Ono [FOOO].

Definition 3.4 (Open Gromov–Witten invariants [FOOO]). For b ∈ B0 \ H and β ∈ π2(X,Fb),
let M1(β) be the moduli space of stable discs with one boundary marked point representing β,
and [M1(β)]

virt be the virtual fundamental class of M1(β). The open Gromov–Witten invariant
associated to β is nβ :=

∫
[M1(β)]virt

ev∗[pt], where ev : M1(β) → Fb is the evaluation map at the

boundary marked point and [pt] is the Poincaré dual of the point class of Fb.

We will restrict to disc classes which are transversal to the boundary divisorD when we construct
the mirror space (while for the mirror superpotential we need to consider all disc classes).

Definition 3.5 (Transversal disc class). A disc class β ∈ π2(X,Fb) for b ∈ B0 is said to be
transversal to the boundary divisor D, which is denoted as β ⋔ D, if all stable discs in M1(β)
intersect transversely with the boundary divisor D.

Due to dimension reason, the open Gromov–Witten invariant nβ is non-zero only when the
Maslov index µ(β) = 2. When β is transversal to D or when X is semi-Fano, namely c1(α) =
D ·α ≥ 0 for all holomorphic sphere classes α, the number nβ is invariant under small deformation
of complex structure and under Lagrangian isotopy in which all Lagrangian submanifolds in the
isotopy do not intersect D nor bound non-constant holomorphic disc with Maslov index µ(β) < 2.

The paper [CLL] proposed a procedure which realizes the SYZ program based on symplectic
geometry as follows:

1. Construct the semi-flat mirror X∨
0 of X0 := π−1(B0) as the space of pairs (b,∇) where b ∈ B0

and ∇ is a flat U(1)-connection on the trivial complex line bundle over Fb up to gauge. There
is a natural map π∨ : X∨

0 → B0 given by forgetting the second coordinate. The semi-flat

mirror X∨
0 has a canonical complex structure [Leu] and the functions e−

∫
β ω Hol∇(∂β) on

X∨
0 for disc classes β ∈ π2(X,Fb) are called semi-flat complex coordinates. Here Hol∇(∂β)

denotes the holonomy of the flat U(1)-connection ∇ along the path ∂β ∈ π1(Fb).

2. Define the generating functions of open Gromov–Witten invariants for 1 ≤ i ≤ m

Zi(b,∇) :=
∑

β∈π2(X,Fb)
β·Di=1,β⋔D

nβe
−

∫
β ω Hol∇(∂β), (2)

for (b,∇) ∈ (π∨)−1(B0 \ H), which serve as quantum corrected complex coordinates. The
function Zi can be written in terms of the semi-flat complex coordinates, and hence they
generate a subring C[Z1, . . . , Zm] in the function ring5 over (π∨)−1(B0 \H).

3. Define the SYZ mirror of X with respect to the Lagrangian torus fibration π to be the pair
(X∨,W ) where X∨ := Spec (C[Z1, . . . , Zm]) and

W =
∑

β∈π2(X,Fb)

nβe
−

∫
β ω Hol∇(∂β).

5In general we need to use the Novikov ring instead of C since Zi could be a formal Laurent series. In the cases
that we study later, Zi are Laurent polynomials whose coefficients are convergent, and hence the Novikov ring is not
necessary.
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Moreover, X∨ is defined as the SYZ mirror of a non-compact Calabi–Yau manifold Y if it is
obtained from the above construction for a compactification of Y . It is expected that different
compactifications would result in the same SYZ mirror. In this paper we fix one compactification
as an initial data for the SYZ construction.

In the following sections we will apply the above recipe to the generalized conifolds and orb-
ifolded conifolds. We will carry out in detail the SYZ construction from Ĝk,l to Õk,l which is the
most interesting case (Section 3.2), in which we construct a doubled version of the Gross fibration
[Gol, Gro] and compute the open Gromov–Witten invariants. The other cases, namely the SYZ

constructions from Õk,l to Ĝk,l, from Ôk,l to G̃k,l, and from Ĝk,l to Õk,l, are essentially obtained

by applying the techniques developed in [Lau, CLL, AAK], and so we will be brief. In fact G♯
k,l

and O♯
k,l are useful testing grounds for the SYZ program and we shall illustrate how these various

important ideas fit together by examining them.

3.2 SYZ from Ĝk,l to Õk,l

We first construct the SYZ mirror of the resolved generalized conifold Ĝk,l. While the resolved

generalized conifold Ĝ♯
k,l is a toric Calabi–Yau threefold, we will not use the Gross fibration [Gol,

Gro] because it is not compatible with the chosen anti-canonical divisor DG and hence do not

produce the resolved orbifolded conifold Õk,l as the mirror. We will instead use a doubled version
of the Gross fibration explained below.

The fan of Ĝ♯
k,l is given by the cone over a triangulation depicted in Figure 1(b). We label

the divisors corresponding to the rays generated by (i, 0, 1) to be Di for 0 ≤ i ≤ k, and those
corresponding to the rays generated by (j, 1, 1) to be Dk+1+j for 0 ≤ j ≤ l. Each divisor Di

corresponds to a basic disc class βi ∈ π2(X,L) where L denotes a moment-map fiber [CLL].

Let us first compactify the resolved generalized conifold Ĝk,l as follows. We add the rays
generated by (0, 0,−1), (0,−1,−1), (1, 0, 0) and (−1, 0, 0), and the corresponding cones, to the fan

of Ĝ♯
k,l. Let us denote the resulting toric variety by Ĝk,l

∗
(and we fix a toric Kähler form on it).

Let Dz=∞, Dw=∞,Dξ=0, and Dξ=∞ be the corresponding additional toric prime divisors and βz=∞,
βw=∞, βξ=0 and βξ=0 be the additional basic disc classes respectively.

Note that Ĝk,l
∗
is in general not semi-Fano since there could be holomorphic spheres with the

Chern class c1 < 0 supported in the newly added divisors (or in other words the fan polytope of

Ĝk,l
∗
may contain a interior lattice point). However since we only need to consider transversal disc

classes (Definition 3.5) in the definition of X∨, these holomorphic spheres do not enter into our
constructions.

We now construct a special Lagrangian fibration and apply the SYZ construction on Ĝk,l
∗
.

Consider the Hamiltonian T 1-action on Ĝk,l
∗
corresponding to the vector (1, 0, 0) in the vector space

which supports the fan. Denote by πT 1 : Ĝk,l
∗
→ R the moment map associated to this Hamiltonian

T 1-action, whose image is a closed interval I. Let θ be the angular coordinate corresponding to
the Hamiltonian T 1-action. Recall that x, y, z, w are toric functions corresponding to the lattice
points ν1, ν3, ν2, ν4 (in the vector space which supports the moment polytope) defined by Equation
(1) respectively. Note that z = 0 on the toric divisors D0, . . . , Dk, while w = 0 on the toric divisors
Dk+1, . . . , Dk+l+1. Moreover the pole divisors of z and w are Dz=∞ and Dw=∞ respectively.

The toric Kähler form on Ĝk,l
∗
can be written as

ω := dπT 1 ∧ dθ +

√
−1

c1(1 + |z|2)2
dz ∧ dz̄ +

√
−1

c2(1 + |w|2)2
dw ∧ dw̄
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for some c1, c2 ∈ R>0. We define a T 3-fibration π : Ĝk,l
∗
→ B := [−∞,∞]2 × I by

π(x, y, z, w) = (b1, b2, b3) = (log |z − 1|, log |w − 1|, πT 1(x, y, z, w)).

We also define a nowhere-vanishing meromorphic volume form by

Ω := d log x ∧ d log(z − 1) ∧ d log(w − 1).

The pole divisor D of Ω is given by the union

D = Dz=1 ∪ Dw=1 ∪ Dz=∞ ∪ Dw=∞ ∪ Dξ=0 ∪ Dξ=∞

whose image under π is the boundary of B (Dz=1 and Dw=1 denotes the divisors {z = 1} and
{w = 1} respectively). Using the method of symplectic reductions [Gol], we obtain the following.

Proposition 3.6. The T 3-fibration π defined above is a special Lagrangian fibration with respect
to ω and Ω.

Proof. Consider the symplectic quotient of the Hamiltonian T 1-action: M̃ := π−1
T 1 ({b3})/T 1 for

certain b3 ∈ R. Since the toric coordinates z and w are invariant under the T 1-action, they descend
to the quotient M̃ . This gives an identification of M̃ with P1 × P1. The induced symplectic form
on the quotient M̃ is given by

ω̃ =

√
−1

c1(1 + |z|2)2
dz ∧ dz̄ +

√
−1

c2(1 + |w|2)2
dw ∧ dw̄

=

√
−1|z − 1|2

c1(1 + |z|2)2
d log(z − 1) ∧ dlog(z − 1) +

√
−1|w − 1|2

c2(1 + |w|2)2
d log(w − 1) ∧ dlog(w − 1).

The induced holomorphic volume form Ω̃, which is the contraction of Ω by the vector field induced
from the T 1-action, equals to

Ω̃ = d log(z − 1) ∧ d log(w − 1).

It is clear that that ω̃ and Re(Ω̃) restricted on each fiber of the fibration (|z − 1|, |w− 1|) are both

zero. Hence the fibers of the map (|z − 1|, |w − 1|) are special Lagrangian in M̃ . By [Gol, Lemma
2], we therefore conclude that the fibers of π are special Lagrangian.

We may think of this fibration as the combination of a conic bundle (Figure 3) and the moment

C2

(z,w)

Gk,l

(|z-1|,|w-1|)

R>0
2

xy=0

T1

Figure 3: Conic fibration after resolution

map πT 1 associated to the lift of (x, y)-coordinates (Figure 4(a)). The latter measures the volumes

of the exceptional curves P1 of the crepant resolution Ĝk,l → Gk,l.
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(0,0)

(0,1)
(2,1)

(4,0)

(0,0)

(0,1)
(2,1)

(4,0)

(a) (b)

Figure 4: (a) Moment map πT 1 , (b) Crepant resolution

Proposition 3.7. The discriminant locus of the fibration π is the union of the boundary ∂B
together with the lines {b1 = 0, b3 = si}ki=1∪{b2 = 0, b3 = tj}lj=1 ⊂ B for si, tj ∈ R with Crit(πT 1) =
{s1, . . . , sk, t1, . . . , tl}.

Proof. The first and second coordinates of π are b1 = log |z − 1| and b2 = log |w − 1| respectively,
which degenerates over the boundaries b1 = log |z − 1| = ±∞ or b2 = log |w − 1| = ±∞. The
third coordinate πT 1 degenerates at those codimension-two toric strata whose corresponding 2-
dimensional cones in the fan contain the vector (1, 0, 0). These cones are either [i− 1, i]× {0} ×R
for 1 ≤ i ≤ k or [j− 1, j]×{1}×R for 1 ≤ j ≤ l. The corresponding images under πT 1 are isolated
points s1, . . . , sk or t1, . . . , tl respectively. Moreover z = 0 on a toric strata corresponding to a cone
[i− 1, i]×{0}×R, while w = 0 on a toric strata corresponding to a cone [j− 1, j]×{1}×R. Hence
b1 = 1 or b2 = 1 respectively, and the discriminant locus is as stated above.

Proposition 3.8. The wall H of the fibration π is given by the union of two vertical planes given
by b1 = 0 and b2 = 0.

Proof. Suppose a fiber Fr bounds a non-constant holomorphic disc u of Maslov index 0. By the
Maslov index formula in Lemma 3.2, the disc does not intersect the boundary divisors {z = 0} nor
{w = 0}. Thus the functions (z− 1) ◦u and (w− 1) ◦u can only be constants. If both the numbers
z ◦ u and w ◦ u are non-zero, the fiber of (z, w) is just a cylinder, and a fiber of b3 defines a non-
contractible circle in this cylinder, which topologically does not bound any non-trivial disc. Thus
either z = 0 or w = 0 on the disc, which implies that b1 = log |z − 1| = 0 or b2 = log |w − 1| = 0.
In these cases Fr intersects a toric divisor and bounds holomorphic discs in the toric divisor.

Figure 5(a) illustrates the wall stated in the above proposition.

Ck-1

D

E1

(a) (b)

Figure 5: (a) Walls, (b) Holomorphic spheres

From now on we fix the unique crepant resolution of Gk,l such that s1 < . . . < sk < t1 . . . < tl
holds (Figure 4(b)). For other crepant resolution the construction is similar (while the SYZ mirrors
have different coefficients, namely the mirror maps are different). Such a choice is just for simplifying
the notations and is not really necessary (see also Remark 3.13).
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We then fix the basis
{Ci}k−1

i=1 ∪ {C0} ∪ {Ei}l−1
i=1 (3)

of H2(Ĝk,l) (Figure 5(b)), where Ci for 1 ≤ i ≤ k − 1 is the holomorphic sphere class represented
by the toric 1-stratum corresponding to the 2-cone by {(0, 1), (i, 0)}; C0 corresponds to the 2-cone
generated by {(0, 1), (k, 0)}; Ei corresponds to the 2-cone generated by {(i, 1), (k, 0)}. The image
of a holomorphic sphere in Ci under the fibration map lies in {0} × R× [si, si+1]; the image of C0

lies in {0} × {0} × [sk, t1], and the image of Ei lies in R× {0} × [ti, ti+1].

Fix the contractible open subset

U := B0 \ {(b1, b2, b3) | b1 = 0 or b2 = 0, b3 ∈ [s1,+∞)} ⊂ B0

over which the Lagrangian fibration π trivializes. For b = (b1, b2, b3) with b1 > 0 and b2 > 0, we
use the Lagrangian isotopy

Lt = {log |z − t| = b1, log |w − t| = b2, πT (x, y, z, w) = b3} (4)

for t ∈ [0, 1] to link a moment-map fiber (when t = 0) with a Lagrangian torus fiber Fb of π
(when t = 1). Then for a general base point b′ ∈ U , we can link the fibers Fb and Fb′ by a
Lagrangian isotopy induced by a path joining b and b′ in the contractible set U (and the isotopy is
independent of choice of the path). Through the isotopy disc classes bounded by a moment-map

fiber L can be identified with those bounded by Fb, that is, π2(Ĝk,l
∗
, Fb) ∼= π2(Ĝk,l

∗
, L). Note that

this identification depends on choice of trivialization, and henceforth we fix such a choice. The
two vertical walls {b1 = 0} and {b2 = 0} divides the base B = [−∞,∞]2 × I into four chambers.
Lagrangian torus fibers over different chambers have different open Gromov–Witten invariants.

Theorem 3.9. Denote by L a moment-map fiber of Ĝk,l
∗
and by Fb a Lagrangian torus fiber of π

at b ∈ B0. Let β ∈ π2(Ĝk,l
∗
, Fb) with β ⋔ D.

1. Over the chamber C++ := {b1 > 0, b2 > 0}, we have nFb
β = nL

β .

2. Over the chamber C+− := {b1 > 0, b2 < 0}, we have nFb
β = 0 unless β = βk+1, βξ=0, βξ=∞,

βz=∞, βw=∞ + (βj − βk+1) + α for k + 1 ≤ j ≤ k + l + 1 and α ∈ Hc1=0
2 being a class of

rational curves which intersect the open toric orbit of the toric divisor Dj, or β = βi + α for
0 ≤ i ≤ k and α ∈ Hc1=0

2 being a class of rational curves which intersect the open toric orbit
of the toric divisor Di. Moreover

nFb
βk+1

= nFb
βξ=0

= nFb
βξ=∞

= nFb
βz=∞

= 1, nFb

βw=∞+(βj−βk+1)+α = nL
βj+α

for k + 1 ≤ j ≤ k + l + 1, and
nFb
βi+α = nL

βi+α

for 0 ≤ i ≤ k.

3. Over the chamber C−+ := {b1 < 0, b2 > 0}, we have nFb
β = 0 unless β = β0, βξ=0, βξ=∞,

βw=∞, βz=∞+(βi−β0)+α for 0 ≤ i ≤ k and α ∈ Hc1=0
2 being a class of rational curves which

intersect the open toric orbit of the toric divisor Di, or β = βj + α for k + 1 ≤ j ≤ k + l + 1
and α being a class of rational curves which intersect the open toric orbit of the toric divisor
Dj. Moreover

nFb
β0

= nFb
βξ=0

= nFb
βξ=∞

= nFb
βw=∞

= 1, nFb

βz=∞+(βi−β0)+α = nL
βi+α

11



for 0 ≤ i ≤ k, and
nFb
βj+α = nL

βj+α

for k + 1 ≤ j ≤ k + l + 1.

4. Over the chamber C−− := {b1 < 0, b2 < 0}, we have nFb
β = 0 unless β = β0, βk+1, βξ=0,

βξ=∞, βz=∞ + (βi − β0) + α for 0 ≤ i ≤ k and α ∈ Hc1=0
2 being a class of rational curves

which intersect the open toric orbit of the toric divisor Di, or βw=∞ + (βj − βk+1) + α for
k+ 1 ≤ j ≤ k+ l+ 1 and α ∈ Hc1=0

2 being a class of rational curves which intersect the open
toric orbit of the toric divisor Dj. Moreover

nFb
β0

= nFb
βk+1

= nFb
βξ=0

= nFb
βξ=∞

= 1, nFb

βz=∞+(βi−β0)+α = nL
βi+α

for 0 ≤ i ≤ k, and
nFb

βw=∞+(βj−βk+1)+α = nL
βj+α

for k + 1 ≤ j ≤ k + l + 1.

Proof. The open Gromov–Witten invariants nβ is non-zero only when β has Maslov index 2, and
so we can focus on µ(β) = 2 with β ⋔ D.

For a fiber F(b1,b2,b3) with b1 > 0 and b2 > 0, F(b1,b2,b3) is Lagrangian isotopic to a moment-map
fiber L through Lt defined by Equation (4). Moreover each Lt does not bound any holomorphic
disc of Maslov index 0 because for every t ∈ [0, 1], the circles |z − t| = b1 and |w − t| = b2 never
pass through z = 0 and w = 0 respectively. Thus the open Gromov–Witten invariants of L and
that of F(b1,b2,b3) are the same.

Now consider the chamber C+−. First we use the Lagrangian isotopy

L1,t = {log |z − 1| = b1, log |w − t| = b2, πT (x, y, z, w) = b3}

for t ∈ [1, R] which identifies F(b1,b2,b3) with L1,R for R ≫ 0. L1,t never bounds any holomorphic
disc of Maslov index 0, since for every t ∈ [1, R], the circles |z− 1| = b1 and |w− t| = b2 never pass
through z = 0 and w = 0 respectively.

Then we take the involution ι : Ĝk,l
∗
→ Ĝk,l

∗
defined as identity on z, πT 1 , θ and mapping

w 7→ Rw
w−R . This involution maps the fiber L1,R to the Lagrangian

L′ = {log |z − 1| = b1, log |w −R| = 2(logR)− b2, πT (x, y, z, w) = b3}

which can again be identified with the fiber F(b1,2(logR)−b2,b3) with b1 > 0 and 2(logR) − b2 > 0.
Also ι tends to the negative identity map as R tends to infinity. Hence for R ≫ 0, the pulled-
back complex structure by ι is a small deformation of the original complex structure, and hence
the open Gromov–Witten invariants of F(b1,b2,b3) remain invariant. Now using Case 1 the open
Gromov–Witten invariants of F(b1,2(logR)−b2,b3) can be identified with a moment-map fiber L.

By considering the intersection numbers of the disc classes and the divisors, one can check that
the disc classes βi for 0 ≤ i ≤ k, βk+1, βξ=0, βξ=∞, βz=∞, (βj − βk+1) for k + 1 ≤ j ≤ k + l + 1,
and all rational curve classes α are invariant under the involution. Moreover βk+1 and βw=∞ are
switched under the involution. Putting all together, we obtain a complete relation between open
Gromov–Witten invariants of F(b1,b2,b3) and that of L, and this gives the formulae in Case 2.

Cases 3 and 4 are similar. For Case 3 we use the Lagrangian isotopy

Lt,1 = {log |z − t| = b1, log |w − 1| = b2, πT (x, y, z, w) = b3}
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for t ∈ [1, R] and the involution defined as identity on w, πT 1 , θ and mapping z 7→ Rz
z−R . For Case 4

we use the Lagrangian isotopy

Lt = {log |z − t| = b1, log |w − t| = b2, πT (x, y, z, w) = b3}

for t ∈ [1, R] and the involution defined as identity on πT 1 , θ and mapping z 7→ Rz
z−R , w 7→ Rw

w−R .

We can compute the the open Gromov–Witten invariants of the moment-map fiber, using the
open mirror theorem [CCLT, Theorem 1.4 (1)]. The result is essentially the same as the one in
[LLW, Theorem 4.2] for the minimal resolution of An-singularities as follows.

Theorem 3.10. Let L be a regular moment-map fiber of Ĝk,l, and consider a disc class β ∈
π2(X,L). The open Gromov–Witten invariant nL

β equals to 1 if β = βp + α for 0 ≤ p ≤ k + l + 1,
where α is a class of rational curves which takes the form

α =


∑k−1

i=1 siCi when 1 ≤ p ≤ k − 1;∑l−1
i=1 siEi when k + 2 ≤ p ≤ k + l;

0 when p = 0, k, k + 1 or k + l + 1,

and {si}m−1
i=1 (where m equals to k in the first case and l in the second case) is an admissible

sequence with center p in the first case, which means that

1. si ≥ 0 for all i and s1, sm−1 ≤ 1;

2. si ≤ si+1 ≤ si + 1 when i < p, and si ≥ si+1 ≥ si − 1 when i ≥ p,

and with center p− k − 1 in the second case. For any other β, nL
β = 0.

Proof. We will prove the assertion by using the open mirror theorem. Recall the curve classes
Ci, C0 and Ej introduced in Equation (3) for 1 ≤ i ≤ k − 1 and 1 ≤ j ≤ l − 1. Ci and Ei are
(−2, 0)-curves, while C0 is a (−1,−1)-curve. The intersection numbers with the toric prime divisors
Dj are as follows:

1. Ci ·Di−1 = Ci ·Di+1 = 1;Ci ·Di = −2; and Ci ·Dj = 0 for all j ̸= i− 1, i, i+ 1;

2. C0 · Dk = C0 · Dk+1 = −1;C0 · Dk−1 = C0 · Dk+2 = 1; and C0 · Dj = 0 for all j ̸=
k − 1, k, k + 1, k + 2;

3. Ei ·Dk+i−1 = Ei ·Dk+i+1 = 1;Ei ·Dk+i = −2; and Ei ·Dj = 0 for all j ̸= k+i−1, k+i, k+i+1.

Let qCi , qC0 , qEi be the corresponding Kähler parameters and q̌Ci , q̌C0 , q̌Ei be the corresponding
complex parameters. They are related by the mirror map:

qCi = q̌Ci exp
(
−

k+1+l∑
j=0

(Ci ·Dj)gj(q̌)
)
= q̌Ci exp (− (gi−1(q̌) + gi+1(q̌)− 2gi(q̌))) ,

qC0 = q̌C0 exp
(
−

k+1+l∑
j=0

(C0 ·Dj)gj(q̌)
)
= q̌C0 exp (− (gk−1(q̌) + gk+1(q̌))) ,

and

qEi = q̌Ei exp
(
−

k+1+l∑
j=0

(Ei ·Dj)gj(q̌)
)
= q̌Ei exp (− (gk+i−1(q̌) + gk+i+1(q̌)− 2gk+i(q̌))) .
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The functions gi(q̌) are attached to the toric prime divisor Di for 0 ≤ i ≤ k + l + 1. We have
g0 = gk = gk+1 = gk+l+1 = 0. Moreover for 1 ≤ i ≤ k − 1, gi only depends on the variables q̌Cr

for 1 ≤ r ≤ k − 1; for k + 2 ≤ i ≤ k + l, the function gi only depends on the variables q̌Er for
1 ≤ r ≤ l − 1. Explicitly gi is written in terms of hypergeometric series:

gi(q̌) :=
∑

d·Di<0
d·Dr≥0

for all r ̸=i

(−1)(Di·d)(−(Di · d)− 1)!∏
p̸=i(Dp · d)!

q̌d

where for 1 ≤ i ≤ k − 1, the summation is over d =
∑k−1

r=1 njCj (nj ∈ Z≥0) with d · Di < 0 and

d ·Dp ≥ 0 for all p ̸= i; for k+2 ≤ i ≤ k+ l, the summation is over d =
∑l−1

r=1 njEj (nj ∈ Z≥0) with
d satisfying the same condition. Then the open mirror theorem [CCLT, Theorem 1.4 (1)] states
that ∑

α

nβi+αq
α(q̌) = exp gi(q̌).

Note that for 1 ≤ i ≤ k − 1, the function gi takes exactly the same expression as that in the
toric resolution of Ak−1-singularity; for 1 ≤ i ≤ l − 1, the function gi+k+1 takes exactly the same
expression as that in the toric resolution of Al−1-singularity. Thus the mirror maps for qCi and
qEi coincide with that for Ak−1-resolution and Al−1-resolution respectively. Moreover the above
generating function of open Gromov–Witten invariants coincide. Then result follows from the
formula for open Gromov–Witten invariants in An-resolution given in [LLW, Theorem 4.2].

Remark 3.11. Theorem 3.10 can also be proved by comparing the disc moduli for Ĝk,l and
resolution of Ak- and Al-singularities, which involves details of obstruction theory of disc moduli
space. Here take the more combinatorial approach using open mirror theorems.

Theorem 3.12. The SYZ mirror of the resolved generalized conifold Ĝk,l is given by the deformed
orbifolded conifold in C4 × C× defined by the equations (U1, U2, V1, V2 ∈ C and Z ∈ C×)

U1V1 = (1 + Z)(1 + q1Z) . . . (1 + q1 . . . qk−1Z),

U2V2 = (1 + cZ)(1 + q′1cZ) . . . (1 + q′1 . . . q
′
l−1cZ),

where qi = e
−

∫
Ci

ω
, q′j = e

−
∫
Ei

ω
, and c = q1 . . . qk−1e

−
∫
C0

ω
.

Proof. Let Z̃β = e−
∫
β ω Hol∇(∂β) be the semi-flat mirror complex coordinates corresponding to

each disc class β ∈ π2(Ĝk,l
∗
, Fb) for b ∈ B0 \H. For simplicity we denote Z̃βξ=0

by Z̃, Z̃β0 by Ũ1,

Z̃βk+1
by Ũ2, Z̃βz=∞ by Ṽ1, and Z̃βw=∞ by Ṽ2. We have Z̃Z̃βξ=∞ = qβξ=0+βξ=∞ is a constant (since

βξ=0 + βξ=∞ ∈ H2(Ĝk,l
∗
)), and for simplicity we set the constant to be 1. Thus Z̃βξ=∞ = Z̃−1.

Let ZD be the generating function of open Gromov–Witten invariants corresponding to a bound-
ary divisor D (Equation (2)). By Theorem 3.9 there is no wall-crossing for the disc classes βξ=0

and βξ=∞, and they are the only disc classes of Maslov index 2 and intersecting Dξ=0 and Dξ=∞
exactly once respectively. Hence ZDξ=0

= Z̃ and ZDξ=∞ = Z̃−1. For simplicity we denote ZDξ=0
by

Z, and hence Z = Z̃ (meaning that the coordinate Z does not need quantum corrections).
Theorem 3.10 gives the open Gromov–Witten invariants of moment-map tori, which then gives

the open Gromov–Witten invariants of fibers of our Lagrangian fibration by Theorem 3.9. Then
by some nice combinatorics which also appears in [LLW, Proof of Corollary 4.3], the generating
functions factorizes as follows:
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1. ZDz=1 = Ũ1 and ZDw=1 = Ũ2 over C−−,

2. ZDz=1 = Ũ1(1 + Z)(1 + q1Z) . . . (1 + q1 . . . qk−1Z) and ZDw=1 = Ũ2 over C+−,

3. ZDz=1 = Ũ1 and ZDw=1 = Ũ2(1 + cZ)(1 + q′1cZ) . . . (1 + q′1 . . . q
′
l−1cZ) over C−+,

4. ZDz=1 = Ũ1(1 + Z)(1 + q1Z) . . . (1 + q1 . . . qk−1Z) and ZDw=1 = Ũ2(1 + cZ)(1 + q′1cZ) . . . (1 +
q′1 . . . q

′
l−1cZ) over C++.

5. ZDz=∞ = Ũ−1
1 over C++ ∪ C+−,

6. ZDz=∞ = Ũ−1
1 (1 + Z)(1 + q1Z) . . . (1 + q1 . . . qk−1Z) over C−+ ∪ C−−,

7. ZDw=∞ = Ũ−1
2 over C++ ∪ C−+,

8. ZDw=∞ = Ũ−1
2 (1 + cZ)(1 + q′1cZ) . . . (1 + q′1 . . . q

′
l−1cZ) over C+− ∪ C−−.

Therefore we conclude that the ring generated by the functions Z = ZDξ=0
, ZDξ=∞ = Z−1, U1 :=

ZDz=1 , V1 := ZDz=∞ , U2 := ZDw=1 , V2 := ZDw=∞ is the polynomial ring C[U1, U2, V1, V2, Z, Z
−1]

mod out by the relations

U1V1 = (1 + Z)(1 + q1Z) . . . (1 + q1 . . . qk−1Z),

U2V2 = (1 + cZ)(1 + q′1cZ) . . . (1 + q′1 . . . q
′
l−1cZ).

This completes the proof of the theorem.

Remark 3.13. If a different crepant resolution is taken, the mirror takes the same form as above
while the coefficients of the polynomials on the right hand side are different functions of the Kähler
parameters qi and q′i. They correspond to different choices of limit points (and hence different flat
coordinates) over the complex moduli.

3.3 SYZ from G̃k,l to Ôk,l

The deformed generalized conifold G̃k,l is given by

{
(x, y, z, w) ∈ C2 × (C \ {1})2

∣∣ xy − k∑
i=0

l∑
j=0

ai,jz
iwj = 0

}
for generic coefficients ai,j ∈ C. It is a conic fibration over the second factor (C\{1})2 with discrimi-

nant locus being the Riemann surface Σk,l ⊂ (C\{1})2 defined by the equation
∑k

i=0

∑l
j=0 ai,jz

iwj =
0 which has genus kl and (k + l) punctures. The SYZ construction for such a conic fibration fol-
lows from [AAK]. Here we just give a brief description. We will use the standard symplectic

form on C2 × (C \ {1})2 restricted to the hypersurface G̃k,l. First, G̃k,l is naturally compactified

in P2 × (P1)2 as a symplectic manifold, and we denote the compactification by G̃k,l
∗
. There is a

natural Hamiltonian T 1-action on G̃k,l
∗
given by, for t ∈ T 1 ⊂ C

t · (x, y, z, w) := (tx, t−1y, z, w).

By carefully analyzing the symplectic reduction of this T 1-action, a Lagrangian torus fibration

π : G̃k,l
∗
→ B := [−∞,∞]3 was constructed in [AAK, Section 4]. Topologically the fibration is the

homeomorphic to the naive one given by

(x, y, z, w) 7→ (b1, b2, b3) =
(
log |z|, log |w|, 1

2
(|x|2 − |y|2)

)
.
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However since the symplectic form induced on the symplectic quotient is not the standard one on
P2, it has to be deformed to give a Lagrangian fibration.

The discriminant locus of this fibration consists of the boundary ofB andAk,l×{0}, where Ak,l ⊂
[−∞,∞]2 is the compactification of the amoeba Ak,l ⊂ R2

≥0 of the Riemann surface Σk,l (Figure
6), namely the image of Σk,l under the map (z, w) 7→ (log |z|, log |w|). The wall for open Gromov–

C2

(z,w)

Gk,l

(log|z|,log|w|)

R>0
2

Ak,l

T1

Figure 6: Conic fibration and amoeba Ak,l

Witten invariants is given by H = Ak,l × [−∞,∞] [AAK, Proposition 5.1]. The complement B \H
consists of (k+1)(l+1) chambers. In this specific case, we have a nice degeneration as follows. Let

us consider a special point on the the complex moduli space of G̃k,l
∗
where the defining equation

of the Riemann surface Σk,l factorizes as

k∑
i=0

l∑
j=0

ai,jz
iwj = f(z)g(w)

for polynomials f(z) and g(w) of degree k and l respectively (and we assume that their roots are all

distinct and non-zero). At this point, G̃k,l
∗
acquires kl conifold singularities. The wall becomes the

union of vertical hyperplanes {b2 = log |ri|}ki=1 ∪ {b3 = log |sj |}lj=1 ⊂ R3, where ri and sj are the
roots of f(z) and g(w) respectively (Figure 7). These hyperplanes divide the base into (k+1)(l+1)

Conifold	point

Figure 7: Amoeba around conifold locus

chambers. We label the chambers by Ci,j for i = 0, . . . , k and j = 0, . . . , l from left to right and
from bottom to up.

Theorem 3.14. The SYZ mirror of the deformed generalized conifold G̃k,l is given by, for Ui, Vi ∈ C
and Z ∈ C×,

U1V1 = (1 + Z)k, U2V2 = (1 + Z)l,

which is the punctured orbifolded conifold Ok,l.

Proof. The wall-crossing of open Gromov–Witten invariants was deduced in [AAK, Lemma 5.4],
and we just sketch the result here. For p = 1, 2, let Up be the generating function of open Gromov–
Witten invariants for disc classes intersecting the boundary divisor π−1({bp = 0}) once. Denote

16



the semi-flat coordinates corresponding to the basic disc classes emanated from π−1({bp = 0}) by
Z̃i, and denote by Z the semi-flat coordinate corresponding to the b3-direction (which admits no
quantum corrections). Then U1 restricted to the chamber Ci,j equals to the polynomial Z̃1(1+Z)i,
and U2 restricted to the chamber Ci,j equals to Z̃2(1+Z)j . By gluing the various chambers together
using the above wall-crossing factor 1 + Z, we obtain the SYZ mirror as claimed.

Remark 3.15. The equation in Theorem 3.14 defines a singular variety Ok,l. This is a typical
feature of our SYZ construction, which produces a complex variety out of a symplectic manifold:
we may obtain a singular variety as the SYZ mirror, and we need to take a crepant resolution to
get a smooth mirror. Since we concern about the complex geometry of this variety, Ok,l is not

distinguishable from its crepant resolution Ôk,l.

3.4 SYZ from Ôk,l to G̃k,l

The partial compactification Ô♯
k,l of Ôk,l is a toric Calabi–Yau threefold and its SYZ mirror was

constructed in [CLL]. In this section we quote the relevant results, omitting the details. First,

a crepant resolution Ôk,l of Ôk,l corresponds to a maximal triangulation of □k,l (Figure 2(b)).

We have the Lagrangian torus fibration π : Ôk,l → B := R2 × R≥0 constructed in [Gol, Gro],
whose discriminant locus consists of two components. One is the boundary ∂B, and the other
is topologically given by the dual graph of the maximal triangulation lying in the hyperplane
{b3 = 1} ⊂ B, where we denote the coordinates of B by b = (b1, b2, b3).

The wall is exactly the hyperplane {b3 = 1} containing one component of the discriminant
locus. It is associated with a wall-crossing factor, which is a polynomial whose coefficients encode
the information coming from holomorphic discs with Maslov index 0. The explicit formula for the
coefficients were computed in [CCLT]. Applying these results, we obtain the following:

Theorem 3.16. The SYZ mirror of the resolved orbifolded conifold Ôk,l is a deformed generalized

conifold G̃k,l given as

{
(U, V, Z,W ) ∈ C2 × (C×)2

∣∣ UV =
k∑

i=0

l∑
j=0

qCij (1 + δij(q̌))Z
iW j

}
.

The notations are explained as follows. Let βij be the basic disc class corresponding to the toric

divisor Dij ⊂ Ôk,l. Then Cij denotes the curve class βij − i(β10 − β00) − j(β01 − β00) − β00. The
coefficients 1 + δij(q̌) is given by exp(gij(q̌)) where

gij(q̌) :=
∑
d

(−1)(Dij ·d)(−(Dij · d)− 1)!∏
(a,b) ̸=(i,j)(Dab · d)!

q̌d,

and the summation is over all effective curve classes d ∈ Heff
2 (Ok,l) satisfying Dij ·d < 0 and Dp ·d ≥

0 for all p ̸= (i, j). Lastly q and q̌ are related by the mirror map:

qC = q̌C exp
(
−

∑
i,j

(Dij · C)gij(q̌)
)
.

It is worth noting that the above SYZ mirror manifold can be identified with the Hori–Iqbal–
Vafa mirror manifold [HIV]. The former has the advantage that it is intrinsically expressed in terms
of flat coordinates and contains the information about certain open Gromov–Witten invariants.
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3.5 SYZ from Õk,l to Ĝk,l

Recall that the fan polytope of the orbifolded conifold O♯
k,l is the cone over a rectangle [0, k]× [0, l].

Smoothings of Õk,l correspond to the Minkowski decompositions of [0, k] × [0, l] into k copies of
[0, 1]×{0} and l copies of {0}× [0, 1] [Alt]. The SYZ mirrors for such smoothings were constructed

in [Lau]. Here we can write down the Lagrangian fibration more explicitly by realizing Õk,l as a

double conic fibration. Recall that the deformed orbifolded conifold Õk,l is defined as

Õk,l = {(u1, u2, v1, v2, z) ∈ C4 × C× | u1v1 = f(z), u2v2 = g(z)}

where f(z) and g(z) are generic polynomials of degree k and l respectively. We assume that all
roots ri and sj of f(z) and g(z) respectively are distinct and non-zero. Moreover, we can naturally

compactly Õk,l in (P2)2×P1 to obtain Õk,l
∗
⊂ (P2)2×P1 (where (u1, u2) and (v1, v2) above become

inhomogeneous coordinates of the two P2 factors.). There is also a natural Hamiltonian T 2-action

on Õk,l
∗
given by, for (s, t) ∈ T 2 ⊂ C2

(s, t) · (u1, v1, u2, v2, z) := (su1, s
−1v1, tu2, t

−1v2, z).

On the other hand, Õk,l
∗
admits a double conic fibration πz : Õk,l

∗
→ P1 by the projection to

the z-coordinate (Figure 8). In this situation, the base P1 of the fibration can be identified as

,l

C

Ok,l

z

T2

T1 |z|=	r

Figure 8: Double conic fibration

the symplectic reduction of Õk,l
∗
by the Hamiltonian T 2-action. As is discussed in [Gro], the

Lagrangian fibration |z| : P1 → [0,∞] gives rise to the Lagrangian torus fibration π : Õk,l
∗
→ B :=

[−∞,∞]2 × [0,∞] given by

π(u1, v1, u2, v2, z) = (
1

2
(|u1|2 − |v1|2),

1

2
(|u2|2 − |v2|2), |z|).

The map to the first two coordinates is the moment map of the Hamiltonian T 2-action. We denote
the coordinates of B by b = (b1, b2, b3).

Proposition 3.17. 1. The discriminant locus of the fibration π is given by the disjoint union

∂B ∪
(∪k

i=1{b1 = 0, b3 = |ri|}
)
∪
(∪l

j=1{b2 = 0, b3 = |sj |}
)
⊂ B.

2. The fibration π is special with respect to the nowhere-vanishing meromorphic volume form

Ω := du1 ∧ du2 ∧ d log z on Õk,l
∗
.

Proof. The fibration has tori T 3 as generic fibers. Over ∂B where z = 0, the fibers degenerate to
T 2. Thus ∂B is a component of the discriminant locus. Away from z = 0, the map z → |z| is a
submersion. Hence the discriminant locus of the fibration π comes from that of the moment map
of the Hamiltonian T 2-action. This action has non-trivial stabilizers at u1 = v1 = 0 or u2 = v2 = 0,
which implies f(z) = 0 or g(z) = 0 respectively. Their images under π are {b1 = 0, b3 = |ri|} or
{b2 = 0, b3 = |sj |} respectively.
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Proposition 3.18. A regular fiber of the fibration π bounds a holomorphic disc of Maslov index 0

only when b3 = |ri| or b3 = |sj |. Thus the wall H of the fibration π is H =
(∪k

i=1{b3 = |ri|}
)
∪(∪l

j=1{b3 = |sj |}
)
⊂ B.

Proof. A singular fiber of the double conic fibration πz : Õk,l
∗
→ P1 bounds a holomorphic disc,

which has Maslov index 0 by Lemma 3.2, and this happened only when b3 = |ri| or b3 = |sj |.

b3

Figure 9: Walls (k, l) = (2, 1)

The wall components {b3 = |ri|} and {b3 = |sj |} correspond to the pieces [0, 1] × {0} and
{0} × [0, 1] of the Minkowski decomposition respectively. Wall-crosing of open Gromov–Witten
invariants in this case has essentially been studied in [Lau] in details, and we will not repeat the
details here. The key result is that each wall component contributes a linear factor: each component
{b3 = |ri|} contributes 1 +X, and each component {b3 = |sj |} contributes 1 + Y . The SYZ mirror
is essentially the product of all these factors, namely, we obtain the following.

Theorem 3.19. The SYZ mirror of Õk,l is given by

UV = (1 +X)k(1 + Y )l

for U, V ∈ C and X,Y ∈ C×, which is the punctured generalized conifold Gk,l.

An almost the same remark as Remark 3.15 applies to Theorem 3.19 and thus we confirm the
SYZ construction in this case.

4 Global geometric transitions: some speculations

We are now in position to turn to global case. Let X̂ and X̃ be compact Calabi–Yau threefolds. We
call a geometric transition X̂ 99K X ⇝ X̃ a generalized conifold transition if X has only generalized
conifolds and orbifolded conifolds. The birational contraction appearing in the geometric transition
of compact Calabi–Yau threefolds can be factorized into a sequence of primitive contractions of type
I, type II and type III [Ros]. In general, type I and type III appear in the geometric transition of
Gk,l and all types appear in the geometric transition of Ok,l.

Motivated by the local case, we are tempted to propose that generalized conifold transitions
are reversed under mirror symmetry. However, this naive conjecture does not hold because some
conifold transitions are mirror to hyperconifold transitions, which are not generalized conifold
transitions [Dav]. The geometric transitions among Calabi–Yau threefolds may behave in a more
exotic manner under mirror symmetry.

Example 4.1 (Quintic threefold and its mirror). We set (k, l) = (4, 1) or (3, 2) in the following.
Let X ⊂ P4 be the singular quintic threefold defined by

x0f(x0, . . . , x4) + xk1x
l
2 = 0,
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where f(x) is a generic homogeneous polynomial of degree 4. The singular locus of X consists of 2
curves

{x0 = x1 = f(x) = 0} ∪ {x0 = x2 = f(x) = 0} ⊂ X

of genus 3 intersecting at 4 points. The quintic threefold X has Gk,l around the each intersection
point. Successively blowing up X along the two curves followed by the blow-up along the divisor
{x0 = x1 = 0}, we obtain a projective crepant resolution X̂ of X. Thus a quintic threefold admits
a generalized conifold transition.

On the other hand, the mirror quintic (of a generic quintic threefold) is defined as a crepant
resolution of the orbifold

Yϕ :=
{ 4∑

i=0

x5i + ϕ
4∏

i=0

xi = 0
}
/G, G :=

{
(ai) ∈ (Z5)

5
∣∣ 4∑

i=0

ai = 0
}
/Z5

for ϕ ∈ C. The orbifold Yϕ has A4-singularities along 10 curves Cij = {xi = xj = 0}/G ∼= P1, (0 ≤
i < j ≤ 4). We can partially resolve Yϕ to obtain Y whose singular locus consists of Ak-singularities
along C01 and Al-singularities along C02 such that Y has Ok,l around C01 ∩ C02 (Figure 10). It is

Figure 10: 2-dimensional faces of the polytope for O4,1 and O3,2

interesting to ask whether or not Y admits any smoothing.
Although X and Y lie in the boundaries of the complex moduli space of the quintic and the

Kähler moduli space of the mirror quintic respectively, we do not know whether or not they cor-
respond each other under the mirror correspondence. This may be seen by the monomial-divisor
correspondence in toric geometry, but it is possible that the mirror of X is a non-toric blow-down
of the mirror quintic.

It is straightforward to generalize this type of constructions to Calabi–Yau hypersurfaces in
4-dimensional weighted projective spaces.

We may also consider existence of generalized conifold transitions for compact Calabi-Yau ge-
ometries. Let X̂ be a smooth threefold and C1, . . . , Cn be (−1,−1)-curves in X̂. Let X be their
contraction and X̃ be a smoothing of X. Small resolutions and deformations always exist topolog-
ically, but there are obstructions if we wish to preserve either the complex or symplectic structure:

Theorem 4.2 (Friedman [Fri], Tian [Tia]). Assume that X satisfies the ∂∂̄-lemma (for example
Kähler). Then a smoothing X̃ to exist if and only if there is a relation

∑n
i=1 λi[Ci] = 0 (λi ̸= 0 ∀i)

in H2(X,Q).

Theorem 4.3 (Smith–Thomas–Yau [STY]). Let Ỹ be a symplectic sixfold with embedded La-
grangian S3s’, say L1, . . . , Ln. Then there is a relation

∑n
i=1 λi[Li] = 0 (λi ̸= 0 ∀i) in H3(Ỹ ,Q) if

and only if there is a symplectic structure on one of 2n choices of (reversed) conifold transitions of
Ỹ in the Lagrnagians L1, . . . , Ln, such that the resulting exceptional P1s’ are symplectic.

In our case, the contractions collapse 4-cycles as well as 2-cycles. On the other hand, smoothing
Gk,l ⇝ G̃k,l produces (k+1)(l+1)−3 vanishing S3s’ and smoothing Ok,l ⇝ Õk,l produces k+ l−2
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S3 S1	x	S2

Figure 11: A double Riemann surface fibration

vanishing S1×S2s’ and one vanishing S3. The generators of these cycles can be found by considering
the standard double Riemann surface fibrations [FHKV](Figure 11). It is interesting to investigate
the obstructions to the deformations/resolutions of the generalized and orbifolded conifolds in terms
of these cycles. We hope to come back to these questions in future work.
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