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Abstract. This paper gives a new way of constructing Landau-Ginzburg mirrors using deformation
theory of Lagrangian immersions motivated by the works of Seidel, Strominger-Yau-Zaslow and
Fukaya-Oh-Ohta-Ono. Moreover we construct a canonical functor from the Fukaya category to the
mirror category of matrix factorizations. This functor derives homological mirror symmetry under
some explicit assumptions.

As an application, the construction is applied to spheres with three orbifold points to produce
their quantum-corrected mirrors and derive homological mirror symmetry. Furthermore we discover
an enumerative meaning of the (inverse) mirror map for elliptic curve quotients.
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1. Introduction

Homological mirror symmetry [Kon95] and the SYZ program [SYZ96] have led to deep develop-
ments in symplectic and algebraic geometry. Both of them stem from the same idea that geometry
of Lagrangian branes should correspond to geometry of coherent sheaves on the mirror. Homological
mirror symmetry focuses on the interactions among all geometric objects and the equivalence be-
tween two sides of the mirror, while SYZ emphasizes on the geometric origin of the mirror transform
which induces the equivalence.

Recently homological mirror symmetry for the quintic Calabi-Yau threefold has been proved
[She11, NU12, She15]. On the other hand, wall-crossing and scattering which occur up to infinite
order in the Gross-Siebert program [GS11] are extremely complicated for the quintic. Writing down
the mirror equation from the current SYZ program is already highly non-trivial, and homological
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mirror symmetry is hidden behind the order-by-order quantum corrections. Apparently there is a
gap between homological mirror symmetry and the SYZ program.

This motivates the following question:
Question: Can we modify and generalize the SYZ approach such that homological mirror symmetry
naturally follows from construction?

One purpose of this paper is to give a positive answer to this question.

An important geometric ingredient in the proof of homological mirror symmetry for genus two
curves by Seidel [Sei11] and Fermat-type Calabi-Yau hypersurfaces by Sheridan [She15] is the use
of specific Lagrangian immersions. Their works motivates our current program: instead of taking
Lagrangian torus fibrations in the original SYZ approach, we take a finite set of Lagrangians with
mild singularities (namely, immersions) in order to construct the mirror. In this paper we will focus
on the construction when we take exactly one Lagrangian L. We will formulate the construction
with more than one Lagrangians in a forthcoming paper.

More precisely, we use one Lagrangian L which is possibly immersed and its deformation theory
to construct a Landau-Ginzburg model W as a Lagrangian Floer potential. The flexibility of being
immersed allows the Lagrangian deformation theory to capture more information – in good cases
the Lagrangian immersion split-generates the whole derived Fukaya category. Our constructive
approach can be regarded as a generalized formulation of SYZ in which general Lagrangian branes
are used instead of tori. We call this construction to be generalized SYZ.

Remark 1.1. The terminology ‘generalized SYZ’ was first used by Aganagic-Vafa [AV]. They cooked
up non-compact Lagrangian branes in the resolved conifold from knots inside S3. Then they used
these Lagrangians, instead of compact fibers of a Lagrangian torus fibration in the SYZ program, to
construct the mirrors which capture information about the knot invariants. In principle their work
is coherent with the main theme of our paper, namely we use a general Lagrangian brane instead of a
fibration to construct the mirror geometry. The differences are the following. First of all we consider
a general Kähler manifold rather than restricting to the case of the resolved conifold. Second we use
compact Lagrangian immersions rather than non-compact Lagrangian branes to carry out the mirror
construction. Third we use the immersed Lagrangian Floer theory (in particular weakly unobstructed
deformations) in our construction rather than a physical theory (and in particular we count discs of
Maslov index two rather than zero). While the detailed techniques and situations are different, both
works aim to use general Lagrangian branes rather than tori to generalize the SYZ construction.

One advantage of our construction is that it avoids complicated scattering and gluing, so the
Landau-Ginzburg model W , which is roughly speaking the generating function of countings of J-
holomorphic polygons bounded by the Lagrangian immersion L, comes out in a natural way.

Our generalized SYZ construction has a much more direct relationship with homological mirror
symmetry: we construct a naturally associated A∞-functor LML from the Fukaya category of X to
the category of matrix factorization of W :

Theorem 1.2 (see Theorem 4.1). There exists an A∞-functor

LML : Fuk λ(X)→MF(W − λ).

Here Fuk λ(X) is the Fukaya category of X (as an A∞-category) whose objects are weakly unob-
structed Lagrangians with potential value λ, and MF(W − λ) is the dg category of matrix factor-
izations of W − λ.

Moreover, our functor can be used to derive homological mirror symmetry under reasonable as-
sumptions. This provides a uniform and functorial understanding to homological mirror symmetry.
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Theorem 1.3 (see Theorem 4.2). Suppose that there exists a set of Lagrangians {Li : i ∈ I} which
split-generates DπFuk0(X), and suppose the functor LML induces an isomorphism on cohomologies

HF(Li, Lj)
∼=→ Mor(LML(Li),LML(Lj)) for all i, j ∈ I. Then the derived functor Dπ(LML) :

DπFuk0(X) → DπMF(W ) is fully faithful. Furthermore if {LML(Li) : i ∈ I} split-generates
DπMF(W ), then Dπ(LML) is a quasi-equivalence.

Remark 1.4. In this paper we work with Z/2 grading: the Lagrangians are Z/2-graded, and the
matrix factorizations on the mirror side are also Z/2-graded. A Z-graded version of our mirror
functor can also be natural formulated (when X is Calabi-Yau and L is Z-graded), which will appear
in our forthcoming paper.

Our generalized SYZ construction and mirror functor work in any dimension. For instance,
the construction can be applied to derive mirror symmetry for rigid Calabi-Yau manifolds in any
dimensions, with quantum corrections, which will be discussed in a future joint work with Amorin.
Even going back to the original setting of SYZ using Lagrangian tori, our mirror functor leads to
interesting construction of matrix factorizations in the toric case [CHL]. Furthermore, in Section
8, we give a conjectural description of our program for Fermat-type Calabi-Yau hypersurfaces. We
will apply our construction to other classes of examples such as toric Calabi-Yau orbifolds, rigid
Calabi-Yau manifolds and higher-genus orbifold surfaces in a series of forthcoming works.

In the later part of this paper, we apply our generalized SYZ program to construct the mirror
of the orbifold projective line X = P1

a,b,c. While X = P1
a,b,c is just one-dimensional, it has very

rich geometry due to the presence of the orbifold points and mirror symmetry in this case is very
interesting (see Remark 1.9 and 1.10). Note that the original SYZ construction is not available for
P1
a,b,c. Thus our generalized approach produces new mirror pairs which are not reacheable by the

original SYZ approach.

The Landau-Ginzburg mirror of P1
a,b,c in the existing literature is the polynomial

xa + yb + zc + σxyz.

From our point of view it is indeed just an approximation, and quantum corrections are necessary
which makes W much more non-trivial. Namely, the above expression only contains leading order
terms, and the actual mirror has higher order terms. These higher order terms are important to
make mirror symmetry works, especially in the hyperbolic case 1/a+ 1/b+ 1/c < 1.

We prove homological mirror symmetry for the orbifold projective line X = P1
a,b,c using our mirror

functor. Namely,

Theorem 1.5. Let X = P1
a,b,c and W be its generalized SYZ mirror. Assume 1

a + 1
b + 1

c ≤ 1. The

A∞-functor LML in Theorem 1.2 derives homological mirror symmetry, that is, the split-closed
derived functor of LML : Fuk(P1

a,b,c)→MF(W ) is an equivalence of triangulated categories

Dπ(Fuk(P1
a,b,c))

∼= Dπ(MF(W )),

for 1
a + 1

b + 1
c ≤ 1.

For its proof, we verify the conditions in Theorem 1.3. Namely, we compute the matrix factor-
ization for L under the A∞-functor LML, and show that both L and the corresponding matrix
factorization split-generate respective derived categories. We also show that the functor induces an
isomorphism on the endomorphisms of L.
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Another purpose of this paper is to explain the enumerative meaning of the mirror map1. It
has been expected that coefficients of the mirror map have enumerative meanings in terms of open
Gromov-Witten invariants. A tropical version of such a conjecture was made by Gross-Siebert
[GS11] using scattering of tropical discs. However, it was still an open problem to make a precise
statement for compact Calabi-Yau manifolds using open Gromov-Witten invariants.

Now our generalized SYZ mirror construction produces a map from the Kähler moduli of X to
the complex moduli of its mirror W , which we call the generalized SYZ map2 (see Definition 3.5).
We prove that the mirror map equals to the generalized SYZ map for the elliptic curve quotient
E/(Z/3). Since the generalized SYZ map is written in terms of polygon counting, such an equality
establishes a precise enumerative meaning of the mirror map. Moreover countings in the case of
elliptic curves are all integers, and hence it also explains integrality of the mirror map. We derive this
equality for the elliptic curve quotients E/(Z/4) and E/(Z/6) in our joint work with Kim [CHKL].

Theorem 1.6 (Theorem 6.4). The mirror map equals to the generalized SYZ map for the elliptic
curve quotient X = E/(Z/3) = P1

3,3,3, where E is the elliptic curve with complex multiplication by
cube root of unity.

Remark 1.7. Homological mirror symmetry for elliptic curves was proved by Polishchuk-Zaslow
[PZ98] based on T-duality, which used derived category of coherent sheaves on the B-side. Moreover
the construction of the mirror map by using homological mirror symmetry was investigated by Zaslow
[Zas05] and Aldi-Zaslow [AZ06]. Namely they derive the Seidel’s mirror map for elliptic curves and
Abelian varieties by matching the morphisms of the generators of the Fukaya category and that of
the category of coherent sheaves in the mirror.

In this paper we have different purposes and use different tools. Namely, we do not start with a
given mirror but rather reconstruct the mirror family and the mirror functor, and the mirror map
should be produced as a consequence. We use the machinery of immersed Lagrangian Floer theory
on the A-side and Landau-Ginzburg model on the mirror B-side for this purpose. The work of Orlov
[Orl09] is crucial to pass from Landau-Ginzburg model to Calabi-Yau geometry (or more generally
geometry of singularities).

Remark 1.8. There were several interesting physics literatures studying open mirror symmetry for
elliptic curve quotients, for instance [BHLW06, GJ06, HLN06, GJLW07, KO07]. They identified the
effective superpotential coming from summing up disc instantons with the B-model partition function
of the mirror via an open-closed mirror map.

The study of open mirror symmetry in our paper takes a rather different perspective. Instead of
starting with the Landau-Ginzburg superpotential given by the physicists, we construct the mirror
Landau-Ginzburg model by a generalized SYZ construction using immersed Lagrangian Floer the-
ory. The two superpotentials differ by quantum corrections mentioned before. Moreover we study
the enumerative meaning of the mirror map rather than that of the effective superpotential. The
enumerative statement in Theorem 1.6 did not appear in existing physics literatures.

Furthermore the matrix factorizations we studied are obtained by transforming Lagrangian branes
using our mirror functor, rather than a B-model construction in physics literatures. In other words,
we focus more on the constructive and functorial aspects of mirror transformations rather than a

1The mirror map we mention here is a map from the Kähler moduli to the complex moduli of the mirror, which is
indeed the “inverse mirror map” to match the conventions of existing literatures. For simplicity we call it the mirror
map in the rest of this introduction.

2Such a map can also be produced by Seidel’s approach which was studied by Zaslow, namely comparing morphisms
between generators of the categories using homological mirror symmetry, see Remark 1.7. Thus it can also be called
the Seidel’s mirror map. Since our work was motivated by generalizing the SYZ program of constructing the mirror
family and the mirror functor, we call it to be the generalized SYZ map.
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comparison of partition functions by hand. We show that mirror symmetry, which matches the disc
instantons with the mirror map and Fukaya category with category of matrix factorizations of the
mirror, naturally follows from functoriality.

Remark 1.9. Mirror symmetry for P1
a,b,c is a very interesting subject and has been intensively

studied. For instance Frobenius structures and integrable systems of PDEs in the B-side were studied
by Milanov-Tseng [MT08] and Rossi [Ros10] (and the general framework were studied in [Sai89,
DZ98, Her02, DS03, DS04] and many others). Explicit expressions of Saito’s primitive forms [Sai80,
Sai81, Sai83] were studied and derived by Ishibashi-Shiraishi-Takahashi [IST] and Li-Li-Saito[LLS].
Global mirror symmetry were investigated by Milanov-Ruan [MR], Krawitz-Shen [KS] and Milanov-
Shen [MS].

Another half of homological mirror symmetry for weighted projective lines P1
a,b,c was formulated

by Takahashi [Tak10] and studied by Ebeling-Takahashi [ET13], Ueda [Ued] and Keating [Kea15].
Namely derived categories of weighted projective lines should be equivalent to Fukaya-Seidel category
of their Landau-Ginzburg mirrors. Our construction begins with a given symplectic manifold (instead
of a Landau-Ginzberg model) and is more adapted to deduce the half of homological mirror symmetry
stated in Theorem 1.5.

Remark 1.10. For 1
a + 1

b + 1
c > 1, namely the spherical case, Rossi [Ros10] proved that as Frobenius

manifolds, the big Kähler moduli of P1
a,b,c (whose tangent bundle is given by quantum cohomology

P1
a,b,c) is isomorphic to the space of Laurent polynomials of the specific form xyz + P1(x) + P2(y) +

P3(z), where P1, P2, P3 are polynomials of degrees p, q, r respectively. Thus from the perspective of
Frobenius-manifold mirror symmetry, the mirrors of P1

a,b,c in the spherical case are finite Laurent
polynomials.

Our paper constructs the Landau-Ginzburg mirror via immersed Lagrangian Floer theory, which
is roughly speaking counting holomorphic polygons. When 1

a + 1
b + 1

c > 1, there are only finitely many
holomorphic polygons, and hence W has finitely many terms. This gives a different perspective that
mirrors of P1

a,b,c in the spherical case are finite Laurent polynomials.

More introductions to the backgrounds and explanations on constructions and proofs are in order.

1.1. Generalized SYZ mirror construction. Strominger-Yau-Zaslow (SYZ) [SYZ96] proposed
that mirror symmetry can be understood in terms of duality of special Lagrangian torus fibrations.
Namely, the mirror manifold can be constructed by taking fiberwise torus dual of the original
manifold, and Lagrangian branes can be transformed to coherent sheaves on the mirror by a real
version of Fourier-Mukai transform.

A lot of efforts have been devoted to the SYZ construction of mirrors, where the main difficulty lies
in quantum corrections coming from singular fibers: fiberwise torus duality away from discriminant
loci only gives the first order approximation of the mirror, and one needs to capture the additional
information of holomorphic discs emanated from singular fibers in order to reconstruct the genuine
mirror. In toric cases, Lagrangian Floer potential from counting of holomorphic discs defines a
Landau-Ginzburg mirror ([CO06],[FOOO10b]).

When the discriminant loci of the Lagrangian fibration are relatively simple such as in the case of
toric Calabi-Yau manifolds or their conifold transitions, quantum corrections by holomorphic discs
have a neat expression and so the SYZ construction can be explicitly worked out [CLL12, AAK,
Lau14]. In general the discriminant locus of a Lagrangian fibration is rather complicated, these
holomorphic discs interact with each other and form complicated scattering diagrams studied by
Kontsevich-Soibelman [KS06] and Gross-Siebert [GS11]. Deriving closed-string mirror symmetry
and homological mirror symmetry from this perspective is a highly-nontrivial open problem.
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In this paper we generalize the SYZ approach so that an A∞-functor for homological mirror
symmetry naturally comes out, and we call this generalized SYZ (see Remark 1.1). The original
SYZ approach is based on T -duality in which tori play a central role. In our generalized approach
Lagrangians we take are not necessarily tori: indeed they are immersed with transverse self inter-
sections. The notion of weak unobstructedness by [FOOO09] plays a key role in our construction.
Solving the Maurer-Cartan equation for weakly unobstructed deformations is the key step to apply
our construction to actual situations.

Recall that for a torus T , the dual torus T ∗ is given by

T ∗ = {∇ : ∇ is a flat U(1) connection on T} = H1(T,R)/H1(T,Z)

which is the imaginary part of the space of complexified Lagrangian deformations of T : H1(T,R)⊕
i (H1(T,R)/H1(T,Z)). This motivates the following construction: for a fixed Lagrangian immersion
L, we consider the space V of its first-order weakly unobstructed (complexified) deformations, and
let W be the generating function on V of J-holomorphic polygon countings bounded by L. More
precisely, we consider weak bounding cochains, which come from linear combinations of immersed
generators, and consider the associated (immersed) Lagrangian Floer potential. Then (V,W ) forms
a Landau-Ginzburg model, and we call this to be a generalized SYZ mirror of X.

The best example to illustrate the construction is the two-dimensional pair-of-pants X = P1 −
{p1, p2, p3}. Seidel [Sei11] introduced a specific Lagrangian immersion L(∼= S1)→ L̄ ⊂ X shown in
Figure 1, and we will call it the Seidel Lagrangian.

Figure 1. The Seidel Lagrangian : Two pictures show the same Lagrangian immer-
sion from different viewpoints. The three dots on the equator are punctured when X
is a pair-of-pants, or they are orbifold points when X is an orbifold projective line.
The shaded triangle on the right contributes to the term xyz of the mirror superpo-
tential.

L̄ has three immersed points, and they give three directions of (weakly) unobstructed deformations
labelled by x, y, z. The only (holomorphic) polygon passing through a generic point of L̄ with x, y, z’s
as vertices and having Maslov-index two is the triangle shown in Figure 1, which corresponds to
the monomial xyz. Thus the generalized SYZ mirror of the pair of pants is W : C3 → C given by
W = xyz.

In [Sei11], Seidel used the same type of Lagrangian to prove homological mirror symmetry for
genus-two curves (which indeed works for all genus shown by Efimov [Efi12]). Later Sheridan [She11,
She15] generalized the construction to higher dimensions and prove homological mirror symmetry
for Fermat-type hypersurfaces. The construction proposed in this paper is largely motivated by
their works.
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As an application, we apply our construction to the orbifold projective line P1
a,b,c to produce its

Landau-Ginzburg mirror W . The Seidel Lagrangian L̄ plays an essential role in the construction.
As mentioned before, the key step in our construction is solving the Maurer-Cartan equation for
weakly unobstructed deformations (Theorem 7.5). The anti-symplectic involution on P1

a,b,c is the
main geometric input in our method.

While P1
a,b,c is only one-dimensional, it has a very rich geometry and the quantum-corrected

Landau-Ginzburg mirror has an interesting expression. The leading terms of W are

−qαxyz + q3a
α x

a + q3b
α y

b + q3c
α z

c,

and there are higher-order terms corresponding to more holomorphic polygons. The parameter
qα relates with the Kähler parameter q (corresponding to the area of P1

a,b,c) by q = q8
α. When

1/a + 1/b + 1/c ≥ 1, which corresponds to the case that Σ has genus less than or equal to one,
the superpotential W has finitely many terms; when 1/a + 1/b + 1/c < 1 (hyperbolic case), which
corresponds to the case that Σ has genus greater than one, it has infinitely many terms. We
determine W explicitly for P1

3,3,3. For general P1
a,b,c, we computed the whole expression of W

inductively in a joint work with Kim [CHKL] using combinatorial techniques.

Note that P1
a,b,c can be written as a G-quotient of a Riemann surface Σ. When G is abelian, the

generalized SYZ mirror of the Riemann surface Σ is (C3/Ĝ,W ) where Ĝ is the group of characters
of G (which is isomorphic to G itself). Thus it gives a way to construct the quantum-corrected
mirrors of higher-genus Riemann surfaces.

As pointed out in Remark 1.10, Rossi [Ros10] proved that the Frobenius structure of quantum
cohomology of P1

a,b,c in the spherical case 1/a+1/b+1/c > 1 is isomorphic to the deformation space

of a specific Laurent polynomial (instead of being a series). This gives another perspective about
the Landau-Ginzburg mirror in the spherical case.

1.2. Localized mirror functor. Homological mirror symmetry conjecture states that Lagrangian
submanifolds (with additional data) correspond to matrix factorizations in the Landau-Ginzburg
mirror. Currently the main approach to prove homological mirror symmetry is to compare generators
and their relations (hom spaces) on both sides and show that they are (quasi-)isomorphic.

Constructing a natural functor which transforms Lagrangian submanifolds into matrix factoriza-
tions will greatly improve our understanding of (homological) mirror symmetry. Our generalized
SYZ using an immersed Lagrangian L provides such a natural A∞-functor LML from the Fukaya
category of X to the category of matrix factorizations of W . From Theorem 1.3, under reasonable
assumptions the functor derives an equivalence and hence realize homological mirror symmetry.

In general our functor LML is not an equivalence. The ‘mirror’ superpotential W that we
construct reflects only the local symplectic geometry of X seen by L. Thus we can call it to be a
localized mirror functor. While this is weaker than than the mirorr predicted by string theorists,
our construction is more flexible and produces generalized mirrors which are not known by string
theorists. The generalized mirrors is particularly useful if we are interested in a particular Lagrangian
brane. See Section 4.2 for an example which shows the local nature of our functor.

In general, one needs to take a finite set of (immersed) Lagrangians in order to generate the
Fukaya category, so that the functor LML becomes more global and captures more information.
We are developing such a setting in our forthcoming paper, which will involve the use of quivers and
non-commutative geometry.
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The idea of the construction is the following. It is based on a similarity between the Floer equation
and that of matrix factorization. As we mentioned earlier, the notion of weakly ununobstructedness
plays a key role.

One important ingredient is the following observation of Oh [Oh], which was generalized by
Fukaya-Oh-Ohta-Ono [FOOO09] to Lagrangian submanifolds deformed by weak bounding cochains.
Suppose that L0 and L1 are two weakly unobstructed Lagrangian submanifolds. Then the differential
m1 of the Floer complex CF ∗(L0, L1) satisfies m2

1 = WL1 −WL0 . This follows from A∞ structure
of Lagrangian Floer theory. More geometrically, it comes from the degenerations of holomorphic
strips of Maslov index two with the two boundaries lying in L0 and L1 respectively.

Recall that the matrix factorization equation of W is given by δ2 = W − λ. Now if we take
L1 = L , the Lagrangian (immersion) that we start with in the beginning with a weak bounding
cochain b, L0 = L to be any Lagrangian submanifold with potential WL = λ, and δ = m2

1, then
the above two equations coincide. In other words, the Floer complex (CF ∗((L, b), L),m1) gives a
matrix factorization of W . Here it is essential that we consider the formal deformation parameter b
as variables of W to interpret the Floer complex as a matrix factorization.

We prove that this definition extends to an A∞-functor from the Fukaya A∞-category of unob-
structed Lagrangians to the dg category of matrix factorizations of W . The proof employs the A∞
equations of the Fukaya category. Our functor is similar to the Hom functor in Yoneda embedding,
with the additional input of weak unobstructedness.

We use this approach to prove that our functor is an equivalence for X = P1
a,b,c, and thus

obtain homological mirror symmetry (Theorem 1.5). An important step is to compute the matrix
factorization mirror to the Seidel Lagrangian. A priori the mirror matrix factorization takes a rather
complicated form. By doing a non-trivial change of coordinates (Section 7.5), we can make it into
the following very nice form.

Theorem 1.11 (see Corollary 7.13). The Seidel Lagrangian L̄ is transformed to the following matrix
factorization under the localized mirror functor LML:

(1.1)
(∧∗

〈X,Y, Z〉, xX ∧ (·) + yY ∧ (·) + zZ ∧ (·) + wx ιX + wy ιY + wz ιZ

)
where wx, wy, wz are certain series in x, y, z satisfying xwx + ywy + zwz = W .

Employing a result by Dyckerhoff [Dyc11], it follows that the above matrix factoriztaion split-
generates the derived category of matrix factorizations.

Let us mention some related works. There was also a brilliant approach which directly compares
the Fukaya category and its mirror category of matrix factorizations for CP 1 by Chan and Leung
[CL12], which were generalized to the case of CP 1 ×CP 1 in [CHL12]. However it is rather difficult
to generalize this approach, since Lagrangian Floer differentials may not have coefficients which are
analytic in mirror variables in general.

Remark 1.12. For Lagrangian torus fibrations, Kontsevich-Soibelman [KS01] has made an attempt
to build up a bridge between SYZ and homological mirror symmetry. There is also an approach using
Fourier-Mukai transforms to define mirror functors, which was studied by Tu [Tu15] who applied it
to toric varieties. After the publication of this paper as an arXiv preprint, Abouzaid [Aboa] used
family Floer theory to construct a functor. However, in the presence of singular fibers in the interior
of the base of a Lagrangian torus fibration, one has to carry out order-by-order quantum corrections
to the constructions. How to construct the mirror in the presence of order-by-order corrections is
still an open question.
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1.3. Enumerative meaning of mirror maps. The mirror map is a central object in mirror
symmetry. It matches the flat coordinates on the Kähler moduli and the mirror complex moduli
and is essential in the computation of Gromov-Witten invariants using mirror symmetry. It arises
from the classical study of deformation of complex structures and Hodge structures and can be
computed explicitly by solving Picard-Fuchs equations.

Integrality of the coefficients of mirror maps has been studied [Zud02, LY98, KR10]. Conjecturally
these integers should have enumerative meanings in terms of disc counting. In the tropical setting
of toric degenerations a conjecture of this type was made in the foundational work of Gross-Siebert
[GS11].

In the compact semi-Fano toric case and toric Calabi-Yau case, the mirror map was shown to be
equal to the SYZ map [CLT13, CLLT12, CCLT]. Since the SYZ map is written in terms of disc
invariants, this gives an enumerative meaning of the mirror map. However for compact Calabi-Yau
manifolds the problem is much more difficult: to the authors’ knowledge the precise enumerative
meaning of mirror map in terms of open Gromov-Witten invariants was not known before even
conjecturally. (Gross-Siebert [GS11] has a precise conjecture in terms of tropical geometry.)

In this paper, we constructs a Landau-Ginzburg model W for a Kähler manifold X by the use of
a Lagrangian immersion L ⊂ X. W is counting polygons weighted by their areas and hence depends
on the Kähler structure ω of X. As a result, we have a map from the Kähler moduli to the complex
moduli of the Landau-Ginzburg model W . We call this the generalized SYZ map (see Definition
3.5).

We prove that the mirror map exactly coincides with our generalized SYZ map in the case of
the elliptic curve quotient P1

3,3,3 = E/(Z/3) (Theorem 1.6), where E = {x3 + y3 + z3 = 0}. Thus

we obtain an enumerative meaning of the mirror map of elliptic curves (which are mirror to the
covering elliptic curve E).

In this case the generalized SYZ mirror takes the form (after change of coordainates) W =

(x3 + y3 + z3) − ψ(q)
φ(q)xyz where φ(q) and ψ(q) are generating series counting triangles bounded by

the union of three circles with vertices at x, x, x and at x, y, z respectively. These generating series
are computed explicitly in Section 6 (note that their coefficients have signs which requires careful
treatments).

On the other side, let πA(q̌) and πB(q̌) be the periods of the elliptic curve E which satisfy the
Picard-Fuchs equation

u′′(q̌) +
3q̌2

q̌3 + 27
u′(q̌) +

q̌

q̌3 + 27
u(q̌) = 0.

The inverse series of q(q̌) = πB(q̌)/πA(q̌) is what we refer to as the mirror map, and it can be
explicitly written as q̌ = −3a(q), where

a(q) = 1 +
1

3

(
η(q)

η(q9)

)3

= 1 +
1

3
q−1

( ∏∞
k=1(1− qk)∏∞
k=1(1− q9k)

)3

.

We verify that the above series equals to ψ(q)
φ(q) . Thus the mirror map has an enumerative meaning

of counting (holomorphic) triangles. We conjecture that the equality between mirror map and
generalized SYZ map continues to hold for Fermat hypersurfaces in all dimensions (Conjecture 8.1),
and this would give an enumerative meaning of mirror maps of Fermat hypersurfaces.

The organization of this paper is as follows. Section 2 algebraically constructs the A∞-functor
from the Fukaya category to the category of matrix factorizations and hence proves Theorem 1.2
algebraically. Section 3 and 4 formulate the generalized SYZ construction by employing immersed
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Lagrangian Floer theory of Akaho-Joyce [AJ10], and define the A∞-functor more geometrically. Our
construction is applied to a finite-group quotient in Section 5. Section 6 and 7 apply our general
construction to elliptic curves and P1

a,b,c, in which Theorem 1.6 and 1.5 are proved. Section 8 is
speculative in nature: we apply our construction to Fermat hypersurfaces and brings out more
discussions and questions for future research.
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2. Algebraic construction of localized mirror functor

The formalism of localized mirror functor can be understood purely algebraically, which will be
explained in this section. We first recall algebraic notions of filtered A∞-category, weak bounding
cochains, and potentials of weakly unobstructed objects. Filtered A∞-subcategory of weakly unob-
structed objects can be decomposed into A∞-subcategories depending on the value of their poten-
tials. Then we propose a setting, in which we construct a filtered A∞-functor from A∞-subcategory
of a given value to a dg-category of matrix factorization.

In geometric situations, Fukaya category is a filtered A∞-category, and this algebraic construction
gives a localized mirror functor between a Fukaya sub-category (of a given potential value) to the
associated category of matrix factorization. It is rather amazing that the entire construction of such
a mirror functor comes from the structure maps of the filtered A∞-category itself. This provides a
geometric (and explicit) construction of (localized) homological mirror functor .

Our localized mirror functor may be understood as certain kind of Hom functor (see Section 2.2).
Recall that given an A∞-category C, an object c induces a so-called Hom functor from C to the dg
category of chain complexes, which is used to construct the Yoneda embedding. Yoneda embedding
provides a way to find differential graded (dg) category which is homotopy equivalent to C. The
construction of the mirror functor is similar to the Hom functor of Yoneda embedding.

2.1. Filtered A∞-category and weak bounding cochains. Let us recall the definition of filtered
A∞-algebra and filtered A∞-category and relevant notions from [Fuk02], [FOOO09].

Definition 2.1. The Novikov ring Λ0 is defined as

Λ0 =


∞∑
j=1

ajT
λj

∣∣∣∣∣∣ aj ∈ C, λj ∈ R≥0, lim
j→∞

λj =∞


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The universal Novikov field Λ is defined as a field of fractions Λ = Λ0[T−1]. We define a filtration
F ·Λ on Λ such that for each λ ∈ R, F λΛ consists of elements

∑∞
j=1 ajT

λj with λj ≥ λ for all j.

We denote by F+Λ the set of elements
∑∞

j=1 ajT
λj with λj > 0 for all j.

Definition 2.2. A filtered A∞-category C consists of a collection Ob(C) of objects, Z-graded torsion-
free filtered Λ0 module C(A1, A2) for each pair of objects A1, A2 ∈ Ob(C), and the operations

(2.1) mk : C[1](A0, A1)⊗ · · · ⊗ C[1](Ak−1, Ak)→ C[1](A0, Ak)

of degree 1 for k = 0, 1, · · · and Ai ∈ Ob(C). Here mk is assumed to respect the filtration, and they
are assumed to satisfy A∞-equations: For xi ∈ C[1](Ai−1, Ai) for i = 1, · · ·n, we have

(2.2)
∑

n1+n2=n+1

n1∑
i=1

(−1)ε1mn1(x1, · · · , xi−1,mn2(xi, · · · , xi+n2−1), xi+n2 , · · · , xn) = 0

where ε1 =
∑i−1

j=1(|xj |+ 1).

Remark 2.3. We may use Z2-grading instead of Z-grading in the above definition, which is the
case when we consider non-Calabi-Yau geometries.

Definition 2.4. A filtered A∞-category with one object is called a filtered A∞-algebra.

We denote by |x| the degree of x, and by |x|′ the shifted degree of x, with |x|′ = |x| − 1.

Definition 2.5. A filtered differential graded category C is a filtered A∞-category with vanishing
m≥3 and m0.

The sign convention for A∞-categories is different from the standard one for differential graded
category, and one can define differential d and composition ◦ as

(2.3) d(x) = (−1)|x|m1(x), x2 ◦ x1 = (−1)|x1|(|x2|+1)m2(x1, x2).

to recover the standard convention of dg-category.

We now explain (weak) bounding cochains (from [FOOO09]) defined for a single object in a
filtered A∞-category.

Definition 2.6. An element eA ∈ C0(A,A) for A ∈ Ob(C) is called a unit if m2(eA, x1) = x1,

m2(x2, eA) = (−1)|x2|x2 for x1 ∈ C(A,A1), x2 ∈ C(A1, A), and if mk+l+1(x1, · · · , xl, eA, y1, · · · , yk) =
0 hold for k + l 6= 1.

For A ∈ Ob(C), we define

BC[1](A) =

∞⊕
k=1

BkC[1](A) =

∞⊕
k=1

C[1](A,A)⊗k

As usual, mk defines a coderivation d̂k : BC[1] → BC[1]. Filtration on Λ induces a filtration on

C[1](A,A), and also on BC[1](A). Let us denote its completion by B̂C[1], and d̂k extends to B̂C[1].

We denote d̂ =
∑∞

k=0 d̂k.

Definition 2.7. An element b ∈ F+C1(A,A) is called a bounding cochain (Maurer-Cartan element)

if d̂(eb) = 0 where we denote bk = b⊗ · · · ⊗ b ∈ BkC[1](A) and

(2.4) eb := 1 + b+ b2 + b3 + · · · ∈ B̂C(A,A).

We denote by M̃(A) the set of all bounding cochains of A.
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Remark 2.8. The condition of filtration b ∈ F+C1(A,A) is given to ensure the convergence of the
infinite sum (2.4). One can consider b ∈ F 0C1(A,A) if convergence can be ensured. One simplest

example is b = 0, where 0 is a bounding cochain if m0 = 0 since d̂(e0) = m0 for some object
A ∈ Ob(C). In the toric case, the filtration zero part was interpreted as holonomy contribution of
the associated complex line bundle to overcome this issue ([Cho08],[FOOO10b]).

Bounding cochains are introduced to deform the given A∞-algebra or A∞-category.

Theorem 2.9 (Proposition 1.20 [Fuk02]). Given a filtered A∞-category C, we can define another
filtered A∞-category C′ as follows.

Ob(C′) =
⋃

A∈Ob(C)

{A} × M̃(A),

C′((A1, b1), (A2, b2)) = C(A1, A2)

with the operations mb0,··· ,bk
k : C[1](A0, A1)⊗ · · · ⊗ C[1](Ak−1, Ak)→ C[1](A0, Ak):

mb0,··· ,bk
k :=

∑
l0,··· ,lk

mk+l0+···+lk(bl00 , x1, b
l1
1 , · · · , b

lk−1

k−1 , xk, b
lk
k ).

In [FOOO09], Fukaya, Oh, Ohta and Ono constructed filtered A∞-algebras from Lagrangian
submanifolds, which has m0 6= 0 in general. If an A∞-algebra has a bounding cochain b, then
the deformed A∞-algebra {mb

k} has vanishing mb
0, and hence Lagrangian Floer cohomology can be

defined since (mb
1)2 = 0.

More generally we consider the notion of a weak bounding cochain, which can be used for the
deformation as in Theorem 2.9.

Definition 2.10. An element b ∈ F+C1(A,A) is called a weak bounding cochain if d̂(eb) is a
multiple of unit e. i.e.

d̂(eb) = PO(A, b) · e, for some PO(A, b) ∈ Λ.

We denote by M̃wk(A) the set of all weak bounding cochains of A. The coefficient PO(A, b) is
a function on the set of all weak bounding cochains b called the potential. PO(A, b) may also be
denoted as W (b) later in this paper.

In geometric applications, PO(A, b) is the superpotential of a Landau-Ginzburg mirror. For
instance given a compact toric manifold, A is taken to be a Lagrangian torus fiber, and PO(A, b) is
written in terms of one point open Gromov-Witten invariants of the fiber A. It has been shown that
in the nef case PO(A, b) equals to the Givental-Hori-Vafa superpotential under the mirror map (see
[CO06] for the Fano case, [FOOO09] for defining PO(A, b) for the general case, and [CL13, CLLT12]
for the nef case). In our paper, A will be taken to be an immersed Lagrangian and PO(A, b) counts
J-holomorphic polygons whose corners are specified by b’s.

Now we introduce A∞-subcategories of a fixed potential value in the Novikov ring. Consider
two objects (A0, b0), (A1, b1) in the filtered category C′ of Theorem 2.9, where b0 and b1 are weak
bounding cochains. One of the associated A∞-equations is

(mb0,b1
1 )2(x) +m2(m(eb0), x) + (−1)|x|

′
m2(x,m(eb1)) = 0.

Note that if PO(A1, b0) = PO(A2, b1), then the latter two terms cancel out from the definition of a

unit. This shows that we have (mb0,b1
1 )2(x) = 0 if and only if PO(A1, b0) = PO(A2, b1).



LOCALIZED MIRROR FUNCTOR AND HMS FOR P1
a,b,c 13

Definition 2.11. A full filtered A∞-subcategory C′λ of C′ for λ ∈ Λ is defined by setting

Ob(C′λ) = {(A, b) ∈ Ob(C′) | b is a weak bounding cochain and PO(A, b) = λ}.
For any two objects in C′λ, m1 gives a differential on morphisms between them. A∞-subcategory of
unobstructed objects is C′0.

2.2. Hom functor. We briefly review the notion of Hom functor in Yoneda embedding for A∞-
category following [Fuk02]. In general, for an ordinary category K and an object K ∈ K, Hom(K, ·)
defines a functor from K to the category of sets. For an A∞-category C and an object A ∈ Ob(C),
Fukaya defined a hom functor Hom(A, ·) so that it is A∞-functor from the category C to the dg
category of chain complexes.

First recall the notion of an A∞-functor. We put

BkC[1](A,B) =
⊕

A=A0,A1,··· ,Ak−1,Ak=B

C[1](A0, A1)⊗ · · · ⊗ C[1](Ak−1, Ak).

BC[1](A,B) =
∞⊕
k=1

BkC[1](A,B), BC[1] =
⊕
A,B

BC[1](A,B).

The A∞-operation mk also induces coderivations d̂k on BC[1], and also on its completion B̂C[1].

The system of A∞-equations (2.2) can be written as a single equation: d̂ ◦ d̂ = 0.

Definition 2.12. Let C1, C2 be A∞-categories. An A∞-functor F : C1 → C2 is a collection of
Fk, k ∈ Z≥0 such that F0 : Ob(C1) → Ob(C2) is a map between objects, and for A1, A2 ∈ Ob(C1),
Fk(A1, A2) : BkC1(A1, A2) → C2[1](F0(A1),F0(A2)) is a homomorphism of degree 0. The induced

coalgebra homomorphism F̂k : BC1[1]→ BC2[1] is required to be a chain map with respect to d̂ where

F̂k(x1 ⊗ · · · ⊗ xk) is given by∑
m

∑
0=l1<l2<···<lm=k

Fl2−l1−1(xl1+1 ⊗ · · · ⊗ xl2)⊗ · · · ⊗ Flm−lm−1−1(xlm−1+1 ⊗ · · · ⊗ xlm).

Let us recall the dg category of chain complexes CH (see Proposition 7.7 of [Fuk02]).

Definition 2.13. The set of objects Ob(CH) is the set of all chain complexes of free Λ-modules.
For (C, d), (C ′, d′) ∈ Ob(CH),

CHk((C, d), (C ′, d′)) =
⊕
l

HomΛ(C l, C ′l+k).

We define

m1(x) = d′ ◦ x− (−1)|x|x ◦ d
m2(x, y) = (−1)|x|(|y|+1)y ◦ x

and put mk = 0 for k ≥ 3. This defines a dg category (as a special case of A∞-category).

We introduce the following notations: set x = x1 ⊗ · · · ⊗ xk, and

|x| =
∑
j

|xj |, |x|′ = |x| − k.

Moreover, if ∆ : BC → BC ⊗BC is defined by

∆(x) =

k∑
i=0

(x1 ⊗ · · · ⊗ xi)⊗ (xi+1 ⊗ · · · ⊗ xk),
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then we write

∆m−1(x) =
∑
a

x(1)
a ⊗ · · ·x(m)

a ,

with ∆m−1 = (∆⊗ 1⊗ · · · ⊗ 1) ◦ · · · ◦ (∆⊗ 1⊗ 1) ◦ (∆⊗ 1) ◦∆. In this notation the A∞-equation
can be written as ∑

a

(−1)|x
(1)
a |′m(x(1)

a ,m(x(2)
a ),x(3)

a ) = 0.

Now we recall the notion of Hom functor for A∞-categories. The following setup is slightly
different from that of Definition 7.16 [Fuk02] (see Remark 2.15 below).

Definition 2.14. For A ∈ Ob(C), the A∞ functor

FA = Hom(A, ·) : C → CH

is defined as follows. FA0 is a map between objects: for B ∈ Ob(C),

FA0 (B) = (C(A,B),m1).

FAk (x1, · · · , xk) is a morphism between chain complexes defined as

FAk (x1, · · · , xk)(y) = (−1)ε2mk+1(y, x1, · · · , xk)

where y ∈ C(A,B), B1 = B,B2, · · · , Bk+1 ∈ Ob(C), xi ∈ C(Bi, Bi+1) and ε2 = |y|′|x|′.

Remark 2.15. There are similar functors C → CHo, Co → CH or Co → CHo. The above definition
matches our purpose of defining the mirror functor. In [Fuk02], FAk (x)(y) = ±mk+1(y,xo) for
xo = xk ⊗ · · · ⊗ x1 which is different from the above.

FA0 associates an object B of C with a chain complex (C(A,B),m1), and for x1 ∈ C(B1, B2),
FA1 (x1) defines a homomorphism between two chain complexes C(A,B1)→ C(A,B2), which is given
by multiplication with x1 from the right: ±m2(·, x1). Now the category C can have non-zero mk’s
for k ≥ 3, while for the category CH mk = 0 for k ≥ 3. One can check that FA is an A∞-functor
from the A∞-equations of C. It is similar to the proof of Theorem 2.19 below that the localized
mirror functor is an A∞-functor.

2.3. Localized mirror functor. We first recall the notion of a matrix factorization.

Definition 2.16. Let O be the polynomial algebra Λ[x1, · · · , xm].3 The dg category MF(W ) of
matrix factorizations of W is defined as follows. An object of MF(W ) is a Z/2-graded finite-
dimensional free O-module P = P 0 ⊕ P 1 with an odd-degree O-linear endomorphism d : P → P
such that d2 = W ·IdP . A morphism from (P, dP ) to (Q, dQ) is given by an O-module homomorphism
f : P → Q. The category MF(W ) is a differential Z/2-graded category with a differential defined
on the space of morphisms from (P, dP ) to (Q, dQ), by

d · f = dQ ◦ f + (−1)deg(f)f ◦ dP ,

and composition between morphisms is defined as usual.

To define a functor to the above category of matrix factorizations, consider the following algebraic
setup.

3When W is a series instead of a polynomial, we need to use a suitable completion Λ[[x1, · · · , xm]] of Λ[x1, · · · , xm]
instead which includes W as an element. For the moment, let’s assume W to be a polynomial over Λ. (The definitions
can be easily generalized to the setting when W is a Laurent polynomial or series.)
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Setup 2.17. Let C be a filtered A∞-category. Assume that we have a weakly unobstructed object
A ∈ Ob(C), with finitely many {b1, · · · , bm} weak bounding cochains such that all linear combinations
b =

∑
j xjbj for (x1, · · · , xm) ∈ (Λ0)m are weak bounding cochains. From this, we may regard

potential PO(A, b) as a function

W = POA : (Λ0)m → Λ0.

Our localized mirror functor is defined below under Setup 2.17. Consider λ ∈ Λ and full A∞-
subcategory C′λ from Definition 2.14 and Theorem 2.9. For simplicity, we take λ = 0, C0 is the full
A∞-subcategory of all unobstructed objects. For notational convenience, we further assume that
any unobstructed object (L, b), has b = 0. The general case when λ 6= 0 is entirely analogous and is
stated in Theorem 2.20.

We will construct an A∞-functor from the A∞-category C0 to the dg category of matrix factor-
izations MF(W ) for the potential W = POA. This mirror functor is given by the hom functor

Hom((A, b), ·) of the deformed A∞-category C′. The deformed A∞-operations {mb,0,··· ,0
k }∞k=0 defined

in Theorem 2.9 play a crucial role.

Definition 2.18. Define an A∞-functor F (A,b) from the A∞-category C0 to the dg category of matrix
factorizations MF(PO(A, b)) by the following:

(1) F (A,b)
0 sends an object B to the matrix factorization (C((A, b), B),mb,0

1 ).

(2) F (A,b)
1 (x1) is defined by

(−1)ε2mb,0,0
2 (·, x1) : (C((A, b), B1),m1)→ (C((A, b), B2),m1)

for x1 ∈ C(B1, B2) (see Definition 2.14 for the notation ε2).

(3) F (A,b)
k (x1, · · · , xk) is defined by

(2.5) F (A,b)
k (x1, · · · , xk)(y) = (−1)ε2mb,0,··· ,0

k+1 (y, x1, · · · , xk).

where y ∈ C((A, b), B), B1 = B,B2, · · · , Bk+1 ∈ Ob(C), xi ∈ C(Bi, Bi+1).

Theorem 2.19. The collection of maps {F (A,b)
∗ } defines an A∞-functor.

Proof. We first show that (C((A, b), B),mb,0
1 ) is a matrix factorization. Note that (A, b) is weakly

unobstructed with a potential mb
0,A = PO(A, b) · e, and B ∈ Ob(Cm0=0) is unobstructed with

m0
0,B = 0. Hence by the filtered A∞-(bimodule) equation for mb,0

1 , we have

(2.6) mb,0
1 ◦m

b,0
1 (x) +mb,0

2 (mb
0,A, x) + (−1)deg

′xmb,0
2 (x,m0

0,B) = 0.

mb,0
1 ◦m

b,0
1 (x) = −mb,0

2 (mb
0,A, x) = −W · x.

Unraveling the sign convention (2.3), if we set d(x) = (−1)|x|mb,0
1 (x), then

d2(x) = d(d(x)) = (−1)|x|(−1)|x|+1mb,0
1 ◦m

b,0
1 (x) = −(−W · x) = W · x

(2) is a part of (3), and hence we prove that F (A,b)
k defined in Equation (2.5) gives an A∞-functor.

The A∞-functor equation can be written as follows since MF is dg category and hence m≥3=0:

(2.7)
∑
a

(−1)|x
(1)
a |′F (A,b)(x(1)

a ,m(x(2)
a ),x(3)

a )(y) =

(2.8)
∑
c

mb,0,0
2 (F (A,b)(x(1)

c ),F (A,b)(x(2)
c ))(y)
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(2.9) +mb,0
1 ◦ F

(A,b)(x)(y) + (−1)|x|
′F (A,b)(x) ◦mb,0

1 (y)

The first term can be identified with the following from the definition of F .

(2.10)
∑
a

(−1)(|y|′)(|x|′+1)(−1)|x
(1)
a |′mb,0,··· ,0

k+1 (y,x(1)
a ,m(x(2)

a ),x(3)
a ).

The additional sign appears when we move y to the front. The second term (2.8) can be written as

(2.11)
∑
c

(−1)|x
(1)
c |(|x

(2)
c |+1)F (A,b)(x(2)

c ) ◦ F (A,b)(x(1)
c )(y)

=
∑

c(−1)|x
(1)
c |(|x

(2)
c |+1)F (A,b)(x

(2)
c )((−1)ε3mb,0,·,0(y,x

(1)
c ))

=
∑

c

∑
c(−1)|x

(1)
c |(|x

(2)
c |+1)(−1)ε3(−1)ε4mb,0,··· ,0(mb,0,·,0(y,x

(1)
c ),x

(2)
c

)
where ε3 = |y|′|x(1)

c |′ and ε4 = (|y|′ + |x(1)
c |′ + 1)|x(2)

c |.
Since

ε3 + ε4 = |y|′|x|′ + (|x(1)
c |′ + 1)|x(2)

c |′ = |y|′|x|′ + |x(1)
c |′(|x(2)

c |′ + 1)

the second term (2.8) is

(2.12) (−1)|y|
′|x|′mb,0,··· ,0(mb,0,·,0(y,x(1)

c ),x(2)
c

)
The third term (2.9) equals

(2.13) (−1)|y|
′|x|′mb,0

1 mb,0,··· ,0
k+1 (y,x) + (−1)|x|

′
(−1)(|y|′+1)|x|′mb,0,··· ,0

k+1 (mb,0
1 (y),x))

Hence we get

(2.14) (−1)|y|
′|x|′(mb,0

1 mb,0,··· ,0
k+1 (y,x) +mb,0,··· ,0

k+1 (mb,0
1 (y),x)

)
.

Sum of the expressions (2.10), (2.12), (2.14) forms the A∞-equation for (y,x) after we divide by the

common sign (−1)|y|
′|x|′ . This proves that F (A,b) is an A∞-functor. �

Let’s consider the first few equations of an A∞-functor. The first equation is given in Equation
(2.6). The second equation is

mb,0
1 mb,0,0

2 (y, x) +mb,0,0
2 (mb,0

1 (y), x) + (−1)|y|
′
mb

2(y,m1(x)) +mb,b,0,0
3 (mb

0, y,m1) = 0

and the last term disappears if A is weakly unobstructed, and the third term disappears if m1(x) = 0,

in which case mb,0,0
2 (·, x) is a chain map of the matrix factorization given by mb,0

1 .

The general statement for arbitrary λ ∈ Λ is stated below and can be proved similarly.

Theorem 2.20. For each λ ∈ Λ, we have an A∞-functor

F (A,b) : C′λ →MF(PO(A, b)− λ)

defined below:

(1) F (A,b)
0 sends an object (B, b1) to a matrix factorization (C((A, b), (B, b1)),mb,b1

1 ).

(2) F (A,b)
1 (x1) is a morphism of MF-category defined by (−1)ε2mb,b1,b2

2 (·, x1)

(C((A, b), (B1, b1)),m1) 7→ (C((A, b), (B2, b2)),m1),

for x1 ∈ C((B1, b1), (B2, b2)).
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(3) F (A,b)
k (x1, · · · , xk) is a morphism of MF-category defined as

(2.15) F (A,b)
k (x1, · · · , xk)(y) = (−1)ε2m

b,b1,··· ,bk+1

k+1 (y, x1, · · · , xk).

where y ∈ C((A, b), (B, b1)), and

(B, b1) = (B1, b1), · · · , (Bk+1, bk+1) ∈ Ob(C′λ), xi ∈ C((Bi, bi), (Bi+1, bi+1)).

3. Immersed Lagrangian Floer theory and generalized SYZ construction

In this section we explain what we call “generalized SYZ” which employs Lagrangian immersions
instead of tori to construct the mirror geometry. The main tool is the Lagrangian Floer theory for
immersed Lagrangians developed by Akaho-Joyce [AJ10], which is parallel to the Floer theory for
smooth Lagrangians developed by Fukaya-Oh-Ohta-Ono [FOOO09]. Seidel [Sei11] and Sheridan’s
work [She15] can also be used to develop such a theory. The actual computations in Section 6 and
7 will be carried out using Seidel’s setting.

Let (M,ω, J) be a Kähler manifold with complex structure J and symplectic structure ω, and
(L, ι) be a Lagrangian immersion into M , that is an immersion ι : L→M with ι∗ω = 0, which does
not intersect with any orbifold point. Denote its image by L̄, and by abuse of notations sometimes
the immersion ι : L → M is referred either as L or L̄. We assume that all self-intersections of ι
are transversal double points, which will be enough for our purpose in this paper. The theory has
a natural generalization to Lagrangian immersions with clean self-intersections. The manifold L is
assumed to be oriented and spin.

3.1. The space of Lagrangian deformations. For a smooth compact Lagrangian submanifold L,
its Lagrangian deformations (up to equivalence by Hamiltonian diffeomorphisms) are parametrized
by H1(L). More generally, cochains of L give formal deformations of L by deforming its associated
A∞-operations.

For L̄ being an immersed Lagrangian, we need to consider the extra deformation directions
brought by Lagrangian smoothings of the immersed points of L. Note that each immersed point of
L give two independent ways of Lagrangian smoothings. These smoothings is classically known, see
for instance Thomas-Yau [TY02].

To be more precise, consider the fiber product L ×ι L := {(p, q) ∈ L × L : ι(p) = ι(q)} which
consists of several connected components, one of them being the diagonal {(p, p) ∈ L×L} ∼= L. Let
R be a set of labels of the connected components, and suppose 0 ∈ R labels the diagonal. Other than
0 ∈ R, elements in R can be identified as ordered pairs (p−, p+) ∈ L×L such that ι(p−) = ι(p+) = p
and p− 6= p+. Denote by σ the involution on R sending 0 to 0, (p−, p+) to (p+, p−). We will
sometimes denote σ(r) by r̄.

Elements in R other than 0 are referred as immersed sectors (in analog to twisted sectors in
orbifold cohomology theory developed by Chen-Ruan [CR02]).

By [FOOO09], cochains of L×ιL give formal boundary deformations of the immersed Lagrangian
L̄. To make an explicit choice of independent directions of formal deformations, we can fix a finite
set of cycles {Φk}Nk=0 in L (with pure degrees) which forms a basis of H∗(L) when descending to

cohomology. Let Φ0 be L itself. Let {Φk}Nk=0 be cycles which form the dual basis when descending
to cohomology using Poincaré duality of L. Then define

H := SpanC{Φk : k = 0, . . . , N} ⊕ SpanC(R− {0}) ∼= H∗(L×ι L)

which is a finite-dimensional complex vector space. In Section 3.3 we will study obstructions to the
deformations of L̄ and restrict to a smaller subspace V ⊂ H.
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3.2. Review on immersed Lagrangian Floer theory. Akaho and Joyce [AJ10] defined a fil-
tered A∞-algebra of a Lagrangian immersion L̄, which is in principle similar to the construction
of [FOOO09] for Lagrangian submanifolds. As discusses in the last section, each self intersection
point of L̄ gives two immersed sectors. A motivating case is a family of Lagrangian submanifolds
L1, · · · , Lk which intersect each other transversely, and three of them do not have a common inter-
section. Then the A∞ algebra of the immersion ι : tki=1Li → M can be defined from the Fukaya
category with objects {L1, · · · , Lk} in an obvious way. Each intersection point p ∈ Li∩Lj contributes
two non-zero elements in CF (Li, Lj) and CF (Lj , Li) respectively.

3.2.1. Moduli spaces of holomorphic discs. Fix k ∈ Z≥0 and β ∈ H2(X, L̄). We consider the moduli
space of stable discs with k+ 1 boundary marked points representing β. Since the boundary data L̄
is now immersed, there are additional topological data for a disc that we need to fix in order to have
a connected moduli space. Namely, whether a boundary marked point of the disc is a corner, and if
it is, which immersed sector it passes through. Such data is specified by a map α : {0, . . . , k} → R.
The i-th marked point is not a corner if and only if α(i) = 0 ∈ R. Otherwise it is a corner passing
through the immersed sector α(i).

Then we have a connected moduli space Mk+1(α, β) of stable discs associated to each (k, α, β).4

An element in Mk+1(α, β) is a stable map u : (Σ, ∂Σ) → (M, ι(L)) (more precisely an equivalence
class of stable maps) from a genus 0 (prestable) bordered Riemann surface Σ with mutually distinct
marked points z0, · · · , zk ∈ ∂Σ that are not nodes. Write ~z = (z0, · · · , zk). This is an straightforward
generalization from the case when ι is an embedding, with the following additional condition coming
from α: for all i with α(i) 6= 0 ∈ R,(

lim
z↑zi

u(z), lim
z↓zi

u(z)

)
= α(i) ∈ R

where the limit is taken over z ∈ ∂Σ where z ↑ zi means z approaches zi in the positive orientation
of ∂Σ. Since z 6= zi is sufficiently closed to zi, u(z) is not an immersed point of L̄ and can be
identified as an element in L. Thus the above limits are taken in L.

Define the evaluation maps evi :Mk+1(α, β)→ L×ι L by

evi ([u, ~z]) =

{
(u(zi), u(zi)) ∈ L, α(i) = 0 ∈ R
α(i) ∈ R, α(i) 6= 0 ∈ R

for i = 0, · · · , k. For i = 0 (the output marked point), we also consider the ‘twisted’ evaluation map
ev = σ ◦ ev0 :Mk+1(α, β)→ L×ι L, where σ : L×ι L→ L×ι L sends (p−, p+) to (p+, p−):

ev ([u, ~z]) =

{
(u(z0), u(z0)) ∈ L, α(0) = 0 ∈ R
σ ◦ α(0) ∈ R, α(0) 6= 0 ∈ R.

3.2.2. Maslov index and dimension formula. It is well-known in Lagrangian Floer theory that the
virtual dimensions of moduli spaces are written in terms of Maslov indices of disc classes. Here we
recall the explicit formula in our setting. For the moment we allow the self-intersections to be clean,
which is a little bit more general than requiring them to be transverse.

First recall the Maslov index of a J-holomorphic polygon. Let L0, L1 be two oriented Lagrangian
submanifolds which intersect cleanly. For p ∈ L0 ∩ L1, we consider a smooth Lagrangian path
λp0,p1 such that λp0,p1(0) = TpL0, λp0,p1(1) = TpL1. Without loss of generality we may assume that
λp0,p1(t) always contain Tp(L0 ∩ L1) for all t.

4This is denoted asMmain
k+1 (α, β, J) in the paper of Akaho-Joyce, where J is the almost complex structure we have

fixed from the very beginning.
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For such a path, one can associate an index µ(λp0,p1) as follows. Concatenate λp0,p1 with a
positive-definite path from L1 to L0 (this path do not concern orientations of Li’s) to obtain a loop
of Lagrangian subspaces in TpX, and denote the standard Maslov index of this loop by µ(λp0,p1).
In [FOOO09], it was shown that this index is related to the Fredholm index of the Cauchy-Riemann
operator on a half-infinite strip with Lagrangian boundary condition given by µ(λp0,p1). Note that
the parity of µ(λp0,p1) is independent of the chosen path λp0,p1 : a different choice of λp0,p1 results in
an even-integer difference in µ(λp0,p1) due to orientation. One can invert the path λp0,p1 to obtain
λp1,p0 from TpL1 to TpL0, and the Maslov indices are related by µ(λp0,p1) + µ(λp1,p0) = n, as the
concatenation of a positive-definite path contributes n to the Maslov index. In particular,

Lemma 3.1. If the Lagrangian path λp0,p1 is homotopic to the positive-definite path from L0 to L1,
then µ(λp0,p1) = n.

If Li’s for i = 0, 1 are graded, then there is a canonical choice of a path λp0,p1 (up to homotopy)
at an intersection point p. The Maslov index of this path is independent of the choice of p within
the same connected component. Thus each component of intersections is associated with a Maslov
index.

For a Lagrangian immersion L̄, the above notion of Maslov index applies by taking L0, L1 to
be the two local branches at a self-intersection point p of L̄. Now consider a holomorphic disc
u : (∆, ∂∆) → (X, L̄) bounded by L̄ with k + 1 boundary marked points as in Section 3.2.1. Let
β ∈ H2(X, L̄) be the relative homology class of u, and α : {0, . . . , k} → R be a specification of
turnings of the boundary marked points. Consider the pull-back bundle u∗TX and its trivialization
over ∆. Lagrangian sub-bundles pulled back along ∂∆ can be connected via choices of paths λα(i) for
i = 0, · · · , k (λα(i) can be chosen to be a constant path when α(i) = 0). Let us denote the resulting

Lagrangian loop by λβ, which also depends on choices λLiLi+1 . The difference µ(λβ)−
∑k

i=0 µ(λα(i))
depends only on β and α (rather than the choice of paths λα(i)), and is denoted as µ(α, β).

Lemma 3.2. If all self-intersections of L̄ are transversal, the virtual dimension of Mk+1(α, β) is
given by

µ(α, β) + n+
k∑
i=0

(1− codim(α(i)))− 3

where codim(r) = 0 if r = 0 ∈ R, and codim(r) = n if r 6= 0 ∈ R.

The formula reads the same in the case of clean self-intersections, where codim(r) is the codi-
mension of the self-intersection component labelled by r ∈ R.

3.3. Weakly unobstructedness and the disc potential. Given an oriented spin immersed La-
grangian L̄, the moduli spaceMk+1(α, β) associated to each disc class β and specification of turnings
α : {0, . . . , k} → R at k + 1 marked points has a compact oriented Kuranishi structure by the work
of Akaho-Joyce [AJ10]. They used these to define a filtered A∞-algebra A = C∗(L×ι L) of L̄, and
we refer the readers to [AJ10] for more details.

The A∞ structure {mk : A⊗k → A : k ≥ 0} is, roughly speaking, defined by counting holomorphic
polygons with one output marked point and k input marked points. Recall that in Section 3.1 we
have chosen a finite-dimensional subspace H ⊂ A spanned by a finite set of cocycles which descend
to be a basis in the cohomology level.

The fundamental class eL of L (where ι : L→ L̄ is the Lagrangian immersion) serves as a unit of

the A∞-algebra. As in the algebraic setting of Section 2, we consider the set M̃wk of weak bounding
cocycles b ∈ H.
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Definition 3.3. b ∈ H is called to be a weak bounding cocyle if it satisfies

(3.1) m(eb) =
∞∑
k=0

mk(b, . . . , b) = W (b) · eL.

The above equation is called the Maurer-Cartan equation for weak bounding cocycles.

We make the following setup (see Setup 2.17 in the algebraic setting).

Setup 3.4. Take a finite dimensional vector space V ⊂ M̃wk over the Novikov field Λ0. Namely,
consider finitely many linearly independent weak bounding cocycles b1, · · · , bm such that all the linear
combinations b =

∑
j xjbj for (x1, · · · , xm) ∈ (Λ0)m are weak bounding cocycles. V is the subspace

spanned by bi’s. Then for each b ∈ V we have W (b) ∈ Λ0 defined by Equation 3.1.

(V,W ) forms a Landau-Ginzburg model, and we call this a generalized SYZ mirror of X.

Up to this point we fix the Kähler structure ω of X and define the generalized SYZ mirror W ,
which is in general a formal power series whose coefficients are elements in the Novikov ring Λ0.
Now we consider the Kähler moduli and define the generalized SYZ map as follows under reasonable
assumptions.

Definition 3.5 (Generalized SYZ map). Suppose X is compact Kähler. Let MK(X) = KC(X) ⊕
i (H1,1(X,C)∩H2(X,R)) ⊂ H1,1(X,C) be the complexified Kähler cone of X, where KC(X) denotes
the Kähler cone. Fix a smooth lift of MK(X) (or if necessary its universal cover) to the space of
Kähler forms of X, such that L̄ is Lagrangian and every b ∈ V is weakly unobstructed with respect
to each complexified Kähler form t ∈MK(X). Then we have a formal power series Wt(x1, . . . , xm)
which depends on t.

Now assume further that there exists R � 0 such that for every t ∈ MK(X) with ‖t‖ > R and
‖(x1, . . . , xm)‖ < R (with respect to fixed linear metrics on (H1,1(X,C))2 and V ), Wt(x1, . . . , xm) is
convergent over C (by substituting the formal parameter T in the Novikov ring to be a fixed positive
real number) and has isolated singularities in {‖(x1, . . . , xm)‖ < R}. Let MC(W ) be the base space
of the universal unfolding of W (see [Sai81, DS03] for the deformation theory of a function). Then
t 7→Wt defines a map MK(X)→MC(W ), which we call to be the generalized SYZ map.

The generalized SYZ map is expected to coincide with the (inverse) mirror map, which is a
central object in mirror symmetry. In particular it should satisfy certain Picard-Fuchs equations.
This is proved in [CLLT12, CCLT] for compact semi-Fano manifolds and toric Calabi-Yau orbifolds
respectively.

The superpotential takes the form

W (b) =
∑

(i1,...,im)∈Zm≥0

∑
β

∑
P

qβn(β; bP (1), . . . , bP (k))x
i1
1 . . . x

im
m

where b =
∑m

i=1 xibi, k = i1 + . . . + im, and we are summing over all permutations P which are
maps P : {1, . . . , k} → {1, . . . ,m} such that |P−1{j}| = ij for all j = 1, . . . ,m. Roughly speaking
n(β; bP (1), . . . , bP (k)) is counting the number of discs representing the class β whose boundary passes
through a generic point of L and bj1 , . . . , bjk , which in general depends on the choice of perturbations
in Kuranishi structures of disc moduli. The weakly unobstructedness of b ensures that while the
individual numbers n(β; bP (1), . . . , bP (k)) depend on perturbations, W is well-defined as a whole
expression.
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3.4. Fukaya category for surfaces. The theory is already very interesting for dimRX = 2. For
the explicit computation in Section 6 and 7, we follow Seidel [Sei11] for the Morse-Bott construction
of the Fukaya category of surfaces, which is briefly explained here.

Let M be a surface, and consider a countable set L of closed embedded curves in M as a set of
Lagrangian submanifolds. We assume that any two curves of L intersect transversally, and any three
curves do not have a common intersection, and also that curves in L do not bound a holomorphic
disc in M .

Given two distinct objects L0, L1 in L, the morphism space between them is generated by inter-
section points

CF ∗(L0, L1) =
⊕

x∈L0∩L1

Λx.

We will think of them as being Z/2-graded, and degree of a generator is even or odd according to
the rule explained in Section 3.2.2. The Figure 2 illustrates the odd and even degree intersection
points, which are measured by the Maslov indices of the Lagrangian paths which are described by
arrows in the figure.

Figure 2. odd degree (left) and even degree (right) intersections

Boundary operator ∂ of CF ∗(L0, L1) is defined by the counting of strips u : R× [0, 1]→M which
satisfy the J-holomorphic equation ∂u

∂τ + J ∂u∂t = 0 and the boundary condition u(τ, 0) ∈ L1, and
u(τ, 1) ∈ L0. (We follow the convention of [FOOO10a]).

To define A∞-operations, first consider the case that the collection of objects (L0, L1, · · · , Ld) are
pairwise distinct. In this case the A∞-operations are defined as

mk : CF (Li0 , Li1)× · · · × CF (Lik−1
, Lik)→ CF (Li0 , Lik).

mk(x1, · · · , xk) :=
∑
y

(#M(x1, · · · , xk, y)) y,

where M(x1, · · · , xk, y) is the moduli space of holomorphic polygons which turn at x1, · · · , xk, y
in counter-clockwise order and # means the signed count of such holomorphic polygons whose
symplectic areas are recorded in the exponents of q’s.

The sign is determined as follows. First, each Lagrangian L may be equipped with a non-trivial
spin structure, in which case we fix a point “◦” in L which is regarded as a point where this nontrivial
spin bundle on L̄ is twisted. For a holomorphic disc P ∈ Mk+1(x0, · · · , xk), if there is no “◦” on
the boundary of P and the orientation of the boundary P agrees with that of the Lagrangian, then
the contribution of P to mk(x0, · · · , xk−1) is +qω(P )xk. If orientations do not coincide, the resulting

sign is as follows. Disagreement of the orientations on
_
x0x1 is irrelevant to the sign. Disagreement

of the orientations on
_

xixi+1 affects the sign by (−1)|xi|. If two orientations are opposite on
_
xkx0

then we multiply by (−1)|x0|+|xk|. Finally, we multiply by (−1)l where l is the number of times ∂P
passes through “◦”.
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Now consider two objects L0, L1 such that the underlying two curves are the same. We choose a
metric and a Morse function f01 on this curve, with a unique maximum p and a unique minimum
e. Then

CF ∗(L0, L1) = CM∗(f01) = Λe⊕ Λp.

If L0, L1 have the same orientation and spin structure, the differential on CF ∗(L0, L1) are Morse
differential and hence vanishes.

A general A∞-operation, when some of the Li’s coincide, is defined from the counting of holo-
morphic pearly trees (using the combination of Morse flows and J-holomorphic polygons). This
construction was sketched in [Sei11] and details has been given in Section 4 of [She11]. Such a
construction uses modulus- and domain-dependent perturbations to achieve transversality, and we
refer readers to the above references for more details. We remark that disc or sphere bubbling do
not appear in defining A∞-operations for every surfaces X except a sphere. When X is a sphere,
and L is an embedded curve, it may bound Maslov index two discs and Chern number two spheres,
but it can be handled in the same way with minor modifications. We remark that our weakly unob-
structedness and computations in Section 6 and 7 will not involve complicated holomorphic pearly
trees, but rather a counting of polygons or the following elementary situations.

Consider the case (L0, · · · , Lk) such that Li = Li+1 for one i ∈ (Z/k). We may choose a
Morse function on Li which has only one minimum e and one maximum p. The A∞-operation
mk(· · · , e, · · · ) (or mk(· · · , p, · · · )), where e (or p) is put in the (i+1)-th place for i = 0, . . . , k−1, is
defined by counting holomorphic polygons whose i-th marked points lie in the unstable submanifold
of e (or p). Similarly when i = k, the coefficient of e (or p) in the A∞-operation mk(·) is defined
by counting holomorphic polygons whose k-th marked points (the output points) lie in the stable
submanifold of e (or p).

Here are the situation that only constant polygons can contribute. When we considermk(· · · , e, · · · )
where e is put in the i-th place, we count discs which intersect the unstable submanifold W u(e)
at the i-th marked point. Since W u(e) is Li \ {e}, the corresponding moduli space is discrete only
when the disc is constant. Similarly, concerning the coefficient of p of mk(· · · ), we consider discs
which intersect W s(p) = Li \ {p} and hence only constant discs may contribute. In this setting, we
have

m2(x, e) = x = (−1)|x|m2(e, x)

which implies that e serves as the unit of Li in the A∞-category.

3.5. Fukaya category for orbi-surfaces. The above construction of Seidel on the Fukaya category
of surfaces can be extended to orbifold surfaces (orbi-surface for short) following Section 9 of [Sei11],
which we now explain briefly.

For simplicity we restrict to the case of a compact orbi-surface χ obtained as a global quotient of
a compact surface (Σ, ω) by an effective action of a finite group G. We denote the projection map
by π : Σ→ χ.

Embedded curves in χ which avoid orbifold points may be regarded as objects of the Fukaya
category. In fact, we also allow our objects to be immersed Lagrangian L̄ ⊂ χ which does not pass
through orbifold points, whose pre-image π−1(L̄) is a union of embedded curves in Σ (as a union
of G-action images). The condition to avoid orbifold points can be achieved using an Hamiltonian
isotopy in Σ. Note that such a definition depends on the choice of a cover Σ. For the orbifold P1

a,b,c

we consider in this paper, we will fix a smooth cover of P1
a,b,c in which the Seidel Lagrangian (see

Figure 1) lifts as a submanifold. Since we prove homological mirror symmetry for P1
a,b,c, the derived

Fukaya category is indeed independent of the choice of such a cover (Corollary 7.26).
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Hence we take the objects of Fuk(χ) to be G-equivariant family of Lagrangian objects in Σ, given

by smooth connected non-contractible curves L1, · · · , Lk in Σ such that
⋃k
i=1 Li is a G-orbit of L1.

If there is no g ∈ G such that g(L1) = L1, then we have k = |G|. We denote by GL1 the subgroup
of elements g ∈ G, with g(L1) = L1. We assume that GL1 preserves an orientation of L1 (otherwise,
it is a non-orientable object).

We remark that G-equivariant family of Lagrangians in Σ which passes through an orbifold point
has the structure of an orbifold embedding, which we refer readers to [CSH13] for more details. But
we do not consider them in this paper.

Let us now explain the construction of Fuk(χ) analogous to those in Seidel [Sei11] and Sheridan
[She11]. First, by choosing the curves transversal to each other, we may set the Floer datum between
two different Lagrangians to be trivial, and Floer datum between the same Lagrangian L to be a
Morse function on L ∼= S1. One have to consider the perturbation datum (modulus and domain
dependent) which is used to perturbed the holomorphic pearly tree equation. We require that the
space of Hamiltonian functions H are smooth functions of χ (whose local lifts are smooth, and
associated Hamiltonian vector fields at orbifold points vanish), almost complex structures J to be
the standard complex structureJ0 near orbifold points of χ.

In this paper, we will not consider orbifold holomorphic polygons, or the case that the domain
has orbifold singularities (such polygons will lead to bulk deformations by twisted sectors which will
be considered in another paper). Hence the domain of holomorphic polygons and pearly trees are
the same as in manifold cases (we refer readers to [CR02] for more details on (orbifold) holomorphic
curves on orbifolds). Note also that polygons without orbifold singularity can pass through orbifold
points if it locally maps to the uniformizing cover of an orbifold point.

Therefore, the moduli space of perturbed holomorphic polygons and pearly trees can be defined in
the same way as in the manifold cases, and as explained in [Sei11], a generic perturbation datum may
be used to achieve transversality of the relevant moduli spaces which contribute to A∞-operations
on the Fukaya category Fuk(χ)

In fact, one can pull-back the Floer datum and perturbation datum of Fuk(χ) to construct the
Fukaya category Fuk(Σ). Note that there is an one-to-one correspondence between holomorphic
polygons(and pearly trees) bounded by a G-equivariant family of Lagrangians and those in down-
stairs bounded by the corresponding immersed Lagrangian. This construction of Fuk(Σ) implies
that there exists a strict G-action on this A∞-category, whose G-invariant part is the orbifold Fukaya
category Fuk(χ). Namely, the morphisms in Fuk(χ) are the G-invariant part of the corresponding
total morphisms between their G-equivariant families.

4. Geometric construction of localized mirror functor

In this section we apply the algebraic construction in Section 2 to the setting of generalized SYZ
in Section 3 and obtain a functor for the purpose of homological mirror symmetry. Moreover we
exhibit locality of the functor by working out the simplest possible example, namely the complex
projective line P1.

We fix a Lagrangian immersion L → L̄ ⊂ X and use its local deformations (see Setup 3.4) to
construct a localized mirror (V,W ) as in Section 3. Applying Definition 2.18, Theorem 2.19 to the
filtered A∞-category C = Fuk λ(X) and the object A = L̄ ∈ C, we obtain a functor LML:

Theorem 4.1 (Geometric version of Theorem 2.19). Let X be a symplectic manifold and (V,W )
be its localized mirror as in Setup 3.4. We have an A∞-functor

(4.1) LML : Fuk λ(X)→MF(W (b)− λ)
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where Fuk λ(X) is an A∞-category and MF(W (b)− λ) is a dg category.

Let us now consider the derived version of the functor (4.1). Any A∞-functor C → D admits a
canonical extension Dπ(C)→ Dπ(D) where Dπ means taking the split-closure of a derived category
(see the proof of Lemma 2.4 of [Sei15]). Thus, the A∞-functor LML induces a functor of triangulated
categories

DπLML : Dπ(Fuk λ(X))→ Dπ(MF(W − λ)).

Homological mirror symmetry occurs as special instances where DπLML is an equivalence. We
have the following theorem which basically compares generators on the two sides using our functor.
The idea of matching split-generators and their morphism spaces on the two sides was exploited in
literatures such as [Sei11] and [She15] to prove homological mirror symmetry. Theorem 4.2 and its
proof employ such an idea. The upshot here is that we have a geometric construction of the mirror
W , and the functor is naturally constructed from the geometric setup (rather than matching the
split generators by hand).

Theorem 4.2. Suppose that there exists a set of Lagrangians {Li : i ∈ I} which split-generates

DπFuk0(X), and suppose the functor LML induces an isomorphism on cohomologies HF (Li, Lj)
∼=→

Mor(LML(Li),LML(Lj)) for all i, j ∈ I. Then the derived functor

Dπ(LML) : DπFuk0(X)→ DπMF(W )

is fully faithful. Furthermore if {LML(Li) : i ∈ I} split-generates DπMF(W ), then Dπ(LML) is
a quasi-equivalence.

Proof. The proof employs standard techniques in homological algebra. By assumption any object
in DπFuk0(X) can be obtained from taking direct sums and cones of {Li : i ∈ I} in finite steps.
First we show that the derived functor is fully faithful. For any two objects A,B of DπFuk0(X), we
consider the induced map h : HF (A,B)→ Mor(LML(A),LML(B)) from the functor. We already
know that this map is an isomorphism when A,B are taken from the set {Li : i ∈ I}. Now if
A = A1 ⊕ A2 and HF (Ai, B) → Mor(LML(Ai),LML(B)) for i = 1, 2 are isomorphisms, then h is
just the direct sum and hence is also an isomorphism. Similarly it is true for B = B1 ⊕B2.

Then we consider the case that HF (A,Bi) → Mor(LML(A),LML(Bi)) for i = 1, 2 are isomor-
phisms, and B is obtained as a cone of B1 and B2, namely we have the exact triangle B1 → B2 →
B

[1]→. The derived functor DπLML sends exact triangles to exact triangles, and hence we have

the exact triangle DπLML(B1) → DπLML(B2) → DπLML(B)
[1]→. By applying five lemma to

DπLML acting the exact sequence

. . .→ HF k(A,B1)→ HF k(A,B2)→ HF k(A,B)→ HF k+1(A,B1)→ HF k+1(A,B2)→ . . .

we conclude that h : HF (A,B) → Mor(LML(A),LML(B)) is also an isomorphism. The proof for
the case that A is a cone of A1 and A2 is similar. This proves that the functor is fully faithful.

If further {LML(Li) : i ∈ I} split-generates DπMF(W ), then the functor sends generators to
generators, and induces isomorphisms on the morphism spaces between each pair of generators.
Thus the two derived categories are equivalent. �

Thus we can interpret homological mirror symmetry as a special case where our functor satisfies
the conditions in Theorem 4.2. We will study concrete examples, namely the orbifold P1

a,b,c in Section
6 and 7.
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4.1. Geometric transform of Lagrangian branes. Consider the localized mirror functor LML

in this geometric setup. On the level of objects, it sends Lagrangian submanifolds or immersions
to matrix factorizations. More precisely, we need to consider the Fukaya category Fukλ consists of
objects which are weakly unobstructed (Z/2 graded) spin Lagrangian submanifolds with potential
λ ∈ Λ0.

Such a category arises naturally since Floer cohomology between two weakly unobstructed La-
grangian submanifolds are defined only if their potentials are the same ([FOOO09]). Namely, for
two Lagrangian submanifolds Li for i = 0, 1 with bounding cochains bi and associated potentials λi
(for i = 0, 1), the differential m1 for CF (L0, L1) satisfies the equation m2

1 = λ1 − λ0. Hence m2
1 = 0

if λ1 = λ0 = λ. Now taking (L0, b0) = L which is the reference Lagrangian immersion, the equation
becomes m2

1 = W − λ0.

On the other hand, recall from Definition 2.16 that a matrix factorization (P, d) for a critical
value λ of W satisfies d2 = (W − λ)Id. Thus Lagrangian Floer theory naturally gives rise to matrix
factorizations. Our localized mirror functor is a categorical formulation of this observation.

Given a weakly unobstructed (Z/2 graded) spin Lagrangian immersion L′ with potential λ ∈ Λ0

and a weak-bounding cochain b′, we associate to it a matrix factorization (P = P0⊕P1) which is the

Floer complex CF (L, L′) with differential d = mb,b′

1 (where P0 and P1 are the even and odd parts of
the complex respectively). Recall that b varies in V , which probes the mirror matrix factorization.
For an unobstructed Lagrangian Li with bi = 0 and λi = 0, the corresponding matrix factorization

under the localized mirror functor LML is given by the Floer complex (CF (L, Li),mb,0
1 ).

On the level of morphisms, an element α ∈ CF (L1, L2) provides a morphism between two ma-

trix factorizations (CF (L, L1),mb,0
1 ), (CF (L, L2),mb,0

1 ) which is induced from the product m2 :
CF (L, L1)× CF (L1, L2) 7→ CF (L, L2). See Section 2.3 for the details.

The similarity of the above two equations was first used by Chan and Leung in [CL12] to compute
mirror matrix factorizations of Lagrangians in CP 1, and was further explored in the work of Cho-
Hong-Lee [CHL12] for the case of CP 1 × CP 1 and weighted projective lines CP 1

n,m. In this paper
we construct the whole functor in full generality rather than just on the object levels.

4.2. An example: the projective line. In this section we exhibit locality of our functor by

studying the example X = P1. We will construct two localized mirrors W± and functors LML± :
Fuk(X)→MF(W±) using two different Lagrangian branes L+ and L−. W± will be different from
the Hori-Vafa mirror of P1, and they can be regarded as the Hori-Vafa mirror localized at each of

the two critical points. Moreover we will show that each of the functors LML± only sees a part of
the Fukaya category.

In this sense the mirrors constructed in our approach are more general and flexible than the
mirrors provided by the string theorists. Our mirror functor in general reflects a subcategory of the
Fukaya category and comes in a much more direct way. Our forthcoming paper will develop a mirror
construction using more than one Lagrangian immersions. This will capture more information about
the global symplectic geometry.

L± is taken to be the union of two equators intersecting with each other transversely endowed
with flat U(1) connections. Identify P1 as the unit sphere of R3. Let LV be the vertical equator
(with the standard orientation) and r(LV ) the rotation of LV by π/2 about z-axis. L is taken to be
the immersion LV ∪ r(LV ) ⊂ P1. Both LV and r(LV ) are equipped with the trivial spin structure.
Then L± are defined as the immersion L equipped with the flat U(1) connections ∇+ := 1 ∪ 1 and
∇− := (−1)∪ (−1) respectively. ∇+ := 1∪ 1 denotes the trivial connection, and ∇− := (−1)∪ (−1)
denotes the flat connection with holonomy (−1) on both circles LV and r(LV ).
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L has two self intersection points, namely the north and south poles. Each self-intersection point
correspond to two immersed generators, one has degree odd and one has degree even. Denote by
X,Y the degree odd generators corresponding to north and south poles respectively. Let X̄, Ȳ be
the corresponding degree even generators. Now we consider the formal deformations b = xX + yY
for x, y ∈ C. First of all we need to solve the Maurer-Cartan equation for weak bounding cocycles.
In the computations below, we keep in mind that the grading is taken to be Z2 (and hence the
immersed generators have degrees in Z2). On the other hand the coefficients of the Novikov ring Λ0

are taken in C (Definition 2.1). In particular we need to keep track of the sign of each holomorphic
polygon carefully.

Lemma 4.3. For both L+ and L−, b := xX + yY is a weak bounding cocycle for all x, y ∈ C.

Proof. We will use the Bott-Morse model of Seidel [Sei11]. Take the standard height function f on
LV and r∗f on r(LV ). Denote the minima to be e1 on LV and e2 on r(LV ). Then e = e1⊕ e2 serves
as a unit of the A∞-algebra CF (L±,L±).

First consider m0, which is contributed from the holomorphic discs bounded by LV and that
bounded by r(LV ). Since they bound the same holomorphic discs, m0 for both LV and r(LV )
are proportional to the unit, and m0 for L± is also proportional to the unit. We will show that
mk(x1, · · · , xk) = 0 for k = 1 or k ≥ 3 and xi to be either X or Y for every i = 1, · · · , k. Moreover
m2(X,X) = m2(Y, Y ) = 0, and m2(X,Y ) + m2(Y,X) is proportional to the unit e. Putting all
these together, we obtain that b = xX + yY is a weak bounding cocycle.

Second mk(x1, · · · , xk) 6= 0 for xi to be either X or Y only when µ(β) = 2. There are exactly
two holomorphic polygons of Maslov index two, namely P and P op shown in Figure 3. They do
not contribute to m2(X,X), m2(Y, Y ) nor mk for k ≥ 3. Hence m2(X,X) = m2(Y, Y ) = 0, and
mk(x1, · · · , xk) = 0 for k ≥ 3. P and P op contribute to m2(X,Y ) + m2(Y,X), and it follows from
direct computation that m2(X,Y ) +m2(Y,X) is proportional to e.

We now show that the contributions from P and P op in m1(X) cancel each other and hence
m1(X) = 0 Similarly m1(Y ) = 0 for the same reason. The computations for L+ and L− are

similar and so we will only do it for L+. The contribution of P to m1(X) is qω(P )Ȳ , since the
orientation induced by P on ∂P agrees with the orientation of the Lagrangian. On the other hand

P op contributes by (−1)|X|+|Ȳ |qω(P op)Ȳ = −qω(P )Ȳ . Thus m1(X) = qω(P )Ȳ − qω(P )Ȳ = 0. �

Figure 3. (a) L and LH (b) holomorphic discs contributing to the potential of L

Now we compute the superpotential W± : C2 → C by counting holomorphic polygons bounded
by L± respectively.
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Proposition 4.4. The superpotential constructed from each of L± is W± = q2xy ± q4 respectively,
where q8 = exp

(
−
∫
P1 ω

)
is the Kähler parameter of P1.

Proof. From the proof of Lemma 4.3, weh have mL±(eb) = W±(b)e for b = xY +yY and (x, y) ∈ C2.
As higher order terms vanish and m1 = 0, we have m(eb) = m0 +m2(b, b). The term m0 is given by
Maslov index two holomorphic discs bounding LV and r(LV ), which is m0 = ±q4e1 ± q4e2 = ±q4e

for L±. P and P op contribute to mL+

2 (b, b) by q2xye1 and q2xye2. So, m2(b, b) = q2xye. Therefore,
W+ = q2xy + q4. Similarly for L−, two nontrivial holonomies cancel each other along ∂P op to give
the same xy term in W−. Thus W− = q2xy − q4. �

Next we consider our functor LML± and use it to transform the two split-generators of the
derived Fukaya category, namely L+

H which is the horizontal equator equipped with the trivial flat

U(1) connection, and L−H which is the horizontal equator equipped with the flat U(1) connection

with holonomy (−1) along the equator. It is well-known that the potential value of L±H is ±q4 (see
[Cho08]).

There are four intersection points between L and LH : p1 and p2 of odd degree, q1 and q2 of even
degree, see Figure 3. By a direct count of holomorphic strips bounded by L± and LH , we obtain

the following proposition, which implies that the functor LML± reflects the subcategory generated
by L±H .

Proposition 4.5. LML+
(L+

H) is the matrix factorization

(4.2) H =

( p1 p2

q1 −xq 0
q2 0 −yq

)
K =

( q1 q2

p1 −yq 0
p2 0 −xq

)
of W+ − q4 (namely HK = KH = (W+ − q4)Id), and LML+

(L−H) is a matrix factorization of

W+ + q4, which is a trivial object since −q4 is a regular value of W+. Similarly LML−(L+
H)

is a trivial object, while LML−(L−H) takes the same expression (4.2) which serves as a matrix
factorization of W− + q4 (which equals to W+ − q4).

5. Generalized SYZ for a finite-group quotient

In the early development of mirror symmetry, physicists employ finite group actions to construct
mirrors. The symmetry provided by a finite group simplifies the geometry and allows one to study
a manifold via its quotient.

In this section, we take a Lagrangian immersion into a global quotient orbifold X = [X̃/G] and
carry out the generalized SYZ mirror construction. We will consider G-equivariant Lagrangian
immersions in X̃ (satisfying Assumption 5.1), which provides a Lagrangian immersion to X. Floer
theory of the Lagrangian immersion in X can be obtained by taking the G-invariant part of the
Floer theory of G-equivariant Lagrangian immersion in X̃.

We will apply our construction of localized mirror functor in the previous sections G-equivariantly
on X̃. The purpose is two-fold: On one hand we study mirror symmetry for the symplectic orbifold
X; on the other hand, we obtain the mirror of X̃ as a quotient of the mirror of X by the dual group
of G.
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5.1. Generalized SYZ construction for a global quotient. Let X̃ be a Kähler manifold
equipped with an effective action by a finite group G = {g1, . . . , g|G|}. Then X = X̃/G is a

Kähler orbifold. Denote the canonical quotient map by π : X̃ → X.

Assumption 5.1. Let L be a compact oriented connected spin Lagrangian submanifold of X̃. We
assume that for each g ∈ G with g 6= 1, the g-action image of L, g · L, intersects transversely with
L.

Then the image L̄ = π(L) ⊂ X is a Lagrangian immersion whose self-intersections are transverse.
We denote the normalization map ι := π|L : L→ L̄ and H∗(L×ι L) gives the deformation space of
L̄ (before taking obstructions into account).

With Assumption 5.1, it is relatively easy to define the immersed Lagrangian Floer theory of L̄.
We consider the Floer theory of the family of Lagrangians π−1(L̄) =

⋃
g∈G g · L ⊂ X̃, which is also

an immersed Lagrangian with transverse self-intersections, and take a G-invariant part. As G acts
freely on the set of objects {gL | g ∈ G}, it is easy to make the associated A∞-structure to have a
strict G-action. Without the assumption 5.1, the construction becomes much more involving and
we refer readers to [CH13] for more details.

Write
∐
g Lg =

∐
g∈G g · L, which gives a normalization ι̃ :

∐
g Lg → π−1(L̄) of π−1(L̄). Let R̃ be

the set of components of (
∐

Lg)×ι̃ (
∐

Lg).

Proposition 5.2. G acts freely on R̃, and the quotient has a natural identification with R, the
set of components of L ×ι L. C∗(L ×ι L) (the space of Floer cochains downstairs) has a natural
identification with (C∗((

∐
Lg)×ι̃ (

∐
Lg)))G (the space of G-invariant Floer cochains upstairs).

Proof. (
∐

Lg)×ι̃ (
∐

Lg) consists of |G|-copies of L and ordered pairs (p+, p−), where p+, p− belong
to Lg,Lh for g 6= h respectively and ι̃(p+) = ι̃(p−). In other words,

(
∐

Lg)×ι̃ (
∐

Lg) =
∐
g∈G

Lg q

∐
h6=1

Lg ×ι̃ Lgh

 .

a ∈ G acts by sending Lg q
(∐

h6=1 Lg ×ι̃ Lgh
)
7→ Lag q

(∐
h6=1 Lag ×ι̃ Lagh

)
and hence it induces

a free action on the set of components R̃. The quotient map induces a one-one correspondence

between Lq
(∐

h6=1 L×ι̃ Lh
)

and L×ι L. �

Lemma 5.3. Each immersed sector X ∈ R−{0} of L̄ is canonically associated with an element gX
in the finite group G.

Proof. X = (p−, p+) can be identified with an immersed sector X̃ = (p̃−, p̃+) of L ⊂ X̃ upstairs.
Then p̃− ∈ Lg− and p̃+ ∈ Lg+ for certain g−, g+ ∈ G. g−, g+ ∈ G themselves depend on the choice

of lifting, but the quotient gX = g−1
− g+ does not. Thus X is associated gX ∈ G. �

Explicitly let X1, . . . , X|R|−1 ∈ R − {0} be all the immersed sectors of L̄. |R| − 1 is an even

integer since the elements in R − {0} naturally form pairs: X̄ = (p+, p−) if X = (p−, p+). For

each Xi ∈ R− {0} we can choose a representative in R̃− {0} upstairs, which is also denoted by Xi

by abuse of notations. Upstairs Xi is of the form (pg, ph) for pg ∈ g · L and ph ∈ h · L such that

ι̃(pg) = ι̃(ph). Then R̃ = Gq {g ·Xi : g ∈ G, i = 1, . . . , |R| − 1}.
We may also choose cycles Φj ’s which forms a basis of H∗(L). Then the deformation space

H ⊂ C∗(L ×ι L) is defined as the span of X1, . . . , X|R|−1 and Φ1, . . . ,Φh∗(L), and we denote the
corresponding coordinates as x1, . . . , x|R|−1, z1, . . . , zh∗(L).
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Upstairs we consider the span of
(∑

g g · Φj

)
and

(∑
g g ·Xi

)
, which is a subspace of (C∗((

∐
Lg)×ι̃

(
∐

Lg)))G. Elements in the vector space H∗((
∐

Lg)×ι̃ (
∐

Lg)) are written uniquely as
∑

j,g zj,g[g ·
Φj ] +

∑
i,g xi,g[g ·Xi] and G-invariant elements are written as

b =
∑
j

zj

(∑
g

g · Φj

)
+
∑
i

xi

(∑
g

g ·Xi

)
∈ (H∗((

∐
Lg)×ι̃ (

∐
Lg)))G

which are identified with the deformation element
∑h∗(L)

j=1 zjΦj +
∑|R|−1

i=1 xiXi ∈ H∗(L̄×ι L̄) down-
stairs.

Proposition 5.4. For φ1, . . . , φk ∈ (C∗((
∐

Lg) ×ι̃ (
∐
Lg)))

G, m
(X̃,L)
k (φ1, . . . , φk) still belongs to

(C∗((
∐

Lg)×ι̃ (
∐

Lg)))G.

Proof. G-action on X̃ induces a freeG-action on the moduli space of stable discs
⋃
βMk+1(β;φ1, . . . , φk)

such that the evaluation map ev0 is G-equivariant. Thus mk, which is the image chain under ev0,
is G-invariant. �

By the above proposition and the identification between cochains upstairs and downstairs in

Proposition 5.2, we can define mX,L̄
k : C∗(L ×ι L)⊗k → C∗(L ×ι L) to be m

(X̃,L)
k restricted to

(C∗((
∐

Lg)×ι̃ (
∐

Lg)))G.

The unit 1L downstairs is identified with the unit
∑

g∈G 1Lg upstairs. Then we consider weakly-
unobstructed cocycles, which are elements b ∈ H such that

mb
0 =

∑
k≥0

mk(b, . . . , b) = W
∑
g∈G

1g·L

for some coefficient W . Let V be the span of {Φj}lj=1 and {Xi}N−li=1 for some j and l, and assume
that all elements in V are weakly unobstructed cocycles. Take V to be the subspace of all these
elements. Then (V,W ) forms a Landau-Ginzburg model. For simplicity of notations we take l = 0.

Write b =
∑N

i=1 xiXi, then in terms of the coordinates xi’s of V ,

W =
∑

(i1,...,iN )∈ZN≥0

∑
β∈H2(X̃,L)

∑
P

g1,...,gk∈G

qβn(β; g1 ·XP (1), . . . , gk ·XP (k))x
i1
1 . . . x

iN
N

where k = i1+. . .+iN , and we are summing over all permutations P which are maps P : {1, . . . , k} →
{1, . . . , N} such that |P−1{j}| = ij for all j = 1, . . . , N .

5.2. Dual group action on the mirror and Ĝ-invariance. We show that there exists a canonical

action of the dual group Ĝ on the mirror, which leaves W invariant. Then (V/Ĝ,W ) will be taken

to be a generalized SYZ mirror of X̃.

We first recall the notion of the dual group (character group) Ĝ of G. A character of a finite
group G is a group homomorphism χ : G → S1 = U(1), where the group structure of U(1) is

the multiplication. The set of all characters of G form a group Ĝ, with the group law that two
homomorphisms are multiplied pointwise: for two characters, χ, ψ : G → U(1), we have (χψ)(g) =
χ(g)ψ(g). The trivial character χ0 is given by the constant map to 1, and is the identity of the

group Ĝ. It is well-known that Ĝ is isomorphic to G, but not canonically.

We work in the setting of the previous section, with Assumption 5.1. Fix a representation of G,
denoted it as φ : G → End(V ). Given an equivariant family tg∈Gg · L, we consider the following
trivial bundle Lφ = tg∈Gg · L × V. For its G-action, given h ∈ G, x ∈ g · L, we define h · (x, v) :=
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(hx, φ(h)v), where hx ∈ hg · L. Note that this G-action is compatible with the projection π1 to the
first component.

The Floer complex with the above bundle data will lead us to the dual group Ĝ action in the

mirror construction. Consider χ ∈ Ĝ as an one-dimensional representation φ. When Lagrangians
are equipped with a trivial bundle (with the trivial holonomy), each intersection point pi ∈ L∩ g ·L
(for the mirror variable xi) corresponds to the generator of Hom(Lχ|L,pi ,Lχ|gL,pi). Hence for the

mirror variable xi corresponding to pi, it is natural to define an action of χ ∈ Ĝ to be χ ·xi = χ(g)xi.

One way to interpret the above action is from the comparison of the generators of the trivial

character χ0 and that of χ. We define Ĝ-action on the zj variables to be trivial.

Proposition 5.5. The above Ĝ-action leaves the superpotential W invariant.

Proof. Recall from Lemma 5.3 that each immersed sector is associated with an element in G. At
each i-th turn of a disc corresponding to a group element gi ∈ G, we get an additional effect of
multiplication of χ(gi). For any holomorphic polygon, which contributes to the potential Wχ, we
should have g1 · · · , gk = 1 since the fiber should come back to the original one after the whole set
of turns. It follows that χ(g1) · · ·χ(gk) = 1. �

Note that the group action obtained as in the above is always a diagonal action. We may
summarize the above construction into the following definition.

Definition 5.6. The dual group Ĝ acts on mirror space, leaves W to be invariant, whose action of

χ ∈ Ĝ on the variables corresponding to the intersection L∩ gL is given by the scalar multiplication
of χ(g) ∈ U(1).

5.2.1. Non-abelian case. When G is non-abelian, it has higher-dimensional irreducible unitary rep-
resentations U . Correspondingly we can consider the non-abelian infinitesimal deformation space
of the immersed Lagrangian L̄, namely, H ⊗ gl(U). Conceptually we are deforming the pair (L̄, U),
where U is the trivial bundle over L̄ with trivial connection. A formal deformation of an immersed
sector is specified by a matrix in gl(U). When U has dimension one, gl(U) = C and this reduces to
the previous considerations.

Suppose that Xi’s are immersed sectors spanning V and b =
∑

i xiXi ∈ V . The coordinates xi’s

are now regarded as gl(U)-valued variables and hence non-commutative. We assume that mb
0 =

W (b)1L. Then W is a non-commutative series in Xi’s, and it is independent of the choice of
representations U of G (as long as we regard Xi’s as non-commutative variables). As before W is
given by disc counting. The key point is that in such a non-commutative version of W , the disc
counting not just take care which immersed sectors each disc pass through, but also the order of
the sectors. Thus we obtain a non-commutative Landau-Ginzburg model W .

Now consider the character group Ĝ. For the same reason as in Proposition 5.5, each term in
W is invariant under the action of G: a term in W is contributed by a stable disc which turns at
some immersed sectors Xi1 , . . . , Xik . Each immersed sector Xij corresponds to a group element gj ,
and g1 . . . gk = 1 because the Lagrangian goes back to itself after turning around the disc once. In

particular, W is invariant under the action of Ĝ.

To conclude, when G is non-abelian, we have to consider the non-commutative version of W ,
which is disc-counting taking care of the order of immersed sectors on the boundary of the disc. W

is invariant under the action of the dual group Ĝ. Since all the examples we consider in this paper
involve only abelian groups, it suffices for us to consider commutative Landau-Ginzburg model.
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5.3. Mirror functors and Ĝ-equivariance. With an immersed Lagrangian L̄ chosen in the global
quotient X = X̃/G and a choice of subspace V of weak bounding cochains, we obtained a Landau-

Ginzburg model W which is invariant under Ĝ by Proposition 5.5. We show in this section that
our localized mirror functor can be lifted to give a map from the Fukaya category of X̃ to the

Ĝ-equivariant matrix factorizations category of W .

Since we have the (ramified) covering map X̃ → X, we may use the terms upstairs and downstairs

to refer to X̃ and X respectively. We still make Assumption 5.1 and that G is Abelian (Ĝ ∼= G).
For simplicity, we assume that the weak Maurer-Cartan space V is generated by immersed sector
(only xi-variables).

Downstairs, for each compact oriented spin Lagrangian immersion L′ ⊂ X in the global quotient
(with a potential value λ, which we assume to be 0 for simplicity), we obtain a corresponding matrix
factorization of W as explained in Section 2, 4.1, and an A∞-functor Fuk0(X)→MF(W ).

Upstairs, we would like to construct a mirror functor from Fukaya category of X̃ to the category

of Ĝ-equivariant matrix factorizations of the superpotential W̃ . Recall that we have a family of
Lagrangian π−1(L̄) =

⋃
g∈G g · L, with weak bounding cochain b =

∑N
i=1 xiXi for X, or b̃ =∑N

i=1 xi

(∑
g∈G g · X̃i

)
for X̃. By abuse of notation we may denote b̃ and X̃i simply by b and Xi,

when it is clear from the context that we are talking the geometry upstairs.

The same construction upstairs using L̃ = (π−1(L̄), b̃) gives a generalized SYZ mirror (V, W̃ )

together with a mirror functor Fuk(X̃)→MF(W̃ ).

Remark 5.7. The counting of polygons in upstairs and downstairs are the same but their respective
weights given by areas are related by a change of Kähler coordinates, since the Kähler parameters of
X̃ and X are different.

Now we would like to take the action of G on X̃ into account and make the above to be a functor
to the category MF

Ĝ
(W̃ ) of Ĝ-equivariant matrix factorizations. To do this, we use the canonical

equivalence of dg categories MF
Ĝ

(W̃ ) ∼= Tw(BW#Ĝ) which is proved by Tu [Tu14, Section 6],

where BW is the coordinate ring C[x1, . . . , xN ], and BW#Ĝ is a dg category whose objects are

characters of Ĝ (which is G) defined by Caldararu-Tu [CT13, Section 2.15]. (In [Tu14] BW#Ĝ was
taken to be an algebra instead of a category, but we will use the setting of [CT13] because it is more
canonical.)

Thus for each g ∈ G we have a corresponding object Ag of BW#Ĝ. The morphism space
Hom

Ĝ
(Ag1 , Ag2) is defined as the space of polynomials in C[x1, . . . , xN ] which is invariant under the

(g−1
1 , g2)-twisted action of Ĝ.

Recall from Lemma 5.3 that each intersection point Xi corresponds to a group element gXi ∈ G,

and the dual group action of χ ∈ Ĝ on the corresponding variable xi is given by χ · xi = χ(gXi)xi.

Then the (g−1
1 , g2)-twisted action of χ ∈ Ĝ is defined as

χ ·(g−1
1 ,g2) xi := χ(g−1

1 )
(
χ · (χ(g2)xi)

)
= χ(g−1

1 g2)
(
χ · xi

)
.

“Tw” denotes the twisted-complex construction where differentials of a complex squares to W
instead of 0.

Given a Lagrangian L′ ⊂ X̃ upstairs (which can be assumed to be transversal to π−1(L̄) by
applying Hamiltonian perturbation if necessary), the corresponding matrix factorization was defined

to be (CF ∗(π−1(L̄), L′),m
(b,0)
1 ). To make it Ĝ-equivariant, we ‘categorize’ it to record the relations

between different branches of π−1(L̄) by G-action. Namely:
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(1) For each intersection point between L′ and g · L for some g ∈ G, we make a copy of the

object Ag of BW#Ĝ.

(2) Sum over all intersection points p to obtain an object of Σ(BW#Ĝ)

F =
⊕

p∈π−1(L̄)∩L′
Ag(p)

where for an intersection point p, it is associated to a group element g(p) ∈ G such that
p ∈ (g(p) · L) ∩ L′.

(3) The differential δ is defined by mL̃,L′
1 as before, which has the property δ2 = W̃ . The higher

terms of the A∞-functor are defined by m
(L,b),·,...,·
k as before.

In summary, the above construction ‘categorizes’ (CF ∗(π−1(L̄), L′),m
(L̃,L′)
1 ) by the partition

(π−1(L̄)) ∩ L′ =
⋃
g∈G

(g · L) ∩ L′.

Proposition 5.8. The above defines an A∞ functor

LML̃ : Fuk0(X̃)→MF
Ĝ

(W̃ )

where Fuk0(X̃) denotes the subcategory of Lagrangians which are unobstructed and MF
Ĝ

(W̃ ) de-

notes the category of Ĝ-equivariant matrix factorizations.

Proof. We need to check that the matrix factorization (F, δ) defined above is an object of

Tw(B#Ĝ) ∼=MF Ĝ(W̃ ).

In other words, δ belongs to Hom
Ĝ

(
⊕

p∈I Ag(p),
⊕

p∈I Ag(p)), namely, polynomials involved in δ are

twisted Ĝ-invariant in the sense defined above.

Consider a holomorphic polygon bounded by L̃ and L′ contributing to m
(L̃,L′)
1 , see the left hand

side of Figure 4. Let g1 · L, . . . , gk · L be the branches of L̃ bounding the polygon labelled coun-
terclockwisely, and let X1, . . . , Xk be the involved intersection points. The input point is at gk · L
and the output point is at g1 ·L. The monomial contributed is x1 · · ·xk−1. We want to deduce that

x1 · · ·xk−1 is invariant under the (g−1
k , g1)-twisted action of Ĝ.

Figure 4. Ĝ-equivariance.

The action of χ ∈ Ĝ on xi is

χ · xi = χ(gi+1g
−1
i )xi

and so

χ · (x1 . . . xk−1) = χ(gkg
−1
1 )(x1 · · ·xk−1).
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Then the twisted action is

χ ·(g−1
k ,g1) (x1 · · ·xk−1) = χ(g−1

k )χ(gkg
−1
1 )χ(g1)(x1 · · ·xk−1) = x1 · · ·xk−1.

The same argument, by replacing L′ with an ordered collection of Lagrangians (L(1), · · · , L(l))

(see the right hand side of Figure 4), shows that the higher terms mL̃,L(1),...,L(l)

k of the A∞-functor

have their targets to be the Ĝ-equivariant morphism space

Hom
Ĝ

 ⊕
p∈L(1)∩π−1(L̄)

Ag(p),
⊕

q∈L(l)∩π−1(L̄)

Ag(q)

 .

�

6. The elliptic curve and its Z/3-quotient P1
3,3,3

In the rest of this paper, we apply our general theory to a series of interesting examples. In
this section we consider the elliptic curve quotient P1

3,3,3. This produces the mirror superpotential

W : C3 → C. We will construct the mirror of P1
a,b,c for general a, b, c and prove homological mirror

symmetry in Section 7. Since P1
3,3,3 serves as a nice illustration and its mirror map is particularly

interesting, we separate it into a single section.

Consider the elliptic curve E = C/(Z+Zτ) with τ = e2π
√
−1/3. The curve E admits a Z/3 action,

which is generated by the complex multiplication of τ on C. The quotient is the orbisphere P1
3,3,3

with three Z/3 orbifold points, and the quotient map is denoted as π : E → P1
3,3,3.

We take the Z/3-equivariant Lagrangian immersion ι̃ : L̃× Z/3→ C where L̃ = R, and

ι̃(x, 1) =
1 + τ

2
+
√
−1x, ι̃(x, τ) = τ ι̃(x, 1), ι̃(x, τ2) = τ2ι̃(x, 1).

Let pr : C→ E be the quotient map, and set L := L̃/Im(τ)Z. Then

ι := pr ◦ ι̃ : L× Z/3→ E

defines a Z/3-equivariant Lagrangian immersion. By taking Z/3-quotient, we obtain a Lagrangian
immersion (also denoted as L̄) ι := π ◦ ι : S1 → P1

3,3,3. Figure 5 illustrates the universal cover C of
the elliptic curve E and the equivariant immersion ι. See Figure 11 for its image in the orbi-sphere
P1

3,3,3.

There is another Z/3-equivariant Lagrangian immersion given by the imaginary axis of C, and
its Z/3-images. More precisely, denote ιLl : L × Z/3 → C with ιLl(x, 1) =

√
−1x. We will use

L̄l to denote this Lagrangian immersion, and call it long diagonal. (In fact, each branch Ll of ιLl
was called long diagonal in [BHLW06]). Note that L and Ll are related by translation in the cover
C, and they are different objects in Fukaya category, since translation in E is not a Hamiltonian
isotopy.

Another Z/3-equivariant Lagrangian immersion given by the real axis of C will be called short
diagonal, and denoted as L̄s.

First, we will give explicit computation of the Lagrangian Floer potential of L̄ to find the LG
mirror W3,3,3, by counting suitable holomorphic triangles in C.

This enables us to show that the generalized SYZ map equals to the mirror map for X = P1
3,3,3

([Sai74],[MR, ST11]), which means that our work provides an enumerative meaning of the mirror
map, and also explains the integrality of the mirror map
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We will also study the localized mirror functor for L̄ in detail in this section. Alternatively one
could study the localized mirror functor for L̄l. The localized mirror functor for L̄ is indeed a genuine
homological mirror functor for P1

3,3,3 as we will show in the next section that L̄ split-generates Fukaya

category of P1
3,3,3,

We show that under this mirror functor, the long diagonal L̄l goes to a 3×3 matrix factorization.
and the short diagonal L̄s to a 2 × 2 matrix factorization. And L̄ itself goes to a 4 × 4 matrix
factorization, which is computed explicitly in the next section.

Figure 5. Universal cover of P1
3,3,3 and the equivariant immersion ι

6.1. Quantum-corrected superpotential. The A∞-algebra for the Lagrangian immersion ι into
P1

3,3,3 is defined as follows. We first consider three Lagrangians in E given by components of the Z/3-
equivariant immersion ι, and construct Fukaya sub-category of these three Lagrangian submanifolds,
as explained in Section 3.4. This subcategory has a natural Z/3-action, and the Z/3-invariant part
provides a required A∞-algebra structure on the Floer complex of ῑ.

We have three immersed points of ῑ : L → L̄ ⊂ P1
3,3,3. Each immersed point gives rise to two

generators of the Floer complex, namely X,Y, Z, the odd-degree generators, and X,Y , Z, the even-
degree generators of HF (L,L). Also, we choose a Morse-function f on the domain of ῑ (∼= S1), with
one minimum e and one maximum p. We will think of e as a unit and p as a point class of the
Lagrangian. The Floer cohomology HF (L,L) is generated by these 8 elements.

Lemma 6.1. An element b = xX + yY + zZ for any x, y, z ∈ Λ is a weak bounding cochain.

This will be proved in more general setting in Theorem 7.5. Now we compute the mirror super-
potential. For this we have to compute mk-operations in E modulo Z/3-action with inputs given
by lifts of X,Y and Z.

Lemma 6.2. Let Xi ∈ {X,Y, Z} for i = 1, · · · , k. Then mk(X1, X2, · · · , Xk) = 0 if k ≥ 4.

Proof. As inputs are immersed generators, mk counts holomorphic k or k + 1-gons mapping into
P1

3,3,3 with appropriate boundary conditions. As the boundary of the holomorphic polygon is trivial

in the orbifold fundamental group of P1
3,3,3, we can take a lift of this polygon to the universal cover C.

Now let us consider the index. If we denote by β the homotopy class of a holomorphic polygon, then
the expected dimension of mk,β(X1, · · · , Xk) is µ(β) + 1− 3 + 1. Since the Lagrangian immersions

are straight lines, and only turns at the immersed generators, we have µ(β) ≥ k(π−π/3)
π . This implies

that mk(X1, · · · , Xk) are nontrivial only if k ≤ 3. �

Since the potential PO is defined by m(eb) = PO(ι, b)e for weak bounding cochains b, it is enough
to determine the coefficients of e in mk(X1, · · · , Xk) for k ≤ 3. The coefficients of e in m1(X1) and
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m2(X1, X2) are obviously zero for any degree one immersed generators X1, X2. Thus, it suffices
to compute the contribution of m3(X1, X2, X3) to e. Such contributions come from triangles (with
µ(β) = 2) in C passing through one of pre-images of e under the covering map.

Suppose that the (image under ῑ of) minimum e of the chosen Morse function on S1 lies on the

arc
_
XZ and the maximum p is the reflection of e across the long diagonal (equator of P(3,3,3)). In

Figure 5, e is represented by ×. Recall that the Lagrangian ῑ is equipped with a non-trivial spin
structure. We can enforce this by picking a generic point (for convenience ) right next to e in the arc
_
XZ. Taking the effect of the non-trivial spin structure into account, we reverses the sign of moduli
spaces if the boundary of holomorphic polygons pass through this generic point. Since the generic
point is right next to e, we may regard e as the generic point for this purpose.

Now we consider smallest triangles contributing to the potential. For this, pick a lift ẽ of e in C
and find triangles with turns given by X,Y, Z, and passing through ẽ. It is east to see from Figure
5 that there exist 4 types of triangles passing through ẽ, which contribute to

(6.1) m3(X,X,X), m3(Y, Y, Y ), m3(Z,Z,Z), m3(X,Y, Z).

Note that triangles with corners given by X,Z, Y in a counter-clockwise order do not meet any lift
of e at its boundary, hence is not counted.

The smallest triangle with corners in the order X,Z, Y has a unique lift of e on its boundary, and
hence contributes to m3 exactly once. However, the smallest triangle with corners X,X,X has three
pre-images of e on its boundary. Nevertheless, as a disc on the orbifold P1

3,3,3, not on the cover, this
triangle contributes also once due to its symmetry.

To record symplectic areas, we denote by q the inverse of the exponential of the area of P1
3,3,3,

and by qα that of the minimal XY Z triangle ∆xyz, and by qβ that of minimal X3 triangle ∆X3 . We
have relations q8

α = q and qβ = q9. See Figure 5.

Finally, we assign the signs to these polygons according to the rule given in Section 3.4. The full
superpotential takes the form

(6.2) W3,3,3 = −qβx3 + qβy
3 − qβz3 − qαxyz +O(q25

α ).

In addition to these, there are infinite sequences of triangles for each cubic term in Equation (6.2).
By counting these triangles weighted by areas and signs, we obtain the following theorem.

Theorem 6.3. The Lagrangian Floer potential PO(ι, b) is given by

(6.3) W3,3,3(x, y, z) = φ(q3
α)(x3 − y3 + z3) + ψ(qα)xyz,

where b = xX + yY + zZ and

φ(qα) =
∞∑
k=0

(−1)k+1(2k + 1)q(6k+3)2

α ,

ψ(qα) = −qα +
∞∑
k=1

(−1)k+1
(

(6k + 1)q(6k+1)2

α − (6k − 1)q(6k−1)2

α

)
.

The precise form of the potential above has not been computed previously, and is different from
the folklore mirror potential x3+y3+z3−σxyz. One can regard W3,3,3 as a quantum corrected mirror
potential. The benefit is that we can compute the mirror map explicitly from this construction. We
will show in Section 6.2 that the ratio of φ(qα) and ψ(qα) gives rise to the mirror map in classical
mirror symmetry.
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On the other hand, closed string mirror symmetry can be explained via an closed to open map. For
toric manifolds, Fukaya-Oh-Ohta-Ono [FOOO16] used holomorphic discs with one interior insertion
from quantum cohomology cycle to define a map from the quantum cohomology to the Jacobian
ring. The same line of proof should work in this case, or in general P1

a,b,c to derive the isomorphism

(6.4) ks : QH∗(P1
a,b,c)

∼= Jac(Wa,b,c).

We hope to discuss this in more detail in the future. Given the explicit computations of Wa,b,c in
[CHKL], the isomorphism leads to an explicit representation of the quantum cohomology ring.

6.2. Generalized SYZ map equals to the mirror map. In this subsection, we show that
the generalized SYZ map equals to the mirror map for X = P1

3,3,3. The mirror map for P1
3,3,3 is

well-known from Saito’s theory [Sai74], and readers are referred to [MR, ST11] for more recent
treatments. Our work here gives an enumerative meaning of the mirror map. Moreover, it explains
the integrality of the mirror map. i.e. its coefficients when expanded in the Kähler parameter q are
all integers.

The mirror map is given by the quotient q(q̌) = exp
(

2πi
3 · πB(q̌)/πA(q̌)

)
, where πA(q̌) and πB(q̌)

are functions satisfying the Picard-Fuchs equation

u′′(q̌) +
3q̌2

q̌3 + 27
u′(q̌) +

q̌

q̌3 + 27
u(q̌) = 0.

See Section 6.2 of [MR] for the explicit expressions of πA(q̌) and πB(q̌). The mirror map is of the
form

q = −q̌−1

(
1 +

∞∑
k=1

ck(−q̌)−3k

)
.

By inverting the above series, one obtains q̌ = −3a(q), where

a(q) = 1 +
1

3

(
η(q)

η(q9)

)3

= 1 +
1

3
q−1

( ∏∞
k=1(1− qk)∏∞
k=1(1− q9k)

)3

.

Thus the Landau-Ginzburg mirror to (P1
3,3,3, ωq) is

WLG = (x3 + y3 + z3) + q̌(q)xyz.

Theorem 6.4. The generalized SYZ mirror W SYZ(x, y, z) := W3,3,3(x, y, z) equals to the Landau-
Ginzburg mirror WLG(x, y, z) for P1

3,3,3, up to a coordinate change in (x, y, z).

Proof. Recall that the generalized SYZ mirror that we have constructed for P1
3,3,3 is

(6.5) φ(x3 + y3 + z3)− ψxyz
where

φ =
∞∑
k=0

(−1)3k+1(2k + 1)q3(12k2+12k+3)
α

and

ψ = −qα +

∞∑
k=1

(
(−1)3k+1(6k + 1)q(6k+1)2

α + (−1)3k(6k − 1)q(6k−1)2

α

)
.

Here we made a coordinate change y 7→ −y. Compare Equation (6.5) with Equation (6.3).

By a change of coordinates (x, y, z) 7→ φ−1/3(x, y, z), the generalized SYZ mirror can be written
as

W SYZ = (x3 + y3 + z3)− ψ

φ
xyz.
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Recall that q = q8
α.

Now to prove W SYZ = WLG, it suffices to check the equality

ψ

φ
= −q̌(q8

α) = 3 + q−8
α

∞∏
k=1

(1− q8k
α )3

(1− q72k
α )3

.

This can be derived directly by using the following identity

∞∏
k=1

(1− qkα)3 =
∞∑
k=0

(−1)k(2k + 1)q
k(k+1)

2 .

�

Note that the coefficients of φ and ψ are all integers. Moreover the leading coefficient of φ is −1.
Hence −ψ/φ have integer coefficients. By the above theorem, this implies that the mirror map q̌(q)
also has integer coefficients. Thus,

Corollary 6.5. The mirror map q̌(q) as a series in q has integer coefficients.

6.3. Mirror functor to matrix factorizations. Now we explain our localized mirror functor for
P1

3,3,3. We will transform several Lagrangian branes into the corresponding matrix factorizations
using our mirror functor.

The Lagrangian immersion ι (or L̄) together with the weak bounding cochains b = xX + yY +
zZ gives rise to an A∞ functor from the Fukaya category Fuk0(P1

3,3,3) to the category of matrix

factorizations of W3,3,3, LM(ι,b) : Fuk0(P1
3,3,3)→MF(W3,3,3).

There are three notable Lagrangian objects in Fuk0(P1
3,3,3): ι itself, the long diagonal L̄l, and the

short diagonal L̄s, which are defined in the beginning of this section.

These are mapped under the functor F (ι,b) to matrix factorizations. We will compute the matrix
factorizations of L̄l and L̄s in the following. See Proposition 7.14 for the matrix factorization
transformed from the Seidel Lagrangian.

6.3.1. Mirror matrix factorization of a long brane L̄l. Let us first consider the long diagonal Ll and
find its mirror matrix factorization. We will equip L̄l with a non-trivial spin structure as we did for
L̄ which makes the signs of counting more regular. (See ◦ on L̄l in Figure 6.)

It is possible to define CF ((L̄, b), L̄l) directly using the Morse-Bott model, but we work with the
perturbation L̄εl of L̄l by a Hamiltonian isotopy as in Figure 6 and take the limit ε→ 0.

The new Lagrangian L̄εl intersects L̄ transversely at 6 points as illustrated in the Figure 6. More
precisely, if we perturb L̄l to L̄εl around a neighborhood of each triple intersection of L̄l and L̄, we
get a pair of odd and even intersection points, denoted by (xi, yi) for i = 1, 2, 3.

The matrix factorization obtained from CF ((L̄, b), L̄l) (where b varies in M1
weak(L̄)) is of the

following form after taking the limit ε→ 0.

(6.6) E =


x1 x2 x3

y1 α1x α2z −α3y
y2 α3z −α1y α2x
y3 −α2y α3x α1z


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Figure 6. Long diagonal and its perturbation and their orientations

(6.7) J =


y1 y2 y3

x1 β1x
2 − γ1yz β3z

2 − γ3xy β2y
2 + γ2zx

x2 β2z
2 − γ2xy β1y

2 + γ1zx β3x
2 − γ3yz

x3 β3y
2 + γ3zx β2x

2 − γ2yz β1z
2 − γ1xy


where the (i, j)-th entry of E is given by 〈mb,0

1 (xj), yi〉, and the (i, j)-th entry of J is given by

〈mb,0
1 (yj), xj〉. Here yi-coefficients of mb,0

1 (xj) is denoted as 〈mb,0
1 (xj), yi〉.

For example, the (2, 1)-th entry of J is obtained by counting strips from y1 to x2, two of which
are shown in Figure 7 (a), and the (2, 3)-th entry of E by counting strips from x3 to y2 as shown in
Figure 7 (b).

Figure 7. Some strips from (a) y1 to x2 and (b) from x3 to y2

The coefficients αi, βi and γi (i = 1, 2, 3) are given by countable sums from sequences of strips,
which are explicitly calculable if we take the limit ε → 0. As an example, let us explain the

computation of 〈mb,0
1 (x1), y1〉 or α1x. One type of strips are given by triangles, whose vertices are

x1, y1, X in a counter-clockwise order (see the left side of Figure 8). The weighted signed sum of

these strips (in the limit ε→ 0) is given as 1− q62
α + q92

α + · · · . The other type of strips are given by

triangles, whose vertices are x1, X, y1 (the right side of Figure 8). Their sum gives −q62
α + q92

α + · · · .



LOCALIZED MIRROR FUNCTOR AND HMS FOR P1
a,b,c 39

Figure 8. Computation of α1

Summing up contributions from two types of triangles, we have α1 = 1 − 2q62
α + 2q92

α + · · · . The
other terms can be also computed in a similar way, and we omit the details.

The symmetry appearing in coefficients αi, βi, γi for both matrices (6.7), (6.6) can be understood
as a translation symmetry of L̄ together with the fact that the image of long diagonal in P1

3,3,3 is the

horizontal equator. See (a) of Figure 9. Three trapezoids above the long diagonal represent (limits
of) strips from y2 to x1, from y3 to x2, from y1 to x3, respectively. Coefficients of corresponding
entries in the expression (6.7) all agree up to sign. Indeed, one can check that (−)-sign appears
whenever there are odd number of y in the monomial for both matrices J and E. (We use the same
sign rule as in Subsection 7.2 by fixing a generic point ◦ on L̄l for its non-trivial spin structure.)

Similarly, three shaded triangles below the long diagonal with the same area represent strips from
x3 to y1, x1 to y2, x2 to y3, whose corresponding entries in the expression (6.6) have the same
coefficients, but again (−)-sign for y.

Figure 9. Long and short diagonal branes and holomorphic strips between (L̄, b)
and diagonal branes

The negative signs that appear in E and J can be explained as follows. Our potential for L̄ is of
the form W3,3,3 = φ(x3 − y3 + z3) +ψxyz. Note that if we make a coordinate change forM1

weak(L̄)
by ỹ = −y, then our potential is written in terms of the new coordinate as

W̃3,3,3 = φ(x3 + ỹ3 + z3)− ψxỹz.
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With these new coordinates, the matrix factorization E and J becomes

(6.8) J̃ =


x1 x2 x3

y1 β1x
2 + γ1ỹz β3z

2 + γ3xỹ β2ỹ
2 + γ2zx

ỹ2 β2z
2 + γ2xỹ β1ỹ

2 + γ1zx β3x
2 + γ3ỹz

y3 β3ỹ
2 + γ3zx β2x

2 + γ2ỹz β1z
2 + γ1xỹ



(6.9) Ẽ =


y1 y2 y3

x1 α1x α2z α3ỹ
x2 α3z α1ỹ α2x
x3 α2ỹ α3x α1z

.
As J̃ , Ẽ give a matrix factorization of W̃3,3,3, we have

(6.10) J̃Ẽ = ẼJ̃ = W̃3,3,3 · Id.
Hence we can write β, γ in terms of α.

β1 = φ/α1, β2 = φ/α2, β3 = φ/α3

γ1 = −α1β3

α2
= − φα1

α2α3
, γ2 = −α2β1

α3
= − φα2

α3α1
, γ3 = −α3β2

α1
= − φα3

α1α2

We remark that αi’s are invertible series even in Λnov0 because of minimal strips shown in Figure 6
whose area degenerate to q0 = 1 in the limit ε→ 0.

Moreover, Equation (6.10) implies that α1γ1 + α2γ2 + α3γ3 = ψ. Combining with the above, we
get φ(α3

1 +α3
2 +α3

3)/α1α2α3 = ψ, or equivalently φ(α3
1 +α3

2 +α3
3)−ψα1α2α3 = 0. This proves that

Proposition 6.6. (α1, α2, α3) corresponds to a point in the elliptic curve W̃3,3,3 = 0.

Remark 6.7. In [BHLW06], the physicists studied the endomorphisms of matrix factorization cat-
egory of the potential W = 1

3x
3 + 1

3y
3 + 1

3z
3 − axyz. A matrix factorization of W similar to (E, J)

was defined, and they derived from physical arguments that the product structure of endomorphisms
of the matrix factorization corresponds to counting of triangles with boundary on (lifts of) long
diagonals Ll (without explicitly computing the count).

6.3.2. Matrix factorization for a short diagonal L̄s. The mirror matrix factorization of the short
diagonal Ls can be computed in a similar way. Types of holomorphic strips that contributes to the
matrix factorizations are drawn in (b) of Figure 9.

The resulting matrix factorization is of the following form and we leave the detailed check to the
reader.

(6.11) PLs :=


L1 Q2

−L2 Q1

Q1 −Q2

L2 L1


where linear terms L1, L2 and quadratic terms Q1, Q2 are given by

L1 = α1x+ α2y + α3z

L2 = α3x+ α2y + α1z

Q1 = (β1x
2 + γ1yz) + (β2y

2 + γ2zx) + (β3z
2 + γ3xy)

Q2 = (β3x
2 + γ3yz) + (β2y

2 + γ2zx) + (β1z
2 + γ1xy)

and αi, βi, and γi (i = 1, 2, 3) are power series in q. There are several relations among these power
series which come from the equation P 2

Ls
= W3,3,3 · Id, which we also omit.
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Remark 6.8. The matrix factorization takes different expression from that in [BHLW06] corre-
sponding to the short diagonal.

6.3.3. Magical cancellation. Showing the identity (mb,0
1 )2 = W directly by computation is not easy,

since it involves some ‘magical’ cancellations. Before we show an example of such cancellations, let
us review the proof of this equation. This is done by investigating the moduli space of holomorphic
strips of Maslov-Viterbo index two with eb insertions on the upper boundary. Its codimension one
boundary components are given by either a broken strip consisting of two strips of Maslov-Viterbo
index one or a strip of Maslov-Viterbo index zero together with a Maslov index two disc bubble. In

Figure 10. A magical cancellation

the case of the Seidel Lagrangian, the latter can be divided into two types depending on whether
the nodal point (connecting the disc bubble and the strip) is immersed or not.

Non-trivial strips of Maslov-Viterbo index zero exist when the nodal point is immersed. Such
configurations with an immersed nodal point should cancel among themselves since b is a bounding
chain and m(eb) is a multiple of e, and any immersed output contributing to m(eb) in fact cancels
out. In the case that nodal point is not immersed, one can note that the only non-trivial contribution
is from a constant strip, since m(eb) is a multiple of e. This provides the term W .

An example of a magical cancellation pair is shown in Figure 10. These cancellation are connected
through the cancellation pairs of immersed outputs of m(eb) given by reflection along equator. Hence
we are using the fact that all immersed outputs of m(eb) cancel out.

7. Orbifold sphere P1
a,b,c

In this section we apply our mirror construction to the orbifold P1
a,b,c for all a, b, c. We derive

homological mirror symmetry using our functor when 1
a + 1

b + 1
c ≤ 1. We use the Seidel Lagrangian

L̄ depicted in Figure 11 for our construction.
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The essential ingredients are the following. Solving the weak Maurer-Cartan equation is the first
key step. We will show that L̄ and its odd-degree immersed deformations are weakly unobstructed
(Theorem 7.5). This allows us to construct the mirror of P1

a,b,c and the functor.

Second we need to show that the criterions of Theorem 4.2 are satisfied, and hence our functor
derives homological mirror symmetry. The Seidel Lagrangian split-generates by the generation
criterion of Abouzaid applied to a manifold cover of P1

a,b,c where the Seidel Lagrangian L̄ lifts to an

embedded smooth curve. Such a cover always exists for 1
a + 1

b + 1
c ≤ 1 from the joint work with the

authors with Kim [CHKL] (See Proposition 7.3). Since the Fukaya category of P1
a,b,c is defined as

the invariant part of that of the cover, it is split generated by L̄.

Third we compute the image matrix factorization of L̄ under our functor, and show that it split-
generates DπMF(W ) (Corollary 7.15) by using the result of Dyckerhoff [Dyc11]. We also verify
that our functor induces an isomorphism on HF (L̄, L̄) (Section 7.6). This proves homological mirror
symmetry for P1

a,b,c.

For the construction of mirror W , we will work for all a, b, c > 1. However for homological mirror
symmetry, we will restrict to the case 1

a + 1
b + 1

c ≤ 1. The reason is that the mirror W has more

than one critical points for the spherical case 1
a + 1

b + 1
c > 1 and exhibits a rather different behavior.

While we believe our functor still derives homological mirror symmetry, we will discuss this case
separately elsewhere.

For our purpose here we do not need the explicit expression of W , and hence we will only
compute the leading-order terms. W takes the form a(q)xa + b(q)yb + c(q)zc + σ(q)xyz + . . . which
is a quantum-corrected superpotential and is different from the one used by Seidel [Sei11]. The
explicit computation of the full superpotential W will be given in [CHKL].

7.1. Manifold covers of P1
a,b,c. The orbifold P1

a,b,c has a branched covering Σ which is a Riemann
surface. We recall some relevant facts. Orbifolds have an analogous covering space theory due to
Thurston [Thu79, Chapter 13], and the following orbifold Euler characteristic plays an important
role in characterizing coverings of orbifolds.

If an orbifold Q has a CW -complex structure so that the local group is constant on each open
cell c (denote by G(c) the local group on c), then its orbifold Euler characteristic is defined as

χorb(Q) :=
∑

cells c
(−1)dim c

|G(c)| . For P1
a,b,c, we can divide it into two cells, namely the upper and the

lower hemispheres, by an equator which passes through the three orbifold points pa, pb, pc. This
defines a CW -complex structure of P1

a,b,c satisfying the property above. Therefore

χorb(P1
a,b,c) =

1

a
+

1

b
+

1

c
− 1.

In addition, we consider the reflection τ along the equator (1-cells) of P1
a,b,c, and let Da,b,c denote

the quotient of P1
a,b,c by the reflection. Then we have χorb(Da,b,c) = 1

2

(
1
a + 1

b + 1
c − 1

)
.

Let M be the universal cover of P1
a,b,c. According to whether 1

a + 1
b + 1

c > 1 or = 1 or < 1,

the universal cover M is S2 or R2 or H2. We may assume that the deck transformation group

π1
orb

(
P1
a,b,c

)
acts on M as isometries.

It is well-known (see [Dav11]) that the orbifold fundamental groups of P1
a,b,c and Da,b,c are

πorb1 (P1
a,b,c) =< ρa, ρb, ρc | (ρa)

a = (ρb)
b = (ρc)

c = ρcρbρa = 1 >,
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and πorb1 (Da,b,c) =< ρa, ρb, ρc, τab, τbc, τca | R > respectively where the relation set R is generated by (ρa)
a = (ρb)

b = (ρc)
c = ρcρbρa = 1

ρa = τcaτab ρb = τabτbc ρc = τbcτca
(τab)

2 = (τbc)
2 = (τca)

2 = 1.

One can easily see that πorb1 (P1
a,b,c) injects to πorb1 (Da,b,c).

It is also known that (see [Sco83, Theorem 2.5]) any finitely generated discrete subgroup of the
isometry groups of S2, R2 or H2 with a compact quotient space has a torsion free subgroup, say

Γ, of finite index. Fix a torsion free subgroup Γ of π1
orb

(
P1
a,b,c

)
. The quotient M/Γ is a compact

surface Σ with genus g which is a covering space (in the sense of orbifold covering) of P1
a,b,c. (M/Γ

is a manifold since Γ is torsion-free.)

Remark 7.1. Torsion free subgroup Γ is not unique in general. Suppose that Σ → P1
a,b,c is a

d-fold branched covering. Then d is always a common multiple of a, b, c and satisfies the relation
χ(Σ) = 2− 2g = d

(
1
a + 1

b + 1
c − 1

)
= d · χ(P1

a,b,c).

From covering space theory, the deck transformation group G of the branched covering Σ→ P1
a,b,c

is πorb1

(
P1
a,b,c

)
/N(Γ), where N(Γ) is the normalizer of Γ. Note that G is finite. It is often convenient

to work on Σ G-equivariantly instead of working on the orbifold P1
a,b,c directly.

We also give a brief remark on the universal cover M → P1
a,b,c. Endow M with a triangulation by

lifting the triangulation of Da,b,c. Since the orbifold fundamental group of Da,b,c acts on its universal
cover, we have reflections about each 1-skeleton of the triangulation.

Remark 7.2. One can show that πorb1 (Da,b,c) ∼= Z/2Z n πorb1

(
P1
a,b,c

)
.

Now we consider the lifts of L̄ to a branched covering π : Σ → P1
a,b,c. In a joint work with Kim

[CHKL, Proposition 2.4], we prove that in the hyperbolic case 1
a + 1

b + 1
c < 1, there exists a compact

manifold cover Σ of P1
a,b,c such that the Seidel Lagrangian lifts to a Lagrangian embedding into

Σ. For an elliptic curve quotient ( 1
a + 1

b + 1
c = 1), by a case-by-case study (where there are only

three cases) we can see that the Seidel Lagrangian lifts to an embedded curve in the torus. When
1
a + 1

b + 1
c > 1, namely the spherical case, other than (a, b, c) = (2, 2, odd), we can show that the

Seidel Lagrangian lifts to a circle (which is an equator) in the sphere [CHKL, Lemma 12.1]. However
for (a, b, c) = (2, 2, odd), the Seidel Lagrangian lifts to an immersed curve (which is not embedded)
in the sphere. Hence we conclude the following.

Proposition 7.3 (Proposition 2.4 and Lemma 12.1 of [CHKL]). For 1
a + 1

b + 1
c ≤ 1, there exists a

manifold cover of P1
a,b,c such that the Seidel Lagrangian lifts as an embedded curve.

7.2. Floer generators of the Seidel Lagrangian. We take a manifold cover of P1
a,b,c in order to

define its Fukaya category (Section 3.5). We will focus on the case 1
a + 1

b + 1
c ≤ 1. We take a manifold

cover Σ of P1
a,b,c such that the Seidel Lagrangin lifts as an embedded curve in Σ. The objects of the

Fukaya category are G-equivariant collections of embedded curves in Σ avoiding orbifold points.

The Lagrangian Floer complex CF (L̄, L̄) is Z/2-graded and has six immersed generators (two for
each immersed points), namely X, Y , Z of degree 1 and X̄, Ȳ , Z̄ of degree 2. It also has generators
coming from H∗(S1) where S1 is the domain of the Lagrangian immersion. We use the Morse
complex CM(f) instead of H∗(S1) for some Morse function f on the domain of the immersion L̄,
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which has two critical points e and p, namely the minimum and the maximum points of f . Thus
CF (L̄, L̄) is spanned by X,Y ,Z, X̄, Ȳ , Z̄, e and p.

For convenience we may use the 1/3 grading defined by Seidel [Sei11]. Note that in general the
1/3-grading is not compatible with the orbifold structure of P1

a,b,c and does not really define a Z-
grading on the Fukaya category. We will only work over Z2 grading and hence will only care about

the parity of the grading. It is defined by taking a section η3 of
(
T ∗S2

)⊗3
which has exactly three

double poles (and nowhere-vanishing elsewhere), which are identified with the three orbifold points

of P1
a,b,c. Then we get a map S1 → S1 given by θ 7→ η3(ι⊗3

θ )
||η3(ι⊗3

θ )||
where the first S1 is the domain of

the Lagrangian immersion ι : S1 → L̄ and ιθ = ι∗
(
∂
∂θ

)
. This map can be lifted to a : S1 → R which

is the so called 1/3-grading.

Under the 1/3-grading, e has degree 0, X,Y, Z have degree 1, X̄, Ȳ , Z̄ have degree 2, and p have
degree 3. Thus the odd generators are X,Y, Z, p and the even generators are e, X̄, Ȳ , Z̄.

7.3. Weak bounding cochains of the Seidel Lagrangian. In this section we solve the Maurer-
Cartan equation for weakly unobstructed immersed deformations of L̄ ⊂ P1

a,b,c. We prove that the
linear combinations of all degree 1 elements, namely X, Y , Z, are weak bounding cochains.

A key ingredient is the anti-symplectic involution τ on P1
a,b,c given by the reflection about the

equator which passes through the three orbifold points. The symplectic structure ω is taken such
that τ∗ω = −ω. Moreover L̄ is invariant under τ , namely it is symmetric along the horizontal
equator of P1

a,b,c. The immersed points of L̄ lies in the equator which is the fixed locus of τ . This

symmetry will be essential to prove that L̄ is weakly unobstructed.

Lemma 7.4. Suppose that A0,· · · , Ak are all degree 1 immersed generators. Consider a holomor-
phic polygon P ∈ M(A0, A1, · · · , Ak), and its reflection by τ , P op ∈ M(Ak−1, Ak−2 · · · , A0, Ak).
Then the contribution of P to

〈
mk(A0, · · · , Ak−1), Āk

〉
, which denotes the coefficient of Āk in

mk(A0, · · · , Ak−1), cancels with the contribution of P op to
〈
mk(Ak−1, · · · , A0), Āk

〉
.

Proof. Recall that the signs of polygons are determined by two factors. The first is the comparison
of counter-clockwise orientation along the boundary of the polygon with that of the bounding
Lagrangians. The other is the number times that the boundary of a polygon passes through the
generic point which represents the non-trivial spin structure.

Regarding the first factor, observe that the reflection τ reverses the orientation along the boundary
of a holomorphic polygon, but τ preserves the orientation of L̄. Hence the sign difference between
P and P op from the first factor is given as

(7.1) (−1)|A0|+|A1|+···+|Āk| = (−1)k.

Now let us compare the second factor, which is the number of times that P and P op pass through
the given generic point. Let us consider the union of boundaries ∂P∪∂P op, and the Seidel Lagrangian

L̄. Define
_
XY

±
,
_
Y Z

±
,

_
ZX

±
as in Figure 11 and call them minimal arcs of the Seidel Lagrangian.

Suppose that the generic point “◦” lies on the minimal arc
_
ZX

+

(see Figure 11).

Here are a few observations. The first observation is that ∂P ∪ ∂P op evenly covers L̄. (i.e.
∂P ∪ ∂P op is a cycle that is an inter multiple of [L̄].) To see this, consider the point p which travels
along ∂P , and its reflection image τ(p), which travels along ∂P op. The pair (p, τ(p)) always travel
on ±( or ∓) pair of minimal edges, and ends at the original vertex after full rotation along ∂P .
Hence the number of times that ∂P ∪ ∂P op covers a minimal arc is the same for all minimal arcs.
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The second observation is that any edge of a holomorphic polygon P for the potential consists of
odd number of minimal arcs L̄. (In other words, the corners of a holomorphic polygon always lie on
one of the hemisphere.) In fact, if two odd degree corners of such a polygon were connected by an
edge consisting of even number of minimal arcs, then one of the odd corner would be non-convex.

Now consider a (k+1)-gon P and suppose that ∂P∪∂P op covers L̄ l-times (i.e. [∂P∪∂P op] = l[L̄]).
Then ∂P∪∂P op covers 6l minimal arcs, and hence ∂P covers 3l minimal arcs. We claim that k+1 ≡ l
mod 2. First, if k + 1 is odd, we see from the second observation that ∂P covers odd number of
minimal arcs. Since ∂P covers 3l minimal arcs, l should be odd. Similarly, if k + 1 is even, ∂P
covers even number of minimal edges, and hence l is even.

Therefore,
the number of “ ◦ ” on P − the number of “ ◦ ” on P op

≡ the number of “ ◦ ” on P + the number of “ ◦ ” on P op

≡ l ≡ k + 1 mod 2

Combined this with Equation (7.1), the total difference of signs is (−1)2k+1 = −1 and hence contri-
butions of P and P op cancels each other. �

Figure 11. (a) The Seidel Lagrangian and (b) its smoothing

Now we are ready to prove the main theorem of this subsection.

Theorem 7.5. b = xX + yY + zZ is a weak bounding cochain for any x, y, z ∈ C.

Proof. Let us first consider the elliptic and hyperbolic cases. Then m(eb) is a linear combination of
the terms mk(X1, X2, · · · , Xk) where k ≥ 1 and Xi’s are among X, Y and Z. It suffices to show
that the coefficient of X̄ in mk(X1, X2, · · · , Xk) is canceled with that of X̄ in mk(Xk, Xk−1, · · · , X1).
Indeed, terms inm(eb) always appear in a pair since if a holomorphic polygon P contributes tom(eb),
then its reflection image P op also contributes to m(eb). Notice that this is exactly the situation
considered in the previous lemma. i.e. two contributions from P and P op are canceled since all
Xi’s have odd degrees. Therefore we obtain m(eb) = ce by considering its degree. In the spherical
case, the above argument still works, but there is an additional contribution of m0. Namely, if
(a, b, c) 6= (2, 2, odd), then lifts of Seidel Lagrangian in the universal cover S2 are topological circles
and each lift bisect S2. Hence two discs bounded by such a lift gives m0(1) = c′e for some c′ ∈ Λ0.
In [CHKL] c′ is explicitly computed, as they are the constant terms of the potential in the spherical
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cases. In the case that (a, b, c) = (2, 2, odd), then lifts in the universal cover is still immersed, and
hence does not bound a disc. But the 1-gon in the universal cover could contribute to m0(1) with
an output given by the corresponding immersed generator. But Lemma 7.4 for k = 0 implies that
such contributions from this 1-gon and its reflection cancel out, and hence we get m0(1) = 0 in this
case. Hence we also have m(eb) = ce in the spherical case.

�

7.4. The mirror superpotential. We obtain the superpotential W (b) where m(eb) = W (x, y, z)e.
It takes the form W : Λ3

0 → Λ0 with W (x, y, z) =
∑
amnl(q)x

mynzl, where amnl is a power series in
q which counts areas of (m+n+ l)-gons with m X’s, n Y ’s and l Z’s as vertices and the numbers of
e’s on their edges with appropriate signs. (We write W instead of Wa,b,c from now on for notational
simplicity.) More precisely, consider a (m+ n+ 1)-gon P with the counter-clockwise orientation on
the boundary which has m X’s and n Y ’s and l Z’s as its vertices, which contributes to W . Then
the pair {P, P op} induces a term

(−1)s(P ) s(P ) + s(P op)

r(P )
qω(P )xmynzl

where s(P ) is the number of e’s on the boundary of P and r(P ) is the order of the symmetry of
P . Here we are considering an orbifold theory (not a theory on Σ), and hence such symmetry has
to be considered. In other words, if P has no such symmetry r(P ) = 1, but if the polygon has a
Z/k symmetry, this gives rise to additional equivalence relation, and hence we set r(P ) = k. (In
the latter cases, fractional part of these polygons can be understood as orbi-discs, which will be
discussed in more detail elsewhere. Unlike in Lemma 7.4, P and P op contribute with the same sign
here, because e is of even degree.

Recall that we have computed W (x, y, z) explicitly for P1
3,3,3 in Section 6 Theorem 6.3. But

determining the exact potential W (x, y, z) for general P1
a,b,c turns out to be a rather non-trivial

work, and we provide such calculation in [CHKL] together with S.-H. Kim.

Let us explain a characteristic of W (x, y, z) depending on three cases.

(1) In a spherical case (i.e. 1
a + 1

b + 1
c > 1), the number of monomials in the potential is finite.

Moreover, each coefficient (as a power series of q) has finitely many terms.
(2) In an Euclidean case ( (3, 3, 3), (2, 3, 6) or (2, 4, 4)), the potential is a weighted homogeneous

polynomial of x, y, z variables which consists of finitely many monomials. However, there
are infinitely many polygons contributing to the same monomial so that each coefficient is
an infinite series of q.

(3) In a hyperbolic case(i.e. 1
a + 1

b + 1
c < 1), the potential has infinitely many monomials, but

there are only finitely many polygons contributing to each monomial.

The first few terms of W (x, y, z) are the following. The XY Z-triangle in the upper hemisphere
contributes to W (x, y, z), whereas that on the lower hemisphere does not since it does not pass
through e. We have a holomorphic a-gon with corners given byXa and similarly, we have b-gon, c-gon
with corners Y b and Zc. Hence the leading terms of W (x, y, z) are a(q)xa+b(q)yb+c(q)zc+σ(q)xyz.

7.5. Geometric transform of Seidel Lagrangian in P1
a,b,c. We prove the following theorem in

this section.



LOCALIZED MIRROR FUNCTOR AND HMS FOR P1
a,b,c 47

Theorem 7.6. Consider the Seidel Lagrangian L̄, with weak bounding cochains b = xX + yY + zZ.

The localized mirror functor LML̄,b sends L̄ to the following matrix factorization of W − λ:

(7.2)



pnew X Y Z e X̄new Ȳ new Z̄new

pnew 0 x y z
X x 0 wz −wy
Y y −wz 0 wx
Z z wy −wx 0
e 0 wx wy wz
X̄new wx 0 −z y
Ȳ new wy z 0 −x
Z̄new wz −y x 0


Here wx is defined in Definition 7.9, and X̄new is defined in Definition 7.8. And λ is the constant
term of W and λ = 0 in the elliptic , hyperbolic and (2, 2, odd) cases, and in the remaining spherical
cases, we have λ = m0(1) 6= 0.

In order to find the matrix factorization LML,b(L̄), we need to compute the Floer differential

mb,0
1 between ((L̄, b), L̄). The differential counts holomorphic strips with upper and lower boundary

mapping to L̄ but upper boundary is allowed to have immersed inputs. Namely, if the differential is
between immersed generators and there is one b appearing in the upper boundary, the holomorphic
strip is in fact a holomorphic triangle. If two b appear in the upper boundary, the holomorphic strip
is a trapezoid. From now on, we additionally require that the critical points e and p of the Morse
function are symmetric with respect to the reflection about the equator of P1

a,b,c.

We can count such (boundary deformed) holomorphic strips (or in general pearly trees) in the
following way:

(i) Strips from e to X, Y , Z :
In this case, only constant strips contribute as we have explained in Section 3.4. One can also see
this from the unital property of e. That is, mk(b, · · · , b, e) vanishes except m2(b, e) = b. Thus,
δ(e) = mb

1(e) = b = xX + yY + zZ.

(ii) Strips from X̄, Ȳ , Z̄ to p :
This case is similar to (i) in that only constant strips contribute. Namely, the A∞ structure with
output on p was defined in such a way that only constant strips contribute so that the degree 3
parts of δ(X̄), δ(Ȳ ), δ(Z̄) are xp, yp, zp respectively.

(iii) Strips from X, Y , Z to X̄, Ȳ , Z̄ :
As illustrated in Figure 12, holomorphic strips from one of X,Y, Z to one of X̄, Ȳ , Z̄ come from the
same holomorphic polygons which were used to compute the potential W , but their contributions
are different. For example, the number of times e appears is irrelevant here. We fix a polygon P
which were used in computing W , and determine its contribution to this counting of holomorphic
strips. Let P be such a polygon with the counter-clockwise orientation on the boundary Lagrangian.
We can write it as P = x1x2 · · ·xk−1 where xi’s are vertices of P , arranged in counterclockwise
direction. (xi = x or y or z). Here P should be considered as a cyclic word, or one may regard
index i of xi as a number modulo k (for example xk+1 = x1).

Let P op be the reflection image of P with respect to the equator of P1
a,b,c which can be written

as the word xkxk−1 · · ·x1 also in the counter-clockwise arrangement of vertices. We can use P to
consider mb

1(Xi) contribution to Xi+1, or use P op to consider its contribution to Xi−1. Then the
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Figure 12. strips from X to Ȳ

pair {P, P op} contributes to δ as

(7.3) δ{P,P op} : Xi 7→(−1)s(P )qω(P )
(
x1 · · · x̌i ˇxi+1 · · ·xkXi+1 − xk · · · x̌i ˇxi−1 · · ·x1Xi−1

)
.

(the minus sign appearing in the expression (7.3) is due to Lemma 7.4.) Combining contribution
for all i, we get

δ{P,P op}(X) = (−1)s(P )qω(P ) 1

r(P )

(
αyx(P )

MP

xy
Ȳ + αxz(MP )

P

xy
Z̄

)
,

where we regardMP as the commutative monomial x1 · · ·xk and αxy is the number of “xy” appearing
in P minus that of “yx” (and similar for αxz).

Lemma 7.7. δ{P,P op}(X) does not contain nontrivial X. The same goes for Y, Z.

Proof. Suppose the polytope has a boundary edge XX. Then contribution from P and from P op

cancel out. �

Also, it is easy to check by simple combinatorics that if P consists of less than three variables, say
xi and xj , then αxixj (P ) = 0. Therefore, if we define P+

xyz to be the set of polygons contributing to
W which contain all three variables and have counter-clockwise orientation on the boundary, then
degree 2 part of δ(X) is given by

(7.4)
∑

P∈P+
xyz

(−1)s(P )qω(P )αxy(P )

r(P )

MP

xy
Ȳ +

∑
P∈P+

xyz

(−1)s(P )qω(P )αxz(P )

r(P )

MP

xz
Z̄.

Let Pa,m be the set of positively oriented (w.r.t. the orientation on L̄) polygons which have the
symplectic area a, and induces the monomial m in the potential. Define αxy(Pa,m) by

αxy(Pa,m) :=
∑

P∈Pa,m

(−1)s(P )

r(P )
αxy(P ).

αxixj (Pa,m) is similarly defined for xi, xj ∈ {x, y, z}. Then Equation (7.4) can be rewritten as

(7.5) degree 2 part of δ(X) =
∑
a,m

qa
(
αxy(Pa,m)

m

xy
Ȳ + αxz(Pa,m)

m

xz
Z̄

)
.

Note that negative powers of x, y, z do not appear in the above sum since αxixj (Pa,m) = 0 for m only

consisting of less than two variables among {x, y, z}. Let us compute
〈
δ2(X), p

〉
from the expression

(7.5) which should be zero.〈
δ2(X), p

〉
=
∑
a,m

qa (αxy(Pa,m) + αxz(Pa,m))
m

x
.
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Therefore we have αxy(Pa,m) +αxz(Pa,m) = 0 for all (a,m) or, equivalently αxy(Pa,m) = αzx(Pa,m).
So, it makes sense to define a Z-valued function θ by

θ(a,m) := αxy(Pa,m) = αyz(Pa,m) = αzx(Pa,m).

We remark that this identity can be also proved by an easy combinatorial argument. Now we
introduce a change of coordinates which will help us to get a nice form of the matrix factorization
later.

Definition 7.8. We define the following change of coordinates.

(7.6) X̄new := γX̄, Ȳ new := γȲ , Z̄new := γZ̄, pnew := γp

where γ =
∑

a,m q
aθ(a,m) m

xyz .

The above coordinate change is essential to make the mirror matrix factorization to have “con-
traction and wedge product” form.

The term “qε”xyz in W from the minimal triangle with area ε in P1
a,b,c \ {pa, pb, pc} guarantees

that this coordinate change is, indeed, invertible. With this new basis, degree 2 parts of δ(X), δ(Y ),
δ(Z) are respectively, zȲ new − yZ̄new, xZ̄new − zX̄new, yX̄new − xȲ new. Accordingly, letting
pnew = γp, (ii) implies that the degree 3 parts of δ(X̄new), δ(Ȳ new), δ(Z̄new) are xpnew, ypnew,
zpnew respectively.

(iv) Strips from X, Y , Z to e and strips from pnew to X̄new, Ȳ new, Z̄new :
Counting strips from pnew to X̄new, Ȳ new, Z̄new is equivalent to counting the strips from p to X̄,
Ȳ , Z̄ since we have multiplied γ commonly to all of them to obtain the new coordinates.

Again consider the polygon P = x1x2 · · ·xk which contributes to the potential. Roughly speaking,
P contributes to δ(pnew) by a linear combination of MP

xi
X̄i and coefficients depend on the number

of p’s the edge of P on which the input marked point lies. The similar happens for the e-coefficients
of δ(X), δ(Y ), δ(Z).

However, it is a little more complicated to find the coefficients precisely since each edge of P can
have the different number of p on it. Instead, we will show that the counting strips from X, Y , Z
to e are equivalent to counting p to X̄, Ȳ , Z̄.

Definition 7.9. We define wx, wy, wz such that δ(p) = wxX̄ +wyȲ +wzZ̄. (δ(p) does not have an
e-term since only Morse flows contribute to 〈δ(p), e〉.)

Now we claim that 〈δX, e〉 = wx, 〈δY, e〉 = wy, 〈δZ, e〉 = wz. This is basically because e is the
reflection image of p with respect to the equator. We have a symmetry with positive signs here
unlike in Lemma 7.4, because the degree difference between p and e is odd. Suppose P has k e’s
on the edge XiXi+1. By symmetry, its reflection image P op has k p’s on the edge τ(XiXi+1). So,
P contributes to 〈δ(Xi), e〉 k-times, and P op contributes to

〈
δ(p), X̄i

〉
k-times. (It is clear from (a)

of Figure 13 that the strip from p to Xi corresponds to the strip from Xi to e by the reflection and
vice versa.) This implies

〈
δ(p), X̄i

〉
= 〈δ(Xi), e〉 for all Xi = X,Y, Z.

(v) Further properties from the reflection symmetry :

Lemma 7.10. We have
〈
δ(X̄new), Y

〉
= −

〈
δ(Ȳ new), X

〉
,
〈
δ(Ȳ new), Z

〉
= −

〈
δ(Z̄new), Y

〉
,
〈
δ(Z̄new), X

〉
=

−
〈
δ(X̄new), Z

〉
.

Proof. Without loss of generality, it suffices to prove the first identity. Consider a strip Q from X̄
to Y . Its reflection image Qop is a strip from Ȳ to X as shown in (b) of Figure 13. Considering the
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Figure 13. Symmetry (a) between strips from p to X̄i and from Xi to e (b) between
strips from X̄ to Y and from Ȳ to X

orientation of the Lagrangian along the boundaries of Q and Qop, we get
〈
δ(X̄), Y

〉
= −

〈
δ(Ȳ ), Z

〉
by Lemma 7.4 and hence the first identity follows. �

Corollary 7.11. We have
〈
δ(X̄new), X

〉
=
〈
δ(Ȳ new), Y

〉
=
〈
δ(Z̄new), Z

〉
= 0.

Proof. We can apply the same argument as in the proof of the previous lemma for the map from X̄
to X. If a strip from X̄ to X has other immered input b’s, then the reflection image of such a strip
is different from the strip itself, and hence the same cancellation argument works. If a strip from X̄
to X is a bigon (without other immersed inputs), then its two corners are both X̄, but this bigon is
counted twice as a strip from X̄ to X (in opposite directions), and they cancel out each other. �

In summary, we have the matrix factorization PL̄ of W − λ shown as follows:

(7.7)



pnew X Y Z e X̄new Ȳ new Z̄new

pnew 0 x y z
X x 0 −f h
Y y f 0 −g
Z z −h g 0
e 0 wx wy wz
X̄new wx 0 −z y
Ȳ new wy z 0 −x
Z̄new wz −y x 0


where we write holomorphic strips from j to i in the (i, j)-th entry and we define

f :=
〈
δ(X̄new), Y

〉
, g :=

〈
δ(Ȳ new), Z

〉
, h :=

〈
δ(Z̄new), X

〉
.

In fact, we can identify f , g, h as follows. We look at the product of the second row of the bottom
left 4 by 4 matrix and the third column of the upper right 4 by 4 matrix, which should be zero.
Therefore ywx + yg = 0 and g = −wx. By the same manner, we get h = −wy and f = −wz. Since
this is a matrix factorization of W − λ, it satisfies W − λ = xwx + ywy + zwz.

7.5.1. Wedge-contraction formulation. Let us express the matrix factorization (7.2) in the “contraction-
wedge” form. The Floer homology CF ∗(L̄, L̄) has 8 generators (as a module), which are given by
e,X, Y, Z, X̄, Ȳ , Z̄, p. This can be identified with the exterior algebra if we define Y ∧Z = X̄, Z∧X =
Ȳ , X ∧Y = Z̄, 1 = e,X ∧Y ∧Z = p. But this exterior algebra structure require quantum corrections
in order to obtain the matrix factorization (7.2) (see also Definition 7.8).
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Definition 7.12. We define the new exterior algebra
∧∗
new〈X,Y, Z〉 over Novikov field as follows.

X ∧new Y := Z̄new, Y ∧new Z := X̄new, Z ∧new X := Ȳ new,

where X̄new, Ȳ new, Z̄new are defined in Definition 7.8. We also define

X ∧new X̄new = Y ∧new Ȳ new = Z ∧new Z̄new = pnew.

Here we define 1 ∧new (·) to be an identify operation. Remaining ∧-operations are defined to be
trivial.

Contraction ιnew is defined in a similar way. Namely, ιnewX Z̄new = Y, ιnewY X̄new = Z, ιnewZ Ȳ new =
X.

Recall from Definition 7.8 that leading term of γ comes from the minimal triangle ∆XY Z (the
shaded triangle in Figure 1). Hence the leading term of ∧new is the usual exterior algebra structure
(multiplied by the exponentiated area of ∆XY Z). This may be understood as a quantum corrected
exterior algebra structure. Then we have

Corollary 7.13. The matrix factorization in Theorem 7.6 is isomorphic to

(7.8)
(∧∗

new
〈X,Y, Z〉, xX ∧new (·) + yY ∧new (·) + zZ ∧new (·) + wx ι

new
X + wy ι

new
Y + wz ι

new
Z

)
.

We directly compute the mirror matrix factorization for L̄ explicitly for (a, b, c) = (3, 3, 3).

Proposition 7.14. For (a, b, c) = (3, 3, 3), the entries wx, wy and wz in the matrix factorization
in Theorem 7.6 are given as follows:

wx = x2
∞∑
k=0

(−1)k+1(2k + 1)q(6k+3)2

α + yz

∞∑
k=1

(−1)k+1
(

(2k + 1)q(6k+1)2

α − (2k − 1)q(6k−1)2

α

)
− yzqα,

wy = y2
∞∑
k=0

(−1)k(2k + 1)q(6k+3)2

α + xz

∞∑
k=1

(−1)k+1
(

2kq(6k+1)2

α − 2kq(6k−1)2

α

)
,

wz = z2
∞∑
k=0

(−1)k+1(2k + 1)q(6k+3)2

α + xy

∞∑
k=1

(−1)k+1
(

2kq(6k+1)2

α − 2kq(6k−1)2

α

)
.

where qα is the area of a minimal xyz-triangle. The coordinate change γ in Equation (7.6) is
γ = −q +

∑∞
k=1(−1)k+1

(
ψ+
k (qα) + ψ−k (qα)

)
.

We will consider W as an element of Λ[[x, y, z]]. In a joint work [CHKL] with Kim, we prove that
W is convergent over C for P1

a,b,c.

Corollary 7.15. The matrix factorization (7.8) is a compact generator of the matrix factorization
category MF(W ) if 1

a + 1
b + 1

c ≤ 1.

Proof. This follows from the result of Dyckerhoff [Dyc11]. We check that our setting fulfills the
condition of [Dyc11, Theorem 4.1]. First of all, Λ[[x, y, z]] is a regular local ring (of Krull dimension
3 over Λ) since Λ is a field. In Theorem 13.1 of [CHKL], we show that the hypersurface W−1(0) has
an isolated singularity only at the origin under the assumption 1

a + 1
b + 1

c < 1.

If 1
a + 1

b + 1
c = 1, we have explicit expressions of the potentials from [CHKL, Section 9,10], and

since they are polynomials one can check that they have the desired property by hands. Indeed,
there are coordinate changes which transform these polynomials into much simpler forms which
makes computation easier. See [CHKL, Proposition 13.2].

�
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In the spherical cases ( 1
a + 1

b + 1
c > 1), the computation of W shows that W appear to be a

Morsification of the leading term xa + yb + zc − σxyz and hence has several critical points other
than the origin. See [CHKL] for the complete computation of W .

In the paper of Dycherhoff [Dyc11], the matrix factorization of wedge and contraction type (like
Equation (7.8)) corresponds to the skyscraper sheaf at the critical point, and denoted as Λstab[1].

7.6. Mirror functor on the morphism level. Now we prove that our functor induces an isomor-
phism between HomFuk(P1

a,b,c)
(L̄, L̄) = CF (L̄, L̄) and HomMF(W )(PL̄, PL̄). From the construction

in Section 4, we already have an A∞-morphism {Φk}k : CF (L̄, L̄) → Hom(PL̄, PL̄) which is the

A∞-functor LML̄,b from Fuk(P1
a,b,c) to MF(W ) restricted to a single object L̄.

We first show that m1 is identically zero on CF (L̄, L̄) for 1
a + 1

b + 1
c ≤ 1, hence implies that Floer

homology has rank 8 in these cases. Here we consider m1, which is not the boundary deformed one

mb,0
1 . Let us first describe the elliptic and hyperbolic cases.

Lemma 7.16. Suppose 1
a + 1

b + 1
c ≤ 1. Then m1 on CF (L̄, L̄) vanishes.

Proof. If a, b, c ≥ 3, then degmhigher
k ≥ 6−3k+ 2 min{a−3, b−3, c−3} ≥ 6−3k and hence mhigher

1
(and hence m1) has degree bigger than or equal to 3, and hence is zero.

Hence it is enough to consider the case when one of a, b, c, say c, is 2. Note that m1(e) as well
as the degree-3 part of m1(B̄) for B ∈ {X,Y, Z} vanishes, since the operation with an input e or
output p vanishes unless it is related to m2-product with a unit. Also m1 between p and e vanishes
which are Morse differentials.

For A,B ∈ {X,Y, Z}, the differential m1 from A to e or from p to B̄ could be non-zero if there
is a polygon with only one corner (1-gon). But in Lemma 4.5 (1) of [CHKL], we prove that Seidel
Lagrangian in the universal cover is topologically a line, and there cannot by such a 1-gon in the
elliptic and hyperbolic cases. Hence such differential vanishes.

For A,B ∈ {X,Y, Z}, the differential m1 from A to B̄ or from B̄ to A could be non-zero if there
is a bigon. In Corollary 4.6 of [CHKL], we prove that there is no bigon in the elliptic and hyperbolic
cases, except the minimal bigon with two corners given by C. Hence m1 from Z to Z̄ could be
non-trivial, and the other differentials vanish. But such a bigon is counted twice as a strip from Z
to Z̄ travelling in opposite directions. And one can check that these two contributions always cancel
out. This proves the claim. �

Now let us consider the spherical cases. It turns out that in the cases of (a, b, c) = (2, 2, odd), m1

does not vanish, and in all other cases, m1 vanishes.

Lemma 7.17. For (a, b, c) 6= (2, 2, odd) with 1
a + 1

b + 1
c > 1, m1 on CF (L̄, L̄) vanishes.

Proof. The lifts of Seidel Lagrangians in the universal cover S2 are (topological) circles, which bisect
the area of S2 (Lemma 12.1 [CHKL]). If a bi-gon connecting p and q appears, by extending each
edge, such a bigon can be realized as an intersection of two bisecting circles, which are lifts of Seidel
Lagrangians in S2. There are two possibilities from the deck transformation group G(∼= πorb1 (P1

a,b,c))

action on S2 whose quotient is the orbi-sphere.

If p and q are in the same orbit of the G-action, then it defines m1 as a map Xi → X̄i or X̄i → Xi

for some i ∈ {1, 2, 3}. However, such a bigon contributes twice as a map from p to q and as a map
from q to p, with opposite signs. Since p and q are in the same orbit, they contribute to m1 to the
same map with opposite sign. Thus, their contributions to m1 is zero after cancellation.
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If p and q are not in the same orbit of G-action, then since the bigon is on the sphere, there is
another bigon (on the opposite hemisphere) connecting p to q with the same area. There cannot be
an action of the group G which maps one bigon to the other one, since such a group action has to
be a rotation by π at the intersection point p or q, but the G-action does not have p or q as a fixed
point. Therefore, one can show that the total contribution to m1 vanishes. �

In the (2, 2, odd) cases, a holomorphic 1-gon gives a non-trivial m1 from one of immersed genera-
tors to e. Since the unit e is a coboundary, m1 homology vanishes in these cases. The potential W
in these cases have a linear term (see [CHKL]), so that x = y = z = 0 is not a critical point of W .

Remark 7.18. We remark that if a, b, c ≥ 4, then the degree argument for m2 shows that mhigher
2 ≡

0. Hence the contribution to m2 comes only from the XY Z triangles in the upper and lower hemi-
sphere.

For the rest of the paper, we assume that 1
a + 1

b + 1
c ≤ 1. We next show that our A∞-functor on

the morphism level induces an isomorphism between CF (L̄, L̄) and Hom(PL̄, PL̄) as A∞-algebras.

Recall that Φ1 is given by Φ1 : CF (L̄, L̄)→ Hom(PL̄, PL̄) p 7→ mb,0
2 (·, p). We claim that Φ1 induces

an isomorphism on the cohomology level. In order to see this, we find Ψ : Hom(PL̄, PL̄)→ CF (L̄, L̄)
which is a right inverse of Φ1. Then it induces a right inverse of the cohomology level map

(7.9) [Φ1] : HF (L̄, L̄)→ H (Hom(PL̄, PL̄)) .

Let 1L̄ be the identity morphism (unit) in CF (L̄, L̄), which is nothing but the minimum e of the
chosen Morse function on L̄. Then we define Ψ by Ψ(φ) = φ(1L̄)|b=0 for φ ∈ Hom(PL̄, PL̄). (Recall
that as a module PL̄ is isomorphic to Λ[[x, y, z]]⊗Λ0 CF (L̄, L̄), which corresponds to a trivial vector
bundle over SpecΛ[[x, y, z]].)

Lemma 7.19. Ψ is a chain map and Ψ ◦ Φ1(p) = p for all p ∈ CF (L̄, L̄).

Proof. To see Ψ is a chain map, we have to show Ψ(dφ) = 0 for φ ∈ Hom(PL̄, PL̄) since the differential
on CF (L̄, L̄) is identically zero. (See (iii) of Subsection 7.2.) But,

Ψ(dφ) =
(
δ ◦ φ(1L̄) + (−1)deg (φ)φ ◦ δ(1L̄)

)
|b=0

= mb=0,0
1 (φ(1L̄)) + (−1)deg (φ)φ

(
mb=0,0

1 (1L̄)
)

= 0.

Here mb=0,0
1 = 0 since we turn off the boundary deformation b.

The second statement is almost direct from the definition of the unit of A∞-algebra.

Ψ ◦ Φ1(p) = mb,0
2 (1L̄, p)|b=0

= m2(1L̄, p) = p

by the property of the unit. �

From the lemma, Φ1 is injective, and so is [Φ1]. Note that both sides of Equation (7.9) has rank
23 = 8 over Λ. (See [Dyc11, Chapter 4] for details about H(Hom(PL̄, PL̄)). This proves that [Φ1] is
an isomorphism and hence {Φk}k is an A∞-isomorphism.

Remark 7.20. This argument actually proves that the A∞-functor obtained from the method de-
veloped in Section 2 is faithful whenever the Floer differential of a Lagrangian vanishes.
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7.7. Homological mirror symmetry of P1
a,b,c. We now prove the homological mirror symmetry

for P1
a,b,c under the assumption that 1

a + 1
b + 1

c ≤ 1. We first show that the Seidel Lagrangian L̄ split-

generates the Fukaya category of P1
a,b,c in order to apply Theorem 4.2 later. For this purpose, we

first discuss the generation criterion for manifold covers of P1
a,b,c. The following is an easy extension

of Abouzaid’s original work [Abob] (see also [RS], [AFO+] for more general cases). For reader’s
convenience we give a sketch of the proof.

Proposition 7.21. If M is a surface with genus ≥ 1, and consider a full subcategory L which
consists of finitely many objects in Fuk(M). If the image of the following open-closed map contains
the unit

(7.10) OC : HH∗(L)→ QH∗(M),

then L split-generates Fuk(M).

Proof. There are special properties for surfaces M with genus ≥ 1, which makes the proof much
easier than the general cases. Since the Lagrangians are embedded curves which do not bound discs,
there does not exist any disc or sphere bubbling. Therefore, we can still use the domain dependent
perturbation scheme of [Sei08], which is used in [Abob]. Note also that the quantum cohomology
ring of the surface M is the same as singular cohomology.

Recall from Proposition 1.3 [Abob] that we have a following commutative (up to sign) diagram

HH∗(L,L)

OC
��

HH∗(∆) // H∗(YrK ⊗L Y lK)

H∗(m)

��
HF ∗(M)

CO // HF ∗(K,K)

This diagram is a version of Cardy relation and is obtained from the study of the moduli space
of pseudo-holomorphic annuli. Namely, degenerating an annuli in two different ways provide the
above relations. The construction is standard, and this case is much easier that that of [Abob] since
M is compact, and hence we do not consider wrapped Floer theory. Hence symplectic cohomology
SC∗(M) is replaced by Hamiltonian Floer cohomology of M , HF ∗(M). We omit the details of the
construction of this and refer readers to [Abob]. Note that the assumption in the proposition is
stated in terms of quantum cohomology of M , QH∗(M), which is isomorphic to HF ∗(M) via PSS
map. From Lemma 5.2 of [RS], the composition of the (7.10) with the PSS map equals the desired
vertical (left) map in the above diagram in homology. Since PSS map is a ring isomorphism, it sends
the unit to the unit.

Let L be collection of embedded Lagrangians in M which satisfies the assumption. Then the
above diagram shows that for any Lagrangian K in M the identity of HF (K,K) lies in the image
of H∗(m), and from Lemma 1.4 [Abob], this implies that K can be obtained as a summand of the
twisted complex built from L: �

Recall that there is a manifold covering Σ→ P1
a,b,c of P1

a,b,c whose deck transformation group is G,

and that we have fixed one of such Σ and defined Fuk(P1
a,b,c) as the G-invariant part of Fuk(Σ). Let

L := {L1, · · · ,Ld} be the family of all Lagrangians in Σ each of which lifts L̄. Then L is preserved
by the G-action. In our definition of Fuk(P1

a,b,c), the Seidel Lagrangian L̄ corresponds to L viewed

as an object of the G-invariant part of Fuk(Σ).

Proposition 7.22. The collection of lifts L of the Seidel Lagrangian L̄ in a manifold cover Σ under
the assumption that 1

a + 1
b + 1

c ≤ 1 satisfies the generation criterion.
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Proof. Assume first that 1
a + 1

b + 1
c < 1. We take an initial Hochshild chain α in Fuk(Σ), and modify

it to be a cycle by adding some more chains whose OC-map images are trivial. Observe that Σ \ L
is a union of triangles with X,Y ,Z-corners (which we have called minimal triangles) and 2a-, 2b-,
2c-gons with even degree corners. We call all of them to be minimal polygons. We choose one word
αP for each minimal polygon P in Σ \L which reads the corners of the polygon in counterclockwise
order, and define α by

α =
∑
P

(−1)ε(P ) αP
qω(P )

where ω(P ) is the symplectic area of P and (−1)ε(P ) is the sign such that OC(αP ) is a positively
oriented chain.

The Hochschild boundary map can be decomposed into

δ = δtop + δtop−1 + · · ·

where the image of δtop−i is a chain of length i + 1. It is easy to see that δtop(α) = 0 since each
edge in the polygonal decomposition Σ \L is covered by precisely two polygons with opposite signs.
When 1

a + 1
b + 1

c < 1, it follows from [CHKL, Lemma 4.4] that if (L0, . . . , Lk) bounds a minimal
polygon where Li are branches of the Seidel Lagrangian, then Li never intersects with Lj if |l−i| > 2
for every l ≡ j mod (k + 1). As a result, δtop−i(α) = 0 for i > 2 automatically. In what follows we
modify α such that it is also annihilated by δtop−1 and δtop−2.

First, we find a chain β with δtop(β) = 0, δtop−i(β) = 0 for i > 2, and δtop−1(α+β)+δtop−2(α+β)
is a sum of terms of the form ei ⊗ pi, where ei and pi are the minimum and maximum points
of a fixed Morse function on the i-th branch. Without loss of generality consider the term Y1 ⊗
Z1 ⊗ · · · ⊗ Ya ⊗ Za of α which corresponds to the 2a-gon. By adding ei ⊗ Y1 ⊗ Y 1 to this term,
δtop−1(Y1⊗Z1⊗ · · · ⊗Ya⊗Za + ei⊗Y1⊗Y 1) is a sum of ei⊗ pi and V ⊗V for each corner V of the

2a-gon. We do this for every term in α. Taking δtop−1, the terms of the form V ⊗ V produced from

2a, 2b and 2c-gons cancel with the terms −V ⊗ V produced from minimal triangles. As a result,
δtop−1 of this chain is a sum of copies of ei⊗pi. Similarly, the chain can be modified such that δtop−2

of it is also a sum of ei ⊗ pi. We call the resulting chain to be α+ β.

One can verify that the following γi satisfies that δtop−1(γi) = ei ⊗ pi with δtop(γi) = 0 and
δtop−k(γi) = 0 for k ≥ 2.

γi := X ⊗ pi ⊗ Z ⊗ Y − pi ⊗ Z ⊗ Y ⊗X + ei ⊗ pi ⊗X ⊗X + ei ⊗ pi ⊗ Z ⊗ Z − ei ⊗X ⊗X,

where “ZYX” is the minimal triangle with pi lying on the XZ-edge. Thus by taking γ to be a
suitable linear combinations of γi, we obtain a cycle α′ = α+ β + γ, namely it lies in kernel of δ.

Since each generic point of Σ is covered by one of the minimal polygons, the image of α′ by OC
is a non-zero multiple of the unit class [Σ] in QH∗(Σ). Hence the generation criterion is satisfied.

When 1
a + 1

b + 1
c = 1, Σ is a torus. In this case, we take two circles L1 and L2 in the family π−1(L̄)

which transversally intersect each other. For an intersection point A of L1 and L2, one can check
that the cycle obtained from A⊗ A⊗ A⊗ A after modification as before hits (a non-zero multiple
of) the unit in QH by OC-map. �

Proposition 7.23. The Seidel Lagrangian L̄ split-generates Fuk(P1
a,b,c).

Proof. From the above discussion, we have to prove that L split-generates the G-invariant part
of Fuk(Σ). Combining Proposition 7.21 and 7.22, L split-generates Fuk(Σ). i.e. it generates
the derived Fukaya category of Σ which is given as the idempotent completion of the H0 of the
A∞-category of twisted complexes over L.
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In general, the G-orbit of a twisted complex over L (obtained as the direct sum of G-images
of a twisted complex over L) is again a twisted complex, and such a sum may be considered as a
twisted complex over G · L. Hence it is not hard to see that if L split-generates derived Fukaya
category of Σ, then G · L split-generates the G-invariant part of the derived Fukaya category of
Σ (cf. [Wu, Corollary 4.7]), which we took as a definition of the derived Fukaya category of the
quotient orbifold P1

a,b,c = [Σ/G]. More precisely, G · L generates the G-invariant part of DπFuk(Σ)

which is tautologically equivalent to the split closure of Fuk(P1
a,b,c) (cf. [Wu, Lemma 2.19]). G · L

is simply a direct sum of several copies of L, which implies L split-generates the G-invariant part of
Fuk(Σ). �

In summary, both L̄ and PL̄ are split-generators (Proposition 7.23, Corollary 7.15), and our
functor induces an isomorphism between (cohomogies of) their endomorphism spaces (Section 7.6).
Therefore, Theorem 4.2 implies that

Theorem 7.24. There is an equivalence of triangulated categories

(7.11) Dπ(Fuk(P1
a,b,c))

∼=−→ Dπ(MF(W )).

As discussed in Subsection 5.2, both Fuk(P1
a,b,c) and MF(W ) admit a natural action of the

character group of the deck transformation group G associated to the covering Σ → P1
a,b,c. Since

liftings of L̄ generate the Fukaya category of Σ, one can deduce the “upstair homological mirror
symmetry” from Theorem 7.24 ifG is abelian. Namely we have the equivalence betweenDπ(Fuk(Σ))
and Dπ(MF

Ĝ
). See Proposition 5.8.

Remark 7.25. The character group action on Fuk(P1
a,b,c) in the case of (a, b, c) = (5, 5, 5) agrees

with the one appearing in [Sei11, Section 9].

Recall that the left hand side of Equation (7.11) depends on the choice of a compact smooth cover
in which the Seidel Lagrangian lifts as an embedded curve. On the other hand the right hand side
is independent of such a choice. Thus we have

Corollary 7.26. The derived Fukaya category Dπ(Fuk(P1
a,b,c)) is independent of choice of a compact

smooth cover of P1
a,b,c in which the Seidel Lagrangian lifts as an embedded curve.

8. Fermat hypersurfaces

In the previous section we apply our mirror construction to the orbifold P1
a,b,c and its manifold

cover. On the other hand the construction of mirror functor in this paper is completely general
and can be applied to Kähler manifolds of arbitrary dimensions. In this section, we discuss Fermat
hypersurfaces and give two conjectural statements about the mirror map and our functor. We study
our construction for compact toric manifolds in [CHL], and will study other classes of geometries
such as toric Calabi-Yau orbifolds, rigid Calabi-Yau manifolds and higher-genus orbifold surfaces in
a series of forthcoming works.

Sheridan [She15] proved homological mirror symmetry for Fermat-type Calabi-Yau hypersurfaces

X̃ =
{

[z0 : . . . : zn+1] ∈ Pn+1 : zn+2
0 + . . .+ zn+2

n+1 = 0
}

using a specific immersed Lagrangian L̄ in the quotient X = X̃/G where

G =
(Z/(n+ 2))n+2

{(λ, . . . , λ) : λ ∈ Z/(n+ 2)}
∼= (Z/(n+ 2))n+1

acts on X̃ by (λ0, . . . , λn+1) · [z0 : . . . : zn+1] := [λ0z0 : . . . : λn+1zn+1].
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X is an orbifold CPn with orbifold strata located at the hyperplanes {zj = 0} for j = 0, . . . , n.
For n = 1 L̄ is the Lagrangian introduced by Seidel, and we have used it to construct a mirror
functor for the elliptic curve (and its Z/3 quotient) in Section 6. In general dimensions Sheridan

[She15] showed that L̄ lifts to Lagrangian spheres which split-generate the Fukaya category Fuk(X̃)
by using the generation criterion of [AFO+].

We refer the detailed construction of the immersed Lagrangian L̄ to [She15, Section 6.1]. L̄ is
a perturbation of the real Lagrangian RPn ⊂ CPn by using Weinstein Lagrangian neighborhood
theorem: the standard double cover Sn → RPn can be extended to an immersion D∗ηS

n → X where
D∗ηS

n is the cotangent disc bundle of radius η. Then one considers the graph of an exact one form

εdf in D∗ηS
n, where ε ∈ R+ is small enough, and f : Sn → R is a Morse function with

(
n+ 2
k + 1

)
critical points of index k for k = 0, . . . , n with f(−x) = −f(x) for all x ∈ Sn. Then L̄ ⊂ X is defined
to be the image of this graph, and f is chosen such that the immersed points (whose pre-images are
the critical points of f) are disjoint from the orbifold strata of X.

The critical points of f can be labelled by non-empty proper subsets I ⊂ {1, . . . , n + 2}, where
|I| − 1 is the index of the critical point XI . XI is also regarded as an immersed point of L̄, and
we have X̄I = XĪ , where Ī denotes the complement of I. Then the deformation space H of L̄ is
spanned by XI ’s, the point class and fundamental class of Sn. Define V ⊂ H to be the subspace
spanned by X1, . . . , Xn+2. Elements in V are of the form b =

∑n+2
i=1 xiXi.

We have the anti-symplectic involution Φ : [z0 : . . . : zn] 7→ [z̄0 : . . . : z̄n] on CPn under which
RPn ⊂ CPn is the fixed locus. The immersed Lagrangian L̄ is fixed under this involution, and so
holomorphic discs bounded by L̄ form pairs u and Φ ◦ u (with the conjugate complex structure in
the domain so that the map remains to be holomorphic). In dimension n = 1, we use this involution
to prove that all elements in V are weakly unobstructed. We also show that the generalized SYZ
map equals to the mirror map (see Section 6.2). We conjecture that these statements still hold in
general dimensions:

Conjecture 8.1. (1) The elements in V defined above are weak bounding cocycles. Thus we
can apply our construction to obtain the mirror superpotential W , which is written in terms
of (virtual) counts of polygons.

(2) There exists a change of coordinates on (x1, . . . , xn+2) such that W is equivalent to
∑n+2

i=1 x
n+2
i +

q̌(q)x1 . . . xn+2 where q̌(q) is the inverse mirror map for Fermat hypersurfaces X̃.

Statement (2) of the above conjecture would give an enumerative meaning of mirror maps of
Fermat hypersurfaces. It is motivated by the principle that (generalized) SYZ mirror should be
automatically written in flat coordinates. Gross-Siebert [GS11] made a conjecture of this type in the
tropical world, namely the mirror they construct using tropical discs and scattering is automatically
written in flat coordinates. The corresponding statement for toric compact semi-Fano case and toric
Calabi-Yau case has been completely proved in [CLLT12, CCLT]. We have verified Conjecture 8.1
for n = 1, and we leave the higher dimensional cases for future research.

Remark 8.2. The mirror maps q(q̌) for Fermat hypersurfaces are well-known in existing literatures.
In Section 6.2 the elliptic curve case is explicitly written down. For the quintic case (dimX = 3)
which is of the most interest to physicists, the mirror map is

q = −q̌ exp

 5

y0(q̌)

∞∑
k=1

(5k)!

(k!)5

 5k∑
j=k+1

1

j

 (−1)kq̌k


where y0 =

∑∞
k=0

(5k)!
(k!)5

(−1)kxk, see for instance [CK99].
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Remark 8.3. The leading order terms of W were calculated by Sheridan [She15, Lemma 6.5.4] (up

to sign in the coefficients), which is W = qαx1 . . . xn+2 +qβ
∑n+2

i=1 x
n+2
i +o(qα, qβ) where qα = e−Aα,

qβ = e−Aβ , Aα and Aβ are the symplectic areas of the minimal polygons α with corners X1, . . . , Xn+2

and β with corners being n+ 2 copies of X1’s respectively.

Assuming Statement (1) of Conjecture 8.1 that elements in V are weak bounding cochains, by

the construction of Section 2 we have the mirror functor Fuk(X̃) → MF (Z/(n+2))n(W̃ ) which is
obtained by taking G-product of the “downstair mirror functor” Fuk(X) → MF(W ). Under the

downstair mirror functor, L̄′ ∈ Fuk(X) is transformed to the matrix factorization d = mb,0
1 on

CF ∗((L̄, b), L̄′).
In Section 7.5.1, we have shown for P1-orbifolds P1

a,b,c that there exists a new exterior algebra
structure which enables us to write down the mirror matrix factorization of the Seidel Lagrangian in
the contraction-wedge form. This new product structure accommodates the change of variables in
Definition 7.8, which is given by counting of specific J-holomorphic polygons. Such an expression of
the mirror matrix factorization implies that it split generatesMF(W ) by [Dyc11], and hence leads
to homological mirror symmetry.

We expect that in higher dimensions there should be a new product structure ∧new on CF (L̄, L̄),

which makes the matrix factorization (CF ∗((L̄, b), L̄),mb,0
1 ) into the following “wedge-contraction”

form.

Conjecture 8.4. Under our mirror functor LML, Sheridan’s immersed Lagrangian L̄ is trans-

formed to the matrix factorization
(∧∗

new〈X1, . . . , Xn+2〉,
∑n+2

i=1 xiXi ∧new (·) + wi ι
new
Xi

)
where

∑n+2
i=1 xiwi =

W . Hence LML derives an equivalence of triangulated categories Dπ(Fuk(X)) ∼= Dπ(MF(W )).
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