
IMMERSED TWO-SPHERES AND SYZ
WITH APPLICATION TO GRASSMANNIANS

Hansol Hong, Yoosik Kim & Siu-Cheong Lau

Abstract

We develop a Floer theoretical gluing technique and apply it
to deal with the most generic singular fiber in the SYZ program,
namely the product of a torus with the immersed two-sphere with
a single nodal self-intersection. As an application, we construct
immersed Lagrangians in Gr(2,Cn) and OG(1,C5) and derive
their SYZ mirrors. It recovers the Lie theoretical mirrors con-
structed by Rietsch. It also gives an effective way to compute
stable disks (with non-trivial obstructions) bounded by immersed
Lagrangians.
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1. Introduction

Strominger–Yau–Zaslow (SYZ) [SYZ96] proposed in a general con-
text that mirror symmetry is T-duality. It conjectures a geometric way
to construct mirrors and derive homological mirror symmetry via dual-
ity of special Lagrangian torus fibrations.

Singular fibers in a Lagrangian fibration are the main difficulty in
realizing the SYZ program. They lead to quantum corrections and the
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wall-crossing phenomena. In the previous literatures concerning the
SYZ construction via symplectic geometry, smooth torus fibers were
mainly dealt with. As a result, the precise Floer theoretical mirrors
are incomplete since they have missing points in codimension two cor-
responding to the singular fibers. In particular, they are not sufficient
for homological mirror symmetry, since the missing strata include non-
trivial objects in the derived category in most of situations.

The purpose of this paper is twofold. First, we develop a Floer-
theoretical gluing technique and fill in the missing points coming from
the most generic singular SYZ fibers, which are the product of a torus
and the immersed sphere with one nodal self-intersection. They are
closely related to the wall-crossing formula.

Second, we apply the technique to construct the complete SYZ mir-
rors for the type-A and type-B Grassmannians Gr(2,Cn) and OG(1,C5).
It agrees with the Lie theoretical mirror of Rietsch, and in particular
provides a method to extract open Gromov–Witten potential of La-
grangian branes from the Rietsch mirror, see Remark 1.3 and Example
1.4. This is important for studying symplectic geometry, particularly
the Floer cohomology and non-displaceability of Lagrangian branes.

The family Floer theory proposed by Fukaya [Fuk02] and developed
by Tu [Tu14] and Abouzaid [Abo17] provides a powerful way to con-
struct the SYZ mirrors. They utilize the deformation theory of the
SYZ torus fibers to construct the mirror charts and glue them up to a
Floer-theoretical mirror.

In this paper, we consider the monotone torus fiber of the Gelfand–
Cetlin Lagrangian fibration [GS83], together with finitely many La-
grangian immersions, which are immersed fibers of certain Lagrangian
fibrations which interpolate different toric degenerations. Note that the
Lagrangian immersions that we use are not fibers of the Gelfand–Cetlin
system. Our method has the following advantages.

First, the singular fibers of the Gelfand–Cetlin systems only occur at
the boundaries of the base polytopes. For instance, in Gr(2,C4), there
is a Lagrangian U(2) sitting over a boundary edge of the Gelfand–Cetlin
base polytope, which is a non-zero object in the Fukaya category over
the field of characteristic zero by the work of Nohara–Ueda [NU16].
It is a generator for a summand of the quantum cohomology ring by
the work of Evans–Lekili [EL19]. If we use the family Floer theory of
the fibers over the interior to construct an LG mirror, then there are
missing critical points corresponding to these non-trivial objects over the
boundary. Unfortunately, these singular fibers have smaller deformation
spaces which do not glue well with this LG mirror. Thus we shall not
merely work with fibers of a Gelfand–Cetlin system.

Second, for the family Floer theory of Lagrangian torus fibers of one
fibration, infinitely many mirror charts coming from the torus fibers
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are required due to the scattering phenomenon [KS06, GS11]. On
the other hand, our method only needs to employ finitely many mir-
ror charts coming from the immersed Lagrangians. Most of the mirror
charts coming from the torus fibers are indeed redundant and are al-
ready covered by the charts of immersed Lagrangians. This method is
particularly efficient and practical for constructing C-valued mirrors of
Fano and general-type manifolds.

Below we explain our method and the main theorems.

1.1. Immersed SYZ fibers and wall-crossing. As mentioned above,
immersed SYZ fibers are crucial objects to complete the SYZ construc-
tion. A local (and noncommutative) mirror construction using im-
mersed Lagrangians was developed by the joint works [CHL17, CHL21]
of the first named and third named authors with C.-H. Cho, based
on the foundational works of Floer theory by Fukaya–Oh–Ohta–Ono
[FOOO09b] and Akaho–Joyce [AJ10]. In this paper we reveal the
relation between the immersed two-sphere and the wall-crossing phe-
nomenon.

The main difficulty in working with Lagrangian immersions is that
constant disk bubblings occur at immersed points. They lead to highly
non-trivial obstructions in the moduli spaces. The choices of pertur-
bations to handle these obstructions are not explicit. In particular,
the Floer-theoretical gluing between the Lagrangian immersion and its
smoothing depends on choices of the Kuranishi perturbations, and it is
a very challenging task to derive the corresponding gluing formulas.

There are two main ingredients in our method to overcome this dif-
ficulty. First, we use perfect Morse functions and pearl trajectories
[BC12, FOOO09a, She15, Sch] in the formulation of Floer theory.
A perfect Morse function provides a concrete minimal model for the
Fukaya algebra. It also makes the choices of perturbations more ex-
plicit in our situation. Namely there is a delicate relation between the
choice of a Morse function and the gluing formula.

The second ingredient is the functoriality of our gluing construction.
The gluing employs quasi-isomorphisms for objects in the Fukaya cate-
gory. Since they are functorial, it enables us to derive an explicit gluing
formula via the wall-crossing between different smoothings of the im-
mersed Lagrangians (which are the Clifford and Chekanov tori in our
situation). It gives a way to compute the open Gromov–Witten invari-
ants of the immersed Lagrangian in the presence of highly non-trivial
obstructions in the moduli.

The procedure of filling in the missing strata is the following. First
we need to construct the deformation space of the immersed two-sphere.
The key step is to achieve weakly unobstructedness, namely mb

0 = W (b)·
1L. It ensures that the Floer cohomology is well-defined, and hence
(L, b) gives a well-defined object in the Fukaya category.
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Lemma. Let L be a product of an immersed two-sphere (with ex-
actly one immersed point) and a torus which only bounds non-constant
holomorphic disks with positive Maslov index. Then (L, uU + vV,∇)
is weakly unobstructed, where U, V are the immersed generators corre-
sponding to the immersed point, and ∇ is a flat C× connection on the
torus component.

Then we construct a quasi-isomorphism between the immersed sphere
and the neighboring Chekanov and Clifford tori. Our gluing construc-
tion produces the following gluing formula.

Theorem A (Theorem 3.7). Let L0 be an immersed Lagrangian two-
sphere, which has two degree-1 immersed generators u, v coming from
the immersed point. Let L1 be a Lagrangian torus obtained from smooth-
ing of L0 at the generator u. Let x be the holonomy variable associated to
the vanishing circle of L1, and y be the holonomy variable of another cir-
cle such that they form a basis of H1(L1,Z). Then there exists a perfect

Morse function of the two-sphere such that (L0, uU +vV ) ∼= (L1,∇(x,y))
if and only if

u = y, uv = 1 + x

where (u, v) ∈ Λ0 × Λ+,(x, y) ∈ Λ2
U.

Remark 1.1. Fukaya has explained the application of immersed La-
grangian spheres and their smoothings to wall-crossing and mirror sym-
metry in his talks. The above theorem realizes his idea by using quasi-
isomorphisms between Lagrangian branes. This method was announced
and briefly explained in [HL18, Section 5]. We provide the details and
proofs in this paper.

Remark 1.2. Very recently, Dimitroglou Rizell–Ekholm–Tonkonog
[DRET] took the Chekanov–Eliashberg algebra approach to immersed
Lagrangian surfaces. It uses the interesting relationship between Legen-
drians and Lagrangians which was investigated in [EL, ES14, STW].

Comparing to the Lagrangian Floer theory in [FOOO09b] and [AJ10],
the Chekanov–Eliashberg approach has an additional invertible genera-
tor t and the built-in relation uv = 1 − t. It is particularly adapted to
the surface case, and has the nice feature that u, v can be taken to be
C-valued. They applied this to the study of Lagrangian surgeries and
mutations.

On the other hand it is essential for us to work over the Novikov field
Λ, and homological mirror symmetry relies delicately on the associated
T -adic topology. We first take (u, v) in (Λ+×Λ0)∪ (Λ0×Λ+) to ensure
convergence. After we deduce the gluing formula in Theorem A, it
follows that (L0, uU + vV ) for u, v ∈ C2 with uv 6= 1 are well-defined
objects in the subcategory generated by {(L0, uU + vV ), (L1,∇(x,y))}.
(See Remark 6.15 for the relation of the t variable in [DRET] and our
formulation.)
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1.2. Floer theoretical mirror of Grassmannians. As an applica-
tion, we construct mirror symmetry for flag manifolds. Partial flag
manifolds serve as an important class of Fano varieties and have at-
tracted a lot of attention in the study of mirror symmetry. In the
pioneering work of Hori–Vafa [HV], Landau–Ginzburg (LG for short)
mirrors for flag manifolds were proposed using T-duality and physical
derivations. Closed string mirror symmetry for flags and their com-
plete intersections was derived by Givental–Kim [GK95], Lian–Liu–Yau
[LLY97, LLY99], Kim [Kim99] and Joe–Kim [JK03]. Motivated by
the Peterson variety representation of the quantum cohomology, Rietsch
[Rie08] gave a Lie-theoretical construction of LG mirrors which can be
understood as partial compactifications of those in Eguchi–Hori–Xiong
and Hori–Vafa [EHX97, HV].

Nishinou–Nohara–Ueda [NNU10] computed the disk potential of a
regular Gelfand–Cetlin fiber of partial flag manifolds including Gr(2,Cn)
which agrees with the prediction of Hori–Vafa. However, the number of
critical points of the disk potential of a regular fiber is in general smaller
than the dimension of the quantum cohomology ring. There are not
enough regular fibers to generate the Fukaya category and hence they
are insufficient for the study of mirror symmetry.

The reason is that there are Lagrangian spheres over the boundary of
the base polytope, which do not intersect torus fibers over the interior
and hence cannot be probed. However Lagrangian spheres are rigid and
cannot be directly used for the SYZ construction (which requires La-
grangian deformations). In order to construct the complete SYZ mirror,
one needs to perturb the Gelfand–Cetlin system to construct another
Lagrangian fibration which ‘pushes in’ the Lagrangian spheres sitting
in the boundary.

For this purpose, Nohara and Ueda in [NU14] constructed gener-
alized Gelfand–Cetlin systems for Gr(2,Cn). Interpolations between
different generalized Gelfand–Cetlin systems give Lagrangian fibrations
with interior discriminant loci. In [NU20], they glued deformation
spaces of toric fibers to cover a part of the Rietsch’s mirror.

We need to glue in the singular fibers in order to obtain the com-
plete mirror. The singular fibers over discriminant loci are products of
immersed spheres with tori in this case. They can be used in place of
Lagrangian spheres in Gelfand–Cetlin systems to generate the Fukaya
category.

We apply our gluing technique to Gr(2,Cn) and obtain the Rietsch’s
mirror. The classification of Lagrangian Gelfand–Cetlin fibers in [CKO20,
CK] alludes to the locations of Lagrangians that are expected to be es-
sential in the Fukaya category.

We construct the Maurer–Cartan deformation spaces of Lagrangians
in each chart, namely the monotone Chekanov torus L1, the monotone
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Clifford torus L2, and an immersed Lagrangian L0 which is topologi-
cally a product of two-dimensional immersed spheres with a torus. Then
we use Floer theoretical isomorphisms to glue their deformation spaces
and obtain the following.

Theorem B (Theorem 6.18 and Theorem 7.10). The mirror glued
from the Maurer–Cartan deformation spaces of Lagrangians in local
charts of Gr(2,Cn) is equals to the Rietsch’s LG mirror (X̌,WRie) in
[MR20], where

X̌ = Gr(2,Cn)\D ,

D := {p1,2 · p2,3 · · · pn−1,n · p1,n = 0}, [pi,j ] are the Plücker coordinates
of the dual Grassmannian Gr(2,Cn), and

WRie ([pi,j ]) := q
p2,n

p1,2
+
n−1∑
j=2

pj−1,j+1

pj,j+1
+
p1,n−1

p1,n
.

Moreover, the monotone immersed Lagrangians used in the mirror
construction are non-displaceable, as they support critical points of the
potential.

Remark 1.3. Our result gives an enumerative meaning of the Ri-
etsch’s LG mirror. Namely, the open Gromov–Witten invariants of our
immersed Lagrangians can be extracted combinatorially from the Ri-
etsch superpotential. For instance, each of terms in (1.1) corresponds
to a count of Maslov-2 holomorphic disk whose boundary-classes can be
read off from z0 and w0, and the disk should have corners precisely in ac-
cordance with powers of u, v appearing in the term. See Corollary 7.12
for more general cases.

It is informative to compare with the works [CLLT17, CCLT16],
which extract open Gromov–Witten invariants from the LG mirrors of
toric Calabi–Yau and semi-Fano manifolds. Even though the mirror
map is trivial in this situation, there are still non-trivial coordinate
changes for the open parameters, and there are infinitely many non-
zero invariants.

Technically the new ingredient in this case is the obstruction com-
ing from constant polygons. Our method provides an effective way to
compute these invariants.

To illustrate, let us consider the simplest non-trivial example Gr(2,C4).
Only one immersed Lagrangian is used in the construction. The disc
potential can be identified with WRie as follows.

Example 1.4. For Gr(2,C4), the disk potential of the monotone
immersed Lagrangian L0

∼= S2 × T 2, where S2 denotes the immersed
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sphere with exactly one-self nodal point, equals to

WL0(u, v, z0, w0) = T ·
(

v

(uv − 1)z0
+ u+ vw0 +

uz0

w0

)
= T ·

(
− v

z0

∞∑
i=0

(uv)i + u+ vw0 +
uz0

w0

)(1.1)

where T is the Novikov parameter, u, v are the immersed variables and
z0, w0 are the holonomy variables. The terms (uv)i are contributed from
constant polygons with corners being the immersed sectors U and V .

WL0 = WRie

by the coordinate change

T · u =
p1,3

p2,3
, T−1 · v =

p2,4

p1,4
, T 2 · w0 =

p1,4

p3,4
, T 2 · z0 =

p2,3

p3,4
, q = T 4.

We found a combinatorial formula which is explained in Section 7.3.
(Recall the Plucker relation p1,2p3,4 − p2,4p1,3 + p1,4p2,3 = 0 and pi,j are
homogeneous coordinates.)

In particular, the Lagrangian L0 is non-displaceable.

We use the gluing formula to deduce the disk potential for the im-
mersed Lagrangians in Gr(2,Cn). This method works in general for
immersed spheres in other manifolds.

Remark 1.5. Gr(2,Cn) can be understood as a smoothing of a toric
variety which has conifold singularities. Smoothing of a local conifold
singularity can be understood via Minkowski decomposition [Alt97].
See the works of Gross [Gro01] and the last author [Lau14] for La-
grangian fibrations and wall-crossing in a local smoothing.

The mirror construction for flag varieties beyond type-A has not been
well-understood. They still admit Gelfand–Cetlin systems serving as
Lagrangian fibrations. However we again encounter the same problem
that Lagrangian spheres sit over the boundary of the base polytope.
We need to construct new Lagrangian fibrations so that the possibly
non-displaceable spheres over the boundary are pushed into the interior
of the base. In this paper we carry this out for the type-B flag manifold
OG(1,C5).

The Gelfand–Cetlin system of OG(1,C5) studied in [NNU12] has La-
grangian spheres S3 contained in the boundary of the base polytope (see
the left of Figure 1). The corresponding cone in the fan picture is gener-
ated by (1, 1, 0), (−1, 1, 0), (0, 0, 1) which has determinant 2. In contrast
to the case of Gr(2,C4), The triangle Conv{(1, 1, 0), (−1, 1, 0), (0, 0, 1)}
does not have a Minkowski decomposition to describe the smoothing (of
the corresponding toric variety). To remedy, we turn to a different local
model to push in the Lagrangian spheres.
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pt

pt

unfold push in

Figure 1. The Gelfand–Cetlin polytope of OG(1,C5)
(left) and the base of the Lagrangian fibration that we
use (right).

As in Theorem B, we derive the LG mirror of an immersed Lagrangian
which agrees with the result of Pech–Rietsch–Williams [PRW16].

Theorem C (Theorem 8.10). The disk potential of an immersed
Lagrangian L0 in OG(1,C5) is equals to

WL0(u, v, z0) = T ·
(
v + vz0 +

u2

z0(uv − 1)

)
.

In particular, the Lagrangian L0 is non-displaceable.
Furthermore, the glued mirror equals to the Rietsch’s LG mirror

(X̌,Wq) of OG(1,C5) in [PRW16] where

X̌ = CP 3\D ,

D := {p0 · (p1p2 − p0p3) · p3 = 0}, [pi] are the homogeneous coordinates
of CP 3,

Wq =
p1

p0
+

p2
2

p1p2 − p0p3
+ q

p1

p3
: X̌ → C.

As an application of our mirror construction, we prove homological
mirror symmetry for OG(1,C5) with the help of the generation result in
[She16]. We can also prove homological mirror symmetry for Gr(2,C4),
yet assuming generation of Lagrangians (which should be able to de-
duce from the work of Evans–Lekili [EL19] or the announced work of
Abouzaid–Fukaya–Oh–Ohta–Ono). As we will see in Section 9, the mir-
ror LG models for both cases are semi-simple, and hence it is enough to
show that the associated functor gives isomorphisms of endomorphisms
spaces for finitely many mirror pairs of objects. (See [CHL19] for the
toric case.)

Theorem D. Let W be the Rietsch mirror (over Λ) of X = OG(1,C5)
or Gr(2,C4). Then for each critical value λ, DbAλ ' DbMF(W − λ)
where Aλ is the sub-Fukaya category of X generated by the objects
with the same potential value λ. Furthermore, we have ⊕λDbAλ =
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DbFuk(X) for X = OG(1,C5), and the homological mirror symmetry
for OG(1,C5) follows.

Notations. We need to work over the Novikov ring. In general the
mirrors are rigid analytic space over the Novikov ring (for instance see
[FOOO10] in the toric case). We use the following notations.

Λ+ =

{ ∞∑
i=0

aiT
Ai | Ai > 0 increase to +∞, ai ∈ C

}
,

Λ0 =

{ ∞∑
i=0

aiT
Ai | Ai ≥ 0 increase to +∞, ai ∈ C

}
,

Λ =

{ ∞∑
i=0

aiT
Ai | Ai increase to +∞, ai ∈ C

}
,

ΛU = C× ⊕ Λ+.

They are equipped with the valuation function

val :
∞∑
i=0

aiT
Ai 7→ A0 and val(0) = +∞.

ΛU is the valuation-zero subset of Λ which forms a multiplicative group.
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2. Mirror functor and gluing construction

We quickly review the basics of Lagrangian Floer theory in this sec-
tion, and recall the construction of mirrors via Maurer–Cartan defor-
mations of a Lagrangian.

Consider a Lagrangian L in a symplectic manifold X (not necessarily
compact). A degree odd element b ∈ CF (L,L) is called Maurer–Cartan
if it satisfies

(2.1) mb
0 = m0(1) +m1(b) +m2(b, b) + · · · = 0.

Here, b is usually assumed to have coefficient in Λ+ to guarantee the
convergence of (2.1). In actual application later, we will sometimes
weaken this condition by carefully studying convergence of (2.1). b is
called weak Maurer–Cartan if the left hand side of (2.1) is a constant
multiple W (b) of the unit class in CF (L,L).

For given a (weak) Maurer–Cartan element b, one can deform L as an
object of Fuk(X) by taking boundary deformation of the A∞-structure
on L in the sense of Fukaya–Oh–Ohta–Ono [FOOO09b]. We will de-
note the resulting object by (L, b). For instance, the Floer differential
on CF ((L, b), (L, b)) is given by

mb
1(x) =

∑
mk(b, · · · , b, x, b, · · · , b)

Higher operations as well as A∞-operations involving not only (L, b)
but also other Lagrangians are deformed in a similar way (by inserting
arbitrary many b’s in all possible positions). For more details, see for
e.g., [FOOO09b]. Notice that mb

0 = 0 for a Maurer–Cartan element b.
In such a case (L, b) is unobstructed, whose Floer cohomology is well-
defined. Throughout the article, b will be either a linear combination of
immersed generators (for an immersed Lagrangian) or a flat connection
on a Lagrangian torus.

The collection of solutions b to (2.1) can be thought of as a (un-
obstructed) deformation space of the Lagrangian L which will give a
local chart of the mirror we are going to construct. We denote this
space byMC(L). (To be more precise, one should take the quotient by
gauge equivalences, but we will use canonical models later so that the
gauge equivalence is trivial.) We will write MCweak(L) for the space of
weak Maurer–Cartan elements of L. In this case, we additionally have
a function W onMCweak(L) called the Lagrangian Floer disk potential
of L, and (MCweak(L),W ) will serve as a local chart of the mirror LG
model. We have the following local mirror functor by the construction
in [CHL21].

Proposition 2.1 ([CHL17, CHL21]). There exists a natural A∞-
functor

FL : Fuk(X)→ Db Coh(MC(L)),
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or
FL : Fuk(X)→ MF(MCweak(L),W )

in the weak Maurer–Cartan case, which sends an object L ∈ Fuk(X) to(
CF ((L, b), L),mb

1

)
. When b varies, it gives a bundle on the Maurer–

Cartan space with
(
mb

1

)2
= 0 (i.e. a cochain complex of bundles), or a

bundle on the weak Maurer–Cartan space with
(
mb

1

)2
= W (b) · id (that

is, a matrix factorization of W ).

Higher components of FL are defined making use of deformed higher
mk’s analogously to mb

1. See [CHL17] and [CHL19] for more details.

2.1. Gluing mirror charts. We next explain how to glue these lo-
cal deformation spaces from various Lagrangians. Consider two La-
grangians L1 and L2 in X, which intersect cleanly with each other. We
will glue two deformation spacesMC(L1) andMC(L2) (orMCweak(L1)
and MCweak(L2) depending on the situation) by making a choice of
quasi-isomorphism between two objects (L1, b1) and (L2, b2) in the Fukaya
category of X.

Definition 2.2. Two objects L and L′ in Fuk(X) are said to be quasi-

isomorphic if there exist αL,L
′ ∈ CF 0(L,L′) and βL

′,L ∈ CF 0(L′, L)
such that

m1(αL,L
′
) = m1(βL

′,L) = 0,

m2(αL,L
′
, βL

′,L) = 1L +m1(γ),

m2(βL
′,L, αL,L

′
) = 1L′ +m1(δ).

for some γ ∈ CF (L,L) and δ ∈ CF (L′, L′). Such αL,L
′

and βL
′,L are

called quasi-isomorphisms in this case. They are called strict isomor-
phisms if m2 between them are strictly the units.

Remark 2.3. One can easily check that quasi-isomorphisms give rise
to an equivalence relation in the set of objects in Fuk(X). Also, note
that quasi-isomorphisms between graded Lagrangians are automatically
strict due to degree reason.

Now suppose that there exists a function

f : U ⊂MC(L1)→MC(L2)

together with a fixed quasi-isomorphism α : (L1, b1)
'→ (L2, b2 = f(b1))

for b1 ∈ U which does not depend on b1. In this case, we glue two spaces
by taking

(2.2) MC(L1)∪fMC(L2) =MC(L1)∪MC(L2)/(L1, b1) ∼ (L2, f(b1)).

Namely, we identify U ⊂MC(L1) and f(U) ⊂MC(L2). More detailed
explanations on the topology of the resulting space will be given in
later sections in which we actually apply the construction to our main
examples.
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The gluing of weak Maurer–Cartan spaces can be performed in a
similar way. Let W1 and W2 be potentials for L1 and L2. Then the
existence of an isomorphism implies W1|U = f∗W2|f(U) since

(2.3) 0 = m2
1(α) = (W1(b1)−W2(f(b1))) · α

by A∞-relations.

Proposition 2.4 ([CHL]). There exists a natural A∞-functor

F : Fuk(X)→ MF(MCweak(L1),W1)×h MF(MCweak(L2),W2)

where the right hand side is a homotopy fiber product of two dg-categories
over their common intersection MF(MCweak(L1)∩MCweak(L2),W1| =
W2|). (Similar statement holds for Db Coh(MC(Li))’s in the case of
(strict) Maurer–Cartan deformation.)

We do not give a precise definition of the homotopy fiber product
above as it will not be used in the paper. Roughly speaking, it con-
sists of local objects together with their gluing data which are isomor-
phisms up to homotopy. (See for e.g., [BBB13] for details about the
homotopy fiber product of dg-categories.) On the object level, the func-

tor F sends an object L ∈ Fuk(X) to a tuple (FL1(L),FL1(L)
m2(α,·)−→

FL2(L),FL2(L)).
In what follows, the local functor given in Proposition 2.1 will be

enough to derive a homological mirror symmetry statement since the
mirror potentials in our case are Morse and the matrix factorization
categories localizes at the critical points each of which is contained in a
single chart. We will revisit this point in Section 9.

2.2. Review of immersed Lagrangian Floer theory. We briefly
review Floer theory for immersed Lagrangians. Let ι : L → M be a
compact immersed Lagrangian in a symplectic manifold (M,ω). We
first assume that ι−1(p) is at most two points for each p ∈ ι(L), and two
branches of ι(L) intersects at p transversally.

Consider the fiber product

R := L×ι L = {(p, q) ∈ L× L | ι(p) = ι(q)},
which consists of several connected components. We label components
of R as follows. Obviously R contains the diagonal {(p, p) ∈ L× L} as
one of connected components, which will be denoted by R0. The other
components are isolated points of the form

(p−, p+) ∈ L× L
with ι(p−) = ι(p+) = p and p− 6= p+. For later use, define an involution
σ by

(2.4) σ : R→ R,

{
id on R0,

(p−, p+)↔ (p+, p−).



IMMERSED TWO-SPHERES, SYZ, AND GRASSMANNIANS 13

by fixing the whole R0 and swapping (p−, p+) to (p+, p−). The Floer
complex of L is generated by C∗(L) (or H∗(L)) and the elements of
R \R0. The latter will be called the immersed generators of CF (L,L).
Hence each self-intersection point of ι : L→ M gives to two generators
of CF (L,L), which intuitively will describe corners of a holomorphic
polygon jumping between two branches meeting at the corresponding
self-intersection.

Fix k ∈ Z≥0 and β ∈ H2(X, ι(L)). Let J be an ω-compatible almost
complex structure. A∞-structure on CF (L,L) is defined by counting
stable J-holomorphic maps ϕ : (Σ, ∂Σ) → (M, ι(L)) from a genus 0
bordered Riemann surface Σ together with mutually distinct marked
points z0, · · · , zk.

As mentioned, a marked point for holomorphic maps contributing
to CF (L,L) may map to a corner at some self-intersection point of
ι : L → M . In order to record these corners, we additionally attach a
map ρ to each holomorphic disks for CF (L,L)

ρ : {0, · · · , k} → R.

such that the following properties are satisfied:

1) The marked points respect the counter-clockwise orientation,
2) None of marked points are nodes,
3) The map ρ determines which immersed sectors marked points pass

through. Namely, for each i,(ϕ(zi), ϕ(zi)) ∈ R if ρ(i) ∈ R0,(
lim
z	zi

(ι−1 ◦ ϕ)(z), lim
z�zi

(ι−1 ◦ ϕ)(z)

)
= ρ(i) ∈ R if ρ(i) /∈ R0.

We denote the moduli space of such maps with additional data ρ by
Mk+1(ρ, β, J).

We finally define the evaluation maps{
evi : Mk+1(ρ, β, J)→ L

∐
R

ev0 : Mk+1(ρ, β, J)→ L
∐
R

by

evi ([Σ,−→z , ϕ, `, ϕ]) :=

{
ϕ(ζi) ∈ L, ρ(i) ∈ R0,

ρ(i) ∈ R, ρ(i) /∈ R0

for i = 1, · · · , k and

ev0 ([Σ,−→z , ϕ, `, ϕ]) :=

{
ϕ(z0) ∈ L, ρ(0) ∈ R0,

σ ◦ ρ(0) ∈ R, ρ(0) /∈ R0.

where ϕ is the lifting of ϕ|∂D2 to R. Having this, A∞-operation on
CF (L,L) can be defined in a usual way. One can generalize the def-
inition into the case where L has a clean self-intersection by counting
similar types of holomorphic disks attached with Morse flow lines in
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self-intersection loci. In this case, critical points of the Morse functions
on the self-intersection loci serve as immersed generators of the Floer
complex.

We will use linear combinations of degree one immersed generators
as our Maurer–Cartan deformation parameter b. Here, the degree of
an immersed generator is determined in a usual way by two local La-
grangians branches intersecting at the corresponding self-intersection.
The Maurer–Cartan equation for such a b is contributed by holomor-
phic polygons with degree one corners at self-intersections of ι(L). See
[AJ10] and [PW] for more details.

2.3. Gauge hypertori. When a Lagrangian is equipped with a ΛU-line
bundle together with a flat connection∇, one can deform A∞-operations
on CF (L,L) by measuring the parallel transport with respect to∇ along
a boundary of a holomorphic disk. More precisely, a summand mk,β of
mk contributed by disks of class β is multiplied by hol∇(∂β), where
we regard the flat connection ∇ as an element hol∇ ∈ hom(π1(L),ΛU).
For A∞-operations among several different Lagrangians, we similarly
measure the parallel transport along each boundary component of a
disk with respect to the connection on the Lagrangian over which this
boundary component lies. Such a deformation gives rise to (ΛU)h1 as a
part of the Maurer–Cartan deformation space MC(L) (or MCweak(L))
when, for e.g., L itself is already (weakly) unobstructed without further
deformation. Here, h1 is the first Betti number of L.

Throughout the paper, we will choose a particular type of a connec-
tion to represent the equivalent class of ΛU flat line bundles, for which
nontrivial effect of parallel transport is concentrated near chosen cycles
in Hn−1(L) (here dimR L = n). We give more detailed explanation
when L is a torus, as is the case in most of our application below. For
L ∼= Rn/Zn, we fix (oriented) codimension 1 tori Hi = εi + R〈ei〉 for
εi ∈ R/Z, which are called the gauge hypertori. Then the parallel trans-
port over a path γ is given by multiplying z±i whenever γ runs across
Hi. Here, the sign in the exponent is determined by the parity of the in-
tersection γ∩Hi, and zi is the holonomy of ∇ along the 1 cycle PD[Hi].
See [CHL19] for more details.

3. Completing SYZ mirror by immersed Lagrangians

In this section, we study a local model C2\{ab = ε} which will be
crucially used in the mirror construction of Grassmannians. The mirror
construction for C2\{ab = ε} via wall-crossing has been studied by
Auroux [Aur07] and many others. In [HL18, Section 5], the first and
the third named author briefly described the (partial) compactification
of the mirror by gluing the deformation space of an immersed sphere.
In this section, we provide the detailed statements and their proofs.
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We begin with the conic fibration Π: C2 → C defined by (a, b) 7→ ab.
The fibration is equipped with the Hamiltonian S1-action on C2 given
by

(3.1) S1 × C2 → C2, (θ, (a, b)) 7→ (e−iθa, eiθb),

whose moment map for this S1-action is µθ(a, b) = |b|2 − |a|2. Fix a
positive number ε and a simply connected curve γ in the base C\{ε}.
The union of S1-orbits satisfying |a| = |b| in the conic fibers over γ form
a Lagrangian torus, denoted by

(3.2) Tγ := {(a, b) ∈ Π−1(γ) : |a| = |b|}.
The most standard way to get the mirror is to take concentric cir-

cles around ε which gives the SYZ fibration (with one singular torus
fiber). In other words, those Lagrangians form a special Lagrangian
torus fibration.

Proposition 3.1 (Proposition 5.2 in [Aur07]). Let γ(r) be the circle
around ε with radus r. The Lagrangian torus Tγ(r) is special Lagrangian
with respect to the holomorphic volume form Ω = da ∧ db/(ab− ε).
Hence, Tγ in (3.2) is a graded Lagrangian.

However, in our mirror construction via Maurer–Cartan deformation
spaces and their gluing, we need isomorphisms among Lagrangians (see
Section 2.1). In particular we need the chosen Lagrangians to intersect.
Torus fibers do not intersect with each other, and so we need to make
an alternative choice of the following three simple closed curves :

1) γ0 encloses ε, and passes through 0,
2) γ1 encloses ε, but not 0,
3) γ2 encloses both 0 and ε,

as in Figure 2. We additionally assume that the areas bounded by γi’s
are all the same. Tγ1 , and Tγ2 will play the roles similar to those of torus
fibers below/above the wall. Tγ0 can be taken to be Hamiltonian isotopic
to the singular torus fiber in the SYZ fibration explained above. From
now on, we will write Li for Tγi for i = 0, 1, 2 for notational simplicity.

Any pair of Lagrangians among L0,L1, and L2 intersects cleanly with
each other along disjoint circles. Later, we will use Morse model for
Floer complexes among these objects, and for that we choose a generic
perfect Morse function on each circle in the intersection loci. Each of
them gives rise to two generators in the corresponding Floer complex
with degree difference by 1, which are simply its minimum and maxi-
mum. Alternatively, one can perturb these circles by Morse functions
so that they intersect transversely.

Equip the Lagrangian tori Li for i = 1, 2 with flat ΛU-line bundles and
fix the gauge by choosing hypertori in Li as in Section 2.3. As depicted
in Figure 2, the parallel transport is then given by multiplying yi when
a path goes across the corresponding hypertorus in Li, which is simply
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the circle component of Li in the conic fiber over yi. For the holonomy
xi in the complementary direction in Li are roughly given in Figure 2.
Since the choice of xi-hypertorus is a bit delicate, we will explain this in
a separate section, see Section 3.3. In fact, the identification of charts
associated to Lagrangians Li’s depends on this choice. (See the proof
of Theorem 3.7 and the discussion below the proof.)

3.1. Unobstructedness. We will use flat connections for L1 and L2

and linear combinations of immersed generators U and V for L0 to de-
form (Floer theory of) these Lagrangians. By taking suitable gradings
on L0, both U and V can be made of degree 1. In [Als], the same gen-
erators for the immersed sphere appear to have different degrees from
ours, essentially due to our choice of the logarithmic (holomorphic) vol-
ume form. The log-factor in the volume form (along the base direction
of the conic fibration) allows us to keep the phase unchanged when we
travel along a loop which starts from one of two branches (of L0 at the
self-intersection), hits the other, and comes back to the original branch.

We first prove that any such deformations satisfy the Maurer–Cartan
equation. We begin by the unobstructedness of smooth tori Li for i =
1, 2.

Lemma 3.2. The pair (Li, bLi := ∇xi,yi) is unobstructed for any
i = 1, 2.

Proof. Since the torus Li does not bound any non-constant holomor-

phic disks, m
bLi
0 = 0. q.e.d.

The immersed sphere L0 is equipped with a perfect Morse function on
S2 with two critical points (which are away from the immersed points).
The unobstructedness of L0 is irrelevant to a choice of Morse functions
as we will see below. However, we will choose somewhat specific Morse
function in Section 3.2 mainly to obtain a simple wall-crossing formula.
(See the proof of Theorem 3.7.)

The Floer cochains are spanned by the two critical points αL0
0 and

βL0
2 of degree 0 and degree 2, respectively, together with two degree 1

immersed generators U and V . The generators of degree 0 and degree
2 are referred to as the unit class and the point class of the 2-sphere by
obvious analogy. We consider the deformation by bL0 = uU + vV of L0,
where u, v ∈ Λ+.

Lemma 3.3. The pair (L0, bL0 := uU + vV ) is unobstructed.

Since there does not exist any non-constant holomorphic disks bounded
by L0, only constant stable maps could contribute to the obstructionmb

0.
Namely, mb

0 = mb
0,β0

where β0 is the trivial class in π2(C2\{ab = ε},L0),
represented by a constant disk. Thus it should be of degree two, and
hence proportional to the point class βL0

2 . Moreover, because of branch
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Figure 2. Simple closed curves that are base paths for
the Lagrangians

shifting, it is merely contributed by constant polygons supported at
the self intersection point of L0 whose corners are (U, V, . . . , U, V ) or
(V,U, . . . , V, U). Therefore, to verify Lemma 3.3, it suffices to show that
the contributions from the constant maps with corners (U, V, . . . , U, V )
and with (V,U, . . . , V, U) cancel out.

One easy way to see such a cancellation is to consider the anti-
symplectic involution τ : C2 → C given by (a, b) 7→ (b, a) . The map
τ swaps the immersed sectors, i.e., τ induces the map τ∗ on R, which
coincides with the involution σ defined in (2.4). Note that τ is anti-
holomorphic with respect to the standard complex structure on C2.
The involution induces the map

(3.3) τ∗ : Mk+1(ρ, β0)→Mclock
k+1 (ρ, β0)

by {
τ∗(ϕ)(z) := (τ ◦ ϕ)(z),

(z0, z1, z2, · · · , zk−1, zk) 7→ (z0, z1, z2, · · · , zk−1, zk).

Note that ρ does not change under the map τ∗ since both the complex
conjugate and the involution swap the immersed sectors. By pulling
back the class of (relative) spin structure via τ and by taking pertur-
bations respecting τ , the orientation changes as follows, see [FOOO17,
Section 3 and 4], which analyzed the signs of the moduli spaces of bor-
dered stable maps bounded by a smooth Lagrangian submanifold under
the Z/2-action given by the anti-symplectic involution τ .

Lemma 3.4. As a map between oriented spaces, the map τ∗ in (3.3)
is described by

τ∗ (Mk+1(ρ, β0)) = (−1)♠β,kMclock
k+1 (ρ, β0).
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where ♠β,k := 1
2µ(β) + k + 1.

Lemma 3.5 (Lemma 8.4.3 in [FOOO09b]). Let σ be the transposi-
tion swapping i with i + 1. With orientations taken into account, The
action of σ on the moduli space Mk+1(β, P1, · · · , Pk) by changing the
order of i-th and (i+ 1)-th marked points is described by

σ (Mk+1(β, P1, · · · , Pi, Pi+1, · · ·Pk)) =

(−1)♣i,i+1Mk+1(β, P1, · · · , Pi+1, Pi, · · ·Pk)
where ♣i,j := (degPi + 1)(degPj + 1).

Having these lemmas in mind, Lemma 3.3 can be proved as follows.

Proof of Lemma 3.3. As explained above, it only remains to analyze the
moduli spaces when

ρ : {0, 1, · · · , 2k} → R is given by ρ(j) =


0 if j = 0,

U if j = 1, 3, · · · , 2k − 1,

V if j = 2, 4, · · · , 2k,
and β is the trivial class β0. Note that ρ is preserved under the map
τ∗ since the complex conjugate and the involution swap the immersed
sectors. However, since τ∗ does not respect clockwise orientation for
k ≥ 1, we have to rearrange marked points by the map

σ(0, 1, 2, · · · , 2k − 1, 2k) 7→ (0, 2k, 2k − 1, · · · , 2, 1),

where σ ∈ S2k+1. As a result, we obtain a map τmain
∗ : M2k+1(ρ, β0)→

M2k+1(σ∗(ρ), β0) defined by{
τ∗(ϕ)(z) := (τ ◦ ϕ)(z),

(z0, z1, z2, · · · , z2k−1, z2k) 7→ (z0, z2k, z2k−1, · · · , z2, z1),

which induces

τmain
∗ : M2k+1(ρ, β0;U, V, · · · , U, V )→M2k+1(σ∗(ρ), β0;V,U, · · · , V, U).

By Lemma 3.4 and Lemma 3.5, the map τmain
∗ is orientation reversing

because
♠β0,2k +

∑
1≤i<j

♣i,j ≡ 1 (mod 2).

Recall that the orientation of a moduli space of pearl trajectories is
determined by that of the fiber product between moduli spaces of disks
and (un)stable submanifolds of the chosen Morse function. Thus, with
the fixed Morse function on S2, the relation on the orientations of the
moduli spaces of constant disks induces the same relation on those of
the corresponding moduli spaces of pearl trajectories. Therefore,{

m2k,β0(U, V, · · · , U, V ) +m2k,τ∗β0(V,U, · · · , V, U) = 0,

m2k,β0(V,U, · · · , V, U) +m2k,τ∗β0(U, V, · · · , U, V ) = 0
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and hence

m
bL0
0 (1) = m

bL0
0,β0

(1) =
1

2

(
m
bL0
0,β0

(1) +m
bL0
0,τ∗β0

(1)
)

= 0.

q.e.d.

For instance, the constant triangles contribute as{
m2(uU, vV ) = vu · βL0

2 ,

m2(vV, uU) = −uv · βL0
2 ,

and hence they cancel with each other. In fact, theA∞-algebra CF (L0,L0)
was shown to be quasi-isomorphic to an exterior algebra with two gen-
erators in [Sei, Section 11].

In our situation, one can extend the deformation space Λ+×Λ+ for L0

to Λ0×Λ+∪Λ+×Λ0. It is because L0 only bounds constant holomorphic
polygons whose corners must be in an alternating pattern of U, V as we
have seen in the proof of Lemma 3.3. Thus, uv still lies in Λ+ even if
one of u, v is in Λ0. Therefore we obtain the following lemma.

Lemma 3.6. The A∞-operations on Floer cochain complexes involv-
ing (L0, bL0) converge for any (u, v) ∈ Λ0 × Λ+ ∪ Λ+ × Λ0.

By the same reason, (A∞-structures on) Floer complexes between
(L0, bL0) and other objects in the Fukaya category are well-defined for
(u, v) ∈ Λ0 × Λ+ ∪ Λ+ × Λ0.

3.2. Gluing of local charts MC(Li). From the discussion in the pre-
vious section, we see that the Maurer–Cartan deformation of Li gives
rise to the following local charts for the mirror space

MC(Li) =

{
ΛU × ΛU for i = 1, 2
Λ0 × Λ+ ∪ Λ+ × Λ0 for i = 0

.

We will use the coordinates (xi, yi) for MC(Li) i = 1, 2, and (u, v) for
for MC(L0). We next explain how to glue these charts to give a global
mirror with help of quasi-isomorphisms among these three objects.

Recall that the Lagrangian tori L1, L2 and the immersed sphere L0

intersect each other cleanly along two circles, and we have chosen generic
(perfect) Morse functions on these circles. Critical points of these func-
tions give generators of CF (Li,Lj), which we denote by

α
Li,Lj
0 , α

Li,Lj
1 , β

Li,Lj
1 , β

Li,Lj
2 for (i, j) with 0 ≤ i 6= j ≤ 2,

Here, α
Li,Lj
• and β

Li,Lj
• are respectively over the points αLi,Lj and βLi,Lj

in the base of the conic fibration (see Figure 3), and the subscripts indi-

cate the degrees of the morphisms. For instance, α
Li,Lj
0 is the maximum

of the Morse function on the circle lying over the point α. The degrees
of βi’s are shifted further by 1 from their usual Morse indices due to the
degree of the intersection of base paths at β.

We are now ready to state the main statement of this section.
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Figure 3. Base paths for L1,L2 and L0 and their intersections

Theorem 3.7. There are quasi-isomorphisms among (Li, bLi) and
(L0, bL0) if we define coordinate transitions as follows :

• (L1, bL1) ∼= (L0, bL0) if and only if

(3.4) x1 = uv − 1, y1 = u

where u, y ∈ ΛU, v ∈ Λ+, and x1 ∈ −1 + Λ+.
• (L2, bL2) ∼= (L0, bL0) if and only if

(3.5) x2 = uv − 1, y2 = v−1

where v, y2 ∈ ΛU, u ∈ Λ+, and x2 ∈ −1 + Λ+.
• (L1, bL1) ∼= (L2, bL2) if and only if

(3.6) x1 = x2, y1 = y2(1 + x2)

where yi ∈ ΛU and xi ∈ k + Λ+ for k ∈ C× − {−1}.

The coordinate changes above do depend on the choice of Morse
functions and hypertori for flat connections. Any other choice affects
the formula by a certain automorphism on an individual chart, which
we shall explain at the end of the section.

Remark 3.8. The relation between L1 and L2 has been studied in Sei-
del’s lecture notes [Sei] and also used by the work of Pascaleff–Tonkonog
[PT20]. Here we focus on the relation between L0 and L1 (and that
between L0 and L2 can be similarly derived).

Proof. We compute mbL
1 := m

bL1 ,bL0
1 of the unique degree-zero gen-

erator αL1,L0
0 in the Floer complex CF((L1, bL1), (L0, bL0)) by counting

pearl trajectories. There are two strips from αL1,L0
0 to βL1,L0

1 whose pro-
jections under Π are the shaded regions in Figure 4 (a). These strips
can be found explicitly as holomorphic sections of the conic fibration.
Once we delete {a = 0} or {b = 0}, the fibration becomes a trivial C×-
fibration where one can realize these strips as constant sections of the
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trivial fibration. See for e.g. [Sei08, Section 17] for detailed analysis on
such sections. Let us denote these strips by uL and uR, respectively.

For our Morse function on L0, we require that the flows starting at
the self-intersection point avoid the arcs ∂L0uL and ∂L0uR. Similarly,
we choose x1-hypertorus for L1 such that it avoids ∂L1uL and ∂L1uR.
For other coordinate changes, one has to choose hypertori in L2 satis-
fying similar properties. See the discussion at the end of the section for
more details, in particular for the existence of such hypertori and Morse
functions.

Under this choice, we see that uR contributes without involving any
variables u, v, x1, y1 since neither ∂L0uR can be joined by the constant
disk at the self-intersection point through a Morse flow nor ∂L1uL in-
tersects the x-hypertorus. (It does not hit the y-hypertorus, either, due
to our choice as in Figure 4.) Similarly, uL gives rise to uy1 (without
any x or x1 appearing) in its contribution since it has a corner at U and
passes through the y1-hypertorus, but no other than these.

Recall that we have chosen Li’s such that the two strips have the
same symplectic area, say, ∆. From the above discussion we conclude
that

(3.7) 〈mbL
1 (αL1,L0

0 ), βL1,L0
1 〉 = T∆

(
1− uy−1

1

)
.

where the strip uR contributes T∆, while uL contributes T∆uy−1
1 . We

will give a brief explanation how different choices of Morse functions
affect the computation later.

Figure 4. Pearl trajectories contributing to mbL
1 (αL1,L0

0 )

For
〈
mbL

1 (αL1,L0
0 ), αL1,L0

1

〉
, we also have a pair of strips in Π−1(αL1,L0)

contributing to it. One of the strips gives ±1, and the other gives ±x1

since one passes through the x-hypertorus. In addition to those strips,
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we have pearl trajectories consisting of a strip, Morse flow lines in L0 and
constant polygons with corners U, V, . . . , U, V . The pearl trajectories
form power series in uv. Hence〈

mbL
1 (αL1,L0

0 ), αL1,L0
1

〉
= x1h(uv) + g(uv)

where g, h are power series with leading term ±1. In summary

mbL
1 (αL1,L0

0 ) = T∆
(
1− uy−1

1

)
βL1,L0

1 + (x1h(uv) + g(uv))αL1,L0
1 .

We see that the cocycle condition (i.e. mbL
1 -closedness) gives

(3.8)

{
x1 +H(uv) = 0
y1 = u

where H := g/h. One can check that the degree zero morphism in

CF(L0,L1) (which is dual to βL1,L0
2 ) is also closed under the corre-

sponding Floer differential if and only if the same condition is satisfied.

Moreover, one can check by similar counting that αL1,L
0 gives an iso-

morphism under the condition (3.8) with its inverse being the dual of

βL1,L0
2 .
However, it is not easy to compute the function H(uv) directly as it

necessarily involves a virtual perturbation due to constant bubbles and
multiple covers. To compute H(uv), we examine relations among three
objects L0,L1, and L2. Namely, we consider the chain of isomorphisms

(L1, bL1)
α
L1,L0
0−→ (L0, bL0)

α
L0,L2
0−→ (L2, bL2).

The composition of these two isomorphisms is given by

m2(αL1,L0
0 , αL0,L2

0 ) = T∆′αL1,L2
0

where ∆′ is the symplectic area of the triangle projecting down to the
shaded region in Figure 3, and we make similar assumption on our Morse
function as before so that the flow lines from the self-intersection do not
intersect the boundary of the triangle lying over L0. This implies that

αL1,L2
0 is also an isomorphism. Therefore, coordinate changes among

three objects must be compatible (over the triple intersection). Using
the relation

x1 = x2, y1 = y2(x2 + 1)

we derive

1−H(uv) = x2 + 1 =
y1

y2
=

u

v−1
= uv.

q.e.d.

The three deformation spaces are glued accordingly. Namely we take
the disjoint union of (Λ0 × Λ+) ∪ (Λ+ × Λ0) (with coordinates (u, v))
and two copies of ΛU × ΛU (with coordinates (x1, y1) and (x2, y2) re-
spectively), and take the quotient according to the above relations. The
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gluing is illustrated in Figure 5. The upper component of the degener-
ate cone {uv = 0} is a (partial) compactification of {x1 = −1} ∼= C×
by adding the point {x1 = −1, y1 = 0}, and similar for the lower com-
ponent. The resulting moduli space is

{(u, v) ∈ Λ0 × Λ0 : uv 6∈ 1 + Λ+}.

Figure 5. Illustration of gluing of two charts

In the proof, we made the simplest choice of our Morse function, for
which the flow lines through the self-intersection have no intersections
with contributing holomorphic polygons. If we choose arbitrary Morse
function, intersection between the flows lines and holomorphic polygons
will create more pearl trajectory contributions (see Section 6.3 for in-
stance). In fact one can check by following the same argument in the
proof, but with different Morse function that the wall crossing formula
can get affected by multiplying (1 − uv)k. Also, choosing different xi-
hypertorus can create additional xli in the wall crossing formula. How-
ever, the resulting mirror space will remain the same up to an equiv-
alence, and essentially this change amounts to applying the following
automorphism to MC(L0) = {(u, v)} and gluing:

(u, v) 7→
(

(1− uv)ku, (1− uv)−kv
)
.

See Remark 6.16 for the related discussion, especially for a more intrinsic
description of the Maurer–Cartan deformation space in this case.

The choice we made here can also be interpreted as that of directions
in SYZ base, along which we smooth out L0. We will give a brief
explanation on this point at the end of the section.

3.3. Choices of hypertori and Morse functions. We supplement
the proof of Theorem 3.7, describing precisely the hypertori and the
Morse functions we have chosen in the proof.
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Choice of hypertori. The yi-hypertorus (or yi-circle) for Li for i = 1, 2
are canonical, namely they are taken to be vanishing circles. However
for the xi-hypertorus we need to make a choice. If we make an arbitrary
choice, the wall-crossing equation would be y′1 = xk2y2(1 + x2) for some
k. In the following we make a suitable choice such that k = 0.

The conic fibration is non-trivial over the disk bounded by the base
circle of L2. Let’s trivialize the conic fibration by deleting {b = 0} ⊂
C2 − {ab = ε}. Then the xi-circle of Li is simply taken to be a trivial
section of the base circle.

Recall that we have fixed a perfect Morse function on each of the two
clean intersections between L1 and L2 (which are circles), and denoted

by αL1,L2
0 , βL1,L2

1 the maximum point in the upper clean intersection, and
the minimum point in the lower clean intersection respectively. Consider
the holomorphic sections bounded by (L1,L2). There is a unique section

s0 passing through βL1,L2
1 over the right region. Over the left region,

there are two sections s1, s2 passing through βL1,L2
1 , and exactly one of

them, say s1, is contained in the trivialization.
By considering their classes, we see that s0 contributes xa1(x2)−ay2(y1)−1

for some a, and s1 contributes (x2)bx−b1 for some b. Morse flow line in

clean intersection contributes to mbL
1 (αL1,L2

0 ) by (x1 − x2)αL1,L2
1 , so we

impose the relation x1 = x2 (for two Lagrangians to be isomorphic).
Under this relations, s0 and s1 give the terms y2(y1)−1 and 1 respec-

tively. That is, these two strips contribute to the βL1,L2
1 -component of

mbL
1 (αL1,L2

0 ) as y2(y1)−1 and 1.
For the section s2, its boundary class equals to the sum of the bound-

ary class of s1 and the vanishing circle. From the above the boundary of
s1 has trivial holonomy. The vanishing circle intersects gauge x2-circle
once and has holonomy x2. Hence the strip s2 contributes x2 to the

βL1,L2
1 -component of mbL

1 (αL1,L2
0 ). In total we have the wall-crossing

formula y2(y1)−1 = 1 + x2 = 1 + x1.

Choice of Morse function of the immersed sphere. Now consider
the strips bounded by (L0,Li) for i = 1, 2. Again we choose perfect
Morse functions on the clean intersections between L0 and Li. Denote
by αL0,Li

0 , βL0,Li
1 the maximum point in the upper clean intersection,

and the minimum point in the lower clean intersection respectively.
Below we choose the Morse function on the normalization S ∼= S2

of L0 such that the flow lines from q1, q2 (preimages of the immersed
point) to the minimum point do not intersect the boundary of the strips
in the complement of q1, q2. This ensures that there is no constant

polygons at the immersed point contributing to the βL0,Li
1 -component

of mbL
1 (αL0,Li

0 ), so that we have the gluing formula u = y1, v = y2.
(Note that in general the gluing is h(uv)u = g(uv)y1 if the above flow



IMMERSED TWO-SPHERES, SYZ, AND GRASSMANNIANS 25

lines intersect with boundary of strips, where h and g are certain series
contributed from the constant polygons.)

The sections bounded by (L0,Li) can be explicitly solved by taking
square root. Namely we can set a = eiθb and solve ab = ζ where ζ
is the domain variable for the base strip (on the left or on the right).
Requiring each section to pass through the minimum point of the lower
clean intersection gives a unique solution.

For the sections bounded by (L0,Li) over the right base strip (which
does not pass through ab = 0), their boundaries in L0 coincide with
each other, giving a curve segment in S connecting the two clean inter-
sections.

For the sections bounded by (L0,Li) (i = 1, 2) over the left base
strip, by considering the different branch cuts in taking square root, we
see that their boundaries in L0 are parallel to each other. Namely the
argument of u for the two sections differs by π. Their boundaries give
two curve segments in S connecting qi to the clean intersections. They
do not intersect with each other (in the complement of q1, q2).

From the above configuration, it follows that there exists an arc in S
connecting q1, q2 which does not intersect with any of the above curve
segments. We take a Morse function on S such that the union of the
flow lines from qi to the minimum is such an arc. See Figure 6.

Figure 6. Choosing a Morse function for the gluing formula.

Relation with choice of smoothing. We have made a choice of
smoothing Li of L0 using the local model. In the SYZ fibration pic-
ture, it can be understood as smoothing the singular fiber along the
direction perpendicular to the wall (as in (a) of Figure 7). However,
there is no preferred way of smoothing since we do not have a preferred
complex structure in symplectic geometry. If we choose another direc-

tions of smoothing L̃i, this gives rise to different cycles in Li, which

we take as a new xi-circle as in (b) of Figure 7. Here, L̃i and Li are
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isotopic through a Lagrangian isotopy which does not cross the wall.
By the same argument as above, this induces the same wall-crossing
formula, yet with respect to new coordinates,

ỹ1 = ỹ2(1 + x2)

where ỹ1 = xk1y1 and ỹ2 = xk2y
′
2 (the relation x2 = x1 remains the same).

For the immersed sphere L0, take Morse arcs such that they do not

intersect strip boundaries for Li or L̃i. These two different choices of
Morse arcs give

u = y, and ũ = ỹ

respectively. Thus we see that they are related by

ũ = xk1u = (uv − 1)ku.

Figure 7. Two different choices of smoothings

4. Review of Grassmannians

In this section, we briefly recall some features of Gr(2,Cn). We shall
construct their mirrors in Section 6 and 7.

4.1. Grassmannians of 2-planes. The Grassmannian Gr(2,Cn) of
2-planes in Cn is a partial flag manifold parametrizing the complex
subspaces of two dimension in Cn. Below are a few different descriptions
of Gr(2,Cn).

(i) Let V2(Cn) be the set of orthonormal frames of two dimensional
subspaces in Cn. An element in V2(Cn) can be regarded as the set of
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columns of Ξ in

(4.1)

Ξ :=


ζ1 ξ1

ζ2 ξ2
...

...
ζn ξn

 ∈Mn×2(C) : Ξ
T

Ξ = I2

 .

The Grassmannian is then the set of subspaces spanned by frames in
V2(Cn), and hence Gr(2,Cn) ' V2(Cn)/U(2).

(ii) The unitary group U(n) acts linearly and transitively on the space
of complex two-dimensional subspaces in Cn with the isotropy subgroup
U(2)×U(n− 2). Gr(2,Cn) is a homogeneous space :

(4.2) Gr(2,Cn) ' U(n)/(U(2)×U(n− 2)).

Gr(2,Cn) can be also realized as G/P where G = SL(n,C) and P =
{[ai,j ]} is a parabolic subgroup consisting of matrices in G such that all
entries ai,j with i ≥ 3 and j = 1, 2 vanish.

(iii) Setting Zi,j = ζiξj−ζjξi for ζi and ξj in (4.1) defines an embedding

of Gr(2,Cn) into CPn(n−1)/2−1. Gr(2,Cn) is then the subvariety of

CPn(n−1)/2−1 cut out by the Plücker relations

{(i, j, k, `) = 0 : 1 ≤ i < j < k < ` ≤ n}

where

(4.3) (i, j, k, `) := Zi,jZk,` − Zi,kZj,` + Zi,`Zj,k.

(iv) The Grassmannian Gr(2,Cn) is diffeomorphic to a co-adjoint orbit.
Identifying the dual Lie algebra of U(n) with the set of (n×n)-Hermitian
matrices, the co-adjoint orbit Oλ can be defined as the orbit of the
diagonal matrix Iλ under the conjugate U(n)-action where

(4.4) λ := (n− 2, n− 2,−2, · · · ,−2︸ ︷︷ ︸
(n−2) times

)

and

Iλ := diag(n− 2, n− 2,−2, · · · ,−2) ∈Mn×n(C).

Note that U(n) acts transitively on Oλ by conjugation and the isotropy
group of Iλ is U(n − 2) × U(2). Thus, Oλ ' U(n)/(U(n − 2) × U(2)),
and hence Oλ can be identified with Gr(2,Cn) by (4.2).

It is equipped with a U(n)-invariant symplectic form, which is called a
Kirillov–Kostant–Souriau symplectic form ωλ. Moreover, by Guillemin–
Sternberg [GS83], the Grassmannian Gr(2,Cn) equipped with the pull-

backed Fubini–Study form on CPn(n−1)/2−1 is isomorphic to the co-
adjoint orbit (Oλ, ωλ).
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4.2. Toric degenerations and Gelfand–Cetlin toric varieties.
Although partial flag varieties are not toric varieties in general, it is
known that they admit degenerations into toric varieties (see [GL96,
Cal02, AB04] for instance) which are very useful to study partial
flag varieties themselves. For our purpose later, we take one partic-
ular toric degeneration of the Grassmannian Gr(2,Cn), which appeared
in [BCFKvS00, KM05, NNU10].

To describe the toric degeneration of Gr(2,Cn), we view Gr(2,Cn)

as a subvariety (4.3) of CPn(n−1)/2−1. The toric degeneration is then
defined by

(4.5) Xε =
{

([Zij ] , ε) ∈ CP
n(n−1)

2
−1 × C : (ε; i, j, k, `) = 0

}
where

(ε; i, j, k, `) := εZijZk` − ZikZj` + Zi`Zjk

The toric variety Xε=0, defined by binomial relations, is called a Gelfand–
Cetlin (GC) toric variety. Setting u1,n−1 := n − 2 and u3,1 := −2, the

associated lattice polytope in MR = R2(n−2) = {(ui,j) : i = 1, 2, j =
1, · · · , n− 2} is given by the following set of inequalities :

{u1,j+1 − u1,j ≥ 0} for j = 1, · · · , n− 2,(4.6)

{u2,j+1 − u2,j ≥ 0} for j = 1, · · · , n− 3,(4.7)

{u1,j − u2,j ≥ 0} for j = 1, · · · , n− 2,(4.8)

{u2,1 − u3,1 ≥ 0} .(4.9)

The polytope is called the Gelfand–Cetlin (GC) polytope and denoted
by ∆(2,n). In order to describe the face structure of ∆(2,n), it is conve-
nient to use the ladder diagram Γ(2,n). The ladder diagram Γ(2,n) is the
induced subgraph in R× Z ∪ Z× R whose vertex set is

V(2,n) =
{

(i, j) ∈ Z2 : 0 ≤ i ≤ 2, 0 ≤ j ≤ n− 2
}
.

Thus the diagram Γ(2,n) is a rectangular net of size (2× (n− 2)).

Definition 4.1. Let Γ(2,n) be the ladder diagram associated with
∆(2,n) as above.

• A positive path is a path with minimal length from the bottom-left
vertex to the top-right vertex in Γ(2,n).
• An admissible diagram of Γ(2,n) is a subgraph that is expressed as

a union of positive paths.
• The dimension of an admissible diagram Γ is defined by the num-

ber of bounded regions of Γ.

Let �(i,j) be the unit box whose upper right vertex is located at
(i, j). Putting ui,j in the box �(i,j), the inequalities in (4.6), (4.7), (4.8)
and (4.9) can be respectively assigned to the edges in {(s, j) : 0 ≤ s ≤ 1},
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{(s, j) : 1 ≤ s ≤ 2}, {(1, s) : j − 1 ≤ s ≤ j} and {(2, s) : 0 ≤ s ≤ 1} in
an obvious manner.

Suppose we are given an admissible diagram Γ of Γ(2,n), and consider
the facets of ∆(2,n) which are obtained by turning the inequalities as-
signed to edges in Γ(2,n) \ Γ into equalities. Intersecting all such facets,
one can associate a unique face of ∆(2,n) with each admissible diagram
Γ. In fact, this defines a one-to-one correspondence as follows.

Proposition 4.2 ([ACK18]). There is an order-preserving one-to-
one correspondence

(4.10)
{

admissible diagrams of Γ(2,n)

}
→
{

faces of ∆(2,n)

}
where the set-theoretical inclusion gives the set of admissible diagrams
a partial order.

Moreover, the dimension of an admissible diagram equals that of the
corresponding face.

Example 4.3. We examine the case where n = 4. The ladder dia-
gram Γ(2,4) is given as in Figure 8. The GC polytope ∆(2,4) has six facets
whose corresponding admissible diagrams are Γ(f1), · · · ,Γ(f6), each of
which contains three bounded regions. For instance, Γ(f1) maps into
the facet supported by u1,2 = 2 under the correspondence (4.10). The
face g corresponding to Γ(g) in Figure 8 is one-dimensional because Γ(g)
consists of one bounded region. It is contained in the affine line defined
by u1,1 = u1,2 = u2,1 = u2,2. Since Γ(g) ⊂ Γ(fi), the face g is contained
in the facet fi for i = 2, 3, 4, 5. Finally, the face h corresponding to Γ(h)
is the interior of ∆(2,4).

Figure 8. The ladder diagram Γ(2,4) and its admissible diagrams.

For each ε and 1 ≤ k ≤ n, the variety Xε carries the Hamiltonian
S1-action θk(∈ [0, 2π]/0 ∼ 2π) defined by

(4.11) (θk, [Zij ]) 7→

{
[e
√
−1θk · Zij ] if either i = k or j = k,

[Zij ] otherwise

for k = 1, · · · , n. In other words, θk acts on the k-th row [ζk, ξk] by
rotation and fixes the other rows in (4.1).
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4.3. Block combinatorics and Gelfand–Cetlin systems. By ap-
plying Thimm’s trick, the Gelfand–Cetlin system in a partial flag mani-
fold (of Lie type A, B, and D) was constructed by Guillemin–Sternberg
[GS83]. Regarding Gr(2,Cn) as the co-adjoint orbit Oλ for a choice of
λ in (4.4), the Gelfand–Cetlin (GC for short in what follows) system on
Oλ is defined by

(4.12) ΦGC = (Φi,j : i = 1, 2, j = 1, · · · , n− 2) : Oλ → R2(n−2)

where Φi,j is the i-th largest eigenvalue of the (i+j−1)-th leading prin-
cipal minor matrix of a Hermitian matrix in Oλ. It gives a completely
integrable system with respect to ωλ, and {Φi,j} forms a set of action
variables. The image of the system coincides with the GC polytope
∆(2,n) determined by the min-max principle (if Oλ is equipped with the
form ωλ with a choice of λ in (4.4)). The reader is referred to [GS83]
for more details.

Each component generates a local S1-Hamiltonian action. Specifi-
cally, the component Φi,j is smooth and periodic Hamiltonian on the
dense open subset given by the inverse image of

{u ∈ ∆λ : ui−1,j+1 < ui,j < ui+1,j−1} .

In particular, Gr(2,Cn) contains an algebraic torus (C×)2(n−2) consist-
ing of torus orbits generated by Φi,j ’s. Although each component may
not be smooth on the whole Oλ, their certain combinations can still be
smooth. For instance, the combination Φ1,j+1 +Φ2,j−Φ1,j−Φ1,j−1−2,
the difference of sums of components in consecutive anti-diagonals, is a
moment map for θj+1 in (4.11).

Since the action of the algebraic torus (in full dimension) does not
extend to Gr(2,Cn) for n ≥ 4, non-torus Lagrangian fibers of ΦGC

appear at lower dimensional strata of ∆(2,n). Such Lagrangian fibers are
classified in [CKO20], see also [BMZ18]. In the case of Grassmannian
of 2-planes, it turns out that fibers are diffeomorphic to a product of
3-spheres or tori.

There is a simple combinatorial rule using two types of square blocks
in the ladder diagram as shown in Figure 9, which tells us whether a
fiber is a Lagrangian or not and reveals its diffeomorphic type.

• (U(1)-block) is a (1× 1)-block, which amounts to S1,
• (U(2)-block) is a (2× 2)-block, which amounts to S3 × S1.

For any given face f of ∆(2,n), consider the admissible diagram Γ
corresponding to f in Proposition 4.2. The diagram Γ divides the rect-
angular region (n− 2)× 2 into several pieces. The fiber over a point in
the relative interior of f is a Lagrangian if and only if any divided piece
is either a U(1)-block or a U(2)-block and, in addition, is bounded by Γ.
If this is the case, both f and Γ are said to be Lagrangian. Equivalently,
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Figure 9. U(1)-block and U(2)-block

a Lagrangian admissible diagram Γ in a ladder diagram Γ(2,n) satisfies

(4.13) n1 + 4n2 = 2(n− 2)

and vice versa, where ni is the number of U(i)-blocks bounded by Γ for
i = 1, 2. In summary, we have the following theorem.

Theorem 4.4 ([CKO20]). Suppose that a face f corresponds to Γ
via the correspondence (4.10). The admissible diagram Γ is Lagrangian
if and only if the fiber over each point in the relative interior of f is a
Lagrangian. Moreover, the fiber is diffeomorphic to (S1)n1+n2 × (S3)n2

where ni is the number of U(i)-blocks bounded by Γ for i = 1, 2.

Furthermore, a Lagrangian fiber is monotone if and only if its position
satisfies the so-called Bohr–Sommerfeld condition as below.

Theorem 4.5 ([CK]). Suppose that a face f corresponds to Γ is
Lagrangian. The Lagrangian fiber over a point u in the relative interior
of f is monotone if and only if

(4.14)


u1,i = u1,i+1 = u2,i = u2,i+1 = i− 1

for �(1,i),�(1,i+1),�(2,i),�(2,i+1) in U(2)-block,

ui,j = j − i
for �(i,j) in U(1)-block.

Example 4.6. Let Oλ ' Gr(2,C4) for λ = (2, 2,−2,−2). There
are two Lagrangian faces of ∆(2,4), which come from Γ(g) and Γ(h) in
Figure 8. On the other hand, Γ(f1) is not Lagrangian. Although the
whole (2× 2)-block is cut into four U(1)-blocks in this case, one of the
four is not bounded by Γ(f1). Also, Γ(f2) are not Lagrangian since one
of the divided pieces is neither U(1)-block nor U(2)-block. The fibers
over the relative interiors of g and h are respectively U(2) and T4 by
Theorem 4.4.

Example 4.7. The Grassmannian Gr(2,C6) ' Oλ where λ is in (4.4)
for n = 6 contains five Lagrangian faces, see Figure 10.

For later use, we introduce combinatorial objects parametrizing La-
grangian faces. Let Pn be the set of pairs consisting of two consecutive
integers in {1, 2, · · · , n− 2}, that is,

Pn := {(1, 2), (2, 3), · · · , (n− 3, n− 2)} .
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Figure 10. Lagrangian faces in Gr(2,C6) ' Oλ for
λ = (4, 4,−2,−2,−2,−2).

For a subset I ⊂Pn, the number of pairs in I is denoted by |I|. Let In

be the collection of subsets of Pn whose distinct elements do not share
any common integers. Namely, for I ∈ In and for two pairs (i, i + 1)
and (j, j + 1) ∈ I, we have i 6= j − 1 and i 6= j + 1. Equip In with a
partial order given by

(4.15) I1 < I2 ⇔ (i, i+ 1) ∈ I2 whenever (i, i+ 1) ∈ I1.

Denote by I max
n the set of maximal elements of In with respect to the

partial order (4.15). Note that In parametrizes monotone Lagrangians.

Remark 4.8. We shall construct an immersed Lagrangian associ-
ated with each element in In. We will see, however, that immersed
Lagrangians associated with maximal elements in I max

n are sufficient
for the purpose of recovering the Rietsch’s mirror (see Lemma 5.6).

Example 4.9. When n = 6, the index sets are{
I6 = {∅, {(1, 2)}, {(2, 3)}, {(3, 4)}, {(1, 2), (3, 4)}}
I max

6 = {{(1, 2), (3, 4)}, {(2, 3)}}.

As in Figure 10, I6 parametrizes the set of faces in ∆(2,6) whose rela-
tive interior has Lagrangian fibers. In other words, it parametrizes the
monotone Lagrangian fibers of Gr(2,C6).

By applying the criteria in [CKO20, Section 9], the monotone non-
toric Lagrangians corresponding to {(1, 2)} or {(3, 4)} are displaceable.
Thus they are trivial objects in the Fukaya category, and we do not need
to take them into account. The other two monotone Lagrangians will
be replaced by immersed Lagrangians to recover the Rietsch’s mirror
later on.

To compute the Floer potential (introduced by Fukaya–Oh–Ohta–
Ono [FOOO09b]) of a Lagrangian GC torus T ⊂ Oλ, Nishinou–
Nohara–Ueda [NNU10] constructed a degeneration of the GC system
on X1 into the toric moment map on X0. The toric degeneration in (4.5)
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is a family of Fano varieties and the central fiber X0 admits a small res-
olution of the singular loci. Using these properties, they showed that a
holomorphic disk has Maslov index strictly greater than two whenever
it intersects codimension ≥ 2 strata. Therefore, the resulting superpo-
tential is equal to the Givental–Hori–Vafa potential, analogously to the
toric Fano case in Cho–Oh [CO06].

Theorem 4.10 ([NNU10]). The (Floer) potential function of T ⊂
Gr(2,Cn) is

(4.16) WT (z) = z2,1 +
Tn

z1,n−2
+
n−3∑
j=1

(
z1,j+1

z1,j
+
z2,j+1

z2,j

)
+
n−2∑
j=1

z1,j

z2,j

where zi,j is the exponential variable corresponding to the loop generated
by ui,j.

Remark 4.11. Here, we only presented the potential function of a GC
torus fiber in the case of Gr(2,Cn). It is also proved in [NNU10] that
the Floer potential of a GC torus fiber agrees with the one introduced
by Givental–Kim and Eguchi–Hori–Xiong in [GK95, EHX97] for every
partial flag varieties of Lie type A.

5. Floer theoretical strategy to construct SYZ mirrors for
partial flag varieties

In this section, we outline a program to construct open mirror sym-
metry for partial flag varieties.
5.1. Strategy to construct mirrors for partial flag varieties.
Let X be a partial flag variety. The most distinguished torus fiber
in the GC system of X is the monotone one, which is denoted by T
in X. We can start with the local mirror (UT ,WT ) of the torus T ,
where UT ' (ΛU)dimCX is its Maurer–Cartan deformation space given
as in Section 2.3, and WT is the Floer potential defined as the count of
Maslov two holomorphic disks bounded by T . The pair (UT ,WT ) can
be computed with the aid of a toric degeneration, see [NNU10, CO06,
FOOO10].

We would like to construct the mirror X̌ of the complement of an
anti-canonical divisor in X. Then the Landau–Ginzburg mirror of X
would be given by (X̌,W ), where W is the disk potential counting
holomorphic disks emanated from the anti-canonical divisor. This is
in line with the general program of Auroux [Aur07]. However, a big
difference from the toric case is that, the inverse image of the boundary
of the GC polytope is not a divisor. The reason is that the GC system
has non-toric Lagrangian fibers over some of the faces.

In other words, the GC system does not restrict to a torus fibration
on the anti-canonical divisor complement. We need to take into account
of monotone non-toric Lagrangian fibers in the GC system.
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In the cotangent bundle of each non-toric Lagrangian fiber, viewed
as a local neighborhood of the Lagrangian, we construct an immersed
Lagrangian L whose certain Maurer–Cartan deformations are quasi-
isomorphic to T . We use the quasi-isomorphisms (Definition 2.2) to
derive the gluing data between their Maurer–Cartan deformation spaces
(local mirrors). Using the compatibility between the quasi-isomorphism
and Floer potentials, the disk potential of L can be explicitly computed
from WT . Moreover, the local mirrors glued together and give a partial
compactification of the torus chart UT .

For partial flag varieties of Lie type A, every GC fiber is diffeomorphic
to the total space of an iterated bundle whose fibers are either points or
products of odd-dimensional spheres, see [CKO20] for details. We shall
study cotangent bundles of odd dimensional spheres, and find suitable
immersed Lagrangians in the local models. Notice that partial flag
varieties are locally defined by quadratic equations of the form

X1Y1 +X2Y2 + · · ·+XnYn + 1 = 0,

each of which exactly defines the cotangent bundle of an odd-dimensional
sphere.

In this article, we shall construct an immersed Lagrangian in the
local chart T ∗S3 and T ∗U(2) ' T ∗S3×T ∗S1 and derive the relationship
between the Lagrangian constructed and the Lagrangian torus T . The
first two examples of flag varieties using these two as local models are
the complete flag variety F`(1, 2; 3) and the Grassmannian Gr(2,C4)
respectively. Indeed, they are compactifications of a single T ∗S3 in
CP 2 × CP 2 and a single T ∗U(2) in CP5 respectively.

Indeed the LG mirror constructed from the torus T is good enough
to study most aspects of mirror symmetry of any complete flag variety,
since it already contains enough critical points. Thus we will first focus
on Gr(2,C4) for which the Jacobian ring of the mirror obtained from
T is not isomorphic to the quantum cohomology of Gr(2,C4). We will
discuss how to construct its partially compactified mirror in details in
Section 6. Then we will move on to the Grassmannian Gr(2,Cn), which
has charts being products of T ∗U(2) and T ∗S1. Employing local models
as building blocks, we will complete a mirror construction for Gr(2,Cn)
in Section 7.

Following the scheme of [CHL17, CHL19, CHL21, CHL], the mir-
ror construction can be upgraded into the categorical level. Namely,
each reference Lagrangian has an associated localized mirror functor.
By gluing the mirror functors through the quasi-isomorphisms, we ob-
tain a glued mirror functor from the Fukaya category to the category
of matrix factorizations. We exhibit homological mirror symmetry in
some examples in Section 9 although it does not crucially use the glued
functor due to isolatedness of the critical loci of the mirror potential.
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Our program does not require constructing a special Lagrangian fibra-
tion, which is one of the main difficulties in the SYZ program. Instead
we construct a finite collection of Lagrangian immersions in X in place
of singular SYZ fibers. This is mostly good enough for mirror symmetry
of anti-canonical divisor complement and also, the Fano variety X itself.

In a forthcoming work with Cheol-Hyun Cho, the authors will study
other local models and apply them to construct mirrors and derive ho-
mological mirror symmetry for more general classes of partial flag vari-
eties.

5.2. Immersed charts for Rietsch’s mirrors. Inspired by Peter-
son’s lecture, Rietsch [Rie08] constructed Lie-theoretical LG models of
general partial flag manifolds. Later on, Marsh and Rietsch [MR20]
described the Lie-theoretical mirror of Gr(k,Cn) in terms of the dual
Plücker coordinates and investigated the cluster structure on it. It turns
out that a Floer theoretically derived SYZ mirror matches up with the
Lie-theoretical mirror. After recalling their work briefly on Gr(2,Cn),
we introduce immersed charts for the Rietsch’s mirror. Those charts
will be geometrically derived, and they will be used to fill up the strata
that cannot be covered by the cluster charts.

We write X := Gr(2,Cn) in this section. Regarding X as G/P (see
Section 4.1), the Rietsch’s mirror consists of the complement of an anti-
canonical divisor in its Langlands dual Grassmannian Ǧ/P̌ = Gr(n −
2,Cn) together with a superpotential. The map

(5.1) p̂i,̂j := p1,··· ,i−1,i+1,··· ,j−1,j+1,··· ,n 7→ pi,j

provides an identification between Gr(n− 2,Cn) with Gr(2,Cn).
There is a one-to-one correspondence between the Plücker variables

and the Young diagrams in the (2× (n− 2))-rectangle (or block). Con-
sider a negative path, a path from the top-right vertex to the bottom-left
vertex with the shortest distance, lying in the (2× (n− 2))-block. Its
horizontal steps determine the indices of Plücker variable. On the other
hand, cutting the (2× (n− 2))-block along the given negative path, the
left-upper corner one will be taken as the corresponding Young diagram.

Under the reflection with respect to the line through the right-top ver-
tex with the slope−1, the Young diagrams in the (2× (n− 2))-rectangle
map into those in ((n− 2)× 2)-rectangle. The identification (5.1) is
compatible with the reflection on Young diagrams when recording the
horizontal steps of a reflected positive path in the ((n− 2)× 2)-rectangle
as the index of a variable.

Under the identification (5.1), the Rietsch’s mirror of Gr(2,Cn) is the
LG model (X̌,WRie) defined as
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• X̌ := Gr(2,Cn)\D where D = {p1,2 · p2,3 · · · pn−1,n · p1,n = 0},

(5.2) WRie ([pi,j ]) := q
p2,n

p1,2
+
n−1∑
j=2

pj−1,j+1

pj,j+1
+
p1,n−1

p1,n
.

In [MR20], the authors found a cluster structure, which was in-
vented by Fomin–Zelevinsky [FZ02], on the Rietsch’s mirror

(
X̌,WRie

)
in (5.2). The superpotential (5.2) has the variables pj,j+1 (1 ≤ j ≤ n)
in the denominators, which are called frozen variables. Here, the vari-
able pj,j+1 for j = n means p1,n. The other Plücker variables are called
cluster variables. Observe that the variables in D are frozen variables,
and hence WRie is a regular function on X̌.

In fact, one can find that the variables in each monomial of the su-
perpotential (5.2) are arranged by the following combinatorial rule de-
scribed in terms of the associated Young diagrams. For j 6= 1, the
Young diagram associated with the variable in the numerator is made
out of that in its denominator by adding one unit box. When j = 1, the
numerator corresponds to the ((n− 3)× 1)-block obtained by removing
the bottom row and the second column from ((n− 2)× 2)-block. We
refer readers to [MR20, Section 6] for details.

Remark 5.1. By the quantum Pieri rule, a variable in any numera-
tor of superpotential (5.2) corresponds to the Schubert cycle obtained
by multiplying the cycle corresponding to the unit box to the cycle
corresponding to the frozen variable in its denominator.

Remark 5.2. Nohara and Ueda constructed generalized GC systems
in [NU14] and obtained LG mirrors by counting holomorphic disks with
boundaries on their torus fibers. In [NU20] these LG mirrors respect
the cluster structure, and the resulting glued mirror partially covers(
X̌,WRie

)
.

Example 5.3. For λ = (2, 2,−2,−2), we have Oλ ' Gr(2,C4). The
Rietsch’s mirror consists of X̌ := Gr(2,C4)\{p1,2 · p2,3 · p3,4 · p1,4 = 0}
and

(5.3) WRie ([pi,j ]) = q
p2,4

p1,2
+
p1,3

p2,3
+
p2,4

p3,4
+
p1,3

p1,4
: X̌ → C.

We now introduce immersed charts of
(
X̌,WRie

)
, which will later turn

out to be Maurer–Cartan deformation spaces of immersed Lagrangians
(see Section 7). While the cluster charts can recover the Rietsch’s mirror
up to codimension ≥ 2 only, we will see that the immersed charts fill
out the missing parts lying outside any of cluster charts.

Definition 5.4. For I ∈ In, we define an immersed chart associated
with I of X̌ by

(5.4) UI =
{

[pi,j ] ∈ X̌ : pn−i−1,n 6= 0 for i with (i, i+ 1) /∈ I
}
.
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There are several different ways of describing this cluster structure.
For example, it is governed by the Postnikov diagram or the plabic
graph as explained in [MR20]. For Gr(2,Cn), the triangulations of an
n-gon also provides a cluster structure.

We start from the n-gon and enumerate the vertices of the n-gon re-
specting the clockwise orientation. Notice that U∅ is given by {p2,n · · · pn−2,n 6=
0}. We call U∅ the reference chart of X̌. We then associate the chart
with the triangulation of the n-gon by drawing the edges connecting the
n-th vertex and the other vertices. This particular triangulation divides
the n-gon into (n−2) triangles. We assign the integer (i) to the triangle
whose vertices are n, n− i, and n− i− 1, see Figure 11.

Figure 11. The reference chart U∅ for Gr(2,Cn) for
n = 4, 5, 6.

Each combinatorial input I ∈ In indeed tells us how the triangula-
tion for the reference chart U∅ mutates into another triangulation. For
each pair (i, i + 1) ∈ I, consider the parallelogram whose vertices are
n, n − i, n − i − 1, and n − i − 2 and perform the flip move, changing
the edge (n, n − i − 1) to the edge (n − i, n − i − 2). Immersed chart
arises through the mutation process. We assign the immersed chart UI
to the subdivision of n-gon by removing the edges (n, n− i− 1) for all
(i, i+ 1) ∈ I. Those subdivisions attached to the immersed charts will
be used to produce the identification between the immersed charts and
the Maurer–Cartan deformation spaces of immersed Lagrangians, see
Section 7.2.

Example 5.5. As in Figure 12, there are five algebraic torus charts
associated with five triangulations. For the choice I = {(1, 2)}, consider
two triangles (5, 4, 3) and (5, 3, 2) and then obtain triangles (5, 4, 2) and
(4, 3, 2) after the flip move corresponding to I. The immersed chart
U(1,2) has the partition of the 5-gon into one 4-gon (5, 4, 3, 2) and 3-gon
(1, 2, 5).

The following lemma characterizes immersed charts that cover the
Rietsch’s mirror of Gr(2,Cn).

Lemma 5.6. Let (X̌,WRie) be the Rietsch’s mirror of X = Gr(2,Cn).
The mirror space is covered by the set of immersed charts {UI : I ∈
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Figure 12. Immersed charts and cluster chats of X̌ for Gr(2,C5).

I max
n } where I max

n is given as in Section 4.3. Namely, X̌ = Gr(2,Cn)\D
is contained in ⋃

I∈I max
n

(
X̌ ∩ UI

)
.

Proof. Assume that both pi,n and pi+1,n vanish. Due to the Plücker
relation

pi,i+1 · pi+2,n − pi,i+2 · pi+1,n + pi,n · pi+1,i+2 = 0,

pi,n = pi+1,n = 0 forces pi+2,n = 0. Proceeding inductively, we get
pn−1,n = 0. Thus, any point satisfying pi,n = pi+1,n = 0 lies in D .

For any subset J of Pn, set

UJ :=
{

[pi,n] ∈ X̌ : pn−i−1,n 6= 0 for i with (i, i+ 1) /∈ J
}
.

If J contains both (i, i + 1) and (i + 1, i + 2), the above observation
yields

(5.5) UJ ⊂ UJ\{(i,i+1)} ∪ UJ\{(i+1,i+2)}.

Also, observe that

(5.6) I ⊂ I ′ ⇒ UI′ ⊂ UI .

Combining (5.5) and (5.6), we establish

X̌ =
⋃
I⊂Pn

(X̌ ∩ UI) =
⋃
I∈In

(X̌ ∩ UI) =
⋃

I∈I max
n

(X̌ ∩ UI).

This completes the proof. q.e.d.

We next discuss how to adorn the superpotential on the immersed
chart UI . The reference chart U∅ consists of the frozen variables and
the set {p2,n, p3,n, · · · , pn−2,n} of cluster variables. By using the Plücker
relation (4.3), WRie restricted on U∅ can be written in terms of the above
set of variables. It agrees with WT in (4.16) up to a suitable coordinate
change.
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As observed in [MR20, Proposition 6.10], the LG model (U∅,WRie|U∅)
can be identified with the model in [EHX97, BCFKvS00, NNU10].

In other words, the LG mirror
(
(C×)n(n−2),WT

)
in (4.16) provides

one cluster chart of
(
X̌,WRie

)
. More specifically, under the coordinate

change

(5.7) z1,j 7→
pn−j−1,n−j
pn−j,n

, z2,j 7→
pn−j−1,n

pn−1,n
,

the algebraic torus (C×)n(n−2) embeds into X̌, and WRie restricted to
this embedded torus matches WT .

Consider the immersed chart UI for I ∈ In. Suppose that I =
{(i1, i1 + 1), · · · , (ir, ir + 1)}. Then the superpotential on UI is uniquely
determined by clearing the variables pn−1−is,n (s = 1, · · · , r) in the de-
nominator of each Laurent monomial (containing pn−1−is,n) in WRie|U∅
by the relation
(5.8)
(is, is+1, is+2, n) : pis,is+1 ·pis+2,n−pis,is+2 ·pis+1,n+pis,n ·pis+1,is+2 = 0.

Once we do not have any pn−1−is,n in any denominators of monomials,
the expression extends to UI .

Remark 5.7. To write down cluster transformations and cluster
charts explicitly, one needs to assign the dual Plücker variable pi,j to the
edge (i, j) of a triangulation of the n-gon. By connecting the barycen-
ters of the edges that forms each triangle and giving an orientation,
the quiver can be associated to a triangulation. Then quiver mutations
give rise to cluster transformations, see [FWZ] for instance. We will
not recall the process because we are mainly concerned with the specific
types of immersed charts in Lemma 5.6.

Example 5.8. ConsiderOλ ' Gr(2,C6) where λ = (4, 4,−2,−2,−2,−2).
In this case, the superpotential function associated with ∅ is given by

W∅([pi,j ]) = q
p26

p12
+
p12p36

p26p23
+
p16

p26
+
p23p46

p36p34
+
p26

p36
+
p34p56

p46p45
+
p36

p46

+
p12p56

p26p16
+
p23p56

p36p26
+
p34p56

p46p36
+
p45

p46
+
p46

p56
,

which is the potential function of T (after setting q = T 6). As examples,
consider I := {(2, 3)} and I ′ := {(1, 2), (3, 4)} (see Figure 10). The
superpotential functions restricted on the immersed charts UI and UI′
are respectively

WI = q
p26

p12
+
p12p36

p26p23
+
p16

p26
+
p24

p34
+
p34p56

p46p45

+
p36

p46
+
p12p56

p26p16
+
p24p56

p26p46
+
p45

p46
+
p46

p56
.

(5.9)
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and

(5.10) WI′ = q
p26

p12
+
p13

p23
+
p23p46

p36p34
+
p26

p36
+
p35

p45
+
p13p56

p16p36
+
p35

p36
+
p46

p56
.

Two LG models (UI ,WI) and (UI′ ,WI′) cover
(
X̌,WRie

)
. In Section 7,

they will be realized as Maurer–Cartan deformation spaces of immersed
Lagrangians.

Remark 5.9. In order to deal with a convergence issue ofA∞-operations,
we need to work over Novikov rings in Lagrangian Floer theory. Pre-
cisely speaking, our first goal is to construct the Rietsch’s mirror over
the Novikov rings using Floer theory. To match up two mirrors, we let
the formal variable T • in (4.10) play a role of the Kähler parameter q
in (5.3).

6. Complete SYZ mirror of Gr(2,C4)

The aim of this section is to construct an immersed Lagrangian in the
model T ∗S3 and T ∗U(2) as building blocks for a completion of mirrors
of partial flag varieties. We analyze the quasi-isomorphisms between the
immersed Lagrangian and Lagrangian tori therein. As an example of
the completion process, the Grassmannian Gr(2,C4) will be studied in
details. The glued mirror via quasi-isomorphisms recovers the Rietsch’s
mirror.

6.1. Construction of immersed Lagrangian in T ∗S3 and T ∗U(2).
As in (4.3), the Grassmannian Gr(2,C4) embeds into CP 5 as a hyper-
surface defined by

(6.1) Z12Z34 − Z13Z24 + Z14Z23 = 0.

The toric degeneration in (4.5) is then a family of hypersurfaces

(6.2) Xε := {[Zij ] ∈ CP 5 : ε · Z12Z34 − Z13Z24 + Z14Z23 = 0}.
By passing it to the affine chart given by {Z12 6= 0}, (6.2) can be

written as

(6.3) ε · Z34

Z12
− Z13

Z12
· Z24

Z12
+
Z14

Z12
· Z23

Z12
= 0.

We then take a symplectic reduction of the open set Z12 · Z34 6= 0 of
Gr(2,C4) by the S1-action θ4 in (4.11). The reduced space is identified
with a smoothing of a conifold, which is given by

(6.4) ε−X1 · Y1 +X2 · Y2 = 0

where X1 = Z13/Z12, Y1 = Z24/Z34, X2 = Z14/Z34, and Y2 = Z23/Z12.
The equation (6.4) is diffeomorphic to the cotangent bundle of S3. Re-
garding (6.4) as the intersection{

Z = X1 · Y1 + ε,

Z = X2 · Y2,
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the Z-projection defines a double conic fibration. It carries the Hamil-
tonian T2-action by

((η1, η2) , (X1, Y1, X2, Y2)) 7→
(
e−
√
−1η1X1, e

√
−1η1Y1, e

−
√
−1η2X2, e

√
−1η2Y2

)
.

For i = 0, 1, and 2, by taking T2-orbits over γi as depicted in Figure 13,
we produce two Lagrangian tori and one immersed Lagrangian. The
immersed Lagrangian can be employed to (partially) compactify a mir-
ror of a Lagrangian torus in T ∗S3 that degenerates into a toric fiber of
the conifold.

Figure 13. Simple closed curves γ0, γ1, and γ2 for
L0,L1, and L2 on the complex plane CZ .

Remark 6.1. By following the process, (after the reduction) one
obtains a Lagrangian fibration on a smoothing of the conifold. It is an
example of a Lagrangian fibration constructed by Gross [Gro01] via
Minkowski decomposition.

There are many works related to this fibration. Chan–Pomerleano–
Ueda [CPU16] studied mirror symmetry of the conifold using this fi-
bration. The third named author studied SYZ via Minkowski decompo-
sitions [Lau14] and mirror symmetry of an orbifolded conifold jointly
with Kanazawa [KL19]. The first named and the third named authors
with Fan and Yau in [FHLY18] studied the mirror geometry of the
Atiyah flop with help of this model. The second named author with
Cho and Oh [CKO21] studied non-displaceable Lagrangians in this
model.

In order to take the reduced C×-factor into consideration, we define
the map

Xε\{Z12 · Z34 = 0} →{
(Z0, X1, Y1, X2, Y2) ∈ (C×)× C4 : ε−X1 · Y1 +X2 · Y2 = 0

}(6.5)

given by [Zij ] 7→ (Z34/Z12, Z13/Z12, Z24/Z34, Z14/Z34, Z23/Z12). It is
diffeomorphic to T ∗U(2). The projection Z = X2Y2 carries the fiber-
wise Hamiltonian T3-action generated by θ1 ◦ θ4, θ2 ◦ θ4, and θ4 where
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θ•’s are in (4.11). Let us take the moment map of the action given as

(6.6) (Φ1,1 − Φ2,2,Φ1,2 + Φ2,1 − Φ1,1 − Φ2,2,−Φ2,2).

On the other hand, the projection to the Z-coordinate gives a sym-
plectic fibration. For i = 0, 1, and 2, by parallel transporting T3-orbits
over γi in Figure 13, we obtain two Lagrangian tori and one immersed
Lagrangian.

We require our curves γi’s to satisfy the condition that holomorphic
sections over the regions bounded by γ0, γ1, and γ2 have area 1. In
addition to the condition, we collect the following specific orbits :

1) The orbits of the S1-action θ1 ◦ θ4 are at the level of µθ1 + µθ4 =
Φ1,1 − Φ2,2 = 0,

2) The orbits of the S1-action θ2 ◦ θ4 are at the level of µθ2 + µθ4 =
(Φ1,2 + Φ2,1)− Φ1,1 − Φ2,2 = 0,

3) The orbits of the S1-action θ4 are at the level of µθ4 = −Φ2,2 = 0.

As in Section 3, those conditions enable us to construct quasi-isomorphisms
among constructed Lagrangians later on.

Let us denote by Li the Lagrangian consisting of such orbits over γi.
Then L1 and L2 are monotone Lagrangian tori because c1(TGr(2,C4)) =
[ω], which follows from our choice of λ in (4.4). Observe that L0 is
an immersed Lagrangian intersecting with the non-toric monotone La-
grangian S3 × S1 over [−ε, 0] and the monotone Lagrangians L1 and
L2 as well. The immersed Lagrangian L0 will play a crucial role in
constructing the complete mirror in Section 6.4.

Figure 14. Construction of Lagrangians Lγ

Remark 6.2. There is a one-parameter family of Lagrangian sub-
manifolds diffeomorphic to S3 × S1 over the line segment [−ε, 0], as the
union of two vanishing cycles produces S3, and a choice of S1-orbit gen-
erated by θ4 provides the S1-factor, see Figure 14. The family can be
regarded as the counterpart of the GC fibers ' S3 × S1 over the edge g
in Example 4.3.
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Remark 6.3. We take the symplectic reduction of Gr(2,C4)\{Z12 ·
Z23 ·Z34 ·Z14 = 0} with respect to the T3-action generated by (6.6). Re-
garding the C-plane in Figure 14 as the one-dimensional reduced space,
the Lagrangian Li can be alternatively constructed by collecting the T3-
orbit over a Lagrangian γi in the reduced space. As being Lagrangian
is a closed condition, L0 is an immersed Lagrangian even though γ0

passes through −ε where the S1-orbit of θ2 ◦ θ4 degenerates at the zero
level.

6.2. Local mirrors of the Lagrangians L0,L1, and L2. To equip
our Lagrangians with a grading, we take the meromorphic volume form

(6.7) Ω := d log

(
Z23

Z12

)
∧ d log

(
Z34

Z13

)
∧ d log

(
Z13

Z12

)
∧ d log

(
Z14

Z12

)
on (6.3), which is a holomorphic volume form on the complement of the
anti-canonical divisor D = {Z12 · Z23 · Z34 · Z14 = 0}.

We trivialize the complement by the map
(6.8)

Xε\D →
(
C2\{A1A2 = ε}

)
× (C×)2, [Zij ] 7→

(
Z13

Z12
,
Z24

Z34
,
Z34

Z12
,
Z14

Z34

)
.

Equip
(
C2\{A1A2 = ε}

)
× (C×)2 with the symplectic form inherited

from Xε\D via the map (6.8). Consider the T3-action

((η1, η2, η3), (A1, A2, A3, A4)) 7→
(
e−
√
−1η1A1, e

√
−1η1A2, e

√
−1η2A3, e

√
−1η3A4

)
on
(
C2\{A1A2 = ε}

)
× (C×)2. The map (6.8) is T3-equivariant (θ2 ◦

θ4, θ4, θ1 ◦ θ4) 7→ (η1, η2, η3). Under the identification, the Lagrangian
Li can be regarded as the product of Li ⊂ C2\{ab = ε} in Section 3
and T2-orbits generated by η2 = θ4 and η3 = θ1 ◦ θ4. Moreover, the
meromorphic volume form Ω in (6.7) is expressed as

(6.9) Ω =
dA1 ∧ dA2

(A1A2 − ε)
∧ d logA3 ∧ d logA4

(up to a nonzero scalar). Then it is obvious that

Lemma 6.4. The Lagrangians Li for i = 0, 1, 2 are graded with
respect to the above volume form.

The above lemma is useful to find the Maslov index of holomorphic
disks bounded by Li.

We equip the torus factor T2 ⊂ (C×)2 with flat connections ∇z,w
where z, w ∈ ΛU are the holonomies along two orbits generated by
θ1,−θ4 respectively. The immersed generators U and V in L0 ⊂ C2\{ab =
ε} induce the degree one generators in L0 together with unit classes in
the other factors. By abuse of notation, they will be still denoted by
U and V . Holonomy variables xi and yi (i = 1, 2) are analogous to



44 HANSOL HONG, YOOSIK KIM & SIU-CHEONG LAU

the same variables appearing in Section 3. We then have the formally
deformed Lagrangians :

1) (Li, bLi
:= ∇xi,yi,zi,wi) for i = 1, 2,

2) (L0, bL0 := (uU + vV,∇z0,w0))

and, from the discussion in Section 3, we see that their deformation
spaces are given by

(6.10)

{
Ui ' (ΛU)4 for i = 1, 2,

U0 ' (Λ0 × Λ+) ∪ (Λ+ × Λ0)× (ΛU)2.

Note that the monotone GC Lagrangian torus fiber in (4.12) is θ2 ◦
θ4, θ4, θ1◦θ4 invariant. Thus, it is fully contained in the level set of (6.6).
Taking the reduction of

(
C2\{ab = ε}

)
× (C×)2 with respect to η1, η2,

and η3, we see that the fiber is located over a simple closed curve on the
reduced space, equivalently on the base of the projection. A Lagrangian
isotopy on the base preserving the enclosed area leads to a Hamiltonian
isotopy between the GC fiber and L2.

Through the toric degeneration (6.2), L2 degenerates into a La-
grangian torus, which is Hamiltonian isotopic to the toric fiber over
the barycenter of the GC polytope. Since the polytope is reflexive and
the toric variety admits a small resolution, Theorem 4.10 yields
(6.11)(
U2 := (ΛU)4,WL2

)
WL2(z) =

1

z1,2
+
z1,2

z1,1
+
z1,2

z2,2
+
z1,1

z2,1
+
z2,2

z2,1
+ z2,1.

Since a disk of Maslov index zero is bounded by the S1-orbit generated
by µθ2 +µθ4 = (Φ1,2 + Φ2,1 − Φ1,1)−Φ2,2 at Z = −ε, its boundary class
corresponds to the monomial z1,2 z2,1/z1,1 z2,2. Among four holomorphic
disks of Maslov index two over the region bounded by γ, let us choose the
disk which degenerates into the one with the boundary class z2,2/z2,1.
Recall that the other factors are generated by θ1 and −θ4 in (4.11) and
their moment maps are respectively written by Φ1,1 and Φ2,2. Therefore,
we have the following identification

(6.12) x2 =
z1,2 z2,1

z1,1 z2,2
, y2 =

z2,2

z2,1
, z2 = z1,1, and w2 = z2,2

where x2, y2 are analogous to the same variables appearing in Section
3, and the other two correspond to holonomies in the additional circle
factors.

The remaining part of this section will be devoted to verifying that the
deformations are weakly unobstructed, and to computing the coordinate
changes and the potential functions.

Theorem 6.5. In Gr(2,C4), the potential functions of L0,L1, and
L2 are
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•
(
U0 = (Λ0 × Λ+) ∪ (Λ+ × Λ0)× (ΛU)2,WL0

)
where

(6.13) WL0(u, v, z0, w0) =
v

(uv − 1)z0
+ u+

uz0

w0
+ vw0.

•
(
U1 = (ΛU)4,WL1

)
where

(6.14) WL1(x1, y1, z1, w1) =
1

x1y1z1
+

1

y1z1
+ y1 +

y1z1

w1
+
x1w1

y1
+
w1

y1

•
(
U2 = (ΛU)4,WL2

)
where

(6.15) WL2(x2, y2, z2, w2) =
1

x2y2z2
+ y2 +x2y2 +

x2y2z2

w2
+
y2z2

w2
+
w2

y2
.

In particular, they glue to form a partially compactified mirror of(
U2 = (ΛU)4,WL2

)
.

Remark 6.6. Note that WL0 is a rational function. It should be
viewed as an analytic continuation of its Taylor expansion, each of whose
term genuinely counts holomorphic disks. See Section 6.3 for more de-
tails.

Remark 6.7. To match up Rietsch’s mirror in Section 6.4, we need
to adjust the valuations of coordinates so that the first term of (6.13)
and (6.15) and the first two terms of (6.14) are multiplied by T 4. For
instance, the appropriate adjustment is

x2 7→ x2, y2 7→ T−1y2, z2 7→ T−2z2, w2 7→ T−2w2.

Corollary 6.8. The disk potential (6.13) of the immersed Lagrangian
L0 in Gr(2,C4) has a critical point, and hence L0 has non-trivial Floer
cohomology. In particular L0 is non-displaceable.

We begin by showing that all deformations are unobstructed.

Lemma 6.9. In the product (C2\{ab = ε})×(C×)2, for any xi, yi, zi, wi ∈
ΛU and u, v ∈ (Λ0 × Λ+)∪(Λ+ × Λ0) the deformed Lagrangians (Li, bLi

)
for i = 0, 1, 2 are unobstructed.

Proof. Since each Li does not bound any non-constant holomorphic
disks, (L1, bL1) and (L2, bL2) are unobstructed. It remains to check
that the Lagrangian (L0, bL0) is unobstructed. Because each bL0 is of
degree one, by the dimension reason, the only possible output of the

obstruction m
(L0,bL0

)

0 is of degree two, and hence must be of the form

m
(L0,bL0

)

0 (αL0
0 ⊗ α

T2

0 ) = n(2,0) ·
(
βL0

2 ⊗ α
T2

0

)
for some n(2,0) ∈ Λ+. It follows that n(2,0) = 0 because such con-
tributions cancel pairwise by Lemma 3.3. Thus, the pair (L0, bL0) is
unobstructed. q.e.d.

Here is a higher-dimensional analogue of Theorem 3.7.
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Lemma 6.10. In the product (C2\{ab = ε})×(C×)2, there are quasi-
isomorphisms among (Li, bLi

) for i = 0, 1, 2 given as follows :

• (L1, bL1) ∼= (L0, bL0) if and only if

(6.16) x1 = uv − 1, y1 = u, z1 = z0, and w1 = w0

where u, y ∈ ΛU, v ∈ Λ+, and x1 ∈ −1 + Λ+.
• (L0, bL0) ∼= (L2, bL2) if and only if

(6.17) uv − 1 = x2, v
−1 = y2, z0 = z2, and w0 = w2

where v, y2 ∈ ΛU, u ∈ Λ+, and x2 ∈ −1 + Λ+.
• (L1, bL1) ∼= (L2, bL2) if and only if

(6.18) x1 = x2, y1 = y2(x2 + 1), z1 = z2, and w1 = w2

where yi ∈ ΛU and xi ∈ ΛU\(−1 + Λ+).

Proof. By Theorem 3.7, the pair (α
Li,Lj
0 , β

Lj ,Li
0 := β

Li,Lj
2 ) of mor-

phisms provides quasi-isomorphisms between (Li, bLi) and (Lj , bLj ) for
each (i, j) = (1, 2), (1, 0), and (0, 2) under suitable relations among bL• .

We also have quasi-isomorphisms (α
Ti,Tj
0 , β

Tj ,Ti
0 ) between (Ti, bTi) and

(Tj , bTj ) where α
Ti,Tj
0 is the maximum point, and β

Tj ,Ti
0 = β

Ti,Tj
2 is the

minimum point (of a certain Morse function on the cleanly intersected
torus T2).

We claim that αL1,L0
0 ⊗ αT1,T0

0 ∈ CF(L1,L0) is a quasi-isomorphism
if and only if the bounding cochains are related by the coordinate
change (6.16). Because of the maximum principle, we may analyze
Floer differentials and Floer products on each summand of the prod-
uct C2\{ab = ε} and (C×)2 separately. Specifically, the output of

mbL
1 (αL1,L0

0 ⊗ αT1,T0
0 ) has degree one and is of the form

mbL
1 (αL1,L0

0 ⊗ αT1,T0
0 ) = mbL

1 (αL1,L0
0 )⊗ αT1,T0

0 ± αL1,L0
0 ⊗mbT

1 (αT1,T0
0 )

where b• is meant to be a sequence of bounding cochains for •. Because
of the area condition on holomorphic sections over the regions bounded
by γ0 and γ1, we then have

• mbL
1 (αL1,L0

0 ) = 0 if and only if x1 = uv − 1 and y1 = u

• mbT
1 (αT1,T0

0 ) = 0 if and only if z1 = z0 and w1 = w0.

The first one follows from Theorem 3.7.
Also,

mbL
2 (αL1,L0

0 ⊗αT1,T0
0 , βL0,L1

0 ⊗βT0,T1
0 ) = mbL

2 (αLi,L0
0 , βL0,Li

0 )⊗mbT
2 (αT1,T0

0 , βT0,T1
0 )

where βL0,L1
0 := βL1,L0

2 and βT0,T1
0 := βT1,T0

2 . Again by Theorem 3.7, we
then have

• mbL
2 (αL1,L0

0 , βL0,L1
0 ) = αL1

0 ,

• mbT
2 (αT1,T0

0 , βT0,T1
0 ) = αT1

0
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where α•0 is the critical point of degree zero. In sum, the condition for

αL1,L0
0 ⊗ αT1,T0

0 being a quasi-isomorphism is equivalent to (6.16). The
others (6.17) and (6.18) can be similarly shown. q.e.d.

From now on, by abuse of notation, Li is regarded as a Lagrangian
in Gr(2,C4).

Lemma 6.11. For each i = 0, 1, 2, the pair (Li, bLi
) are weakly

unobstructed in Gr(2,C4).

Proof. All stable disks are of Maslov index greater or equal to two
because any non-constant disk intersects the anti-canonical divisor D
and Gr(2,C4) is Fano. Since b is a combination of degree one elements,

disks of Maslov index two can only contribute to m
bL•
0 by the dimension

reason, and hence the output must have degree zero. As we have chosen
perfect Morse functions on the Lagrangians, we have a unique degree
zero element αL•

0 in the Morse model, which is indeed the unit of the

A∞-algebra on L•. Hence m
bL•
0 is proportional to the unit. q.e.d.

Proposition 6.12. Regarding Li’s as Lagrangians in Gr(2,C4), the
statements on quasi-isomorphisms in Lemma 6.10 still hold.

Proof. Any ambient disks of Maslov index greater than or equal

to two contribute to neither mbL
1 (α

Li,Lj
0 ⊗ α

Ti,Tj
0 ) nor mbL

2 (α
Li,Lj
0 ⊗

α
Ti,Tj
0 , β

Lj ,Li
0 ⊗ βTj ,Ti0 ), since the inputs have degree zero. The condi-

tions for quasi-isomorphisms remain same after the compactification.
q.e.d.

Now, we are ready to prove Theorem 6.5.

Proof of Theorem 6.5. In (6.11) and (6.12), we have obtained the mirror
(U2,WL2) of L2. We can compute the LG mirrors associated to L1

and L0 from the formula of WL2 for L2 with help of Lemma 6.11 and
Proposition 6.12 as follows. By the A∞-relation,

(mbL
1 ◦mbL

1 )(αL2,L0
0 ) = mbL

2 (αL2,L0
0 ,mbL

0 (1))−mbL
2 (mbL

0 (1), αL2,L0
0 )

= (WL0(bL0)−WL2(bL2)) · αL2,L0
0

where αL2,L0
0 := αL2,L0

0 ⊗ αT2,T0
0 . Therefore, on open dense subsets of

the domains of WL0 and WL2 , two potential functions agree

WL2(bL2) = WL0(bL0),

provided that the coordinate change between bL2 and bL0 is in (6.17).
By applying the coordinate change (6.17), the expression (6.13) is de-
rived. Since it coincides with the potential function WL0 on an open
dense subset, and the potential is analytic, it gives the potential function
globally on U0. Similarly, we can compute WL1 . q.e.d.
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Remark 6.13. The above argument works in general, and proves that
disk potentials for two Lagrangians (with Maurer–Cartan deformations)
agree (i.e. WL0(bL0) = WL1(bL1)), if there is a non-zero Floer coho-
mology class in HF((L0, bL0), (L1, bL1)). Similar argument appeared in
[PT20].

6.3. Interpretations. The disk potential WL0 for our immersed La-
grangian L0 in Gr(2,C4) is a polynomial in u, v, (uv − 1)−1, which in
turn is an infinite series in u, v. They are contributed from pearl tra-
jectories as shown in the top of Figure 15. Since constant disk bubbles
can pass through the immersed generators u, v arbitrarily many times
without affecting the Maslov index (and hence the moduli dimension),
arbitrarily high powers of u, v appear in W . (We only depict the factor
of the immersed sphere, since the other torus factor has trivial effect on
wall-crossing.)

Figure 15. An example of a pearl trajectory bounded
by the immersed Lagrangian sphere passing through a
generic marked point (which is the maximum point of a
generic Morse function). Constant disk bubbles can be
attached to a Maslov-two disk D via Morse flow lines,
if ∂D hits a flow line from (preimages of) the immersed
point to the minimum point of the Morse function.

In Equation (6.13), the Maslov-two disks u, uz0w
−1
0 , vw0 do not in-

teract with constant disk bubbles and hence do not involve the factor
(uv − 1)−1, while the Maslov-two disk vw0 admits disk bubbling with
constant disks.

To explain this, consider the bottom of Figure 15, where a normal-
ization of the immersed sphere is drawn (which is a sphere with two
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marked points q+, q−, or simply a cylinder). Denote by q+q− the arc
joining q+, q− formed from the union of the two flow line from q+ or q−
to the minimum point of the Morse function.

A Maslov-two disk D (passing through the maximum point of a
generic perfect Morse function on the sphere) admits disk bubbling only
if its boundary intersects with q+q−. This condition corresponds to that
the Maslov-two disk bounded by a torus fiber has its boundary winding
around the vanishing circle (degenerating to the immersed point). This
explains why the disk vz−1

0 w−1
0 admits disk bubbling while the others

do not.

Remark 6.14. The contributions from constant disk bubbles are very
hard to compute directly from analysis of Kuranishi structures. On the
other hand, using the disk potential of a smooth torus fiber and the
quasi-isomorphism with the immersed fiber, we obtain the disk potential
and conclude that the constant disk bubbles at the immersed point
contribute to each disk term by multiplication of (uv − 1)−k, where
k is the signed intersection number of the Maslov-two disk boundary
with the arc q+q−. This computation works for the disk potential of an
immersed sphere (or its product with a torus) in general.

Remark 6.15. In [DRET], they define the Floer theory of the im-
mersed sphere using the generators u, v, t with the relation uv = 1 + t.
They prove that the disk potential W is an invariant of the immersed
sphere.

Here we use a perfect Morse function and adopt the formulation of
[FOOO09a, AJ10, CHL17, CHL21, HL18]. The chosen perfect
Morse function provides a minimal model which is unique up to A∞
isomorphisms. The t-power in the formulation of [DRET] corresponds
to the (signed) intersection number explained above.

Remark 6.16. Note that the expression of W in (u, v) depends on the
choice of the Morse function. Namely, we can pull back the function by
a self-diffeomorphism of the cylinder which rotates one end by 2kπ (and
keeps the other end fixed). Then W would change by (u, v) 7→ ((uv −
1)ku, (uv − 1)−kv), since the intersection number of a disk boundary
with the arc q+q− changes by k.

Thus W should be understood as a function on

M :=

(∐
i

(
Λ2

+

)
(i)

)/
〈(u(i), v(i)) ∼ ((uv−1)j−iu(j), (uv−1)i−jv(j))〉 ∼= Λ2

+.

This gives a more coordinate-free description of the weak Maurer–Cartan
deformation space of the immersed sphere. Dimitroglou–Ekholm–Tonkonog
[DRET] makes sense of this space in terms of a certain path space be-
tween q+ and q− called the string topology algebra.
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6.4. Identification with the Rietsch’s mirror of Gr(2,C4). In this
section, we show that the glued mirror from Maurer–Cartan deforma-
tions of L0,L1, and L2 in the previous subsection gives the full Ri-
estch’s mirror of Gr(2,C4).

As in Example 5.3. recall that the Lie-theoretic mirror in [Rie08,
MR20] is the affine variety given by X̌ := Gr(2,C4)\D where D :=
{p12 · p23 · p34 · p14 = 0} is an anti-canonical divisor together with the
superpotential WRie in (5.3).

It has a cluster algebra structure with the frozen variables {p12, p23, p34, p14}
and the cluster variables {p13, p24}. We consider two cluster charts for
X̌ as follows:

(6.19)

{
U1 = {[pij ] ∈ X̌ : p13 6= 0}
U2 = {[pij ] ∈ X̌ : p24 6= 0}.

Restrict to each chart Ui and using p13p24 = p12p34 + p14p23, (5.3) can
be expressed as a Laurent polynomial in terms of the frozen variables
p12, p23, p34, p14 and one cluster variable. Explicitly, they are given as
(6.20)
W1 := WRie

∣∣
U1 : U1 → C, W1 = q

p34

p13
+ q

p14p23

p12p13
+
p13

p23
+
p12

p13
+
p14p23

p34p13
+
p13

p14

W2 := WRie

∣∣
U2 : U2 → C, W2 = q

p24

p12
+
p12 p34

p23 p24
+
p14

p24
+
p24

p34
+
p12 p34

p14 p24
+
p23

p24
.

In this case, the immersed chart is the pair (U{(1,2)},WRie). Set U0 :=
U{(1,2)} for simplicity.

The Laurent polynomial in (6.20) only has four critical points, while
the rank of the quantum cohomology ring of Gr(2,C4) is six. On the
contrary, the key feature of the LG model (X̌,WRie) in (5.3) is that its
Jacobian ring has rank six, and is isomorphic to the quantum cohomol-
ogy ring.

Lemma 6.17. The superpotential (5.3) has six critical points : Let
ξ be the 4-th root of unity.

1) For j = 0, 1, 2, 3,

p12 = q, p13 =
√

2 ξ−jq
3
4 , p14 = p23 = ξ−2jq

1
2 , p24 =

√
2 ξjq

1
4 , p34 = 1.

The critical values are respectively 4
√

2 ξj q
1
4 .

2) For j = 0, 1,

p13 = 0, p24 = 0, p14 =
√
−1 ξ2jq

1
2 , p23 = −

√
−1 ξ2jq

1
2 , p34 = 1, p12 = −q.

The critical values are 0.

Keeping the cluster structure of LG models on X̌ in mind, we now
explain how to recover Rietsch’s mirror using Floer theory. The main
theorem of this section is the following.
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Theorem 6.18. The Rietsch’s mirror (X̌,WRie) of the Grassman-
nian X = Gr(2,C4) is isomorphic to the LG model glued from Maurer–
Cartan deformation spaces of the monotone Lagrangian tori L1, L2,
and the immersed Lagrangian L0 via quasi-isomorphisms given in Propo-
sition 6.12.

Proof. We identify the variables corresponding to the orbits generated
by θ1 and −θ4 as follows.

(6.21) z0 = z1 = z2 = z1,1 7→
p23

p34
, w0 = w1 = w2 = z2,2 7→

p14

p34
.

In addition, the identification for the other variables is taken as follows:
(6.22)

x1 = x2 = uv−1 =
z1,2 z2,1

z1,1 z2,2
7→ p12p34

p14p23
, y2 = v−1 =

z2,2

z2,1
7→ p14

p24
, y1 = u 7→ p13

p23
.

Under the coordinate change (6.21) and (6.22), we expressWLi
for i =

1, 2 in terms of pi,j . It is straightforward to see that two superpotentials
coincide if ignoring q. As we have seen in Lemma 6.17, the valuations of
critical points {[pij ] = [sij ]} in Wi’s are not zero. We need to adjust the
valuation of coordinates, see Remark 6.7. Then WL0 coincides with the
mirror superpotential WRie in (5.3) (up to some a constant multiple) as
desired.

Recall that the deformation space U0 for WL0 was restricted to
(u, v) ∈ Λ0 × Λ+ ∪ Λ+ × Λ0 to ensure the convergence. As a conse-
quence, it cannot fully cover X̌. The missing part{

[pij ] ∈ X̌ : p13 ∈ C×, p24 = 0
}
∪
{

[pij ] ∈ X̌ : p13 = 0, p24 ∈ C×
}
,

is covered by U1 and U2. Therefore, the glued mirror from U0,U1, and
U2 covers the entire X̌. q.e.d.

7. Complete SYZ mirror of Gr(2,Cn)

Now we study the Grassmannians of 2-planes in higher dimensions,
and construct their mirrors using similar techniques developed in previ-
ous sections. We complete the local mirror of a smooth Lagrangian torus
of Gr(2,Cn) by gluing in the mirror charts from suitably constructed
immersed Lagrangians. We shall show that the glued LG mirror of
Gr(2,Cn) coincides with the Rietsch’s mirror. The main argument is
in parallel to the one for Gr(2,C4) except some complications mainly
caused by high dimensionality. Another subtlety in constructing La-
grangians lies the choice of symplectic forms on a local model, which we
did not have before in low dimensions (Remark 7.1).

7.1. Construction of immersed Lagrangians. Let X be the Grass-
mannian Gr(2,Cn) of 2-planes. To produce Lagrangians in the comple-
ment of the anti-canonical divisor D := {Z1,2 ·Z2,3 · · ·Zn−1,n ·Z1,n = 0}
in X, we shall focus on the local chart of Gr(2,Cn) around the monotone
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Lagrangian non-torus fiber associated with I ∈ In in Section 4.3. It is
then realized as a product of local charts of Gr(2,C4). Taking a product
of the Lagrangians constructed in Section 6.1, we obtain Lagrangians in
Gr(2,Cn) that are ingredients of our mirror construction.

Remark 7.1. One may try to construct Lagrangians by taking the
reduction of a maximal torus action on Gr(2,Cn) for n > 4 as in Sec-
tion 6.1. However, construction of Lagrangians in the reduced space,
which has complex dimension ≥ 2 and is equipped with a reduced sym-
plectic form, is more difficult.

Details on our construction are in order. The first task is to equip
Gr(2,Cn) with a meromorphic volume form. This is crucial to obtain
the global mirror later. Let us restrict ourselves to the chart (C×)2n−4

given by

(7.1)
n−1∏
j=1

Zj,j+1 ×
n∏
j=3

Z1,j 6= 0.

Consider the holomorphic volume form

(7.2) Ω :=
n−2∧
j=1

(
d log

(
Zj+1,j+2

Z1,j+1

)
∧ d log

(
Z1,j+2

Z1,2

))
on the algebraic torus (C×)2n−4, which extends to a meromorphic vol-
ume form on Gr(2,Cn). The extended form has a simple pole on the
anti-canonical divisor D as observed in [MR20, Lemma 8.5].

For each index I in In, consider the trivialization
(7.3)

Υcpx : Gr(2,Cn)\DI →
∏

(i,i+1)∈I

(C2\{Ai,1Ai,2 = ε}×(C×)2)×(C×)2n−4−4·|I|

defined by

(7.4) [Zr,s] 7→


(
Z1,i+2

Z1,i+1
,
Zi+1,i+3

Zi+2,i+3
,
Zi+2,i+3

Z1,i+1
,
Z1,i+3

Zi+2,i+3
: (i, i+ 1) ∈ I

)(
Zi+1,i+2

Z1,i+1
,
Z1,i+2

Z1,2
: (i, i+ 1), (i− 1, i) /∈ I

)
.

where Gr(2,Cn)\DI is the chart of Gr(2,Cn)\D on which the denomi-
nators in (7.4) and C×-factors do not vanish. Here, (Ai,1, Ai,2, Ai,3, Ai,4)
and (B1,i, B2,i) are the complex coordinates on the target space.

Consider
(7.5)

YI := (Gr(2,C4)\{Z1,2·Z2,3·Z3,4·Z1,4 = 0})|I|×(Gr(1,C2)\{Z0·Z1 = 0})2n−4−4·|I|,

which is diffeomorphic to Υcpx(Gr(2,Cn)\DI) because

Gr(2,C4)\{Z1,2 · Z2,3 · Z3,4 · Z1,4 = 0} ' C2\{Ai,1Ai,2 = ε} × (C×)2.

The local chart YI admits two symplectic forms:
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1) ω(2,n) is denoted by the Kähler form inherited from Gr(2,Cn),
2) ωI is denoted by the product Kähler form.

Since Gr(2,Cn) and Gr(2,C4)|I| × Gr(1,C2)2n−4−4·|I| are locally the

cotangent bundle of (S3)|I| × T2n−4−3·|I|, (YI , ωI) can be embedded
into (YI , ω(2,n)) symplectically (by rescaling symplectic form ωI if nec-
essary). We then extend ωI into one on YI by interpolating the pull-
backed symplectic form and the symplectic form ω2,n equivariantly. The
extended symplectic form on YI is still denoted by ωI by abuse of no-
tation. By applying an equivariant version of the Moser argument, we
obtain a T2n−4−|I|-equivariant endomorphism Υsym on YI such that
Υ∗symω(2,n) = ωI .

Applying the construction in Section 6, we produce Lagrangians in
each local Gr(2,C4)-factor. Specifically, for (i, i + 1) ∈ I, consider the
Hamiltonian T3-action generated by (6.6) on Gr(2,C4). Take the reduc-
tion at the level at the origin in (6.6). As in Figure 13, we then consider
three simple closed curves in the base, say γi,k for k = 0, 1, 2. Collect-
ing the T3-orbits over γi,k produces a Lagrangian in Gr(2,C4). Also,
we take a circle whose center is the origin in each C×-summand. The
product of the Lagrangians and circles gives rise to a Lagrangian L I

k
for k = 0, 1, 2 in (YI , ωI), and hence in (YI , ω(2,n)) via Υsym. By taking
a suitable size of circles, the Lagrangians are chosen to be monotone.

In local coordinates given in (7.4), the volume form (7.2) can be
written as (up to a non-zero scalar multiple) a holomorphic volume
form on YI by
(7.6)

Ω =

 ∧
(i,i+1)∈I

dAi,1 ∧ dAi,2 ∧ dAi,3 ∧ dAi,4
(Ai,1Ai,2 − 1)Ai,3Ai,4

∧
 ∧

(i−1,i),(i,i+1)/∈I

dB1,i ∧ dB2,i

B1,iB2,i

 .

The Lagrangians on (YI , ω(2,n)) constructed above admit Z-gradings
with respect to Ω, which will be used for a local calculation later. Be-
cause the grading is topological, the Z-grading is preserved through the
diffeomorphism Υsym so that it makes sense in (YI , ωI) as well.

Remark 7.2. The identification (7.3) was used to interpolate gener-
alized GC systems in Nohara–Ueda [NU20].

7.2. Local SYZ mirrors of immersed Lagrangians. In this section,
we investigate Floer theoretical relation between the Lagrangians L I

k
for I ∈ In and k = 0, 1, 2 constructed in 7.1.

We first explain a combinatorial algorithm how to read the potential
functions of immersed Lagrangian L I

0 . Let us start from the potential
function WT in (4.16).
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• (Step 1) For each (i, i + 1) ∈ I, get rid of the following six terms
from WT

z1,i+2

z1,i+1
+
z1,i+1

z1,i
+
z2,i+1

z2,i
+
z1,i+1

z2,i+1
+
z1,i

z2,i
+

z2,i

z2,i−1
.

In terms of block combinatorics, those terms correspond to the
edges in the U(2)-block associated with (i, i+ 1), see Figure 16.

Figure 16. Step 1 for the disk potential function of L I
0 .

• (Step 2) For each (i, i+ 1) ∈ I, insert the following four terms to
the output of the first step.

ui + ui
z1,i

z2,i+1
+ vi

z2,i+1

z2,i−1
+

viz1,i+2

(uivi − 1)z1,i
.

We denote by WI the resulting potential function.

Example 7.3. Let us revisit Example 4.7 and Figure 10. By applying
the above algorithm, W(2,3) and W(1,2),(3,4) can be written as follows.

W(2,3) = u2+u2
z12

z23
+v2

z23

z21
+

v2z14

(u2v2 − 1)z12
+
T 6

z14
+
z14

z24
+
z24

z23
+
z12

z11
+
z11

z21
+

1

z21
,

and

W(1,2),(3,4) = u1+u1
z11

z22
+v1z22+v1

z13

(u1v1 − 1)z11
+u3+u3

z13

z24
+v3

z24

z22
+v3

T 6

(u3v3 − 1)z13
.

The main theorem of this section states as follows:

Theorem 7.4. The superpotential WI is a Floer theoretical disk po-
tential of the immersed Lagrangian L I

0 .

Fix I ∈ In. We first compute quasi-isomorphisms between the ob-
jects L I

0 ,L
I
1 , and L I

2 . In order to fix coordinates on the formal de-
formation spaces of these Lagrangians, it suffices to equip the carried
Lagrangians with a flat ΛU-bundle in (7.5). For each k = 0, 1, 2 and
(i, i+ 1) ∈ I, a flat ΛU-connection ∇z

2,i+1,k (resp. ∇z
1,i,k) is adorned on

L I
k to realize the holonomy z2,i+1,k (resp. z1,i,k) along the circle-factor

in the plane Ai,3 (resp. Ai,4) with the counter-clockwise orientation.
Similarly, flat ΛU-connections ∇z

1,i,k and ∇z
2,i,k are equipped for the

holonomies z1,i,k and z2,i,k along the circle-factors of B1,i and B2,i with
the counter-clockwise orientation.
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For each summand C2\{Ai,1Ai,2 = ε}, we define flat connections and
holonomy variables (denoted by xi,k and yi,k) as in Section 3.3 that
lead to the formulae in Theorem 3.7. Let Ui and Vi be the products
of immersed generators lying over γi,0 and the unit classes in the other
factors, both of which are of degree one. The corresponding component
of the Maurer–Cartan deformation space is (Λ0 × Λ+) ∪ (Λ+ × Λ0),
whose coordinates are taken to be (ui, vi). We then have the following
boundary-deformed Lagrangians :

1) two Lagrangian tori
(
L I
k , b

I
k := ∇x,y,z

)
for k = 1, 2 whose associ-

ated deformation spaces are U I
k ' (ΛU)2n−4,

2) one immersed LagrangianL I
0 , b

I
0 :=

 ∑
(i,i+1)∈I

uiUi + viVi,∇z


with the deformation space U I

0 ' ((Λ0 × Λ+) ∪ (Λ+ × Λ0))|I| ×
(ΛU)2n−4−2·|I|.

Lemma 7.5. For each fixed I ∈ In, consider a monotone immersed
Lagrangian L I

0 and monotone Lagrangian tori L I
1 ,L

I
2 in a local chart.

Then their deformation spaces are related by quasi-isomorphisms be-
tween (L I

k , b
I
k ) for k = 0, 1, 2 in the following way :

• (L I
1 , b

I
1 ) ∼= (L I

0 , b
I
0 ) if and only if

(7.7)

{
xi,1 = uivi − 1, yi,1 = ui for (i, i+ 1) ∈ I
zi,j,1 = zi,j,0 otherwise.

• (L I
0 , b

I
0 ) ∼= (L I

2 , b
I
2 ) if and only if

(7.8)

{
xi,2 = uivi − 1, yi,2 = v−1

i for (i, i+ 1) ∈ I
zi,j,2 = zi,j,0 otherwise.

• (L I
1 , b

I
1 ) ∼= (L I

2 , b
I
2 ) if and only if

(7.9)

{
xi,2 = xi,1, yi,1 = yi,2(1 + xi,2) for (i, i+ 1) ∈ I
zi,j,2 = zi,j,1 otherwise.

Proof. For a local calculation, we may pass Lagrangians to YI equipped
with the standard complex structure. They are Z-graded with respect
to the holomorphic volume form (7.6). On each local Gr(2,C4) sum-
mand, there is a unique degree zero element of CF(Li,Lj) in Sec-
tion 6.1. We claim that the product of these degree zero elements is
a quasi-isomorphism if the deformation spaces are glued by the rela-
tions (7.7), (7.8), and (7.9). The maximum principle enables us to ana-
lyze holomorphic curves on each piece. Then Lemma 6.10 tells us how
to identify deformation spaces in order to obtain quasi-isomorphisms in
the summand. q.e.d.
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The holonomy variables zi,j,k for k = 0, 1, 2 are glued identically, that
is, zi,j,0 = zi,j,1 = zi,j,2. By abuse of notation, they will be denoted by
zi,j from now on.

Now, we need to find an isomorphism of the two charts U I
2 and U I′

2

associated with the two Lagrangian tori L I
2 and L I′

2 for different I
and I ′. They are all Hamiltonian isotopic to the same monotone T2n−4-
orbit, which limits to the monotone toric fiber under toric degeneration
(See Section 6.2).

Proposition 7.6. For I and I ′ in In, the deformation spaces U I
2

and U I′
2 are related by a quasi-isomorphism between (L I

2 , b
I
2 ) and (L I′

2 , bI
′

2 )
determined by

(7.10) xi,2 =
z1,i+1

z1,i
· z2,i

z2,i+1
, yi,2 =

z2,i+1

z2,i
.

Proof. We focus on the algebraic torus (C×)2n−4 in (7.1). For any

fixed I, let Xε and YI,ε be toric degenerations of Gr(2,Cn) and Gr(2,C4)|I|×
Gr(1,C2)2n−4−4·|I| explained in Section 4.2 respectively. At each ε ∈ C,
the expression (7.4) defines a map Υcpx,ε. We have a symplectomor-
phism Ξε (resp. ΞI,ε) from the algebraic torus in Xε (resp. YI,ε) to
that in X0 (resp. YI,0). We then have the following commutative dia-
gram of T2n−4-equivariant maps (on dense subsets) :

(7.11) (C×)2n−4 (in Xε)

Ξε
��

Υcpx,ε // (C×)2n−4 (in YI,ε)

ΞI,ε
��

(C×)2n−4 (in X0)
Υcpx,0 // (C×)2n−4 (in YI,0)

For each I, recall that the constructed Lagrangian L I
2 is Hamiltonian

isotopic to a T2n−4-orbit in YI,ε. Since Υcpx,ε sends orbits to orbits, the
T2n−4-orbit in YI,ε corresponds to a monotone T2n−4-orbit in Xε. It
degenerates into a monotone toric fiber in X0. Passing them into X0 via
Ξε, we may compare L I

2 and L I′
2 via the monotone toric fiber therein.

Then (6.12) leads to (7.10). q.e.d.

When computing the local mirror of L I
2 , we encounter one issue here,

caused by the fact that we are using the product complex structure on
YI for a local computation for quasi-isomorphisms. So, Gr(2,Cn) is
equipped with an almost complex structure that comes from the pull-
backed complex structure on YI via Υsym. Meanwhile, in order to com-
pute the disk potential function, a specific complex structure associated
with the toric degeneration in (4.3) is necessary. Nevertheless, the po-
tential function is invariant under a generic choice of almost complex
structures since L I

2 is a monotone Lagrangian submanifold. See [EP97]
for the invariance of counting invariants on monotone Lagrangians. Con-
sequently, Theorem 4.10 leads to a local mirror of L I

2 .
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Lemma 7.7. The LG mirror from L I
2 consists of

(7.12)U I
2 := (ΛU)2n−4,WL I2

(z) = z2,1 +
Tn

z1,n−2
+
n−3∑
j=1

(
z1,j+1

z1,j
+
z2,j+1

z2,j

)
+
n−2∑
j=1

z1,j

z2,j


for any I ∈ In.

Remark 7.8. Precisely speaking, in order to apply the quasi-isomorphisms
(7.7), (7.8), (7.9), the adjustment of the valuation is necessary. It is be-
cause the monotone torus fiber is taken as a reference fiber for our local
calculation. First, apply the coordinate changes z1j 7→ T (1+j)z1j and
z2j 7→ T jz2j to (7.12). Then apply the quasi-isomorphisms to get the

other WL I•
’s. Finally, we return back by applying z1j 7→ T−(1+j)z1j and

z2j 7→ T−jz2j .

The gluing relations are computed in the local charts Gr(2,Cn)\DI
of the anti-canonical divisor complement of Gr(2,Cn). They remain
the same in Gr(2,Cn) since holomorphic disks emanated from the anti-
canonical divisor have higher Maslov index which do not contribute to
the relations.

Lemma 7.9. We still have the quasi-isomorphisms in Gr(2,Cn) given
by (7.7), (7.8), (7.9), and (7.10) without modification.

Proof. Recall that all the Lagrangians we use are graded under the
volume form (7.2). The disks contributing to the quasi-isomorphisms
(which have degree zero) must have Chern–Weil Maslov index zero. If a
pair of Lagrangians L1 and L2 constructed above bounds an additional
holomorphic strip after compactifying a local chart to Gr(2,Cn), the
strip lies in the class β + β′ where β is a strip class in the chart, and
β′ is a disk class bounded by L1 or L2 in the ambient Gr(2,Cn). They
have Maslov index zero. But since Li is monotone, any Maslov-zero
holomorphic disk class is simply zero. Thus there is no additional strip,
and the quasi-isomorphisms remain the same. q.e.d.

Then by the compatibility between gluing data and Floer potentials
(from the A∞-relation), one can explicitly derive WL Ik

on the other

mirror charts from the above relations.
With the explicit description of local charts at hand, we now iden-

tify (U I
2 ,WL I2

) and (U I′
2 ,WL I

′
2

) by Proposition 7.6. By using the

relations (7.7), (7.8), and (7.9), local mirror charts together with super-
potentials are glued to obtain a desired partially compactified mirror.

To summarize, we have the following tree of quasi-isomorphisms.
First we have the monotone torus orbit T2n−4. Second we have quasi-
isomorphisms from the tori L I

2 to T2n−4. Third we have the quasi-
isomorphisms from the Lagrangian immersions L I

0 to L I
2 . Finally we
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have the quasi-isomorphisms from the tori L I
1 (on the other sides of

the walls) to L I
0 . Note that the quasi-isomorphisms between L I

1 and

L I′
1 for different I and I ′ are obtained by compositions of the quasi-

isomorphisms in this tree. It completes the proof of Theorem 7.4

7.3. Identification with the Rietsch’s mirrors. Finally, we discuss
the relation between the glued mirror and the Rietsch’s mirror.

Theorem 7.10. The Rietsch’s mirror (X̌,WRie) of the Grassman-
nian X = Gr(2,Cn) is isomorphic to the LG model glued from Maurer–
Cartan deformation spaces of the Lagrangians {L I

j : j = 0, 1, 2, I ∈
I max
n } via quasi-isomorphisms given in Lemma 7.5.

By (5.7), the LG mirror of the monotone GC torus can be embedded
into the Rietsch’s mirror by the following identification:

(7.13) xi,1 = xi,2 = uivi − 1 =
z1,i+1

z1,i
· z2,i

z2,i+1
7→ pn−i−2,n−i−1 · pn−i,n

pn−i−2,n · pn−i−1,n−i
,

(7.14) yi,1 = ui 7→
pn−i−2,n−i
pn−i−1,n−i

, yi,2 =
z2,i+1

z2,i
= v−1

i 7→
pn−i−2,n

pn−i−1,n

together with (5.7) define an embedding of U I
0 ,U

I
1 , and U I

2 into the
glued mirror.

The coordinate changes (7.13) and (7.14) can be read off from a
triangulation of a planar n-gon as follows. Let I ∈ In. Consider
the subdivision of the n-gon associated with the immersed chart UI in
Section 5.2. For each (i, i + 1) ∈ I, consider the 4-gon. There are two
paths of length two starting at n− i− 2 and ending at n− i− 1: one is
via n− i (Figure 17 (a)) and the other is via n (Figure 17 (b)). Those
two paths produces the formulae (7.14), that is,

vi 7→
pn−i−1,n

pn−i−2,n
, ui 7→

pn−i−2,n−i
pn−i−1,n−i

.

Also, the loop around the 4-gon (Figure 17 (c)) produces (7.13).

Figure 17. Combinatorial process reading the coordi-
nate changes (7.13) and (7.14).



IMMERSED TWO-SPHERES, SYZ, AND GRASSMANNIANS 59

Example 7.11. Let recall Example 7.3 for Gr(2,C6). Set I =
{(2, 3)} and I ′ = {(1, 2), (3, 4)}. By Theorem 7.4,

WL I0
= WI , and WL I

′
0

= WI′ .

From Figure 18, the coordinate changes (7.13) and (7.14) can be read off.
Applying the coordinate change, we recover (5.9) and (5.10) respectively.

Figure 18. Immersed charts of X̌ for Gr(2,C6).

Two LG models (U I
0 ,WL I0

) and (U ,WI) in (5.4) are related by (7.13), (7.14),

and (5.7). According to Lemma 5.6, the set {(UI ,WI) : I ∈ I max
n } of

immersed charts is enough to cover X̌. Thus, the glued mirror of the
local mirrors {U I

k : I ∈ I max
n , k = 0, 1, 2} covers the Rietsch’s mirror.

It completes the proof of Theorem 7.10.
We summarize as follows. Take an n-gon, and label its vertices clock-

wisely by 1, . . . , n. Consider the triangulation by adding the edges (i, n)
for i = 2, . . . , n − 2, see Figure 11. This corresponds to the monotone
Lagrangian torus fiber. Denote the triangles with vertices i, i+ 1, n by
∆n−1−i.

We take away some of the edges so that there are only triangles and
quadrilaterals in the decomposition. Each triangle corresponds to T2,
while each quadrilateral corresponds to S2 × T2 (where S2 denotes the
immersed sphere with only one self nodal point). The polygonal decom-
position corresponds to a Lagrangian immersion which is the product
of these T2 and S2×T2. The triangles are denoted as ∆n−1−i as above,
while the quadrilateral which is combined from the triangle ∆j and ∆j+1

is denoted as �j,j+1.
For each triangle ∆j , the corresponding T2-factor has two holonomy

variables (parametrizing its flat connections) denoted by zkj for k = 1, 2.
For each quadrilateral �j,j+1, the corresponding factor S2 × T2 has
immersed variables uj , vj and holonomy variables z1j , z2,j+1.
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The following extracts open Gromov–Witten invariants of immersed
Lagrangians from the Rietsch mirror. Namely, if we write the Rietsch
potential in geometric variables associated with immersed generators
and holonomies, then each term appearing in the expansion is the count
of disks with a topological type indicated by u, v and z. The fractions
in the expressions below can be understood as two-step paths in the
polygons as in (7.13) and (7.14).

Corollary 7.12. Let WRie be the Rietsch superpotential and WL0 the
disk potential for the monotone immersed Lagrangian L0 corresponding
to the above polygonal decomposition. WL0 = T ·WRie|q 7→1 under the
change of coordinates (where pkl is identified as plk for the Plücker co-
ordinates):

z1j =
pn−j−1,n−j
pn−j,n

; z2j =
pn−j−1,n

pn−1,n

uj =
pn−j−2,n−j
pn−j−1,n−j

; vj =
pn−j−1,n

pn−j−2,n
.

8. Complete SYZ mirror of OG(1,C5).

In this section, we construct a mirror of the orthogonal Grassman-
nian OG(1,C5) (see below for its definition) applying our gluing method
developed in Section 3. While the method is not significantly different
from the one in the previous sections, the choice of Lagrangian immer-
sions is a bit tricky since this is a flag variety of type B. It also involves
more work in the reduction procedure. We will see that the resulting
mirror agrees with the Lie-theoretical mirror in [Rie08, PRW16].

8.1. Review of OG(1,C4). The orthogonal Grassmannian OG(1,C4)
is a partial flag manifold parametrizing the isotropic complex subspaces
of one dimension in C4 equipped with a non-degenerate symmetric bilin-
ear form. As an algebraic variety, by choosing a suitable non-degenerate
symmetric bilinear form, OG(1,C4) is a quadric hypersurface

Q2 =
{

[Z0 : Z1 : Z2 : Z3] ∈ CP3 : Z0Z1 + Z2
2 = Z2

3

}
.

It has the toric degeneration π : X → C where X =
⋃
ε∈CXε and

Xε :=
{

[Z0 : Z1 : Z2 : Z3] ∈ CP3 : Z0Z1 + Z2
2 = ε2Z2

3

}
.

A generic fiber Xε (ε 6= 0) is isomorphic to CP 1 × CP 1.
Passing Xε to Z3 6= 0, we generically have the smoothing of A1-

singularity

X aff
ε := {(X0, X1, X2) ∈ C3 : X0X1 +X2

2 = ε2},
which degenerate into the A1-singularity when ε = 0. The central fiber
X aff

0 is a (singular) toric variety, whose moment polytope is defined by

(8.1) u1,2 − u1,1 ≥ 0, u1,2 + u1,1 ≥ 0.
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The smoothing comes with the projection Π2 : Yaff
ε → C to the X2-

component, which defines a conic fibration having two singular fibers
located at X2 = ±ε. Moreover, the fibration admits a fiberwise S1-
action given by

(8.2) S1 × Yaff
ε → Yaff

ε , (θ, (X0, X1, X2)) 7→ (e−iθX0, e
iθX1, X2).

By collecting the orbits satisfying |X0| = |X1| over a simple closed curve
γ in the base C, we obtain a Lagrangian torus (or a pinched torus)
Tγ . Also, there is a Lagrangian sphere S2 over the line segment [−ε, ε]
obtained as a matching cycle.

Take three simple closed curves :

• γ0 passes through ±ε,
• γ1 contains ±ε in its exterior,
• γ2 contains ±ε in its interior,

as in Figure 19 (a). They intersect cleanly with each other along disjoint
circles.

Observe that Tγ1 bounds a unique holomorphic disk of Maslov index
two, a holomorphic section over the region bounded by γ1. Thus the
potential function of Tγ1 is a Laurent monomial. Since a Lagrangian
torus goes through two parallel walls under a Lagrangian isotopy from
Tγ1 to Tγ2 , one can compute the potential function of Tγ2 by the wall-
crossing.

Theorem 8.1 ([Aur09, FOOO12, Lau14] ). The potential function
of Tγ2 in the smoothing of A1-singularity is given by

WTγ2 (y) =
y1,2

y1,1
(1 + y1,1)2.

where y1,j is the exponential variable corresponding to the loop generated
by u1,j in (8.1).

Remark 8.2. Considering Tγ2 inside OG(1,C4) ' CP 1 × CP 1, one
obtains its LG mirror. It only has two critical points, while the sum
of the Betti number of OG(1,C4) is four. Thus, the LG mirror is in-
complete. In this case, however, we do not need to take the immersed
Lagrangian into account because the Lagrangian torus Tγ1 beyond the
wall is Hamiltonian isotopic to a toric fiber. Furthermore, the LG mirror
of Tγ1 is complete. But, in OG(1,C5), the role of immersed Lagrangian
is crucial. Namely, the glued mirror from Chekanov and Clifford tori is
not sufficient. OG(1,C5) will be discussed in the remaining sections.

8.2. Construction of immersed Lagrangian. The orthogonal Grass-
mannian OG(1,C5) is a partial flag manifold parametrizing the isotropic
complex subspaces of one dimension in C5 equipped with a non-degenerate
symmetric bilinear form. Again by taking a suitable non-degenerate
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symmetric bilinear form, OG(1,C5) is expressed as the quadric hyper-
surface given by

(8.3) Q3 =
{

[Z0 : Z1 : Z2 : Z3 : Z4] ∈ CP4 : Z0Z1 + Z2
2 = Z3Z4

}
.

Restricting to Z4 6= 0, we obtain

Qaff
3 :=

{
(X0, X1, X2, X3) ∈ C4 : X0X1 +X2

2 = X3

}
.

where Xi = Zi/Z4 for i = 0, 1, 2, 3.
The projection to the X3-component given by

(8.4) Π3 : Qaff
3 → C×, (X0, X1, X2, X3) 7→ X3

has the smoothing of the A1-singularity as a generic fiber, and the A1-
singularity itself sits at the origin X3 = 0. Note that Π3 has a non-trivial
monodromy around the origin

(8.5) Xi ↔ −Xi for i = 0, 1, 2.

We then take simple closed curves γ0, γ1, and γ2 in CX2 that are
symmetric with respect to the origin as in Figure 19 (a) and the S1-
orbits generated by (8.2). By parallel transporting the Lagrangian torus
Tγ0 , the Lagrangian torus Tγ1 , and the immersed Lagrangian Tγ2 over
a circle γ3 on the base CX3 as in Figure 20 (a), we obtain the following
set of matching Lagrangians:

• an immersed Lagrangian L0,
• a Lagrangian torus L1,
• a Lagrangian torus L2.

Furthermore, by requiring the simple closed curves to bound the certain
area, we may assume that the constructed Lagrangians are monotone.

Figure 19. Simple closed curves on the base CX2

The quadric hypersurface has a Hamiltonian T2-symmetry.

(8.6) (θ1, θ2) 7→
(
e−
√
−1θ1Z0, e

√
−1θ1Z1, Z2, e

√
−1θ2Z3, e

−
√
−1θ2Z4

)
.

The constructed Lagrangian Lj is invariant under the T2-symmetry if
taking γj and γ3 as circles. Thus, Lj is Lagrangian isotopic to a T2-
invariant Lagrangian.



IMMERSED TWO-SPHERES, SYZ, AND GRASSMANNIANS 63

Figure 20. Two construction of Lagrangians

Remark 8.3. At first glance, L0 produces a non-commutative mirror
because L0 over γ0 in Figure 19 does, see [CHL21]. Yet the monodromy
on the fibers of Π3 along γ3 swaps the immersed loci at ±ε. If trivializing
the constructed Lagrangians along the orbit θ2, L0 is indeed the product
of immersed two sphere with a single nodal self-intersection and circle
as in Figure 21.

Figure 21. Fundamental domain of L2.

8.3. Local mirrors of the Lagrangians L0,L1, and L2. To relate
the Floer theoretical relation, we begin by choosing the meromorphic
volume form

Ω =
dX1 ∧ dX2 ∧ dX3

X1X2X3
,

which gives the Z-grading on the Lagrangians L• on the complement
of D = {Z2 · Z3 · Z4 = 0}.

Equip the Lagrangians L0,L1, and L2 with the flat ΛU-connection
∇xj ,zj where xj and zj ∈ ΛU are the holonomy along the θ1 and θ2-
orbits for j = 0, 1, 2 respectively. Let θ0 be a loop whose arguments of
Xi for i = 0, 1, 2, 3 change from 0 to 2π. Also, adorn the torus L2 with
the flat ΛU-connection ∇y2 where y2 is the holonomy along the θ0-orbit.
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Regarding L0 as the product of immersed two sphere with a single
nodal self-intersection and circle, set U and V to be the degree one
generators in L0, the products of immersed generators and the unit
class of a θ2-orbit. As in the Section 3.3, the flat ΛU-connection ∇y1
is chosen so that the standard wall-crossing formula in Theorem 3.7 is
derived. Geometrically, the flat connection can be realized as a choice of
the gauge hypertori. The flat connection associated with the holonomy
along the θj-orbit is realized as a co-dimension one torus generated by
the other θ•’s with the co-orientation given by θj .

We then have the formally deformed Lagrangians :

1) (Li, bLi
:= ∇xi,yi,zi) with the deformation space Ui ' (ΛU)3 for

i = 1, 2
2) (L0, bL0 := (uU + vV,∇z0)) with the deformation space U0 '

(Λ0 × Λ+) ∪ (Λ+ × Λ0)× ΛU.

By analyzing the cocycle condition on the local model (with which the
Lagrangians become isomorphic), the relation (3.4), (3.5), (3.6), and
z0 = z1 = z2 can be derived.

An explanation emphasizing on issues that do not appear in the
Grassmannians of A-type in the previous sections is in order. Con-
sider the projection from Q3\D to X3. By the maximum principle,
there are two types of holomorphic strips bounded by Li and Lj in the
complement Q3\D : the first type lies in the fiber of the projection and
the second type does not. Because the origin is missing in the X3-plane,
the second type does not appear. Recall that the curve rotating along
γ3 in the base X3-plane twice counterclockwise lifts to a simple closed
curve in Li because of the monodromy (8.5). It represents the cycle
generated by a θ2-orbit, see Figure 21.

To analyze the first type holomorphic strips, we choose Morse func-
tions reflecting the monodromy (8.5) on cleanly intersection loci as fol-
lows. For any pair of Li and Lj (i 6= j), observe that they intersect
cleanly at two T2-orbits generated by θ1 and θ2. We shall take a product
type Morse function on each T2-orbit satisfying the following. We choose
a usual height function on the θ1-orbit and a Z/2-invariant function on
the θ2-orbit where the Z/2-action is given by the monodromy. Each
T2-orbit is required to have two minimum points, four saddle points,
and two maximum points. Also, assume that a minimum point of one
torus and a maximum point of the other torus project to the same point
P in X3.

The critical points of the T2-orbits over the point P are denoted as
follows:

• two minimum points α
Li,Lj

0,1 , α
Li,Lj

0,2 , two saddle points α
Li,Lj

1,1 , α
Li,Lj

1,2

in the first torus,
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• two saddle points β
Li,Lj

1,1 , β
Li,Lj

1,2 , two maximum points β
Li,Lj

2,1 , β
Li,Lj

2,2

in the second torus.

See Figure 19 (b).
We now investigate the coordinate change on Maurer–Cartan de-

formation spaces so that α
Li,Lj

0 := α
Li,Lj

0,1 + α
Li,Lj

0,2 becomes a quasi-

isomorphism. Then the cocycle condition m1(α
Li,Lj

0 ) = 0 leads to the
desired relation. For instance, the four strips shown in Figure 19. (b)

contribute to 〈m1(α
Li,Lj

0 ), β
Li,Lj

1 〉 = 0 where β
Li,Lj

1 := β
Li,Lj

1,1 +β
Li,Lj

1,2 .
Finally, by the local-to-global argument as in Theorem 6.5, the de-

rived relation gives us isomorphisms between the constructed Lagrangians
in OG(1,C5).

8.4. Computation of the potential functions. To obtain the glued
mirror, it remains to compute the potential function WL2 of L2. We
will exploit the toric degeneration of (8.3) to compute WL2 . But, due
to the monodromy (8.5), it is hard to relate the Lagrangian L2 with
a toric fiber directly. Instead, regarding OG(1,C5) as a suspension
of OG(1,C4), we construct a (monotone) Lagrangian torus L ′

2, which
degenerates into a toric fiber at X0 and whose disk potential coincides
with WL2 .

Consider

Q′3 :=
{

[Z0 : Z1 : Z2 : Z3 : Z4] ∈ CP4 : Z0Z1 + Z2
2 = Z2

3 − Z2
4

}
.

We will employ the toric degeneration π : X → C where X =
⋃
ε∈CXε

and
(8.7)

X ′ε := π−1(ε) =

{
[Z0 : Z1 : Z2 : Z3 : Z4] ∈ CP4 : Z0Z1 + Z2

2 =
ε2

2

(
Z2

3 − ε2Z2
4

)}
.

Passing it to the affine chart Z4 6= 0, we obtain

X ′,aff
ε :=

{
(X0, X1, X2, X3) ∈ C4 : X0X1 +X2

2 =
ε2

2
(X2

3 − ε2)

}
.

The projection to the X3-component

(8.8) Π′3 : X ′,aff
ε → C×, (X0, X1, X2, X3) 7→ X3

defines a fibration which has a smoothing of A1-singularity as a generic
fiber. There are two singular fibers (both have A1-singularity) at two
points X3 = ±ε. Note that Π3 has a trivial monodromy over the circle
γ′3 enclosing ±ε at the interior.

Using the fibration, we have the following three kinds of Lagrangians,
see Figure 20 (b).

• Lagrangian T3 by parallel-transporting L2 in Section 8.1 over γ′3
• Lagrangian S3 by suspending the vanishing sphere over the line

segment [−ε, ε],
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• Lagrangian S2 × S1 by parallel-transporting the vanishing sphere
over γ′3.

Remark 8.4. The constructed Lagrangians can viewed as analogues
of Gelfand–Cetlin Lagrangian fibers in OG(1,C5). The image of the
Gelfand–Cetlin systems is the polytope ∆B in in Figure 22. The La-
grangian S3-fiber is sitting over the origin and the Lagrangian S2 × S1-
fibers are sitting over the relative interior of the edge containing (0, 0, 0)
and (0, 0, 3).

The toric moment map of X ′0 can be taken as

(u1,1, u1,2, u1,3)

:=

(
−|Z0|2 + |Z1|2

‖Z‖2
,
|Z0|2 + |Z1|2 + |Z2|2

‖Z‖2
,
|Z0|2 + |Z1|2 + |Z2|2 + |Z3|2

‖Z‖2

)
(8.9)

where ‖Z‖2 = |Z0|2 + |Z1|2 + |Z2|2 + |Z3|2 + |Z4|2 at ε = 0, see [NNU12]
for instance. The moment polytope is then given by

(8.10) |u1,1| ≤ u1,2 ≤ u1,3 ≤ 3,

which will be denoted by ∆B, see Figure 22.

Figure 22. Gelfand–Cetlin polytope ∆B

Theorem 8.5. The potential function of L ′
2 in Q′3 is

(8.11) WL ′2
(y) =

1

y1,3
+
y1,3

y1,2
+
y1,2

y1,1
(1 + y1,1)2.

where y1,1, y1,2, and y1,3 are the exponential variables corresponding to
u1,1, u1,2, and u1,3, respectively.

Proof. By applying the maximum principle to the holomorphic map

Π′3 : X ′,aff
ε → C× in (8.8), we see that there are two kinds of holomorphic

disks with Maslov index two:

(i) the first one is fully contained in the fiber Π′−1
3 (P ) over a point P

of the base C×,
(ii) the second one is such that the image of the disk boundary under

Π3 is γ′3.
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For the first kind (i), the following three classes

β1,2 − β1,1, β1,2, β1,2 + β1,1

can be represented by such holomorphic disks of Maslov index two by
Theorem 8.1. Each of the moduli spaces for the above classes is indeed
an S1-family of holomorphic disks contained in the fiber over each point
of γ′3. Moreover, the corresponding open Gromov–Witten invariants are
respectively nβ1,2−β1,1 = 1, nβ1,2 = 2, and nβ1,2+β1,1 = 1.

As ε→ 0, the spheres collapse and L ′
2 degenerates into a Lagrangian

torus isotopic to a toric fiber as ε → 0. One obtains two additional
classes of the second kind (ii),

(8.12) H − β1,3, β1,3 − β1,2

represented by Maslov two disks. They correspond to either the facet
3 − u1,3 = 0 or the facet u1,3 − u1,2 = 0 in (8.10) respectively. The
Fredholm regularity is persistent under a small perturbation. Their
open Gromov–Witten invariants are nH−β1,3 = 1 and nβ1,3−β1,2 = 1.

The argument so far confirms that WL ′2
(y) contains at least all five

terms in (8.11). The following lemma completes the proof of Theo-
rem 8.5 by asserting that the five terms are indeed all in WL ′2

(y).
q.e.d.

Lemma 8.6. The only possible classes in π2(Q′3,L ′
2) that can be

realized as a holomorphic disk of Maslov index two are H − β1,3, β1,3 −
β1,2, β1,2 − β1,1, β1,2, β1,2 + β1,1.

Proof. Consider X̂ ′0 be a crepant resolution of the toric variety X ′0.

By abuse of notation, let L := L ′
2 in X ′ε. Let L̂ be a toric fiber of

X̂ ′0. Note that H2(X̂ ′0, L̂ ;Q) ' Q5, which is generated by the classes

of holomorphic disks bounded by L̂ and intersecting the toric anti-
canonical divisor exactly once. For simplicity we abuse

(8.13) H − β1,3, β1,3 − β1,2, β1,2 − β1,1, β1,2 + β1,1.

to denote the classes corresponding to the facets in (8.10) in the poly-

tope associated to X̂ ′0. Apart from these, we have one more class in-

tersecting the exceptional divisor, which is denoted by β̂1,2. Setting

H2(X̂ ′0, L̂ ) := H2(X̂ ′0, L̂ )/(β̂1,2 ∼ β1,2) ' Z4, the Maslov homomor-

phism factors through H2(X̂ ′0, L̂ ) as follows:

(8.14) H2(X̂ ′0, L̂ )

&&

µ // Z

H2(X̂ ′0, L̂ )

;; .
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For each X3 ∈ C×X3
, recall that the fiber Π

′−1
3 (X3) is the smoothing of

A1-singularity generically. By collapsing the vanishing cycle fiberwise,
we obtain a contraction map ψ : (X ′t ,L ) → (X ′0,L ). We consider the

resolution map (blow-up) φ : (X̂ ′0, L̂ )→ (X ′0,L ). Then these two maps
induce homomorphisms{

ψ∗ : H2(X ′t ,L ;Q)→ H2(X ′0,L ;Q)

φ∗ : H2(X̂ ′0, L̂ ;Q)→ H2(X ′0,L ;Q).

Observe that ψ∗ is an isomorphism since H2(X ′t ,L ;Q) ' Q4 is gener-
ated by

(8.15) H − β1,3, β1,3 − β1,2, β1,2 − β1,1, β1,2 + β1,1,

and the images of those classes under ψ∗ still generate H2(X ′0,L ;Q).
The map φ∗ is not an isomorphism, yet it induces an isomorphism

φ∗ : H2(X̂ ′0, L̂ ;Q)→ H2(X ′0,L ;Q).

Furthermore, the composition (φ∗)
−1 ◦ ψ∗ preserves the Maslov indices

because (8.15) maps into (8.13) respectively.
Suppose that there exists a holomorphic disk bounded by L with

Maslov index two, representing a class other than β1,1 + β1,2, β1,2, and
β1,1−β1,2. Let a0H + a1 β1,1 + a2 β1,2 + a3 β1,3 be the class represented
by the disk. Note that the disk must be of the second kind (ii), which
implies that a3 must be non-zero.

Observe that there exists a holomorphic disk (without any sphere
bubbles) of Maslov index two in ((φ∗)

−1 ◦ψ∗)(a0H + a1 β1,1 + a2 β1,2 +
a3 β1,3). Let ϕt be a holomorphic disk in a0H+a1 β1,1 +a2 β1,2 +a3 β1,3.
By considering sequence of holomorphic disks as t→ 0, we obtain a limit
of holomorphic curve in X ′0. Taking its strict transformation, we have

a holomorphic curve in ((φ∗)
−1 ◦ ψ∗)(a0H + a1 β1,1 + a2 β1,2 + a3 β1,3).

By the classification of disks bounded by a toric fiber, the only possible
Maslov index two holomorphic disks (with a3 6= 0) are those in (8.12).
q.e.d.

With the potential function (8.11) of L ′
2 in hand, we next compute

the local mirrors arising from L0,L1, and L2. Two homogeneous co-
ordinates for Q3 and Q′3 are related by the following transformation

(8.16) Z0 7→ Z0, Z1 7→ Z1, Z2 7→ Z2,

[
Z3

Z4

]
7→ 1√

2

[
1 −ε
1 ε

]
·
[
Z3

Z4

]
.

Under the Möbius transformation (8.16), the base circle γ3 in the sphere
[Z3 : Z4] in Q3 maps into a circle in the sphere [Z3 : Z4] in Q′3 enclosing
only one ±ε, see Figure 23.

Note that L2 is related to L ′
2 by a Lagrangian isotopy, which lies over

an isotopy of simple closed curves on the base Π′3(Q′3), see the second
sphere in Figure 23. Any Lagrangian torus through the isotopy does not
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Figure 23. Comparison between two simply closed
curves γ3 and γ′3

bound any holomorphic disks of Maslov index zero because the simple
closed curve γ2 in CX2 is fixed through the isotopy. Thus, the potential
function of L2 is same as that of L ′

2.
To translate the potential function WL ′2

in (8.11) in terms of holo-
nomy variables for L2, we analyze the arguments of variables of holo-
nomy cycles. It leads to the following coordinate change.

(8.17) x2 = y1,1, y2 = y1,3, z2 =
y2

1,3

y1,2
.

Therefore

(8.18) WL2(x2, y2, z2) =
1

y2
+
z2

y2
+

y2
2

x2z2
(x2 + 1)2.

We then obtain the following theorem.

Theorem 8.7. In OG(1,C5), the potential functions of L0,L1, and
L2 are

• (U0 = (Λ0 × Λ+) ∪ (Λ+ × Λ0)× ΛU,WL0) where

(8.19) WL0(u, v, z0) = v + vz0 +
u2

z0(uv − 1)
.

•
(
U1 = (ΛU)3,WL1

)
where

(8.20) WL1(x1, y1, z1) =
1

y1
+
x1

y1
+
z1

y1
+
x1z1

y1
+

y2
1

x1z1
.

•
(
U2 = (ΛU)3,WL2

)
where

(8.21) WL2(x2, y2, z2) =
1

y2
+
z2

y2
+

y2
2

x2z2
(x2 + 1)2.

In particular, by gluing them, a partially compactified mirror of OG(1,C5)
is obtained.

Corollary 8.8. The disk potential (8.19) of the immersed Lagrangian
L0 in OG(1, 5) has a critical point at u = v = 0, z0 = −1. Hence L0 is
non-displaceable.
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8.5. Identification with the Rietsch’s mirror of OG(1,C5). In
[Rie08, PRW16], Pech, Rietsch and Williams constructed a LG mirror
of the quadric hypersurface Qn. The equivalent LG mirror for Q2m−1

also appeared in Gorbounov–Smirnov [GS15]. It is a partial compacti-
fication of the LG mirror consisting of an algebraic torus together with
a Laurent polynomial in Przyjalkowski [Prz13]. In this section, we
provide an enumerative meaning of their LG models.

The Pech–Rietsch–Williams’ mirror is a LG model (X̌,WRie) de-
scribed as follows. Setting

D0 := {p0 = 0}, D1 := {p1p2 − p0p3 = 0}, D2 := {p3 = 0},
the mirror space X̌ is defined by the complement of the anti-canonical
divisor D := D0 + D1 + D2 in CP 3. The superpotential is given by

(8.22) WRie =
p1

p0
+

p2
2

p1p2 − p0p3
+ q

p1

p3
: X̌ → C.

Here is the list of its critical points.

Lemma 8.9. The superpotential (8.22) has four critical points :

1) Let ξ := ei
2π
3 . For j = 0, 1, 2,

p0 = 1, p1 =
3
√

4 ξjq
1
3 , p2 =

3
√

2 ξ2jq
2
3 , p3 = q

The critical values are respectively 3 3
√

4 ξjq
1
3 for j = 0, 1, 2.

2) (p0, p1, p2, p3) = (1, 0, 0,−q) whose associated critical value is 0.

We are now ready to state the main theorem of this section.

Theorem 8.10. The Rietsch’s mirror (X̌,WRie) of the quadric hy-
persurface Q3 ' OG(1,C5) can be recovered by gluing the LG models
arising from the immersed Lagrangian L0, the monotone Lagrangian
tori L1 and L2 as deformation spaces of their Lagrangian Floer theory.

Proof. After suitably adjusting valuations of variables for (8.19), (8.21),
and (8.20), we can identify (8.22) and (8.19) by the following relation

x1 = x2 = uv − 1 7→ p1p2−p0p3
p0p3

,

y1 = u 7→ p2
p3
, y2 = v−1 7→ p0

p1
,

z2 = z1 = z0 7→ p0
p3
.

q.e.d.

9. Toward Homological Mirror Symmetry for Gr(2,C4) and
OG(1,C5)

We have constructed the mirror LG models for Gr(2,C4) and OG(1,C5)
which are described as unions of local patches coming from Maurer–
Cartan deformations of several reference Lagrangians. As the mirror
potentials are Morse in these cases, their matrix factorization categories
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are generated by objects supported at the critical points. Since each crit-
ical point lies in one chart, it is enough to consider our local functors to
study homological mirror symmetry in these cases.

More precisely, we will proceed as follows. Recall that we have a
LG model (Y,W ) which is obtained by gluing local patches (Ui :=
MC(Li),Wi) where Y = ∪Ui and each Wi is Morse (and of course,
Wi|Ui∩Uj = Wj |Ui∩Uj ). For each critical point y of W , there exists Ui(y)

that contains y. We fix it once and for all. We have a functor

Fi(y) : Fuk(X)→ MF(Ui(y),Wi(y)) (↪→ MF(Y,W ))

induced by Maurer–Cartan deformation of Li (where X = Gr(2,C4) or
OG(1,C5)). Let Py be the image of (Li(y), b(y)) where b(y) is the weak
bounding cochain of Li(y) corresponding to y ∈ Ui =MC(Li(y)). Note
that we also have an A∞-algebra homomorphisms

CF ((Li(y), b(y)), (Li(y), b(y)))→ hom(Py, Py).

Now consider the sub-Fukaya category A generated by the objects
(Li(y), b(y)) for all critical point y of W . Since two objects (Li(y1), b(y1))
and (Li(y2), b(y2)) corresponding to different critical points y1 and y2

do not have a nontrivial morphism space, we obtain a well-defined A∞
functor

A → MF(Y,W )

which sends (Li(y), b(y)) to Py on the object level. In this section, we

show that this functor establishes an equivalence both for Gr(2,C4) and
OG(1,C5) (after being derived), which proves Theorem D.

9.1. Mirror matrix factorizations for OG(1,C5). We first compute
the mirror matrix factorizations of reference Lagrangians in OG(1,C5)
together with (weak) bounding cochains that correspond to the critical
points of W . By the definition of our local functor, they are simply
Floer complexes with suitable boundary deformation. We only spell
out the argument of the immersed Lagrangians L0, and for smooth tori
Li (i = 1, 2), we refer readers to [CHL19, Section 9]. (Indeed, the same
argument for L0 works for L1 and L2 without much modification.)

We first set up the following notations for the standard generators of
CF ((L0, b), (L0, b)) where b varies over MC(L0) and b corresponds to
the critical point (u, v, z0) = (0, 0,−1).

1 := (1L0 ,1S1),Θ1 := (U,1S1),Θ2 := (V,1S1),Θ3 := (1L0 , ptS1),

Θ1 ∧Θ2 := (ptL0
,1S1),Θ2 ∧Θ3 := (V,ptS1),Θ1 ∧Θ3 := (U,ptS1),

Θ1 ∧Θ2 ∧Θ3 := (ptL0
, ptS1).

(Recall that L0 is a product of an immersed 2-sphere L0 with S1.) Here
1S1 and ptS1 actually mean the critical points of the Morse function
on S1-factor with the corresponding degrees, and the same applies to
1L0 and ptL0

. In addition, we define wedge products of Θi’s in other
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orders by imposing usual skew-commuting relations among Θi’s, for e.g.,
Θ2 ∧Θ1 := −Θ1 ∧Θ2. Then CF ((L0, b), (L0, b)) can be identified with
the exterior algebra generated by Θ1,Θ2,Θ3 as a vector space. Note

that the differential δ := m
b,b
1 on this complex can be decomposed as

δ = δ+1 + δ−1 + δ−3

where the sub-indices are the degrees of operators with respect to the
natural degree from the exterior algebra. δi with i ≤ −5 vanishes by
degree reason.

We can identify δ+1 = uΘ1 ∧ (−).+ vΘ2 ∧ (−) + (z0− (−1))Θ3 ∧ (−)
since the contributing holomorphic disks are those which contribute to
the weak Maurer–Cartan equation (and hence have Maslov index 0).
Here the signs are determined by the Koszul convention with respect to
the product, which is similar to the sign rule for Morse flows appearing
in [CHL19, Appendix A]. For instance, if a flow runs along the second
factor keeping the first factor constant, there comes an additional sign
coming from (the parity of) the degree of the first component of an
input. Therefore we have

δ(1) = uΘ1 + vΘ2 + (z0 + 1)Θ3

δ(Θ1) = −vΘ1 ∧Θ2 + (z0 + 1)Θ3 ∧Θ1 + f1 · 1
δ(Θ2) = uΘ1 ∧Θ2 − (z0 + 1)Θ2 ∧Θ3 + f2 · 1

δ(Θ3) = vΘ2 ∧Θ3 − uΘ3 ∧Θ1 + f3 · 1
where f1, f2, f3 are unknown, but should satisfy

(9.1) δ2(1) = uf1 + vf2 + (z0 + 1)f3 = W −W (b).

In fact, fi is contributed by the same set of the holomorphic polygons
which also contribute the potential.

Let us proceed to the next degree. We have

δ(Θ1 ∧Θ2) = (z0 + 1)Θ1 ∧Θ2 ∧Θ3 − g2 ·Θ1 + g1 ·Θ2 + g̃ ·Θ3

for some g1, g2, g̃, where the first term on the right hand side is simply
δ+1 applied to Θ1 ∧ Θ2. We claim that g̃ is zero. Suppose to the
contrary that there exists a strip from (ptL0

,1S1) to (1L0 , ptS1). Such
a strip should come from a Maslov 2 disk with the configuration as in
Figure 24. Take a boundary path γ of the strip running from the input
to the output in clockwise direction. Notice that γ does not have any
corner since u = v = 0 for b. Therefore, one can trivialize L0 along γ
to have a circle fibration over γ as in the right diagram in Figure 24.
(These fiber circles are the ones appearing in conic fibers in our local
picture.)

The moduli of Maslov two disks passing through (ptL0
,1S1) is one

dimensional, and this one dimensional deformation indeed comes from
the (global) S1-action given by (θ, [Zi]) 7→ [Z0 : Z1 : Z2 : eiθZ3, e

−iθZ4],
which rotates the S1-factor in L0 = L0 × S1. Moreover, the action
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Figure 24. boundary shapes of the strips from Θ1 ∧Θ2

to Θ3

preserves the input/output condition on the second factor S1 of L0

since there is a flexibility from flow lines from 1S1 to ptS1 . Therefore, all
possible contributions to the coefficient of (1L0 ,ptS1) in δ(ptL0

,1S1) give
discrete set of curves in this fibration after taking the boundary segment
from the input to the output clockwisely. Note that these curves should
exactly hit ptL0

(minimum) and 1L0 in order to actually contribute.
Obviously a generic Morse function avoid such a contribution, which
proves the claim. (This is essentially the same argument as in the proof
of [CHL19, Lemma 8.6].)

Also, there is no strip from Θ2 ∧ Θ3 = (V,ptS1) to Θ1 = (U,1S1). A
similar argument as above still works for this case, and in fact, for the
case of Gr(2,C4) as well, showing that there is no (Maslov 2) polygon
from ΘI to ΘJ unless J ⊂ I, which we will not repeat afterwards. Here
I, J ⊂ {1, 2, 3, 4} and |J | = |I| − 1.

Since (U,1S1) is an output, a contributing polygon has two V -corners
at two ends of the boundary path γ′ joining the input and the output
in clockwise direction. (γ′ is analogous to γ in the previous case.) This
time, we consider the S1-fibration over γ′ with fibers coming from the
S1-factor in L0 = L0 × S1. As before, boundary paths of all possible
contributing strips give a finite set of curves on this trivialization, and
hence min(= ptS1) and max(= 1S1) of a generic Morse function can
avoid all such curves. (Again, boundary paths should exactly hit these
two points to actually contribute.) Note that this argument can not
apply to a strip from (V,ptS1) to (V, 1) since two corners of a strip as-
sociated to input and output may appear in a constant disk component
(possibly attached to a non-constant disk by a flow line).

Therefore δ(Θi ∧Θj) does not involve Θk if k is not either i or j, and
hence we have

δ(Θ2 ∧Θ3) = uΘ1 ∧Θ2 ∧Θ3 − h3 ·Θ2 + h2 ·Θ3

δ(Θ3 ∧Θ1) = vΘ1 ∧Θ2 ∧Θ3 − k1 ·Θ3 + k3 ·Θ1
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for some functions hi and ki. Observe that

δ2(Θ1) = f1(uΘ1 + vΘ2 + (z0 + 1)Θ3)− vδ−1(Θ1 ∧Θ2) + (z0 + 1)δ−1(Θ3 ∧Θ1)
= (uf1 + vg2 + (z0 + 1)k3)Θ1 + v(f1 − g1)Θ2 + (z0 + 1)(f1 − k1)Θ3

Since δ2(Θ1) = (W − W (b)) · Θ1 from the A∞-relation, we see that
g1 = k1 = f1. Likewise, we have gives g2 = h2 = f2 and h3 = k3 = f3.

We next compute δ(Θ1 ∧Θ2 ∧Θ3). We first show δ−3 vanishes. Let
δ−3(Θ1∧Θ2∧Θ3) = ξ·1 for some function ξ. By observing the coefficient
of 1 in δ2(Θ1 ∧Θ2) (which should be zero), one obtain −g2f1 + g1f2 +
(z0 + 1)ξ = 0, which implies ξ is zero since gi = fi for i = 1, 2. Let us
write

δ(Θ1 ∧Θ2 ∧Θ3) = l1Θ2 ∧Θ3 + l2Θ3 ∧Θ1 + l3Θ1 ∧Θ2.

for some l1, l2, l3. From δ2(Θ1 ∧Θ2) = (W −W (b))Θ1 ∧Θ2, we have

uf1 + vf2 + (z0 + 1)l3 = W −W (b) = uf1 + vf2 + (z0 + 1)f3,

and hence l3 = f3. Likewise l1 = f1 and l2 = f2.
In summary, one can identify δ in terms of Θi’s as

δ = uΘ1 ∧ (−).+ vΘ2 ∧ (−) + (z0 − (−1))Θ3 ∧ (−) +
3∑
i=1

fi
∂

∂Θi

which is precisely a wedge-contraction type matrix factorization known
to generate the component MFW (b)(W ) of MF(W ) (consisting of matrix
factorizations of W −W (b)) by the work of Dyckerhoff [Dyc11]. Also
the morphism level functor

FL0 : CF ((L0, b), (L0, b))→ hom(Pb, Pb)

is injective by [CHL21, Theorem 4.9], and hence an isomorphism since
the cohomology groups of both sides have dimension 8. The same ar-
gument appears in [CHL17, Section 7] to prove homological mirror
symmetry for P1

a,b,c.
Finally, for each critical value λ ofW , we know that the corresponding

component in QH(OG(1,C5)) is 1-dimensional (i.e. the λ-eigenspace in
QH(OG(1,C5)) with respect to the operator c1(OG(1,C5))∧). Hav-
ing closed string mirror symmetry, one can see this from the mirror
LG model in which there is only one critical point over each critical
value of W (see Lemma 8.9). By [She16, Corollary 2.19] tells us that
the Fukaya category is generated by our reference Lagrangians together
with weak bounding cochains that correspond to critical points of W .
This completes the proof of the statement in Theorem D concerning
OG(1,C5).
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9.2. Mirror symmetry for Gr(2,C4). We next compute the mirror
matrix factorization for Gr(2,C4). As in the previous case, we will only
exhibit the argument for immersed reference Lagrangians L0, which is
the product of the immersed 2-sphere L0 with the 2-torus T2. Let b be
a critical point of WL0 , which is either of the following two

bj = {u = 0, v = 0, z0 = −1, w0 =
√
−1 ξ2j} for j = 1, 2.

((L0, b1) and (L0, b2) have trivial Floer cohomology between them. In-
deed, one can easily check that the unit class, which is 1 below, is
in the image of the Floer differential.) For simplicity, let us write
b = (0, 0, z0, w0) where z0 = −1 and w0 =

√
−1ξ2j (for j = 1 or 2).

As before, we set the generator of CF ((L0, b), (L0, b)) as follows.

1 := (1L0 ,1T2), Θ1 := (U,1T2), Θ2 := (V,1T2), Θ3 := (1L0 , A), Θ4 := (1L0 , B)

Θ1 ∧Θ2 := (ptL0
,1T2), Θ1 ∧Θ3 := (U,A), Θ1 ∧Θ4 := (U,B),

Θ2 ∧Θ3 := (V,A), Θ2 ∧Θ4 := (V,B), Θ3 ∧Θ4 := (1L0 ,ptT2)

Θ1 ∧Θ2 ∧Θ3 := (ptL0
, A), Θ1 ∧Θ2 ∧Θ4 := (ptL0

, B),

Θ1 ∧Θ3 ∧Θ4 := (U,ptT2), Θ2 ∧Θ3 ∧Θ4 := (V,ptT2)

Θ1 ∧Θ2 ∧Θ3 ∧Θ4 := (ptL0
, ptT2)

where A and B are (dual to) the cycles in T2, around which holonomies

are z0 and w0 for (L0, b). Again, we can decompose δ := m
b,b
1 into

δ = δ+1 + δ−1 + δ−3.

We will see later that δ−3 vanishes as in the case of OG(1,C5).
By the same argument as in 9.1,

δ+1 = uΘ1 ∧ (−) + vΘ2 ∧ (−) + (z0 − z0)Θ3 ∧ (−) + (w0 −w0)Θ4 ∧ (−).

Also, the previous argument is still valid to show that δ restricted to
deg ≤ 2-component is given by

δ|deg≤2 = δ+1 +
4∑
i=1

fi
∂

∂Θi

for some fi satisfying

uf1 + vf2 + (z0 − z0)f3 + (w0 − w0)f4 = W −W (b),

and that δ−3|deg 3 = 0.
We next consider the action of δ on the deg = 3 component. We set

δ−1(Θ1 ∧Θ2 ∧Θ3) = g3Θ1 ∧Θ2 − g2Θ1 ∧Θ3 + g1Θ2 ∧Θ3.

It does not contain other Θi ∧ Θj ’s due to the same reason as in the

case of OG(1,C5). Since (δ−1)2 (Θ1 ∧Θ2 ∧Θ3) = 0. We have

−g3f2 + g2f3 = 0, −g3f1 + g1f3 = 0, g2f3 − g3f2 = 0.
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Thus g1 = cf1, g2 = cf2, g3 = cf3 for some constant c. Likewise we have

δ−1(Θ1 ∧Θ2 ∧Θ4) = df1Θ2 ∧Θ4 − df2Θ1 ∧Θ4 + df4Θ1 ∧Θ2

δ−1(Θ1 ∧Θ3 ∧Θ4) = kf1Θ3 ∧Θ4 − kf3Θ1 ∧Θ4 + kf4Θ1 ∧Θ3

δ−1(Θ2 ∧Θ3 ∧Θ4) = lf2Θ3 ∧Θ4 − lf3Θ2 ∧Θ4 + lf4Θ2 ∧Θ3

Now we use the equation δ2(Θi ∧Θj) = (W −W (b)) ·Θi ∧Θj , and get
the following system of linear equations.

(c− 1)(z0 − z0f3 + (d− 1)(w0 − w0)f4 = 0,
(c− 1)vf2 + (k − 1)(w0 − w0)f4 = 0,
(d− 1)vf2 + (k − 1)(z0 − z0)f3 = 0,
(c− 1)uf1 + (l − 1)(w0 − w0)f4 = 0,
(d− 1)uf1 + (l − 1)(z0 − z0)f3 = 0,
(k − 1)uf1 + (l − 1)vf2 = 0,

and it is tedious, but elementary to check that the only possible solution
is c = d = k = l = 1, which proves

δ|deg≤3 = δ+1 +

4∑
i=1

fi
∂

∂Θi
.

It only remains to analyze δ on the deg = 4 component. We set

δ(Θ1 ∧Θ2 ∧Θ3 ∧Θ4) =

4∑
i=1

ξiΘi + η1Θ2 ∧Θ3 ∧Θ4 − η2Θ1 ∧Θ3 ∧Θ4

+ η3Θ1 ∧Θ2 ∧Θ4 − η4Θ1 ∧Θ2 ∧Θ3,

and compute δ(Θ1 ∧Θ2 ∧Θ3) to get

δ(Θ1∧Θ2∧Θ3) = −(w0−w0)Θ1∧Θ2∧Θ3∧Θ4+f3Θ1∧Θ2+f1Θ2∧Θ3−f2Θ1∧Θ3.

Since δ2 = (W −W (b)) · id), any Θi-component of δ2(Θ1 ∧ Θ2 ∧ Θ3)
should vanish. Since such a component from δ−1(f3Θ1 ∧ Θ2 + f1Θ2 ∧
Θ3 − f2Θ1 ∧ Θ3) = 0, this implies that ξi = 0. By looking at the
coefficient of Θ1∧Θ2∧Θ3 in δ2(Θ1∧Θ2∧Θ3), we have η4 = f4. Similar
argument show that ηi = fi for i = 1, 2, 3. We conclude that the matrix
factorization Pb mirror to (L0, b) is of wedge-contraction type. The rest
of argument is the same as in 9.1.

Similarly as in the case of OG(1,C5), eigenspaces of QH(Gr(2,C4))
are 1-dimensional except the zero eigenspace (see Lemma 8.9). There-
fore the argument appearing at the end of 9.1 now proves the equivalence
between the full subcategory of the Fukaya category of Gr(2,C4) con-
sisting of Lagrangians with potential value λ and ⊕λMF(W −λ), where
λ runs over all nonzero critical values of W .
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