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Abstract. We investigate mirror symmetry for toric Calabi-Yau man-
ifolds from the perspective of the SYZ conjecture. Starting with a non-
toric special Lagrangian torus fibration on a toric Calabi-Yau manifold
X, we construct a complex manifold X̌ using T-duality modified by
quantum corrections. These corrections are encoded by Fourier trans-
forms of generating functions of certain open Gromov-Witten invari-
ants. We conjecture that this complex manifold X̌, which belongs to
the Hori-Iqbal-Vafa mirror family, is inherently written in canonical flat
coordinates. In particular, we obtain an enumerative meaning for the
(inverse) mirror maps, and this gives a geometric reason for why their
Taylor series expansions in terms of the Kähler parameters of X have
integral coefficients. Applying the results in [5] and [27], we compute
the open Gromov-Witten invariants in terms of local BPS invariants
and give evidences of our conjecture for several 3-dimensional examples
including KP2 and KP1×P1 .
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1. Introduction

For a pair of mirror Calabi-Yau manifolds X and X̌, the Strominger-Yau-
Zaslow (SYZ) conjecture [31] asserts that there exist special Lagrangian
torus fibrations µ : X → B and µ̌ : X̌ → B which are fiberwise-dual to each
other. In particular, this suggests an intrinsic construction of the mirror
X̌ by fiberwise dualizing a special Lagrangian torus fibration on X. This
process is called T-duality.

The SYZ program has been carried out successfully in the semi-flat case
[25, 29, 28], where the discriminant loci of special Lagrangian torus fibrations
are empty (i.e. all fibers are regular) and the base B is a smooth integral
affine manifold. On the other hand, mirror symmetry has been extended
to non-Calabi-Yau settings, and the SYZ construction has been shown to
work in the toric case [3, 4, 6], where the discriminant locus appears as
the boundary of the base B (so that B is an integral affine manifold with
boundary).

In general, by fiberwise dualizing a special Lagrangian torus fibration
µ : X → B away from the discriminant locus, one obtains a manifold X̌0

equipped with a complex structure J0, the so-called semi-flat complex struc-
ture. In both the semi-flat and toric cases, (X̌0, J0) already serves as the
complex manifold mirror to X. However, when the discriminant locus Γ ap-
pears inside the interior of B (so that B is an integral affine manifold with
singularities), X̌0 is contained in the mirror manifold X̌ as an open dense
subset and the semi-flat complex structure J0 does not extend to the whole
X̌. It is expected that the genuine mirror complex structure J on X̌ can
be obtained by deforming J0 using instanton corrections and wall-crossing
formulas, which come from symplectic enumerative information on X (see
Fukaya [9], Kontsevich-Soibelman [26] and Gross-Siebert [18]1). This is one
manifestation of the mirror phenomenon that the complex geometry of the
mirror X̌ encodes symplectic enumerative data of X.

To go beyond the semi-flat and toric cases, a good starting point is to work
with non-toric special Lagrangian torus fibrations2 on toric Calabi-Yau man-
ifolds constructed by Gross [17] 3, which serve as local models of Lagrangian
torus fibrations on compact Calabi-Yau manifolds. Interior discriminant

1This is related to the so-called “reconstruction problem”. This problem was first
attacked by Fukaya [9] using heuristic arguments in the two-dimensional case, which was
later given a rigorous treatment by Kontsevich-Soibelman in [26]; the general problem was
finally solved by the important work of Gross-Siebert [18].

2Here, “non-toric” means the fibrations are not those provided by moment maps of
Hamiltonian torus actions on toric varieties.

3These fibrations were also constructed by Goldstein [15] independently, but they were
further analyzed by Gross from the SYZ perspective.
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loci are present in these fibrations, leading to wall-crossing phenomenon of
disk counting invariants and nontrivial quantum corrections of the mirror
complex structure. In this paper, we construct the instanton-corrected mir-
rors of toric Calabi-Yau manifolds by running the SYZ program for these
non-toric fibrations. This generalizes the work of Auroux [3, 4], in which
he considered non-toric Lagrangian torus fibrations on Cn and constructed
instanton-corrected mirrors by studying the wall-crossing phenomenon of
disk counting invariants.

What follows is an outline of our main results. We first need to fix some
notations. Let N ∼= Zn be a lattice and M = Hom(N,Z) be its dual. For
a Z-module R, we let NR := N ⊗Z R, MR := M ⊗Z R and denote by
(· , ·) : MR ×NR → R the natural pairing.

LetX = XΣ be a toric manifold defined by a fan Σ inNR, and v0, v1, . . . , vm−1 ∈
N be the primitive generators of the 1-dimensional cones of Σ. Suppose that
X is Calabi-Yau. This condition is equivalent to the existence of ν ∈M such
that

(ν , vi) = 1

for i = 0, 1, . . . ,m− 1. As in [17], we also assume that the fan Σ has convex
support, so that X is a crepant resolution of an affine toric variety with
Gorenstein canonical singularities. Equip X with a toric Kähler structure
ω.

We study the SYZ aspect of mirror symmetry for every toric Calabi-Yau
manifold X, which is usually called “local mirror symmetry” in the litera-
ture, because it was derived by considering certain limits in the Kähler and
complex moduli spaces of Calabi-Yau hypersurfaces in toric varieties (see
Katz-Klemm-Vafa [23]). Chiang-Klemm-Yau-Zaslow [7] verified by direct
computations that closed Gromov-Witten invariants of a local Calabi-Yau
match with the period integrals in the mirror side; in [20], Hori-Iqbal-Vafa
wrote down the following formula for the mirror X̌ of X:

(1.1) X̌ =

{
(u, v, z1, . . . , zn−1) ∈ C2 × (C×)n−1 : uv =

m−1∑
i=0

Ciz
vi

}
,

where Ci ∈ C are some constants (which determine the complex structure

of X̌) and zvi denotes the monomial
∏n−1
j=1 z

(νj , vi)
j . Here {νj}n−1

j=0 ⊂ M is

the dual basis of {vj}n−1
j=0 ⊂ N . One of the aims of this paper is to explain

why, from the SYZ viewpoint, the mirror X̌ should be written in this form.
We now outline our SYZ mirror construction. To begin with, fix a con-

stant K2, and let D ⊂ X be the hypersurface {x ∈ X : w(x) − K2 = 0},
where w : X → C is the holomorphic function corresponding to the lattice
point ν ∈M . In Section 4, we consider a non-toric special Lagrangian torus
fibration µ : X → B constructed by Gross [17], where B is a closed upper
half space in Rn. As shown in [17], the discriminant locus Γ of this fibra-
tion consists of ∂B together with a codimension two subset contained in a
hyperplane H ⊂ B. We will show that the special Lagrangian torus fibers
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over H are exactly those which bound holomorphic disks of Maslov index
zero (Lemma 4.24). H, which is called ‘the wall’, separates B0 := B − Γ
into two chambers:

B0 −H = B+ ∪B−.
As we have discussed above, fiberwise dualizing the torus bundle over B0

gives a complex manifold X̌0 which is called the semi-flat mirror. Yet this
procedure ignores the singular fibers of µ, and ‘quantum corrections’ are
needed to construct the mirror X̌ out from X̌0. To do this, we consider
virtual counting of Maslov index two holomorphic disks with boundary in
special Lagrangian torus fibers. The result for the counting is different
for fibers over the chambers B+ and B− (see Propositions 4.30 and 4.30).
This leads to a wall-crossing formula for disk counting invariants, which is
exactly the correct formula we need to glue the torus bundles over B+ and
B−. This wall-crossing phenomenon has been studied by Auroux [3, 4] in
various examples including P2 and the Hirzebruch surfaces F2,F3.4

Now, one of the main results of this paper is that by the SYZ construction
(see Section 2.3 for the details), the instanton-corrected mirror of X is given
by the following noncompact Calabi-Yau manifold (Theorem 4.37):

X̌ =
{

(u, v, z) ∈ C2 × (C×)n−1 : uv = G(z)
}
, where

G(z) = (1 + δ0) +
n−1∑
j=1

(1 + δj)zj +
m−1∑
i=n

(1 + δi)qi−n+1z
vi

(1.2)

where
δi(q) =

∑
α∈Heff

2 (X,Z)−{0}

nβi+αq
α

and qa are Kähler parameters of X. Here, Heff
2 (X,Z) is the cone of effec-

tive classes, qα denotes exp(−
∫
α ω) which can be expressed in terms of the

Kähler parameters qa, βi ∈ π2(X,T) are the basic disk classes (see Section
4.2.3), and the coefficients nβi+α are one-pointed genus zero open Gromov-
Witten invariants defined by Fukaya-Oh-Ohta-Ono [13] (see Definition 2.14).
Furthermore, we can show that the symplectic structure ω on X is trans-
formed to a holomorphic volume form on the semi-flat mirror X̌0, which
naturally extends to a holomorphic volume form Ω̌ on X̌ (Proposition 4.38).

Note that the instanton-corrected mirror (1.2) that we write down is of
the form (1.1) suggested by Hori-Iqbal-Vafa [20]. Yet (1.2) contains more
information: it is explicitly expressed in terms of symplectic data, namely,
the Kähler parameters and open Gromov-Witten invariants on X. Morally
speaking, the semi-flat complex structure is the constant term in the fiber-
wise Fourier expansion of the corrected complex structure J . The higher
Fourier modes correspond to genus-zero open Gromov-Witten invariants

4We shall emphasize that the wall-crossing formulas (or gluing formulas) studied by
Auroux and us here are special cases of those studied by Kontsevich-Soibelman [26] and
Gross-Siebert [18].
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nβi+α in X, which are virtual counts of Maslov index two holomorphic disks
with boundary in Lagrangian torus fibers.

Local mirror symmetry asserts that there is (at least locally near the large
complex structure limits) a canonical isomorphism

ψ :MC(X̌)→MK(X),

called the mirror map, from the complex moduli spaceMC(X̌) of X̌ to the
(complexified) Kähler moduli space MK(X) of X, which gives flat coordi-
nates on MC(X̌). The mirror map is defined by periods as follows. For a
point q̌ = (q̌1, . . . , q̌l) ∈MC(X̌), where l = m− n, let

X̌q̌ =

(u, v, z) ∈ C2 × (C×)n−1 : uv = 1 +

n−1∑
j=1

zj +

m−1∑
i=n

q̌i−n+1z
vi


be the corresponding mirror Calabi-Yau manifold equipped with a holomor-
phic volume form Ω̌q̌. Then, for any n-cycle γ ∈ Hn(X̌,Z), the period

Πγ(q̌) :=

∫
γ

Ω̌q̌,

as a function of q̌ ∈ MC(X̌), satisfies the A-hypergeometric system of
linear differential equations associated to X (see e.g. Hosono [21]). Let
Φ1(q̌), . . . ,Φl(q̌) be a basis of the solutions of this system with a single log-
arithm. Then there is a basis γ1, . . . , γl of Hn(X̌,Z) such that

Φa(q̌) =

∫
γa

Ω̌q̌

for a = 1, . . . , l, and the mirror map ψ is given by

ψ(q̌) = (q1(q̌), . . . , ql(q̌)) ∈MK(X), where

qa(q̌) = exp(−Φa(q̌)) = exp

(
−
∫
γa

Ω̌q̌

)
for a = 1, . . . , l.

A striking feature of our instanton-corrected mirror family (1.2) is that it
is inherently written in flat coordinates.5 We formulate this as a conjecture
as follows. By considering Equation (1.2), one obtains a map φ :MK(X)→
MC(X̌), q = (q1, . . . , ql) 7→ φ(q) = (q̌1(q), . . . , q̌l(q)) defined by

q̌a(q) = qa(1 + δa+n−1)

n−1∏
j=0

(1 + δj)
−(νj , va+n−1), a = 1, . . . , l.

Then we claim that q̌1(q), . . . , q̌l(q) are flat coordinates on MC(X̌) (see
Conjecture 1.1 for more details):

5This was first observed by Gross and Siebert [18]; see Remark 1.3 below.
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Conjecture 1.1. The map φ is an inverse of the mirror map ψ. In other
words, there exists a basis γ1, . . . , γl of Hn(X̌,Z) such that

qa = exp

(
−
∫
γa

Ω̌q̌

)
,

for a = 1, . . . , l, where q̌ = φ(q) is defined as above.

In particular, our construction of the instanton-corrected mirror via SYZ
provides an enumerative meaning to the inverse mirror map. This also
shows that the integrality of the coefficients of the Taylor series expansions
of the functions q̌a in terms of q1, . . . , ql (see, e.g. [32]) is closely related to
enumerative meanings of the coefficients.

In Section 5, we shall provide evidences to Conjecture 1.1 in some 3-
dimensional examples including KP2 and KP1×P1 . This is done by comput-
ing the one-pointed genus zero open Gromov-Witten invariants of a toric
Calabi-Yau 3-fold of the form X = KZ , where Z is a toric del Pezzo surface,
in terms of local BPS invariants of the toric Calabi-Yau 3-fold KZ̃ , where

Z̃ is a toric blow-up of Z at a toric fixed point. The computation is an
application of the results in [5] and [27]. In [5], the first author of this paper
shows that the open Gromov-Witten invariants of X = KZ are equal to cer-
tain closed Gromov-Witten invariants of a suitable compactification X̄ (see
Theorem 5.4). In the joint work [27] of the second and third authors with
Wu, these closed Gromov-Witten invariants are shown to be equal to certain
local BPS invariants of KZ̃ , where Z̃ denotes the blow-up of Z, by employ-
ing blow-up and flop arguments. Now, these latter invariants have already
been computed by Chiang-Klemm-Yau-Zaslow in [7]. Hence, by comparing
with period computations such as those done by Graber-Zaslow in [16], we
can give evidences to the above conjecture for KP2 and KP1×P1 .

Remark 1.2. Recently in a joint work of the first and second authors with
Hsian-Hua Tseng [?], Conjecture 1.1 was proved for X = KY , where Y is
any toric Fano manifold. This paper takes a different approach and the proof
was by a computation of open Gromov-Witten invariants via J-functions and
a study of solutions of A-hypergeometric systems.

Example: X = KP2. The primitive generators of the 1-dimensional cones
of the fan Σ defining X = KP2 are given by

v0 = (0, 0, 1), v1 = (1, 0, 1), v2 = (0, 1, 1), v3 = (−1,−1, 1) ∈ N = Z3.

We equip X with a toric Kähler structure ω associated to the moment
polytope P given as

P = {(x1, x2, x3) ∈ R3 :

x3 ≥ 0, x1 + x3 ≥ 0, x2 + x3 ≥ 0,−x1 − x2 + x3 ≥ −t1},
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where t1 =
∫
l ω1 > 0 and l ∈ H2(X,Z) = H2(P2,Z) is the class of a line in

P2. To complexify the Kähler class, we set ωC = ω + 2π
√
−1B, where B is

a real two-form (the B-field). We let t =
∫
l ω

C ∈ C.
Fix K2 > 0 and let D = {x ∈ X : w(x) −K2 = 0}. Then the base B of

the Gross fibration µ : X → B is given by B = R2 × R≥K2 . The wall is the
real codimension one subspace H = R2 × {0} ⊂ B. The discriminant loci Γ
is a codimension two subset contained in H as shown in Figure 1.

Figure 1. The base of the Gross fibration on KP2 , which is
an upper half space in R3.

By Equation (1.2), the instanton-corrected mirror is given by

X̌ =


(u, v, z1, z2) ∈ C2 × (C×)2 :

uv =

(
1 +

∞∑
k=1

nβ0+klq
k

)
+ z1 + z2 +

q

z1z2


where q = exp(−t) and β0 is the basic disk class corresponding to the
compact toric divisor P2 ⊂ X. By Corollary 5.6, we can express the
open Gromov-Witten invariants nβ0+kl in terms of the local BPS invari-
ants of KF1 , where F1 is the blowup of P2 at one point. More precisely,
let e, f ∈ H2(F1,Z) = H2(KF1 ,Z) be the classes represented by the ex-
ceptional divisor and fiber of the blowing up F1 → P2 respectively. Then

nβ0+kl is equal to the local BPS invariant GW
KF1

,kf+(k−1)e

0,0 for the class

kf + (k− 1)e ∈ H2(KF1 ,Z). These latter invariants have been computed by
Chiang-Klemm-Yau-Zaslow and listed in the ‘sup-diagonal’ of Table 10 on
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p. 56 in [7]:

nβ0+l = −2,

nβ0+2l = 5,

nβ0+3l = −32,

nβ0+4l = 286,

nβ0+5l = −3038,

nβ0+6l = 35870,

...

Hence, the instanton-corrected mirror for X = KP2 is given by

X̌ =

{
(u, v, z1, z2) ∈ C2 × (C×)2 : uv = c(q) + z1 + z2 +

q

z1z2

}
,

where
c(q) = 1− 2q + 5q2 − 32q3 + 286q4 − 3038q5 + . . . .

By a change of coordinates the above defining equation can also be written
as

uv = 1 + z1 + z2 +
q

c(q)3z1z2
.

According to our conjecture above, the inverse mirror map φ : MK(X) →
MC(X̌) is then given by

q 7→ q̌ := q(1− 2q + 5q2 − 32q3 + 286q4 − 3038q5 + . . .)−3.

On the other hand, the A-hypergeometric system of linear differential
equations associated to KP2 is equivalent to the Picard-Fuchs equation

[θ3
q̌ + 3q̌θq̌(3θq̌ + 1)(3θq̌ + 2)]Φ(q̌) = 0,

where θq̌ denotes q̌ ∂∂q̌ (see, e.g. Graber-Zaslow [16].) The solution of this

equation with a single logarithm is given by

Φ(q̌) = − log q̌ −
∞∑
k=1

(−1)k

k

(3k)!

(k!)3
q̌k.

Then, Φ(q̌) is the period of some 3-cycle γ ∈ H3(X̌,Z) and we have the
mirror map

ψ :MC(X̌)→MK(X), q = q̌ exp

( ∞∑
k=1

(−1)k

k

(3k)!

(k!)3
q̌k

)
.

We can then invert the mirror map and express q̌ = ψ−1(q) as a function of
q ∈MK(X). One can check by direct computation that

(exp(−Φ(q̌))/q̌)
1
3 = 1− 2q + 5q2 − 32q3 + 286q4 − 3038q5 + . . . .

This shows that φ agrees with the inverse mirror map at least up to the
order q5, thus providing ample evidence to Conjecture 1.1 for X = KP2 .
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In fact, by using a computer, one can verify that φ agrees with the inverse
mirror map up to a much larger order. �

Remark 1.3. The relevance of the work of Graber-Zaslow [16] to the rela-
tionship between the series 1 − 2q + 5q2 − 32q3 + 286q4 − 3038q5 + . . . and
canonical coordinates was first mentioned in Remark 5.1 of the paper [18]
by Gross and Siebert. They were also the first to observe that the coeffi-
cients of the above series have geometric meanings; namely, they show that
these coefficients can be obtained by imposing the “normalization” condition
for slabs, which is a condition necessary to run their program and construct
toric degenerations of Calabi-Yau manifolds. They predict that these coef-
ficients are counting certain tropical disks. See Conjecture 0.2 in [18] for
more precise statements.

After reading a draft of our paper, Gross informed us that they have long
been expecting that the slabs are closely related to 1-pointed open Gromov-
Witten invariants, so they also expect that a version of our Conjecture 1.1 is
true. While the Gross-Siebert program constructs the mirror B-model start-
ing from tropical data (on which they impose the normalization condition)
on the base of the Lagrangian torus fibration, we start from the A-model on
a toric Calabi-Yau manifold and use symplectic enumerative data (holomor-
phic disk counting invariants) directly to construct the mirror B-model. Our
approach is in a way complementary to that of Gross-Siebert.

The organization of this paper is as follows. Section 2 reviews the general
concepts in the symplectic side needed in this paper and gives the T-duality
procedure with quantum corrections. It involves a family version of the
Fourier transform, which is defined in Section 3. Then we carry out the SYZ
construction of instanton-corrected mirrors for toric Calabi-Yau manifolds
in details in Section 4. The (inverse) mirror maps and their enumerative
meanings are discussed in Section 5.
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2. The SYZ mirror construction

This section gives the procedure to construct the instanton-corrected mir-
ror using SYZ. First, we give a review of the symplectic side of SYZ mirror
symmetry. Section 2.2 introduces the open Gromov-Witten invariants de-
fined by Fukaya-Oh-Ohta-Ono [11, 12], which are essential to our mirror
construction. The construction procedure of the instanton-corrected mir-
ror is given in Section 2.3. We will apply this procedure to produce the
instanton-corrected mirrors of toric Calabi-Yau manifolds in Section 4.6.

2.1. Proper Lagrangian fibrations and semi-flat mirrors. This sub-
section is devoted to introduce the notion of a Lagrangian fibration, which is
central to the SYZ program. The setting introduced here includes moment
maps on toric manifolds as examples, whose bases are polytopes which are
manifolds with corners, but we also allow singular fibers.

Let X2n be a smooth connected manifold of dimension 2n, and ω be a
closed non-degenerate two-form on X. The pair (X,ω) is called a symplectic
manifold. In our setup, X is allowed to be non-compact. This is important
for us since a toric Calabi-Yau manifold can never be compact.

We consider a fibration µ : X → B (i.e. a smooth map such that µ(X) =
B), whose base B is a smooth manifold with corners:

Definition 2.1. A Hausdorff topological space B is a smooth n-manifold
with corners if

(1) For each r ∈ B, there exists an open set U ⊂ B containing r, and a
homeomorphism

φ : U → V ∩ (Rk≥0 × Rn−k)

for some k = 0, . . . , n, where V is an open subset of Rn containing
0, and φ(r) = 0. Such r is called a k-corner point of B.

(2) The coordinate changes are diffeomorphisms.

Basic examples of manifolds with corners are given by moment map poly-
topes of toric manifolds (see Figure 3 for an example). A manifold B with

corners is stratified by the subsets B(k) consisting of all k-corner points of
B. r ∈ B is called a boundary point of B if it is a k-corner point for k ≥ 1.
Let

(2.1) Bint := B(0) = {r ∈ B : r is not a boundary point}
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be the open stratum, and

(2.2) ∂B := B −Bint.

We will be dealing with those fibrations µ : X → B which are proper and
Lagrangian. Recall that µ is proper if µ−1(K) is compact for every compact
set K ⊂ B. And Lagrangian means the following:

Definition 2.2. Let (X2n, ω) be a symplectic manifold of dimension 2n,
and Bn be a smooth n-fold with corners. A fibration µ : X → B is said to
be Lagrangian if at every regular point x ∈ X with respect to the map µ, the
subspace Ker(dµ(x)) ⊂ TxX is Lagrangian, that is,

ω|Ker(dµ(x)) = 0.

¿From now on we always assume that µ : X → B is a Lagrangian fibration,
whose fibers are denoted by

Fr := µ−1({r}), r ∈ B.
Fr is called a regular fiber when r is a regular value of µ; otherwise it is
called a singular fiber. It is the presence of singular fibers which makes the
SYZ construction of instanton-corrected mirrors non-trivial.

The SYZ program asserts that the mirror of X is given by the ‘dual torus
fibration’. This dualizing procedure can be made precise if one restricts only
to regular fibers. In view of this we introduce the following notations:

Γ := {r ∈ B : r is a critical value of µ};(2.3)

B0 := B − Γ;(2.4)

X0 := µ−1(B0).(2.5)

Γ is called the discriminant locus of µ.
Now the restriction µ : X0 → B0 is a proper Lagrangian submersion

with connected fibers. Using the following theorem of Arnold-Liouville (see
Section 50 of [2]) on action-angle coordinates, it turns out that this can only
be a torus bundle:

Theorem 2.3 (Arnold-Liouville [2]). Let µ : X0 → B0 be a proper La-
grangian submersion with connected fibers. Then µ is a torus bundle. More-
over, an integral affine structure is induced on B0 in a canonical way.

An integral affine structure on B0 is an atlas of coordinate charts such
that the coordinate changes belong to GL(n,Z) n Rn. The key to proving
Theorem 2.3 is the observation that every cotangent vector at r ∈ B0 induces
a tangent vector field on Fr by contracting with the symplectic two-form ω
on X. Since Fr is smooth and compact, a vector field integrates (for time
1) to a diffeomorphism on Fr. In this way we get an action of T ∗rB0 on Fr,
and the isotropy subgroup of a point x ∈ Fr can only be a lattice L in T ∗rB0.
Thus T ∗rB0/L ∼= Fr.

Knowing that µ : X0 → B0 is a torus bundle, we may then take its dual
defined in the following way:
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Definition 2.4. Let µ : X0 → B0 be a torus bundle. Its dual is the space
X̌0 of pairs (Fr,∇) where r ∈ B0 and ∇ is a flat U(1)-connection on the
trivial complex line bundle over Fr up to gauge. There is a natural map
µ̌ : X̌0 → B0 given by forgetting the second coordinate.

The fiber of µ̌ at r is denoted as F̌r.

Proposition 2.5. In Definition 2.4, µ̌ : X̌0 → B0 is a torus bundle.

Proof. For each r ∈ B0, Hom(π1(Fr), U(1)) parameterizes all flat U(1)-
connections on the trivial complex line bundle over Fr by recording their
holonomy. Thus

F̌r ∼= Hom(π1(Fr), U(1)).

Since Fr is an n-torus, one has π1(Fr) ∼= Zn, and so

Hom(π1(Fr), U(1)) ∼= Rn/Zn.
This shows that each fiber F̌r is a torus (which is dual to Fr).

To see that µ̌ is locally trivial, take a local trivialization µ−1(U) ∼= U ×T
of µ, where U is an open set containing r and T is a torus. Then

µ̌−1(U) ∼= U ×Hom(π1(T ), U(1)) ∼= U × T ∗,
where T ∗ denotes the dual torus to T . �

For a Lagrangian torus bundle µ : X0 → B0, its dual X̌0 has a canonical
complex structure [28] (we will write this down explicitly for toric Calabi-
Yau manifolds in Section 4.6). Moreover, when the monodromies of the
torus bundle µ : X0 → B0 belong to SL(n,Z), there is a holomorphic
volume form on X̌0. Thus, by torus duality, a symplectic manifold with a
Lagrangian bundle structure gives rise to a complex manifold. This exhibits
the mirror phenomenon.

However, the above dualizing procedure takes place only away from the
singular fibers (see Equation (2.5)) and hence it loses information. X̌0 is
called the semi-flat mirror, which is only the ‘zeroth-order part’ of the mir-
ror of X (see Remark 4.40). To remedy this, we need to ‘add back’ the
information coming from the singular fibers. This is precisely captured by
the open Gromov-Witten invariants of X, which is discussed in the next
subsection.

2.2. Open Gromov-Witten invariants. A crucial difference between X0

and X is that loops in the fibers of X0 which represent non-trivial elements
in π1 never shrink, that is, π2(X0, Fr) = 0 for every r ∈ B0; while this
is not the case for X in general. To quantify this difference one needs to
equip X with an almost complex structure compatible with ω and count
pseudo-holomorphic disks (∆, ∂∆) → (X,Fr). This gives the genus-zero
open Gromov-Witten invariants defined by Fukaya-Oh-Ohta-Ono [11].

In this section, we give a brief review on these invariants (Definition 2.14).
We also explain how to pack these invariants to form a generating function
under the setting of Section 2.1 (Definition 2.18). We will see that via
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the fiberwise Fourier transform defined in Section 3, these data serve as
‘quantum corrections’ to the semi-flat complex structure of the mirror.

Let (X,ω) be a symplectic manifold equipped with an almost complex
structure compatible with ω. First of all, we need the following basic topo-
logical notions:

Definition 2.6. (1) For a submanifold L ⊂ X, π2(X,L) is the group of
homotopy classes of maps

u : (∆, ∂∆)→ (X,L),

where ∆ := {z ∈ C : |z| ≤ 1} denotes the closed unit disk in C. We
have a natural homomorphism

∂ : π2(X,L)→ π1(L)

defined by ∂[u] := [u|∂∆].
(2) For two submanifolds L0, L1 ⊂ X, π2(X,L0, L1) is the set of homo-

topy classes of maps

u : ([0, 1]× S1, {0} × S1, {1} × S1)→ (X,L0, L1).

Similarly we have the natural boundary maps ∂+ : π2(X,L0, L1) →
π1(L1) and ∂− : π2(X,L0, L1)→ π1(L0).

¿From now on, we shall always assume that L ⊂ X is a compact La-
grangian submanifold. Given a disk class β ∈ π2(X,L), an important topo-
logical invariant for β is its Maslov index:

Definition 2.7. Let L be a Lagrangian submanifold and β ∈ π2(X,L). Let
u : (∆, ∂∆)→ (X,L) be a representative of β. Then one may trivialize the
symplectic vector bundle

u∗TX ∼= ∆× V,
where V is a symplectic vector space. Thus the subbundle (∂u)∗TL ⊂
(∂u)∗TX induces the Gauss map

∂∆→ U(n)/O(n)→ U(1)/O(1) ∼= S1,

where U(n)/O(n) parameterizes all Lagrangian subspaces in V . The degree
of this map is called the Maslov index, which is independent of the choice of
representative u.

The Maslov index of β is denoted by µ(β) ∈ Z.6 µ(β) is important for
open Gromov-Witten theory because it determines the expected dimension
of the moduli space of holomorphic disks (see Equation (2.6)).

Now we are going to define the genus-zero open Gromov-Witten invari-
ants. First of all, we have the notion of a pseudoholomorphic disk:

6It should be clear from the context whether µ refers to a Lagrangian fibration or the
Maslov index.
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Definition 2.8. (1) A pseudoholomorphic disk bounded by a Lagrangian
L ⊂ X is a smooth map u : (∆, ∂∆) → (X,L) such that u is holo-
morphic with respect to the almost complex structure J , that is,

(∂u) ◦ j = J ◦ ∂u,
where j is the standard complex structure on the disk ∆ ⊂ C.

(2) The moduli spaceM◦k(L, β) of pseudoholomorphic disks representing
β ∈ π2(X,L) with k ordered boundary marked points is defined as

the quotient by Aut(∆) of the set of all pairs (u, (pi)
k−1
i=0 ), where

u : (∆, ∂∆)→ (X,L)

is a pseudoholomorphic disk bounded by L with homotopy class [u] =
β, and (pi ∈ ∂∆ : i = 0, . . . , k − 1) is a sequence of boundary
points respecting the cyclic order of ∂∆. For convenience the no-
tation (u, (pi)

k−1
i=0 ) is usually abbreviated as u.

(3) The evaluation map evi : M◦k(L, β) → L for i = 0, . . . , k − 1 is
defined as

evi([u, (pi)
k−1
i=0 ]) := u(pi).

M◦k(L, β) has expected dimension

(2.6) dimvirt(M◦k(L, β)) = n+ µ(β) + k − 3,

where the shorthand ‘virt’ stands for the word ‘virtual’ (which refers to
‘virtual fundamental chain’ discussed below).

To define open Gromov-Witten invariants, one requires an intersection
theory on the moduli spaces. This involves various issues:

1. Compactification of moduli.
M◦k(L, β) is non-compact in general, and one needs to compactify the

moduli. Analogous to closed Gromov-Witten theory, this involves the con-
cept of stable disks. A stable disk bounded by a Lagrangian L with k ordered
boundary marked points is a pair (u, (pi)

k−1
i=0 ), where

u : (Σ, ∂Σ)→ (X,L)

is a pseudoholomorphic map whose domain Σ is a ‘semi-stable’ Riemann
surface of genus-zero (which may have several disk and sphere components)
with a non-empty connected boundary ∂Σ and (pi ∈ ∂Σ) is a sequence of
boundary points respecting the cyclic order of the boundary, which satisfies
the stability condition: If a component C of Σ is contracted under u, then
C contains at least three marked or singular points of Σ.

A compactification ofM◦k(L, β) is then given by the moduli space of stable
disks:

Definition 2.9 (Definition 2.27 of [11]). Let L be a compact Lagrangian
submanifold in X and β ∈ π2(X,L). Then Mk(L, β) is defined to be the set
of isomorphism classes of stable disks representing β with k ordered boundary
marked points. Two stable disks (u, (pi)) and (u′, (p′i)) are isomorphic if the
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maps u and u′ have the same domain Σ and there exists φ ∈ Aut(Σ) such
that u′ = u ◦ φ and φ(p′i) = pi.

Remark 2.10. In the above definition we require that the ordering of marked
points respects the cyclic order of ∂Σ. In the terminologies and notations
of [11], the above moduli is called the main component and is denoted by
Mmain

k (β) instead.

The moduli space Mk(L, β) has a Kuranishi structure ([11]). We briefly
recall its construction in the following. First of all, let us recall the definition
of a Kuranishi structure. See Appendix A1 of the book [12] for more details.

Let M be a compact metrizable space.

Definition 2.11 (Definitions A1.1, A1.3, A1.5 in [12]). A Kuranishi struc-
ture on M of (real) virtual dimension d consists of the following data:

(1) For each point σ ∈M,
(1.1) A smooth manifold Vσ (with boundary or corners) and a finite

group Γσ acting smoothly and effectively on Vσ.
(1.2) A real vector space Eσ on which Γσ has a linear representation

and such that dim Vσ − dim Eσ = d.
(1.3) A Γσ-equivariant smooth map sσ : Vσ → Eσ.
(1.4) A homeomorphism ψσ from s−1

σ (0)/Γσ onto a neighborhood of
σ in M.

(2) For each σ ∈M and for each τ ∈ Im ψσ,
(2.1) A Γτ -invariant open subset Vστ ⊂ Vτ containing ψ−1

τ (τ).7

(2.2) A homomorphism hστ : Γτ → Γσ.
(2.3) An hστ -equivariant embedding ϕστ : Vστ → Vσ and an injective

hστ -equivariant bundle map ϕ̂στ : Eτ ×Vστ → Eσ×Vσ covering
ϕστ .

Moreover, these data should satisfy the following conditions:

(i) ϕ̂στ ◦ sτ = sσ ◦ ϕστ .8

(ii) ψτ = ψσ ◦ ϕστ .
(iii) If ξ ∈ ψτ (s−1

τ (0)∩Vστ/Γτ ), then in a sufficiently small neighborhood
of ξ,

ϕστ ◦ ϕτξ = ϕσξ, ϕ̂στ ◦ ϕ̂τξ = ϕ̂σξ.

The spaces Eσ are called obstruction spaces (or obstruction bundles), the
maps {sσ : Vσ → Eσ} are called Kuranishi maps, and (Vσ, Eσ,Γσ, sσ, ψσ) is
called a Kuranishi neighborhood of σ ∈M.

Now we come back to the setting of open Gromov-Witten invariants. Let
(u, (pi)

k−1
i=0 ) represent a point σ ∈Mk(L, β). Let W 1,p(Σ;u∗(TX);L) be the

space of sections v of u∗(TX) of W 1,p class such that the restriction of v

7Here we regard ψτ as a map from s−1
τ (0) to M by composing with the quotient map

Vτ → Vτ/Γτ .
8Here and after, we also regard sσ as a section sσ : Vσ → Eσ × Vσ.
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to ∂Σ lies in u∗(TL), and W 0,p(Σ;u∗(TX)⊗ Λ0,1) be the space of u∗(TX)-
valued (0, 1)-forms of W 0,p class. Then consider the linearization of the
Cauchy-Riemann operator ∂̄

Du∂̄ : W 1,p(Σ;u∗(TX);L)→W 0,p(Σ;u∗(TX)⊗ Λ0,1).

This map is not always surjective (i.e. u may not be regular), and this is
why we need to introduce the notion of Kuranishi structures. Nevertheless
the cokernel of Du∂̄ is finite-dimensional, and so we may choose a finite-
dimensional subspace Eσ of W 0,p(Σ;u∗(TX)⊗ Λ0,1) such that

W 0,p(Σ;u∗(TX)⊗ Λ0,1) = Eσ ⊕Du∂̄(W 1,p(Σ;u∗(TX);L)).

Define Γσ to be the automorphism group of (u, (pi)
k−1
i=0 ).

To construct Vσ, first let V ′map,σ be the space of solutions of the equation

Du∂̄ v = 0 mod Eσ.

Now, the Lie algebra Lie(Aut(Σ, (pi)
k−1
i=0 )) of the automorphism group of

(Σ, (pi)
k−1
i=0 ) can naturally be embedded in V ′map,σ. Take its complementary

subspace and let Vmap,σ be a neighborhood of its origin. On the other
hand, let Vdomain,σ be a neighborhood of the origin in the space of first

order deformations of the domain curve (Σ, (pi)
k−1
i=0 ). Now, Vσ is given by

Vmap,σ × Vdomain,σ.
Next, one needs to prove that there exist a Γσ-equivariant smooth map

sσ : Vσ → Eσ and a family of smooth maps uv,ζ : (Σζ , ∂Σζ) → (X,L) for
(v, ζ) ∈ Vσ such that ∂̄uv,ζ = sσ(v, ζ), and there is a map ψσ mapping
s−1
σ (0)/Γσ onto a neighborhood of σ ∈ Mk(L, β). The proofs of these are

very technical and thus omitted.
This finishes the review of the construction of the Kuranishi structure on

Mk(L, β).

2. Orientation.
According to Chapter 9 of [12],Mk(L, β) is canonically oriented by fixing

a relative spin structure on L. Thus the issue of orientation can be avoided
by assuming that the Lagrangian L is relatively spin, which we shall always
do from now on. Indeed, in this paper, L is always a torus, and so this
assumption is satisfied.

3. Transversality.
An essential difficulty in Gromov-Witten theory is that in general, the

moduli space Mk(L, β) is not of the expected dimension, which indicates
the issue of non-transversality. To construct the virtual fundamental chains,
a generic perturbation is needed to resolve this issue. This is done by
Fukaya-Oh-Ohta-Ono [11, 12] using the so-called Kuranishi multi-sections.
We will not give the precise definition of multi-sections here. See Definitions
A1.19, A1.21 in [12] for details. Roughly speaking, a multi-section s is a sys-
tem of multi-valued perturbations {s′σ : Vσ → Eσ} of the Kuranishi maps
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{sσ : Vσ → Eσ} satisfying certain compatibility conditions. For a Kuranishi
space with certain extra structures (this is the case for Mk(L, β)), there
exist multi-sections s which are transversal to 0. Furthermore, suppose that
M is oriented. Let ev : M → Y be a strongly smooth map to a smooth
manifold Y , i.e. a family of Γσ-invariant smooth maps {evσ : Vσ → Y } such
that evσ ◦ ϕστ = evτ on Vστ . Then, using these transversal multisections,
one can define the virtual fundamental chain ev∗([M]vir) as a Q-singular
chain in Y (Definition A1.28 in [12]).

4. Boundary strata of the moduli space.
Another difficulty in the theory is that in generalMk(L, β) has codimension-

one boundary strata, which consist of stable disks whose domain Σ has
more than one disk components. Then intersection theory on Mk(L, β) is
still not well-defined (which then depends on the choice of perturbation).
Fortunately, for our purposes, it suffices to consider the case when k = 1
and µ(β) = 2. In this case, the moduli space of stable disks has empty
codimension-one boundary. Let us first introduce the concept of ‘minimal
Maslov index’:

Definition 2.12. The minimal Maslov index of a Lagrangian submanifold
L is defined as

min{µ(β) ∈ Z : β 6= 0 and M0(L, β) is non-empty}.

Then one has the following proposition.

Proposition 2.13. Let L ⊂ X be a compact Lagrangian submanifold which
has minimal Maslov index at least two, that is, L does not bound any non-
constant stable disks of Maslov index less than two. Also let β ∈ π2(X,L)
be a class with µ(β) = 2. Then Mk(L, β) has no codimension-one boundary
stratum.

Proof. Let u ∈ β be a stable disk belonging to a codimension-one boundary
stratum of Mk(L, β). Then, by the results of [11, 12], u is a union of
two stable disks u1 and u2. Since L does not bound any non-constant
stable disks of Maslov index less than two, µ([u1]), µ([u2]) ≥ 2. But then
2 = µ([u]) = µ([u1]) + µ([u2]) ≥ 4 which is impossible. �

When Mk(L, β) is compact oriented without codimension-one boundary
strata, the virtual fundamental chain is a cycle. Hence, we have the virtual
fundamental cycle ev∗[Mk(L, β)] ∈ Hd(L

k,Q), where d = dimvirtMk(L, β).
While one cannot do intersection theory on the moduli due to non-transversality,
by introducing the virtual fundamental cycles, one may do intersection the-
ory on Lk instead. We can now define one-pointed genus-zero open Gromov-
Witten invariants as follows.

Definition 2.14. Let L ⊂ X be a compact relatively spin Lagrangian sub-
manifold which has minimal Maslov index at least two. For a class β ∈
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π2(X,L) with µ(β) = 2, we define

nβ := P.D.(ev∗[M1(L, β)]) ∪ P.D.([pt]) ∈ Q,
where [pt] ∈ H0(L,Q) is the point class in L, P.D. denotes the Poincaré
dual, and ∪ is the cup product on H∗(L,Q).

The number nβ is invariant under deformation of complex structure and
under Lagrangian isotopy in which all Lagrangian submanifolds in the iso-
topy have minimal Maslov index at least two (see Remark 3.7 of [3]). Hence,
nβ is indeed a one-pointed genus-zero open Gromov-Witten invariant. Also,
notice that the virtual dimension of M1(L, β) equals n+ µ(β)− 2 ≥ n and
it is equal to n = dimL only when µ(β) = 2. So we set nβ = 0 if µ(β) 6= 2.

As in closed Gromov-Witten theory, a good way to pack the data of open
Gromov-Witten invariants is to form a generating function. This idea has
been used a lot in the physics literature.

Definition 2.15. Let L ⊂ X be a compact relatively spin Lagrangian sub-
manifold with minimal Maslov index at least two. For each λ ∈ π1(L), we
have the generating function

(2.7) F(L, λ) :=
∑

β∈π2(X,L)λ

nβ exp

(
−
∫
β
ω

)
where

(2.8) π2(X,L)λ := {β ∈ π2(X,L) : ∂β = λ}.

Intuitively F(L, λ) is a weighted count of stable disks bounded by the
loop λ which pass through a generic point in L. In general, the above
expression for F(L, λ) can be an infinite series, and one has to either take
care of convergence issues or bypass the issues by considering the Novikov
ring Λ0(Q), as done by Fukaya-Oh-Ohta-Ono in their works.

Definition 2.16. The Novikov ring Λ0(Q) is the set of all formal series
∞∑
i=0

aiT
λi

where T is a formal variable, ai ∈ Q and λi ∈ R≥0 such that limi→∞ λi =∞.

Then F(L, λ)→ Λ0(Q) is defined by

F(L, λ) =
∑

β∈π2(X,L)λ

nβT
∫
β ω.

The evaluation T = e−1 recovers Equation (2.7), if the corresponding series
converges. In the rest of this paper, Equation (2.7) will be used, while we
keep in mind that we can bypass the convergence issues by invoking the
Novikov ring Λ0(Q).

Now let’s come back to the setting developed in Section 2.1 and restrict
to the situation that L = Fr is a torus fiber of µ at r ∈ B0. To make sense
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of open Gromov-Witten invariants, we restrict our attention to those fibers
with minimal Maslov index at least two:

Definition 2.17. Let µ : X → B be a proper Lagrangian fibration under
the setting of Section 2.1. The subset H ⊂ B0 which consists of all r ∈ B0

such that Fr has minimal Maslov index less than two is called the wall.

We will see that when µ is the Gross fibration of a toric Calabi-Yau
manifold X, the wall H is indeed a hypersurface in B0 (Proposition 4.27).
This explains why such a subset is called a ‘wall’. Then for r ∈ B0−H and
β ∈ π2(X,Fr), the open Gromov-Witten invariant nβ is well-defined.

Under the setting of Lagrangian fibration, the generating functions given
in Definition 2.15 pack together to give a function on the fiberwise homotopy
loop space:

Definition 2.18. Given a proper Lagrangian fibration µ : X → B under
the setting of Section 2.1,

(1) The fiberwise homotopy loop space Λ∗ is defined as the lattice bundle
over B0 whose fiber at r is Λ∗r = π1(Fr) ∼= Zn.

(2) The generating function for µ is FX : Λ∗|B0−H → R defined by

(2.9) FX(λ) := F(Fr, λ) =
∑

β∈π2(X,Fr)λ

nβ exp

(
−
∫
β
ω

)
where r ∈ B0−H is the image of λ under the bundle map Λ∗ → B0.

(3) Let D ⊂ X be a codimension-two submanifold which has empty in-
tersection with every fiber Fr for r ∈ B0 − H. The corresponding
generating function ID : Λ∗|B0−H → R is defined by

(2.10) ID(λ) :=
∑

β∈π2(X,Fr)λ

(β ·D)nβ exp

(
−
∫
β
ω

)
where r ∈ B0−H is the image of λ under the bundle map Λ∗ → B0;
β · D is the intersection number between β and D, which is well-
defined because D ∩ Fr = ∅.

Intuitively speaking, ID is a weighted count of stable disks bounded by
λ emanating from D. In the next section, we’ll take Fourier transform of
these generating functions to obtain the complex coordinates of the mirror.

2.3. T-duality with corrections. Now we are ready for introducing a
construction procedure which employs the SYZ program. A family version
of Fourier transform is needed, and it will be discussed in Section 3.2.

¿From now on, we will make the additional assumption that the base B
of the proper Lagrangian fibration µ is a polyhedral set in Rn with at least n
distinct codimension-one faces, which are denoted as Ψj for j = 0, . . . ,m−1.
Moreover, the preimage

Dj := µ−1(Ψj)
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of each Ψj is assumed to be a codimension-two submanifold in X. An impor-
tant example is given by a toric moment map µ on a toric manifold whose
fan is strictly convex. The Lagrangian fibrations constructed in Section 4.3
also satisfy these assumptions.

Our construction procedure is the following:

(1) Take the dual torus bundle (see Definition 2.4)

µ̌ : X̌0 → B0

of µ : X0 → B0 . X̌0 has a canonical complex structure, and it is
called the semi-flat mirror of X.

The semi-flat complex structure only captures the symplectic ge-
ometry of X0, and it has to be corrected to capture additional infor-
mation (which are the open Gromov-Witten invariants) carried by
the symplectic geometry of X.

(2) We have the generating functions IDi : Λ∗|B0−H → R (Equation
(2.10)) defined by

(2.11) IDi(λ) :=
∑

β∈π2(X,Fr)λ

(β ·Di)nβ exp

(
−
∫
β
ω

)
.

We’ll abbreviate IDi as Ii for i = 0, . . . ,m − 1. Applying a family
version of Fourier transform on each Ii (see Section 3.2), one obtains
m holomorphic functions z̃i defined on µ̌−1(B0 −H) ⊂ X̌0.

These z̃i serve as the ‘corrected’ holomorphic functions. In general
µ̌−1(B0 − H) ⊂ X̌0 consists of several connected components, and
z̃i changes dramatically from one component to another component,
and this is called the wall-crossing phenomenon. This phenomenon
will be studied in Section 4.6 in the case of toric Calabi-Yau mani-
folds.

(3) Let R be the subring of holomorphic functions on (µ̌)−1(B0 −H) ⊂
X̌0 generated by constant functions and {z̃±1

i }
m−1
i=0 . One defines

Y = SpecR.

In Section 4.6, the above procedure will be carried out in details for toric
Calabi-Yau manifolds.

3. Fourier transform

This is a short section on Fourier transform from the torus bundle aspect.
We start with the familiar Fourier transform for functions on tori. Then
we define fiberwise Fourier transform for functions on torus bundle. Indeed
Fourier transform discussed here fits into a more general framework for dif-
ferential forms which gives the correspondence between Floer complex and
the mirror Ext complex. This will be discussed in a separate paper.
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3.1. Fourier transform on tori. Let Λ be a lattice, and V := Λ⊗R be the
corresponding real vector space. Then T := V/Λ is an n-dimensional torus.
We use V ∗, Λ∗ and T∗ to denote the dual of V , Λ and T respectively. There
exists a unique T-invariant volume form dVol on T such that

∫
T dVol =

1. One has the following well-known Fourier transform for complex-valued
functions:

l2(Λ∗) ∼= L2(T)

f ↔ f̌

where for each θ̌ ∈ T,

(3.1) f̌(θ̌) =
∑
λ∈Λ∗

f(λ)e2πi (λ , θ̌)

and for each λ ∈ Λ∗,

(3.2) f(λ) =

∫
T
f̌(θ̌)e−2πi (λ , θ̌)dVol(θ̌).

The above familiar expression comes up naturally as follows. Λ∗ =
Hom(T, U(1)) parametrizes all characters of the Abelian group T, and con-
versely T = Hom(Λ∗, U(1)) parametrizes all characters of Λ∗. Consider the
following diagram:

Λ∗ ×T

Λ∗ T

�
�
�	

π1 @
@
@R

π2

Λ∗×T admits the universal character function χ : Λ∗×T→ U(1) defined
by

χ(λ, θ̌) := e2πi (λ , θ̌)

which has the property that χ|{λ}×T is exactly the character function on
T corresponding to λ, and χ|Λ∗×{θ̌} is the character function on Λ∗ corre-

sponding to θ̌. For a function f : Λ∗ → C, we have the following natural
transformation

f̌ := (π2)∗
(
(π∗1f) · χ

)
where (π2)∗ denotes integration along fibers using the counting measure of
Λ∗. This gives equation (3.1). Conversely, given a function f̌ : T → C, we
have the inverse transform

f := (π1)∗
(
(π∗2 f̌) · χ−1

)
where (π1)∗ denotes integration along fibers using the volume form dVol of
T. This gives equation (3.2).
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We will mainly focus on the subspace C∞(T) of smooth functions on T.
Via Fourier transform, one has

Cr.d.(Λ∗) ∼= C∞(T )

where Cr.d.(Λ∗) consists of rapid-decay functions f on Λ∗. f decays rapidly
means that for all k ∈ N,

||λ||kf(λ)→ 0

as λ→∞. Here we have chosen a linear metric on V and

||λ|| := sup
|v|=1
| (λ , v) |.

The notion of rapid decay is independent of the choice of linear metric on
V .

3.2. Family version of Fourier transform. Now let’s consider Fourier
transform for families of tori. We turn back to the setting described in
Section 2.1: µ : X0 → B0 is a Lagrangian torus bundle which is associated
with the dual torus bundle µ̌ : X̌0 → B0. Λ∗ is the lattice bundle over B0

defined in Definition 2.18. Notice that µ̌ always has the zero section (while
µ may not have a Lagrangian section in general), which is essential in the
definition of Fourier transform.

Analogous to Section 3.1, we have the following commutative diagram

Λ∗ ×B0 X̌0

Λ∗ X̌0

B0

�
�
�+

π1 Q
Q
Qs

π2

Q
Q
QQs

�
�
��+

Each fiber F̌r parametrizes the characters of Λ∗r , and vice versa. Λ∗×B0 X̌0

admits the universal character function χ : Λ∗ ×B0 X̌0 → U(1) defined as
follows. For each r ∈ B0, λ ∈ Λ∗r and ∇ ∈ F̌r,

χ(λ,∇) := Hol∇(λ)

which is the holonomy of the flat U(1)-connection ∇ over Fr around the loop
λ. Thus we have the corresponding Fourier transform between functions on
Λ∗ and X̌0 similar to Section 3.1:

Cr.d.(Λ∗) ∼= C∞(X̌0)

where Cr.d.(Λ∗) consists of smooth functions f on Λ∗ such that for each r ∈
B0, f |Λ∗r is a rapid-decay function. Explicitly, f ∈ Cr.d.(Λ∗) is transformed
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to

f̌ : X̌0 → C,
f̌(Fr,∇) =

∑
λ∈Λ∗r

f(λ)Hol∇(λ).

Again, even without the condition of rapid-decay, the above series is well-
defined when it is considered to be valued in the Novikov ring Λ0(C) (Defi-
nition 2.16).

In Section 2.3, this family version of Fourier transform is applied to the
generating functions Ii : Λ∗|B0−H → R (Equation (2.11)) to get the holo-
morphic functions z̃i : µ̌−1(B0 −H)→ C given by

z̃i =
∑

λ∈π1(X′,Fr)

Ii(λ)Hol∇(λ)

=
∑

β∈π2(X′,Fr)

(β ·Di)nβ exp

(
−
∫
β
ω

)
Hol∇(∂β).

In Section 4.6 this is applied to toric Calabi-Yau manifolds to construct their
mirrors.

4. Mirror construction for toric Calabi-Yau manifolds

Throughout this section, we’ll always take X to be a toric Calabi-Yau
manifold. For such manifolds M. Gross [17] and E. Goldstein [15] have
independently written down a non-toric proper Lagrangian fibration µ :
X → B which falls in the setting of Section 2.1, and we’ll give a brief
review of them. These Lagrangian fibrations have interior discriminant loci
of codimension two, leading to the wall-crossing of genus-zero open Gromov-
Witten invariants which will be discussed in Section 4.5. Section 4.6 is the
main subsection, in which we apply the procedure given in Section 2.3 to
construct the mirror X̌.

4.1. Gross fibrations on toric Calabi-Yau manifolds. Let N be a lat-
tice of rank n and Σ be a simplicial fan supported in NR := N ⊗ R. We’ll
always assume that Σ is ‘strongly convex’, which means that its support
|Σ| is convex and does not contain a whole line through 0 ∈ NR. The toric
manifold associated to Σ is denoted by X = XΣ. The primitive generators
of rays of Σ are denoted by vi for i = 0, . . . ,m − 1, where m ∈ Z≥n is the
number of these generators. Each vi corresponds to an irreducible toric di-
visor which we’ll denote by Di. These notations are illustrated by the fan
picture of KP1 shown in Figure 2.

Definition 4.1. A toric manifold X = XΣ is Calabi-Yau if there exists
a toric linear equivalence between its canonical divisor KX and the zero
divisor. In other words, there exists a dual lattice point ν ∈M such that

(ν , vi) = 1
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for all i = 0, . . . ,m− 1.

¿From now on we’ll always assume X is a toric Calabi-Yau manifold,
whose holomorphic volume form can be explicitly written down (Proposition
4.3). An important subclass of toric Calabi-Yau manifolds is given by total
spaces of canonical line bundles of compact toric manifolds.

Figure 2. The fan picture of KP1 .

v0 v1v2

The following are some basic facts in toric geometry:

Proposition 4.2 ([17]). The meromorphic function w corresponding to
ν ∈ M is indeed holomorphic. The corresponding divisor (w) is −KX =∑m−1

i=0 Di.

Proof. For each cone C in Σ, let vi1 , . . . , vin be its primitive generators,
which form a basis of N because C is simplicial by smoothness of XΣ. Let
{νj ∈ M}nj=1 be the dual basis, which corresponds to coordinate functions

{ζj}nj=1 on the affine piece UC corresponding to the cone C. We have

ν =
n∑
j=1

νj

because
(
ν , vij

)
= 1 for all j = 1, . . . , n. Then

w|UC =

n∏
j=1

ζj

which is a holomorphic function whose zero divisor is exactly the sum of
irreducible toric divisors of UC . �

Proposition 4.3 ([17]). Let {νj}n−1
j=0 ⊂M be the dual basis of {v0, . . . , vn−1},

and ζj be the meromorphic functions corresponding to νj for j = 0, . . . , n−1.
Then

dζ0 ∧ . . . ∧ dζn−1

extends to a nowhere-zero holomorphic n-form Ω on X.

Proof. dζ0 ∧ . . . ∧ dζn−1 defines a nowhere-zero holomorphic n-form on the
affine piece corresponding to the cone R≥0〈v0, . . . , vn−1〉. Let C be an n-

dimensional cone in Σ, {ν ′j}
n−1
j=0 ⊂ M be a basis of M which generates
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the dual cone of C, and let ζ ′0, . . . , ζ
′
n−1 be the corresponding coordinate

functions on the affine piece UC corresponding to C. Then

dζ0 ∧ . . . ∧ dζn−1 = ζ0 . . . ζn−1d log ζ0 ∧ . . . d log ζn−1

= w d log ζ0 ∧ . . . d log ζn−1

= (detA)w d log ζ ′0 ∧ . . . d log ζ ′n−1

= (detA)dζ ′0 ∧ . . . ∧ dζ ′n−1

where A is the matrix such that νi =
∑

j Aijν
′
j . Since the fan Σ is simplicial,

A ∈ GL(n,Z) and hence detA = ±1. Thus dζ0 ∧ . . . ∧ dζn−1 extends to
a nowhere-zero holomorphic n-form on UC . This proves the proposition
because X is covered by affine pieces. �

Remark 4.4. In Proposition 4.3 we have chosen the basis {vi}n−1
i=0 ⊂ N . If

we take another basis {u0, . . . , un−1} ⊂ N which spans some cone of Σ, then
the same construction gives

dζ ′0 ∧ . . . ∧ dζ ′n−1 = ±dζ0 ∧ . . . ∧ dζn−1

where ζ ′j’s are coordinate functions corresponding to the dual basis of {ui}.
The reason is that both {vi} and {ui} are basis of N , and thus the basis
change belongs to GL(n,Z), and its determinant is ±1. Thus the holomor-
phic volume form, up to a sign, is independent of the choice of the cone and
its basis.

Let ω be a toric Kähler form on PΣ and µ0 : PΣ → P be the corre-
sponding moment map, where P is a polyhedral set defined by the system
of inequalities

(4.1) (vj , ·) ≥ cj

for j = 1, . . . ,m and constants cj ∈ R as shown in Figure 3.

Figure 3. The toric moment map image of KP1 .

P v2v1

v0

T1

T0T01 T12

T2

[T1] [T01] [T0] [T12] [T2]
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The moment map corresponding to the action of the subtorus

T⊥ν := N
⊥ν
R /N⊥ν ⊂ NR/N

on XΣ is

[µ0] : XΣ →MR/R〈ν〉
which is the composition of µ0 with the natural quotient mapMR →MR/R〈ν〉.

Definition 4.5. Fixing K2 > 0, a Gross fibration is

µ : X → MR/R〈ν〉 × R≥−K2
2

x 7→
(
[µ0(x)] , |w(x)−K2|2 −K2

2

)
.

We’ll always denote by B the base (MR/R〈ν〉)× R≥−K2
2
.

One has to justify the term ‘fibration’ in the above definition, that is,
µ : X → B is surjective:

Proposition 4.6. Under the natural quotient MR → MR/R〈ν〉, ∂P is
homeomorphic to MR/R〈ν〉. Thus µ maps X onto B.

Proof. For any ξ ∈ MR, since (vj , ν) = 1 for all j = 1, . . . ,m, we may
take t ∈ R sufficiently large such that ξ + tν satisfies the above system of
inequalities

(vj , ξ + tν) ≥ cj
and hence ξ+ tν ∈ P . Let t0 be the infimum among all such t. Then ξ+ t0ν
still satisfies all the above inequalities, and at least one of them becomes
equality. Hence ξ+ t0ν ∈ ∂P , and such t0 is unique. Thus the quotient map
gives a bijection between ∂P and MR/R〈ν〉. Moreover, the quotient map is
continuous and maps open sets in ∂P to open sets in MR/R〈ν〉, and hence
it is indeed a homeomorphism. �

It is proved by Gross that the above fibration is special Lagrangian using
techniques of symplectic reduction:

Proposition 4.7 ([17]). With respect to the symplectic form ω and the
holomorphic volume form Ω/(w − K2) defined on µ−1(Bint) ⊂ X, µ is a
special Lagrangian fibration, that is, there exists θ0 ∈ R/2πZ such that for
every regular fiber F of µ, ω|F = 0 and

Re

(
e2πi θ0 Ω

w −K2

)∣∣∣∣
F

= 0.

This gives a proper Lagrangian fibration µ : X → B where the base B
is the upper half space, which is a manifold with corners in the sense of
Definition 2.1.

4.2. Topological considerations for X. In this section, we would like to
write down the discriminant locus of µ and generators of π2(X,F ), where
F ⊂ X is a regular fiber of µ.
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4.2.1. The discriminant locus of µ. First, we give a notation for each face
of the polyhedral set P :

Definition 4.8. For each index set ∅ 6= I ⊂ {0, . . . ,m − 1} such that {vi :
i ∈ I} generates some cone C in Σ, let

(4.2) TI :=
{
ξ ∈ P : (vi , ξ) = ci for all i ∈ I

}
which is a codimension-(|I| − 1) face of ∂P .

Via the homeomorphism described in Proposition 4.6, [TI ] gives a strati-
fication of MR/R〈ν〉. This is demonstrated in Figure 3.

We are now ready to describe the discriminant locus Γ of µ (see Equation
(2.3) for the meaning of Γ):

Proposition 4.9. Let µ be the Gross’ fibration given in Definition 4.5. The
discriminant locus of µ is

Γ = ∂B ∪

 ⋃
|I|=2

[TI ]

× {0}
 .

Proof. The critical points of µ = ([µ0], |w −K2|2 −K2
2 ) are where the dif-

ferential of [µ0] or that of |w −K2|2 −K2
2 is not surjective. The first case

happens at the codimension-two toric strata of X, and the second case hap-
pens at the divisor defined by w = K2. The images under µ of these sets

are
(⋃
|I|=2[TI ]

)
× {0} and ∂B respectively. �

An illustration of the discriminant locus is given by Figure 4.

4.2.2. Local trivialization. As explained in Section 2.1, by removing the sin-
gular fibers, we obtain a torus bundle µ : X0 → B0 (see Equation (2.5)
for the notations). We now write down explicit local trivializations of this
torus bundle, which will be used to make an explicit choice of generators of
generators of π1(F ) and π2(X,F ). Let

Ui := B0 −
⋃
k 6=i

([Tk]× {0})

for i = 0, . . . ,m−1, which are contractible open sets covering B0, and hence
µ−1(Ui) can be trivialized. Without loss of generality, we will always stick
to the open set

U := U0 = B0 −
⋃
k 6=0

([Tk]× {0}) =
{

(q1, q2) ∈ B0 : q2 6= 0 or q1 ∈ [T0]
}
.

Proposition 4.10.

[T0] =
{
q ∈MR/R〈ν〉 :

(
v′j , q

)
≥ cj − c0 for all j = 1, . . . ,m− 1

}
where

(4.3) v′j := vj − v0

defines linear functions on MR/R〈ν〉 for j = 1, . . . ,m− 1.
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Figure 4. The base of the fibration µ : X → B when X =
KP1 . In this example, Γ = {r1, r2} ∪ R× {−K2}.

-K2

r20r1

Proof. T0 consists of all ξ ∈MR satisfying{
(vj , ξ) ≥ cj for all j = 1, . . . ,m− 1;
(v0 , ξ) = c0.

which implies
(
v′j , q

)
≥ cj − c0 for all j = 1, . . . ,m− 1.

Conversely, if q = [ξ] ∈ MR/R〈ν〉 satisfies
(
v′j , q

)
≥ cj − c0 for all

j = 1, . . . ,m − 1, then since (ν , v0) = 1, there exists t ∈ R such that

(v0 , ξ + tν) = c0. And we still have
(
v′j , ξ + tν

)
≥ cj − c0 for all j =

1, . . . ,m−1 because
(
v′j , ν

)
= 0. Then (vj , ξ) ≥ cj for all j = 1, . . . ,m−1.

Hence the preimage of q contains ξ + tν ∈ T0. �

Using the above proposition, the open set U = U0 can be written as{
(q1, q2) ∈ Bint : q2 6= 0 or

(
v′j , q1

)
> cj − c0 for all j = 1, . . . ,m− 1

}
where v′j is defined by Equation 4.3. Now we are ready to write down an

explicit coordinate system on µ−1(U).

Definition 4.11. Let

TN/T〈v0〉 :=
NR/R〈v0〉
N/Z〈v0〉

.

We have the trivialization

µ−1(U)
∼−→ U × (TN/T〈v0〉)× (R/2πZ)
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given as follows. The first coordinate function is simply given by µ.
To define the second coordinate function, let {ν0, . . . , νn−1} ⊂ M be the

dual basis to {v0, . . . , vn−1} ⊂ N . Let ζj be the meromorphic functions
corresponding to νj for j = 1, . . . , n−1. Then the second coordinate function
is given by(

arg ζ1

2π
, . . . ,

arg ζn−1

2π

)
: µ−1(U)→ (R/2πZ)n−1 ∼= (TN/T〈v0〉)

which is well-defined because for each j = 1, . . . , n− 1, νj ∈M⊥v0, implying
ζj is a nowhere-zero holomorphic function on µ−1(U).

The third coordinate is given by arg(w−K2), which is well-defined because
w 6= K2 on µ−1(U).

4.2.3. Explicit generators of π1(Fr) and π2(X,Fr). Now we define explicit
generators of π1(Fr) and π2(X,Fr) for r ∈ U in terms of the above coordi-
nates. For r ∈ U , one has

Fr ∼= (TN/T〈v0〉)× (R/2πZ)

and hence

π1(Fr) ∼= (N/Z〈v0〉)× Z
which has generators {λi}n−1

i=0 , where λ0 = (0, 1) and λi = ([vi], 0) for i =
1, . . . , n− 1. This gives a basis of π1(Fr).

We take explicit generators of π2(X,Fr) in the following way. First we
write down the generators for π2(X,T), which are well-known in toric ge-
ometry. Then we fix r0 = (q1, q2) ∈ U with q2 > 0, and identify π2(X,T)
with π2(X,Fr0) by choosing a Lagrangian isotopy between Fr0 and T. (The
choice q2 > 0 seems arbitrary at this moment, but it will be convenient
for the purpose of describing holomorphic disks in Section 4.5.) Finally
π2(X,Fr) for every r ∈ B0 is identified with π2(X,Fr0) by using the trivi-
alization of µ−1(U) ∼= U × Fr0 . In this way we have fixed an identification
π2(X,Fr) ∼= π2(X,T). The details are given below.
1. Generators for π2(X,T). Let T ⊂ X be a Lagrangian toric fiber, which
can be identified with the torus TN . By [8], π2(X,T) is generated by the
basic disk classes βTj corresponding to primitive generators vj of a ray in Σ
for j = 0, . . . ,m− 1. One has

∂βTj = vj ∈ N ∼= π1(TN ).

These basic disk classes βTi can be expressed more explicitly in the fol-
lowing way. We take the affine chart UC ∼= Cn corresponding to the cone
C = 〈v0, . . . , vn−1〉 in Σ. Let

Tρ := {(ζ0, . . . , ζn−1) ∈ Cn : |ζj | = eρj for j = 0, . . . , n− 1} ⊂ X

be a toric fiber at ρ = (ρ0, . . . , ρn−1) ∈ Rn. For i = 0, . . . , n − 1, βTi is
represented by the holomorphic disk u : (∆, ∂∆)→ (UC ,Tρ),

u(ζ) = (eρ0 , . . . , eρi−1 , eρiζ, eρi+1 , . . . , eρn−1).
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By taking other affine charts, other disk classes can be expressed in a similar
way. Figure 5 gives a drawing for βTi when X = KP1 . Since every disk class

βTi intersects the anti-canonical divisor
∑m−1

i=0 Di exactly once, it has Maslov
index two (Maslov index is twice the intersection number [8]).

Figure 5. The basic disk classes in π2(X,T) for a toric fiber
Tρ of X = KP1 .

2. Lagrangian isotopy between Fr0 and T.
Fix r0 = (q1, q2) ∈ B0 with q2 > 0. We have the following Lagrangian

isotopy relating fibers of µ and Lagrangian toric fibers:

(4.4) Lt := {x ∈ X : [µ0(x)] = q1; |w(x)− t|2 = K2
2 + q2}

where t ∈ [0,K2]. L0 is a Lagrangian toric fiber, and LK2 = Fr0 . (This is
also true for q2 < 0. We fix q2 > 0 for later purpose.)

The isotopy gives an identification between π2(X,Fr0) and π2(X,T).
Thus we may identify {βTj }

m−1
j=0 ⊂ π2(X,T) as a generating set of π2(X,Fr0),

and we denote the corresponding disk classes by βj ∈ π2(X,Fr0). They are
depicted in Figure 6.

Figure 6. Disks generating π2(X,Fr) when X = KP1 .

Finally by the trivialization of µ−1(U), every fiber Fr at r ∈ U is iden-
tified with Fr0 , and thus {βj}m−1

j=0 may be identified as a generating set of

π2(X,Fr).
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Notice that since Maslov index is invariant under Lagrangian isotopy,
each βj ∈ π2(X,Fr) remains to have Maslov index two. We will need the
following description for the boundary classes of βj :

Proposition 4.12.

∂βj = λ0 +

n−1∑
i=1

(νi , vj)λi ∈ (N/Z〈v0〉)× Z ∼= π1(Fr)

for all j = 0, . . . ,m−1, where {νi}n−1
i=0 ⊂M is the dual basis of {vi}n−1

i=0 ⊂ N .

Proof. Under the identification

TN
∼=→ (TN/T〈v0〉)× (R/2πZ)

where the last coordinate is given by (ν , ·), ∂βTj = vj ∈ π1(TN ) is identified
with

([vj ], 1) =

(
n−1∑
i=1

(νi , vj) [vi], 1

)
=

n−1∑
i=1

(νi , vj)λi + λ0

∈ π1

(
(TN/T〈v0〉)× (R/2πZ)

)
because (ν , vj) = 1 for all j = 0, . . . ,m − 1. Under the isotopy given in
Equation (4.4), this relation is preserved. �

The following proposition gives the intersection numbers of the disk classes
with various divisors:

Proposition 4.13. Let r = (q1, q2) ∈ U with q2 6= 0, and βi ∈ π2(X,Fr) be
the disk classes defined above. Then

β0 ·Dj = 0

for all j = 1, . . . ,m− 1;
βi ·Dj = δij

for all i = 1, . . . ,m− 1, j = 1, . . . ,m− 1;

βi ·D0 = 1

for all i = 0, . . . ,m− 1, where

(4.5) D0 := {x ∈ X : w(x) = K2}
is the boundary divisor whose image under µ is ∂B, and Dj are the irre-
ducible toric divisors of X.

Proof. We need to use the following topological fact: Let {Lt : t ∈ [0, 1]} be
an isotopy between L0 and L1, and {St : t ∈ [0, 1]} be an isotopy between
the cycles S0 and S1. Suppose that for all t ∈ [0, 1], Lt ∩ St = ∅. Then for
β ∈ π2(X,L0), one has the following equality of intersection numbers:

β · S0 = β′ · S1

where β′ ∈ π2(X,L1) corresponds to β under the isotopy Lt.
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First consider the case that r = r0. The first and second equalities follow
by using the isotopy Lt given by Equation (4.4) and the equalities

βT0 ·Dj = 0

for j = 1, . . . ,m− 1 and
βTi ·Dj = δij

for i = 1, . . . ,m− 1, j = 1, . . . ,m− 1 respectively.
We also have the isotopy

St = {x ∈ X : w(x) = t}

for t = [0,K2] between the anti-canonical divisor −KX =
∑m−1

l=0 Dl and D0.
One has St ∩ Lt = ∅ for all t, and so

βi ·D0 = βTi · (−KX) = 1

for all i = 0, . . . ,m− 1.
For general r ∈ U , since U ∩ Dj = ∅ for all j = 1, . . . ,m − 1 and U ∩

D0 = ∅, the isotopy between Fr and Fr0 never intersect D0 and Dj for all
j = 1, . . . ,m − 1. Thus the above equalities of intersection numbers are
preserved. �

4.3. Toric modification. Our idea of constructing the mirror X̌ is to con-
struct coordinate functions of X̌ by counting holomorphic disks emanating
from boundary divisors of X. The problem is that in our situation, B has
only one codimension-one boundary, while we need n coordinate functions!
To resolve this, one may consider counting of holomorphic cylinders, which
requires the extra work of defining rigorously the corresponding Gromov-
Witten invariants. Another way is to consider a one-parameter family of
toric Kähler manifolds with n toric divisors such that X appears as the
limit of this family when n − 1 of the toric divisors move to infinity. We
adopt the second approach in this paper.

Choose a basis of N which generate a cone in Σ, say, the one given by
v0, . . . , vn−1. Since this is simplicial, {vj}n−1

j=0 forms a basis of N . We denote

its dual basis by {νj}n−1
j=0 ⊂M as before.

Remark 4.14. While all the constructions from now on depend on the
choice of this basis, we will see in Proposition 4.45 that the mirrors resulted
from different choices of basis differ simply by a coordinate change.

We define the following modification to XΣ:

Definition 4.15. Fix K1 > 0.

(1) Let

P (K1) :=
{
ξ ∈ P :

(
v′j , ξ

)
≥ −K1 for all j = 1, . . . , n− 1

}
⊂ P

where v′j := vj − v0 for j = 1, . . . , n − 1. K1 is assumed to be

sufficiently large such that none of the defining inequalities of P (K1)

is redundant.
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(2) Let Σ(K1) be the inward normal fan to P (K1), which consists of rays
generated by v0, . . . , vm−1, v

′
1, . . . , v

′
n−1.

(3) Let X(K1) be the toric Kähler manifold corresponding to P (K1) and

µ
(K1)
0 : X(K1) → P (K1)

be the moment map.

Notice that X(K1) is no longer a Calabi-Yau manifold. For notation sim-
plicity, we always suppress the dependency on K1 and write Σ′ in place of

Σ(K1) and µ′0 : X ′ → P ′ in place of µ
(K1)
0 : X(K1) → P (K1) in the rest of this

paper. The fan Σ′ and toric moment map image P ′ of X ′ are demonstrated
in Figure 7 and 8 respectively.

Figure 7. The fan Σ′ of X ′ when X = KP1 .

v1v0v2

v1-v0

Figure 8. Toric moment map image P ′ of X ′ when X = KP1 .
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Analogously, one has a special Lagrangian fibration on X ′. The definitions
and propositions below are similar to that of Section 4.1, so we try to keep
them brief. The proofs are similar and thus omitted.
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Proposition 4.16. ν corresponds to a holomorphic function w′ on X ′,
whose zero divisor is

(w′) =

m−1∑
i=0

Di

where we denote each irreducible toric divisor corresponding to vi by Di, and
that corresponding to v′j by D ′j. (Notice that w′ is non-zero on D ′j and so

they do not appear in the above expression of (w′).)

Proposition 4.17. Let ζj be the meromorphic functions corresponding to
νj for j = 0, . . . , n− 1. Then

Ω′ := dζ0 ∧ . . . ∧ dζn−1

extends to a meromorphic n-form on X ′ with

(Ω′) = −
n−1∑
j=1

D ′j

where D ′j are the toric divisors corresponding to v′j.

Definition 4.18. Let

E(K1) :=
{
q ∈ (MR/R〈ν〉) :

(
v′j , q

)
≥ −K1 for all j = 1, . . . , n− 1

}
and

B(K1) := E(K1) × R≥−K2 .

We have the fibration

µ(K1) : X(K1) → B(K1) := E(K1) × R≥−K2

x 7→
(
[µ

(K1)
0 (x)], |w′(x)−K2|2 −K2

2

)
.

Again we’ll suppress the dependency on K1 for notation simplicity and use
the notations E and µ′ : X ′ → B′ instead.

Figure 8 gives an illustration to the notation E′, and Figure 9 depicts the
fibration µ′ by an example.

Proposition 4.19. Under the natural quotient MR →MR/R〈ν〉, the image
of P ′ is E. Indeed, this map give a homeomorphism between{

ξ ∈ ∂P ′ :
(
v′j , ξ

)
> −K1 for all j = 1, . . . , n− 1

}
and

Eint = {q ∈MR/R〈ν〉 :
(
v′j , q

)
> −K1 for all j = 1, . . . , n− 1}.

As a consequence, µ′ : X ′ → B′ is onto.

B′ is a manifold with corners with n connected codimension-one bound-
ary strata. Using the notations given in the beginning of Section 2.3, the
connected codimension-one boundary strata of B′ are

Ψj := {(q1, q2) ∈ B′ :
(
v′j , q1

)
= −K1}
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for j = 1, . . . , n− 1 and

Ψ0 := {(q1, q2) ∈ B′ : q2 = −K2}.

Moreover, the preimages

(4.6) Dj = (µ′)−1(Ψj) ⊂ X ′

are divisors in X ′. Thus the assumptions needed in Section 2.3 for the mirror
construction are satisfied. (Notice that these Dj are NOT the toric divisors,
which are denoted by Di and D ′j instead.)

Proposition 4.20. µ′ : X ′ → B′ is a special Lagrangian fibration with
respect to the toric Kähler form and the holomorphic volume form Ω′/(w′−
K2) defined on X ′ −

⋃n−1
j=0 Dj.

See Figure 9 for an illustration of the above notations. As K1 → +∞,
the divisors Dj for j = 1, . . . , n − 1 move to infinity and hence µ′ tends to
µ as Lagrangian fibrations. We infer that the mirror of µ should appear as
the limit of mirror of µ′ as K1 → +∞. We will construct the mirror of µ′

in the later sections.

4.4. Topological considerations for X ′. In this section we write down
the discriminant locus of µ′ and generators of π2(X ′, F ), where F is a fiber
of µ′. This is similar to the discussion for X in Section 4.2, except that we
have more disk classes due to the additional toric divisors. The proofs to
the propositions are similar to that in Section 4.2 and thus omitted.

4.4.1. The discriminant locus of µ′.

Definition 4.21. For each ∅ 6= I ⊂ {0, . . . ,m − 1} such that {vi : i ∈ I}
generates some cone in Σ′, we define

T ′I := TI ∩
{
ξ ∈ P ′ :

(
v′j , ξ

)
> −K1 for all j = 1, . . . , n− 1

}
where TI is a face of P given by Equation (4.2). T ′I is a codimension-(|I|−1)
face of {

ξ ∈ ∂P ′ :
(
v′j , ξ

)
> −K1 for all j = 1, . . . , n− 1

}
.

Proposition 4.22. The discriminant locus of µ′ is

Γ′ :=

 ⋃
|I|=2

[T ′I ]

× {0}
 ∪ ∂B′.

Figure 9 gives an example for the base and discriminant locus of µ′.
By removing the singular fibers of µ′, we get a Lagrangian torus bundle

µ′ : X ′0 → B′0, where

B′0 := B′ − Γ′;

X ′0 := (µ′)−1(B′0).
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Figure 9. The base of µ′ when X = KP1 . The discriminant
locus is {r1, r2} ∪ ∂B′.

-K2

r20r1-K1

4.4.2. Local trivialization. We define

U ′i := B′0 −
⋃
k 6=i

(
[T ′k]× {0}

)
for i = 0, . . . ,m− 1, so that (µ′)−1(U ′i) is trivialized. Without loss of gener-
ality we stick to the trivialization over the open set
(4.7)

U ′ := U ′0 = B′0 −
⋃
k 6=0

(
[T ′k]× {0}

)
=
{

(q1, q2) ∈ B′0 : q2 6= 0 or q1 ∈ [T ′0]
}
.

Similar to Proposition 4.10, one has

[T ′0] = {q ∈ Eint :
(
v′j , q

)
≥ cj − c0 for all j = 1, . . . ,m− 1}.

Thus the open set U ′ = U ′0 can be written as{
(q1, q2) ∈ Eint × R>−K2 :

q2 6= 0 or
(
v′j , q1

)
> cj − c0 for all j = 1, . . . ,m− 1

}
.

Then the trivialization is explicitly written as

(µ′)−1(U ′)
∼=→ U ′ × (TN/T〈v0〉)× (R/2πZ)

which is given in the same way as in Definition 4.11.

4.4.3. Explicit generators of π1(Fr) and π2(X,Fr). For r ∈ U ′, every Fr is
identified with the torus (TN/T〈v0〉)×(R/2πZ) via the above trivialization.
Then a basis of π1(Fr) is given by {λi}n−1

i=0 , where λ0 = (0, 1) ∈ N/Z〈v0〉×Z
and λi = ([vi], 0) ∈ N/Z〈v0〉 × Z for i = 1, . . . , n− 1.

We use the same procedure as that given in Section 4.2.3 to write down ex-
plicit generators of π2(X ′, Fr) for r ∈ B′0. First of all, π2(X ′,T) is generated
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by βi and β′j corresponding to vi and v′j respectively, where i = 0, . . . ,m− 1
and j = 1, . . . , n− 1. They are depicted in Figure 10.

Figure 10. Disks generating π2(X ′, T ) for a regular
moment-map fiber T when X = KP1 .

Then fixing a based point r0 = (q1, q2) ∈ U ′ with q2 > 0, the isotopy

Lt := {x ∈ X : [µ′0(x)] = q1; |w′(x)− t|2 = K2
2 + q2}

between Fr0 and a toric fiber T gives an identification π2(X ′, Fr0) ∼= π2(X ′,T).
Finally the trivialization of µ−1(U ′) gives an identification between Fr and
Fr0 for any r ∈ U ′. Thus {βi}m−1

i=0 ∪{β′j}
n−1
j=1 can be regarded as a generating

set of π2(X ′, Fr).

Proposition 4.23.

∂βj = λ0 +

n−1∑
i=1

(νi , vj)λi ∈ (N/Z〈v0〉)× Z ∼= π1(Fr)

and

∂β′k = λk

for j = 0, . . . ,m− 1 and k = 1, . . . , n− 1.

Proposition 4.24. Let r = (q1, q2) ∈ U ′ with q2 6= 0, and βi ∈ π2(X ′, Fr)
be the disk classes defined above. Then

β0 ·Dj = 0 for all j = 1, . . . ,m− 1;

βi ·Dj = δij for all i, j = 1, . . . ,m− 1;

βi ·D ′k = 0 for all 0 = 1, . . . ,m− 1 and k = 1, . . . , n− 1;

βi ·D0 = 1 for all i = 0, . . . ,m− 1;

β′l ·D0 = 0 for all l = 1, . . . , n− 1;

β′l ·Dk = δlk for all l, k = 1, . . . , n− 1.
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4.5. Wall crossing phenomenon. In Section 2.2 we give a review on the
open Gromov-Witten invariants nβ for a disk class β ∈ π2(X,L) bounded by
a Lagrangian L (Definition 2.14). We find that when X is a toric Calabi-Yau
manifold and L = Fr is a Gross fiber, these invariants exhibit a wall-crossing
phenomenon, which is the main topic of this section. This is an application
of the ideas and techniques introduced by Auroux [3, 4] to the case of toric
Calabi-Yau manifolds. The main results are Proposition 4.30 and 4.32.
In Section 5.2 we will give methods to compute the open Gromov-Witten
invariants.

Let’s start with the Maslov index of disks (Definition 2.7), which is im-
portant because it determines the expected dimension of the corresponding
moduli (Equation 2.6). The following lemma which appeared in [3] gives a
formula for computing the Maslov index, which can be regarded as a gener-
alization of the corresponding result by Cho-Oh [8] for moment-map fibers
in toric manifolds.

Lemma 4.25 (Lemma 3.1 of [3]). Let Y be a Kähler manifold of dimension
n, σ be a nowhere-zero meromorphic n-form on Y , and let D denote its pole
divisor. If L ⊂ Y −D is a compact oriented special Lagrangian submanifold
with respect to σ, then for each β ∈ π2(Y,L),

µ(β) = 2β ·D.

Recall that the regular fibers Fr of µ : X → B are special Lagrangian with
respect to Ω/(w −K2) whose pole divisor is D0 (see Equation (4.5) for the
definition of D0). Using the above lemma, the Maslov index of β ∈ π2(X,Fr)
is

µ(β) = 2β ·D0.

Similarly µ′ : X ′ → B′ are special Lagrangian with respect to Ω′/(w′ −K2)

whose pole divisor is
∑n−1

j=0 Dj . Thus the Maslov index of β ∈ π2(X ′, Fr) is

(4.8) µ(β) = 2β ·

n−1∑
j=0

Dj

 .

¿From this we deduce the following corollary:

Corollary 4.26. For every β ∈ π2(X,Fr), if β is represented by stable disks,
then µ(β) ≥ 0.

Proof. ¿From the above formulae, it follows that the Maslov index of any
holomorphic disks in β ∈ π2(X,Fr) or β ∈ π2(X ′, Fr) is non-negative.

Every stable disk consists of holomorphic disk components and holomor-
phic sphere components, and its Maslov index is the sum of Maslov indices
of its disk components and two times Chern numbers of its sphere compo-
nents. The disk components have non-negative Maslov index as mentioned
above. Since X is Calabi-Yau, every holomorphic sphere in X has Chern
number zero. Thus the sum is non-negative. �
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4.5.1. Stable disks in X. First we consider the toric Calabi-Yau X. The
lemma below gives an expression of the wall (see Definition 2.17).

Lemma 4.27. For r = (q1, q2) ∈ B0, a Gross fiber Fr bounds some non-
constant stable disks of Maslov index zero in X if and only if q2 = 0.

Proof. Since X is Calabi-Yau, sphere bubbles in a stable disk have Chern
number zero and hence do not affect the Maslov index. We can restrict our
attention to a holomorphic disk u : (∆, ∂∆)→ (X,Fr) whose Maslov index
is zero. By Lemma 4.25, u has intersection number zero with the boundary
divisor D0 = {w = K2}. But since u is holomorphic and D0 is a complex
submanifold, the multiplicity for each intersection point between them is
positive. This implies

Im(u) ⊂ µ−1(Bint).

Then w ◦u−K2 is a nowhere-zero holomorphic function on the disk. More-
over, |w ◦ u − K2| is constant on ∂∆. By applying maximum principle on
|w ◦u−K2| and |w ◦u−K2|−1, w ◦u must be constant with value z0 in the
circle {

|z −K2|2 = K2
2 + q2

}
⊂ C.

Unless z0 = 0, w−1(z0) is topologically Rn−1×Tn−1, which contains no non-
constant holomorphic disks whose boundary lies in Fr ∩ w−1(z0) ∼= Tn−1 ⊂
Rn−1 ×Tn−1. Hence z0 = 0, which implies q2 = 0. Conversely, if q2 = 0, Fr
intersects a toric divisor along a (degenerate) moment map fiber, and hence
bounds holomorphic disks which are part of the toric divisor. They have
Maslov index zero because they never intersect D0. �

Combining the above lemma with Corollary 4.26, one has

Corollary 4.28. For r = (q1, q2) ∈ B0 with q2 6= 0, Fr has minimal Maslov
index two.

Using the terminology introduced in Definition 2.17, the wall is

H = MR/R〈ν〉 × {0}.

B0 −H consists of two connected components

(4.9) B+ := MR/R〈ν〉 × (0,+∞)

and

(4.10) B− := MR/R〈ν〉 × (−K2, 0).

For r ∈ B0 − H, the fiber Fr has minimal Maslov index two, and thus
nβ is well-defined for β ∈ π2(X,Fr) (see Section 2.2). There are two cases:
r ∈ B+ and r ∈ B−.

1. r ∈ B+.
One has the following lemma relating a Gross fiber Fr to a Lagrangian

toric fiber T:
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Lemma 4.29. For r ∈ B+, the Gross fiber Fr is Lagrangian-isotopic to
a Lagrangian toric fiber T, and all the Lagrangians in this isotopy do not
bound non-constant holomorphic disks of Maslov index zero.

Proof. Let r = (q1, q2) with q2 > 0. The Lagrangian isotopy has already
been given in Equation (4.4), which is

Lt := {x ∈ X : [µ0(x)] = q1; |w(x)− t|2 = K2
2 + q2}

where t ∈ [0,K2]. Since q2 > 0, for each t ∈ [0,K2], w is never zero on
Lt. By Lemma 4.27, Lt does not bound non-constant holomorphic disks of
Maslov index zero. �

Using the above lemma, one shows that the open Gromov-Witten invari-
ants of Fr when r ∈ B+ are the same as that of T:

Proposition 4.30. For r ∈ B+ and β ∈ π2(X,Fr), let βT ∈ π2(X,T) ∼=
π2(X,Fr) be the corresponding class under the isotopy given in Lemma 4.29.
Then

nβ = nβT .

nβ 6= 0 only when

β = βj + α

where α ∈ H2(X) is represented by rational curves, and βj ∈ π2(X,Fr)
are the basic disk classes given in Section 4.2.3. Moreover, nβj = 1 for all
j = 0, . . . ,m− 1.

Proof. It suffices to consider those β ∈ π2(X,Fr) with µ(β) = 2, or otherwise
nβ = 0 due to dimension reason.

The Lagrangian isotopy given in Lemma 4.29 gives an identification be-
tween π2(X,Fr) and π2(X,T), where T is a regular fiber of µ0. More-
over, since every Lagrangian in the isotopy has minimal Maslov index two,
the isotopy gives a cobordism between M1(Fr, β) and M1(T, βT), where
βT ∈ π2(X,T) is the disk class corresponding to β ∈ π2(X,Fr) under the
isotopy. Hence nβ keeps constant along this isotopy, which implies

nβ = nβT .

By dimension counting of the moduli space, nβT is non-zero only when

βT is of Maslov index two (see Equation 2.6 and the explanation below
Definition 2.14).

Using Theorem 11.1 of [13], M1(T, βT) is non-empty only when βT =
βj + α, where α ∈ H2(X) is represented by rational curves, and βj ∈
π2(X,T) ∼= π2(X,Fr) are the basic disk classes given in Section 4.2.3. For
completeness we also give the reasoning here. Let u ∈M1(T, βT) be a sta-
ble disk of Maslov index two. u is composed of holomorphic disk components
and sphere components. Since every holomorphic disk bounded by a toric
fiber T ⊂ X must intersect some toric divisors, which implies that it has
Maslov index at least two, u can have only one disk component. Moreover
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a holomorphic disk of Maslov index two must belong to a basic disk class βj
[8]. Thus β = [u] is of the form βj + α.

Moreover, by Cho-Oh’s result [8], nβj = 1 for all j = 0, . . . ,m− 1. �

2. r ∈ B−.
When r ∈ B−, the open Gromov-Witten invariants behave differently

compared to the case r ∈ B+ (see Equation 4.10 for the definition of B−).
For X = Cn, nβ has been studied by Auroux [3, 4] (indeed he considered
the cases n = 2, 3, but there is no essential difference for general n). We
give the detailed proof here for readers’ convenience:

Lemma 4.31 ([3]). When the toric Calabi-Yau manifold is X = Cn and
Fr ⊂ X is a Gross fiber at r ∈ B−, we have

nβ =

{
1 when β = β0;
0 otherwise.

Proof. Let (ζ0, . . . , ζn−1) be the standard complex coordinates of Cn. In
these coordinates the Gross fibration is written as

µ = (|ζ0|2 − |ζ1|2, . . . , |ζn−2|2 − |ζn−1|2, |ζ0 . . . ζn−1 −K2|2 −K2
2 ).

Due to dimension reason, nβ = 0 whenever µ(β) 6= 2. Thus it suffices to

consider the case µ(β) = 2. Write β =
∑n−1

i=0 kiβi, where βi ∈ π2(X,Fr) are
the basic disk classes defined in Section 4.2.3. We claim that k0 = 1 and
ki = 0 for all i = 1, . . . , n− 1 if the moduli space M1(Fr, β) is non-empty.

Let u be a stable disk in Cn representing β with µ(β) = 2. Since Cn
supports no non-constant holomorphic sphere, u has no sphere component.
Also by Corollary 4.28, Fr has minimal Maslov index two, and so u consists
of only one disk component (see Proposition 2.13). Thus u is indeed a
holomorphic map ∆→ Cn.

Since q2 < 0, one has |(ζ0 . . . ζn−1) ◦ u−K2| < K2 on ∂∆. By maximum
principle this inequality holds on the whole disk ∆. In particular, ζ0 . . . ζn−1

is never zero on ∆, and so u never hits the toric divisors Di = {ζi = 0} for
i = 0, . . . , n−1. Thus β ·Di = 0 for all i = 0, . . . , n−1. By Proposition 4.13,
(β0 , Dj) = 0 for all j = 1, . . . , n− 1, and (βi , Dj) = δij for i = 1, . . . , n− 1
and j = 0, . . . , n− 1. Thus

(β , Dj) = kj = 0

for j = 1, . . . , n−1. Thus β = k0β0. But µ(β) = k0µ(β0) = 2 and µ(β0) = 2,
and so k0 = 1.

This proves that nβ 6= 0 only when β = β0. Now we prove that nβ0 = 1.
Since every fiber Fr is Lagrangian isotopic to each other for r ∈ B− and
the Lagrangian fibers have minimal Maslov index 2, nβ0 keeps constant as
r ∈ B− varies. Hence it suffices to consider r = (0, q2) for q2 < 0, which
means that |ζ0| = |ζ1| = . . . = |ζn−1| for every (ζ0, . . . , ζn−1) ∈ Fr.
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In the following we prove that for every p ∈ Fr ⊂ (C×)n, the preimage
of p under the evaluation map ev0 :M1(Fr, β0)→ Fr is a singleton, and so
nβ0 = 1.

Write p = (p0, . . . , pn−1) ∈ (C×)n. p ∈ Fr implies that |p0| = |p1| = . . . =
|pn−1|. Consider the line

l := {(ζp0, ζp1, . . . , ζpn−1) ∈ (C×)n : ζ ∈ C×}

spanned by p. Then w = ζ0 . . . ζn−1 gives an n-to-one covering l→ C×. The
disk

∆K2 := {ζ ∈ C : |ζ −K2| ≤ (K2
2 + q2)1/2}

never intersects the negative real axis {Re(ζ) ≤ 0}, and hence we may
choose a branch to obtain a holomorphic map ũ : ∆K2 → l (There are n

such choices). Moreover there is a unique choice such that ũ
(∏n−1

j=0 pj

)
=

(p0, . . . , pn−1). The image of ∂∆K2 under ũ lies in Fr: Let ζ ∈ ∂∆K2 and
z = ũ(ζ). Then w(z) = ζ satisfies |w(z)−K2|2 = K2

2 + q2. Moreover z ∈ l,
and so |z0| = |z1| = . . . = |zn−1|. ũ represents β0 because it never intersects
the toric divisors Dj for j = 0, . . . , n− 1 and it intersect with D0 = {w = 0}
once.

The above proves that there exists a holomorphic disk representing β0

such that its boundary passes through p. In the following we prove that
indeed this is unique.

Let u ∈ M1(Fr, β0) such that ev0(u) = p. By the above consideration
u is a holomorphic disk. Since β0 · Di = 0, u never hits the toric divisors
{ζi = 0} for i = 0, . . . , n − 1, and hence ζi ◦ u : ∆ → C are nowhere-zero
holomorphic functions. By applying maximum principle on |ζi/ζ1 ◦ u| and
|ζ1/ζi ◦ u|−1 for each i = 2, . . . , n, which has value 1 on ∂∆, we infer that u
must lie on the complex line

{(ζ, c1ζ, . . . , cn−1ζ) ∈ (C×)n : ζ ∈ C×}

where |ci| = 1 are some constants for i = 1, . . . , n − 1. Moreover, the line
passes through p, and so this is the line l defined above.

Consider the holomorphic map w◦u : ∆→ C×. Since u has Maslov index
two, it has intersection number one with the divisor {w−K2 = 0}, implying
that w◦u|∂∆ winds aroundK2 only once. Hence w◦u gives a biholomorphism

∆
∼=→ ∆K2 defined above. One has ũ ◦ (w ◦ u) = (ũ ◦ w) ◦ u = u, where ũ is

the one-side inverse of w defined above. This means u is the same as ũ up
to the biholomorphism w ◦ u. Thus ũ is unique. �

Indeed the same statement holds for all toric Calabi-Yau manifolds:

Proposition 4.32. For r ∈ B− and β ∈ π2(X,Fr),

nβ =

{
1 when β = β0;
0 otherwise.



SYZ FOR TORIC CY 43

Proof. Due to dimension reason, nβ = 0 if µ(β) 6= 2, and so it suffices to
assume µ(β) = 2. Let r = (q1, q2) with q2 < 0.

First of all, one observes that when r ∈ B−, every holomorphic disk
u : (∆, ∂∆)→ (X,Fr) has image

Im(u) ⊂ S− := µ−1({(q1, q2) ∈ B : q2 < 0}).

This is because (w − K2) ◦ u defines a holomorphic function on ∆. Since
r ∈ B−, |w −K2| is constant with value less than K2 on Fr. By maximum
principle, |w −K2| ◦ u < K2. This proves the observation.

Notice that (S−, Fr) is homeomorphic to ((C×)n−1 × C, T ), where

T = {(ζ1, . . . , ζn) ∈ (C×)n−1 × C : |ζ1| = . . . = |ζn| = c}

for c > 0. In particular, π2(S−) = 0 which implies that S− supports no non-
constant holomorphic sphere. Moreover, every non-constant holomorphic
disk bounded by Fr with image lying in S− must intersect D0, and thus it
has Maslov index at least two.

Now let v ∈ M1(Fr, β) be a stable disk of Maslov index two, where
r ∈ B−. By the above observation, each disk component of v has Maslov
index at least two, and so v has only one disk component.

Moreover, the image of a non-constant holomorphic sphere h : CP1 → X
does not intersect S−: Consider w ◦ h, which is a holomorphic function
on CP1 and hence must be constant. Thus image of h lies in w−1(c) for
some c. But for c 6= 0, w−1(c) is (C×)n−1 which supports no non-constant
holomorphic sphere. Thus c = 0. But w is never zero on S−, implying that
w−1(0) ∩ S− = ∅.

Thus v does not have any sphere component, because any non-constant
holomorphic sphere in X never intersect its disk component. This proves for
all β ∈ π2(X,Fr), M1(β, Fr) consists of holomorphic maps u : (∆, ∂∆) →
(X,Fr), that is, neither disk nor sphere bubbling never occurs.

In particular, all elements in M1(β, Fr) have images in S− and never

intersect the toric divisors. Writing β =
∑m−1

i=0 kiβi, one has

(β , Dj) = kj = 0

(see Proposition 4.13). Moreover, µ(β) = 2 forces k0 = 1. Thus M1(β, Fr),
where β has Maslov index two, is non-empty only when β = β0. Thus nβ = 0
whenever β 6= β0.

Let V = Cn ↪→ X be the complex coordinate chart corresponding to the
cone 〈v0, . . . , vn−1〉. We have Fr ⊂ S0 ⊂ V , and since β0 · D = 0 for every
toric divisor D ⊂ X, any holomorphic disk representing β0 in X is indeed
contained in V . Thus

MX
1 (β0, Fr) ∼=MV

1 (β0, Fr).

Then nXβ0
= nVβ0

, where the later has been proven to be 1 in Lemma 4.31. �
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¿From the above propositions, one sees that nβ for β ∈ π2(X,Fr) changes
dramatically as r crosses the wall H, and this is the so-called wall-crossing
phenomenon.

4.5.2. Stable disks in X ′. Now we consider open Gromov-Witten invariants
of X ′. The statements are very similar, except that there are more disk
classes due to the additional toric divisors. The proofs are also very similar
and thus omitted.

Lemma 4.33. For r = (q1, q2) ∈ B′0, a fiber Fr of µ′ bounds some non-
constant stable disks of Maslov index zero in X ′ if and only if q2 = 0.

Thus for every r = (q1, q2) ∈ B0 with q2 6= 0, Fr has minimal Maslov
index two. The wall (see Definition 2.17) is

H ′ = Eint × {0}.
The two connected components of B′0 −H ′ are denoted by

B′+ := Eint × (0,+∞)

and

B′− := Eint × (−K2, 0)

respectively. Again we have two cases to consider:

1. r ∈ B′+.

Lemma 4.34. For r ∈ B′+, the fiber Fr is Lagrangian-isotopic to a La-
grangian toric fiber, and all the Lagrangians in this isotopy do not bound
non-constant holomorphic disks of Maslov index zero.

Proposition 4.35. For r ∈ B′+ and β ∈ π2(X ′, Fr), nβ 6= 0 only when

β = β′k for k = 1, . . . , n− 1

or

β = βj + α for j = 0, . . . ,m− 1

where α ∈ H2(X) is represented by rational curves of Chern number zero.
Moreover, nβ = 1 when β = β0, . . . , βm−1 or β′1, . . . , β

′
n−1.

2. r ∈ B′−.

Proposition 4.36. For r ∈ B′− and β ∈ π2(X ′, Fr),

nβ =

{
1 when β = β0 or β′1, . . . , β

′
n−1;

0 otherwise.

These invariants contribute to the ‘quantum correction terms’ of the com-
plex structure of the mirror, as we will discuss in the next section. In Sec-
tion 5, we’ll give two ways to compute these invariants: one is by relating to
closed Gromov-Witten invariants, and one is by predictions from complex
geometry of the mirror.
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4.6. Mirror construction. In this section, we use the procedure given in
Section 2.3 to construct the mirror X̌ of a Calabi-Yau n-fold X with the
Gross fibration µ : X → B. The following is the main theorem:

Theorem 4.37. Let µ : X → B be the Gross fibration over a toric Calabi-
Yau n-fold X, and µ′ : X ′ → B′ be the modified fibration given by Definition
4.15.

(1) Applying the construction procedure given in Section 2.3 on the La-
grangian fibration µ′ : X ′ → B′, one obtains a complex manifold

(4.11)
Y =

{
(u, v, z1, . . . , zn−1) ∈ (C×)2 × (C×)n−1 : uv = G(z1, . . . , zn−1)

}
which admits a partial compactification

(4.12) X̌ =
{

(u, v, z1, . . . , zn−1) ∈ C2 × (C×)n−1 : uv = G(z1, . . . , zn−1)
}
.

Here G is a polynomial given by

(4.13) G(z1, . . . , zn−1) = (1 + δ0) +
n−1∑
j=1

(1 + δj)zj +
m−1∑
i=n

(1 + δi)qi−n+1z
vi

The notations δj , qa and zvi appeared above are explained in the end
of this theorem.

(2) Let H be the wall given in Definition 2.17. There exists a canonical
map

ρ : µ̌−1(B0 −H)→ X̌

such that the holomorphic volume form
(4.14)

Ω̌ := Res

(
1

uv −G(z1, . . . , zn−1)
d log z1 ∧ . . . ∧ d log zn−1 ∧ du ∧ dv

)
defined on X̌ ⊂ C2×(C×)n−1 is pulled back to the semi-flat holomor-
phic volume form (see Section 4.6.1 below) on µ̌−1(B0 − H) under
ρ. In this sense the semi-flat holomorphic volume form extends to
X̌.

(3) Let FX be the generating function given in Definition 2.18. The
Fourier transform of FX (see Definition 2.18) is given by ρ∗(C0u),
where C0 is some constant (defined by Equation (4.20)). In this
sense the Fourier transform of FX extends to a function on X̌, which
is called the superpotential.

Explanation of the new notations δi, qa and zvi are as follows:

• δi’s are constants defined by

(4.15) δi :=
∑
α 6=0

nβi+α exp

(
−
∫
α
ω

)
for i = 0, . . . ,m − 1, in which the summation is over all α ∈
H2(X,Z)−{0} represented by rational curves. (The basic disk classes
βi ∈ π2(X,Fr) are defined previously in Section 4.2.3.)
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• zvi denotes the monomial
n−1∏
j=1

z
(νj , vi)
j

where {νj}n−1
j=0 ⊂M is the dual basis of {vj}n−1

j=0 ⊂ N .
• For a = 1, . . . ,m − n, qa are Kähler parameters defined as follows.

Let Sa ∈ H2(X,Z) be the classes defined by

(4.16) Sa := βa+n−1 −
n−1∑
j=0

(νj , va+n−1)βj

Then qa := exp(−
∫
Sa
ω).

X̌ is the complex manifold mirror to X. We need to check that the above
expression (4.16) of Sa does define classes in H2(X,Z):

Proposition 4.38. {Sa}m−na=1 is a generating subset of H2(X,Z).

Proof. One has the short exact sequence

0→ H2(X)→ π2(X,T)→ π1(T)→ 0

where T is a Lagrangian toric fiber, and the second to last arrow is given
by the boundary map ∂. For i = n, . . . ,m− 1,

∂

βTi − n−1∑
j=0

(νj , vi)β
T
j

 = ∂βTi −
n−1∑
j=0

(νj , vi) ∂β
T
j

= vi −
n−1∑
j=0

(νj , vi) vj

= vi − vi = 0

where βTi ’s are the basic disk classes given in Section 4.2.3. Thus

βTi −
n−1∑
j=0

(νj , vi)β
T
j ∈ H2(X,Z).

Moreover, they are linearly independent for i = n, . . . ,m− 1, because βTi ’s
are linearly independent. But H2(X,Z) ∼= Zm−n, and so they form a basis
of H2(X,Z).
βi’s are identified with βTi ’s under the Lagrangian isotopy between Fr and

T given in Section 4.2.3. Thus {Sa}m−na=1 is a generating subset of H2(X,Z).
�

By the above proposition, δi, and so X̌, can be expressed in terms of
Kähler parameters qa and open GW invariants nβ.

While throughout the construction we have fixed a choice of ordered basis
{vi}n−1

i=0 of N which generates a cone of Σ, in Proposition 4.45 we will see that
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another choice of the basis amounts to a coordinate change of the mirror.
In this sense the mirror X̌ is independent of choice of this ordered basis.

We now apply the construction procedure given in Section 2.3 on the
Lagrangian fibration µ′ : X ′ → B′ and prove Theorem 4.37.

4.6.1. Semi-flat complex coordinates and semi-flat holomorphic volume form.
First let’s write down the semi-flat complex coordinates on the chart (µ̌′)−1(U ′) ⊂
X̌0, where U ′ ⊂ B′ is given in Equation (4.7), and µ̌′ : X̌ ′0 → B′0 is the dual
torus bundle to µ′ : X ′0 → B′0 (see Definition 2.4).

Fix a base point r0 ∈ U ′. For each r ∈ U ′, let λi ⊂ π1(Fr) be the loop
classes given in Section 4.4.3. Moreover define the cylinder classes [hi(r)] ∈
π2((µ′)−1(U ′), Fr0 , Fr) as follows. Recall that we have the trivialization

(µ′)−1(U ′) ∼= U ′ × (TN/T〈v0〉)× (R/2πZ)

given in Section 4.4.2. Let γ : [0, 1] → U ′ be a path with γ(0) = r0 and
γ(1) = r. For j = 1, . . . , n− 1,

hj : [0, 1]× R/Z→ U ′ × (TN/T〈v0〉)× (R/2πZ)

is defined by

hj(R,Θ) :=

(
γ(R),

Θ

2π
[vk], 0

)
and

h0(R,Θ) := (γ(R), 0, 2πΘ).

The classes [hi(r)] is independent of the choice of γ.
Then the semi-flat complex coordinates zi on (µ̌′)−1(U ′) for i = 0, . . . , n−1

are defined as

(4.17) zi(Fr,∇) := exp(ρi + 2πi θ̌i)

where e2πi θ̌i := Hol∇(λi(r)) and ρi := −
∫

[hi(r)]
ω.

dz1 ∧ . . . ∧ dzn−1 ∧ dz0 defines a nowhere-zero holomorphic n-form on
(µ̌′)−1(U ′), which is called the semi-flat holomorphic volume form. It was
shown in [6] that this holomorphic volume form can be obtained by taking
Fourier transform of exp(−ω). In this sense it encodes some symplectic
information of X.

4.6.2. Fourier transform of generating functions. Next we correct the semi-
flat complex structure by open Gromov-Witten invariants. The corrected
complex coordinate functions z̃i are expressed in terms of Fourier series
whose coefficients are FOOO’s disk-counting invariants of X. The leading
terms of these Fourier series give the original semi-flat complex coordinates.
In this sense the semi-flat complex structure is an approximation to the
corrected complex structure. The corrected coordinates have the following
expressions:
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Proposition 4.39. Let Ii be the generating functions defined by Equa-
tion (2.11). The Fourier transforms of Ii’s are holomorphic functions z̃i
on (µ̌′)−1(B′0 −H ′). For i = 1, . . . , n− 1,

z̃i = C ′izi

where C ′i are constants defined by

(4.18) C ′i = exp

(
−
∫
β′i(r0)

ω

)
> 0.

For i = 0,

z̃0 :=

{
C0z0 on (µ̌′)−1(B′−)
z0g(z1, . . . , zn−1) on (µ̌′)−1(B′+)

where g(z1, . . . , zn−1) is the Laurent polynomial

(4.19) g(z1, . . . , zn−1) :=

m−1∑
i=0

Ci(1 + δi)

n−1∏
j=1

z
(νj , vi)
j ,

Ci are constants defined by

(4.20) Ci := exp

(
−
∫
βi(r0)

ω

)
> 0

for i = 0, . . . ,m − 1, and δi are constants previously defined by Equation
(4.15). Recall that r0 is the based point chosen to define the semi-flat complex
coordinates z0, . . . , zn−1 in Section 4.6.1.

Proof. The Fourier transform of each Ii is a complex-valued function z̃i on
(µ̌′)−1(B′0 −H ′) given by

z̃i =
∑

λ∈π1(X′,Fr)

Ii(λ)Hol∇(λ)

=
∑

β∈π2(X′,Fr)

(β ·Di)nβ exp

(
−
∫
β
ω

)
Hol∇(∂β).

By Proposition 4.35 and 4.36, nβ = 0 unless β = β′j for j = 1, . . . , n − 1

or β = βk + α for k = 0, . . . ,m− 1 and α ∈ H2(X ′) represented by rational
curves with Chern number zero, which implies that α ∈ H2(X) ⊂ H2(X ′).

Now consider z̃i for i = 1, . . . , n−1. Using Proposition 4.24, (βk+α)·Di =
0 for all k = 0, . . . ,m−1, i = 1, . . . , n−1 and α ∈ H2(X). Also β′j ·Di = δji.
Thus z̃i consists of only one term:

z̃i = exp

(
−
∫
β′i(r)

ω

)
Hol∇(∂β′i) = exp

(
−
∫
β′i(r0)

ω −
∫

[hi(r)]
ω

)
Hol∇(λi)

= C ′izi.



SYZ FOR TORIC CY 49

Now consider z̃0. One has β′j ·D0 = 0 and (βk + α) ·D0 = 1. There are

two cases: When r ∈ B′−,

nβ =

{
1 for β = β0;
0 otherwise.

In this case

z̃0 = exp

(
−
∫
β0(r)

ω

)
Hol∇(∂β0) = exp

(
−
∫
β0(r0)

ω −
∫

[h0(r)]
ω

)
Hol∇(λ0)

= C0z0.

When r ∈ B′+,

z̃0 =
m−1∑
j=0

∑
α

nβj(r)+α exp

(
−
∫
βj(r)+α

ω

)
Hol∇(∂βj(r))

=
m−1∑
j=0

[(∑
α

nβj(r)+α exp

(
−
∫
α
ω

))

· exp

(
−
∫
βj(r0)

−
∫

[h0(r)]
−
n−1∑
i=1

(νi , vj)

∫
[hi(r)]

)
ω

· Hol∇

(
λ0 +

n−1∑
i=1

(νi , vj)λi

)]

=
m−1∑
j=0

Cj

(∑
α

nβj(r)+α exp

(
−
∫
α
ω

))
z0

n−1∏
i=1

z
(νi , vj)
i

= z0

m−1∑
j=0

Cj(1 + δj)
n−1∏
i=1

z
(νi , vj)
i .

�

Remark 4.40. Let r0 ∈ U ′ be chosen such that C0 equals to a specific
constant, say, 2. One may also choose the toric Kähler form such that the
symplectic sizes of the disks βi are very large for i = 1, . . . ,m − 1, and so
Ci � 1 (under this choice every non-zero two-cycle in X ′ has large symplec-
tic area, so this Kähler structure is said to be near the large Kähler limit).
According to the above expression of z̃0, C0z0 = 2z0 gives an approximation
to z̃0. Thus the semi-flat complex coordinates of X̌0 are approximations to
the corrected complex coordinates. The correction terms encode the enumer-
ative data of X ′.

4.6.3. The mirror X̌. Now we use {z̃i±1}n−1
i=0 derived from the previous sub-

section to generate a subring of functions on µ−1(X ′ −H ′) and obtain

R = R− ×R0 R+
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whereR− = R+ := C[z±1
0 , . . . , z±1

n−1] andR0 is the localization of C[z±1
0 , . . . , z±1

n−1]

at g =
∑m−1

i=0 Ci(1+δi)z
vi (see Equation (4.19)). The gluing homomorphisms

are given by [Id] : R− → R0 and

R+ → R0,

zk 7→ [zk] for k = 1, . . . , n− 1

z0 7→
[
g−1z0

]
.

z̃0 is identified with u = (C0z0, z0g) ∈ R, and z̃j is identified with (C ′jzj , C
′
jzj) ∈

R. Setting

v :=
(
C−1

0 z−1
0 g, z−1

0

)
∈ R

one has

R ∼=
C[u±1, v±1, z±1

1 , . . . , z±1
n−1]

〈uv − g〉
.

Thus Spec(R) is geometrically realized as

Y =
{

(u, v, z1, . . . , zn−1) ∈ (C×)2 × (C×)n−1 : uv = g(z1, . . . , zn−1)
}

which admits an obvious partial compactification

X̌ =
{

(u, v, z1, . . . , zn−1) ∈ C2 × (C×)n−1 : uv = g(z1, . . . , zn−1)
}
.

One has the canonical map

(4.21) ρ0 : µ̌−1(B0 −H)→ X̌

by setting

u :=

{
C0z0 on (µ̌′)−1(B−);
z0g on (µ̌′)−1(B+).

and

v :=

{
C−1

0 z−1
0 g on (µ̌′)−1(B−);

z−1
0 on (µ̌′)−1(B+).

By a change of coordinates, the defining equation of X̌ can be transformed
to the form appeared in Theorem 4.37:

Proposition 4.41. By a coordinate change on C2 × (C×)n−1, the defining
equation

uv =

m−1∑
i=0

Ci(1 + δi)z
vi

can be transformed to

uv = (1 + δ0) +

n−1∑
j=1

(1 + δj)zj +

m−1∑
i=n

(1 + δi)qi−n+1z
vi

where Ci’s are the constants defined by Equation (4.20).
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Proof. Consider the coordinate change

ẑj =
Cj
C0
zj

for j = 0, . . . , n − 1 on (C×)n−1. Recall that zvi denotes the monomial∏n−1
j=1 z

(νj , vi)
j , where {νj}n−1

j=0 is the dual basis to {vj}n−1
j=0 . Thus the i = 0

term in the original equation is simply C0(1 + δ0)zv0 = C0(1 + δ0).
For i = 1, . . . ,m− 1,

Ciz
vi = Ciẑ

vi

n−1∏
j=0

(
C0

Cj

)(νj , vi)

= C0Ciẑ
vi

n−1∏
j=0

C
(νj , vi)
j

−1

.

The last equality in the above follows from the equality

n−1∑
j=0

(νj , vi) = (ν , vi) = 1.

Thus for i = 1, . . . , n− 1,

Ciz
vi = C0ẑ

vi .

For i = n, . . . ,m− 1,

Ci

n−1∏
j=0

C
(νj , vi)
j

−1

is exp(−Ai−n+1), where Ai−n+1 is the symplectic area of

Si−n+1 = βi −
n−1∑
j=0

(νj , vi)βj .

Thus it equals to qi−n+1.
Now set û = u/C0, the equation

uv =

m−1∑
i=0

Ci(1 + δi)z
vi

is transformed to

ûv = (1 + δ0) +
n−1∑
j=1

(1 + δj)ẑj +
m−1∑
i=n

(1 + δi)qi−n+1ẑ
vi .

�

This proves part (1) of Theorem 4.37 that the construction procedure
given in Section 2.3 produces the mirror as stated.
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Remark 4.42. In our case we have an obvious candidate serving as the
partial compactification. In general the technique of toric degenerations de-
veloped by Gross-Siebert [18, 19] is needed to ensure the existence of com-
pactification.

Notice that the defining equation of X̌ is independent of the parameter
K1 used to define the modification X ′ in Section 4.3, while the toric Calabi-
Yau manifold X appears as the limit of X ′ as K1 → ∞. Thus the mirror
manifold of X is also taken to be X̌.

Remark 4.43. Hori-Iqbal-Vafa [20] has written down the mirror of a toric
Calabi-Yau manifold X as

uv = 1 +

n−1∑
j=1

zj +

m−1∑
i=n

qi−n+1z
vi

by physical considerations. They realize that the above equation needs to be
‘quantum corrected’, but they did not write down the correction in terms of
the symplectic geometry of X. From the SYZ consideration, now we see that
the corrections can be expressed in terms of open Gromov-Witten invariants
of X (which are the factors (1 + δi)).

Composing the canonical map ρ0 with the coordinate changes given above,
one obtains a map

(4.22) ρ : µ̌−1(B0 −H)→ X̌

where

u :=

{
z0 on (µ̌′)−1(B−);
z0G(z1, . . . , zn−1) on (µ̌′)−1(B+).

and

v :=

{
z−1

0 G(z1, . . . , zn−1) on (µ̌′)−1(B−);
z−1

0 on (µ̌′)−1(B+).

Recall that G is the Laurent polynomial defined by Equation (4.13).
In the following we consider part (2) of Theorem 4.37.

4.6.4. Holomorphic volume form. Recall that one has the semi-flat holomor-
phic volume form on X̌0, which is written as d log z1∧. . .∧d log zn−1∧d log z0

in Section 4.6.1. Under the natural map ρ (see Equation (4.22)) this semi-
flat holomorphic volume form extends to a holomorphic volume form Ω̌ on
X̌ which is exactly the one appearing in previous literatures (for example,
see P.3 of [24]):

Proposition 4.44. There exists a holomorphic volume form Ω̌ on X̌ which
has the property that ρ∗Ω̌ = d log z0∧ . . .∧d log zn−1. Indeed in terms of the
coordinates of C2 × (C×)n−1,

Ω̌ = Res

(
1

uv −G(z1, . . . , zn−1)
d log z1 ∧ . . . ∧ d log zn−1 ∧ du ∧ dv

)
where G is the polynomial defined by Equation (4.13).
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Proof. Let F = uv − G(z1, . . . , zn−1) be the defining function of X̌. On
X̌ ∩ (C×)n+1, we have the nowhere-zero holomorphic n-form

d log z1 ∧ . . . ∧ d log zn−1 ∧ d log u

whose pull-back by ρ is d log z1∧ . . .∧d log zn−1∧d log z0. It suffices to prove
that this form extends to

X̌ =
{

(u, v, z1, . . . , zn−1) ∈ C2 × (C×)n−1 : F = 0
}
.

It is clear that the form extends to the open subset of X̌ where u 6= 0. By
writing the form as

−d log z1 ∧ . . . ∧ d log zn−1 ∧ d log v

we see that it also extends to the open subset where v 6= 0. Since

udv + vdu =
m−1∑
i=1

Qi(1 + δi)
n−1∏
j=1

z
(νj , vi)
j

(
n−1∑
k=1

(νk , vi) d log zk

)
where Qi := 1 for i = 0, . . . , n − 1 and Qi = qi for i = n, . . . ,m − 1, the
above n-form can also be written as

udv + vdu∑m−1
i=1 Qi(1 + δi)

∏n−1
j=1 z

(νj , vi)
j (ν1 , vi)

∧ d log z2 ∧ . . . ∧ d log zn−1 ∧ d log u

=

(
∂F

∂z1

)−1

dv ∧ d log z2 ∧ . . . ∧ d log zn−1 ∧ du

which is holomorphic when ∂F
∂z1
6= 0. By similar change of variables, we see

that the form is holomorphic whenever dF 6= 0, which is always the case
because X̌ is smooth.

For u 6= 0,

1

F
d log z1 ∧ . . . ∧ d log zn−1 ∧ du ∧ dv

=d log z1 ∧ . . . ∧ d log zn−1 ∧ d log u ∧ udv

F

=d log z1 ∧ . . . ∧ d log zn−1 ∧ d log u ∧ dF

F

whose residue is d log z1 ∧ . . . ∧ d log zn−1 ∧ d log u. �

This proves part (2) of Theorem 4.37.

4.6.5. Independence of choices of cones in Σ. If in the beginning we have
chosen another ordered basis which generates a cone of Σ to construct the
mirror, the complex manifold given in Theorem 4.37 differs the original one
by a biholomorphism which preserves the holomorphic volume form:
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Proposition 4.45. Let {u0, . . . , un−1} ⊂ N and {v0, . . . , vn−1} ⊂ N be two

ordered basis, each generates a cone of Σ. Let (X̃, Ω̃) and (X̌,Ω) be the two
mirror complex manifolds constructed from these two choices respectively.

Then there exists a biholomorphism φ : X̃ → X̌ with the property that
φ∗Ω = ±Ω̃.

Proof. Consider the mirror manifold given in Section 4.6.3,
(u, v, z1, . . . , zn−1) ∈ (C×)2 × Cn−1 :

uv = g(z) :=

m−1∑
i=0

Ci(1 + δi)

n−1∏
j=1

z
(νj , vi)
j


where Ci := exp

(
−
∫
βi(r0) ω

)
> 0 and δi :=

∑
α 6=0 nβi+α exp

(
−
∫
α ω
)

in

which the summation is over all α ∈ H2(X,Z)−{0} represented by rational
curves. If we choose another basis {u0, . . . , un−1} ⊂ N whose dual basis
is denoted by {µ0, . . . , µn−1}, then our mirror construction gives another
equation(ũ, ṽ, ζ1, . . . , ζn−1) ∈ (C×)2 × Cn−1 : ũṽ =

m−1∑
i=0

Ci(1 + δi)

n−1∏
j=1

ζ
(µj , vi)
j


Recall that ν =

∑n−1
i=0 νi =

∑n−1
i=0 µi. Both {ν, ν1, . . . , νn−1} and {ν, µ1, . . . , µn−1}

are basis of M . Let a ∈ GL(n,Z) be the change of basis, and so µj =

aj,0ν +
∑n−1

k=1 ajkνk for j = 1, . . . , n − 1. Then since (ν , vi) = 1 for all
i = 0, . . . ,m− 1,

m−1∑
i=0

Ci(1 + δi)

n−1∏
j=1

ζ
(µj , vi)
j

=

m−1∑
i=0

Ci(1 + δi)

n−1∏
j=1

ζ
aj,0(ν , vi)
j

n−1∏
j=1

n−1∏
k=1

ζ
ajk(νk , vi)
j

=

n−1∏
p=1

ζ
ap,0
p

m−1∑
i=0

Ci(1 + δi)
n−1∏
k=1

n−1∏
j=1

ζ
ajk
j

(νk , vi)

.

Thus the coordinate change

zk =

n−1∏
j=1

ζ
ajk
j ;u = ũ

n−1∏
p=1

ζ
ap,0
p

−1

; v = ṽ
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gives the desired biholomorphism. Moreover under this coordinate change

Ω = d log z1 ∧ . . . ∧ d log zn−1 ∧ d log u

=

n−1∑
j=1

aj,1 log ζj

 ∧ . . . ∧
n−1∑
j=1

aj,n−1 log ζj

 ∧
log ũ−

n−1∑
j=1

aj,0 log ζj


= (detA) d log ζ1 ∧ . . . ∧ d log ζn−1 ∧ d log u

= ±Ω̃.

�

4.6.6. The superpotential. Recall that we have defined the generating func-
tion FX of open Gromov-Witten invariants (Definition 2.18). By taking
Fourier transform, we obtain the superpotential, which is a holomorphic
function on (µ̌)−1(B0−H), and it extends to be a holomorphic function on
X̌:

Proposition 4.46. Let z̃i be the holomorphic functions on (µ̌′)−1(B′0 −H)
given in Proposition 4.39.

(1) The Fourier transform of FX′ is the function

W ′ =
n−1∑
i=0

z̃i

on (µ̌′)−1(B′0 −H).
(2) The Fourier transform of FX is the function

W = z̃0

on (µ̌′)−1(B′0−H), which equals to ρ∗(C0u). (C0 is a constant defined
by Equation (4.20).)

Proof. Recall that (in Definition 2.18)

FX′(λ) =
∑

β∈π2(X′,λ)

nβ exp

(
−
∫
β
ω

)
.

The sum is over all β with µ(β) = 2, which implies that β intersect exactly
one of the boundary divisors Di once (see Equation 4.8). Thus

FX′(λ) =

n−1∑
i=0

Ii(λ)

and so its Fourier transform W ′ is
∑n−1

i=0 z̃i. This proves (1).
The Fourier transform of FX is

W =
∑

λ∈π1(X,Fr)

FX(λ)Hol∇(λ) =
∑

β∈π2(X,Fr)

nβ exp

(
−
∫
β
ω

)
Hol∇(∂β).
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For r ∈ B+, by Proposition 4.30, nβ = 0 unless β = βk + α for k =
0, . . . ,m − 1 and α ∈ H2(X) represented by rational curves. Moreover,
nβk = 1. Thus

W =
m−1∑
j=0

∑
α

nβj(r)+α exp

(
−
∫
βj(r)+α

ω

)
Hol∇(∂βj(r))

= z̃0.

For r ∈ B−, by Proposition 4.32, nβ = 0 unless β = β0, and nβ0 = 1.
Thus

W = exp

(
−
∫
β0(r)

ω

)
Hol∇(∂β0)

= z̃0.

By Equation (4.22), z̃0 = ρ∗(C0u). �

This ends the proof of Theorem 4.37.

5. Enumerative meanings of (inverse) mirror maps

For a pair (X, X̌) of mirror Calabi-Yau manifolds, mirror symmetry as-
serts that there is a local isomorphism between the moduli spaceMC(X̌) of
complex structures of X̌ and the complexified Kähler moduli spaceMK(X)
of X near the large complex structure limit and large volume limit respec-
tively, such that the Frobenius structures over the two moduli spaces get
identified. This is called the mirror map. It gives canonical flat coordinates
on MC(X̌) by transporting the natural flat structure on MK(X). A re-
markable feature of the instanton-corrected mirror family for a toric Calabi-
Yau manifold we construct via SYZ is that it is inherently written in these
canonical flat coordinates. In this section, we shall formulate this feature
as a conjecture, and then give evidence for it for some 2- and 3-dimensional
examples by applying the results in [5] and [27].

5.1. The conjecture. Let X = XΣ be a toric Calabi-Yau n-fold. We adopt
the notation used in Section 4: {vi}m−1

i=0 ⊂ N are primitive generators of rays

in the fan Σ, and {νj}n−1
i=0 ⊂M is the dual basis of {vj}n−1

j=0 ⊂ N . Moreover,

H2(X,Z) is of rank l = m − n generated by {Sa}m−ni=1 (see Equation (4.16)
and Proposition 4.38).

5.1.1. The complexified Kähler moduli. Let K(X) be the Kähler cone of X,
i.e. K(X) ⊂ H2(X,R) is the space of Kähler classes on X. Then let

MK(X) = K(X) + 2π
√
−1H2(X,R)/H2(X,Z).

This is the complexified Kähler moduli space of X. An element in MK(X)
is represented by a complexified Kähler class ωC = ω + 2π

√
−1B, where
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ω ∈ K(X) and B ∈ H2(X,R). B is usually called the B-field. We have the
map MK(X)→ (∆∗)l defined by

qi = exp

(
−
∫
Sn+i−1

ωC

)
for i = 1, . . . , l. This map is a local biholomorphism from an open subset
U ⊂ MK(X) to (∆∗)l, where ∆∗ = {z ∈ C : 0 < |z| < 1} is the punctured
unit disk. The inclusion (∆∗)l ↪→ ∆l, where ∆ = {z ∈ C : |z| < 1} is the
unit disk, gives an obvious partial compactification, and the origin 0 ∈ ∆l

is called a large radius limit point. From now on, by abuse of notation we
will take MK(X) to be this open neighborhood of large radius limit.

5.1.2. The mirror complex moduli. On the other hand, letMC(X̌) = (∆∗)l.
We have a family of noncompact Calabi-Yau manifolds {X̌q̌} parameterized

by q̌ ∈MC(X̌) defined as follows. For q̌ = (q̌1, . . . , q̌l) ∈MC(X̌),

(5.1) X̌q̌ :=

{
(u, v, z1, . . . , zn−1) ∈ C2 × (C×)n−1 : uv =

m−1∑
i=0

Ciz
vi

}
,

where Ci ∈ C are subject to the constraints

(5.2) Cn+a−1

n−1∏
i=0

C
−(νi , va+n−1)
i = q̌a, a = 1, . . . , l.

The origin 0 ∈ ∆l in the partial compactification MC(X̌) ↪→ ∆l is called
a large complex structure limit point. Each {X̌q̌} is equipped with a holo-

morphic volume form Ω̌q̌ (see Proposition 4.44).

5.1.3. The mirror map. The mirror map ψ :MC(X̌)→MK(X) is defined
by periods:

ψ(q̌) :=

(∫
γ1

Ω̌q̌, . . . ,

∫
γl

Ω̌q̌

)
,

where {γ1, . . . , γl} is a suitable basis of Hn(X̌,Z).
Local mirror symmetry asserts that ψ :MC(X̌)→MK(X) is an isomor-

phism onto U ⊂ MK(X) (if U is small enough), and this gives canonical
flat coordinates on MC(X̌).

On the other hand, our construction of the instanton-corrected mirror
gives a natural map φ :MK(X)→MC(X̌) as follows: Recall from Theorem
4.37 that X̌ is defined by the equation

uv = (1 + δ0) +
n−1∑
j=1

(1 + δj)zj +
m−1∑
i=n

(1 + δi)qi−n+1z
vi .

Comparing this with Equation (5.1) and (5.2), one defines a map

φ :MK(X)→MC(X̌), (q̌1, . . . , q̌l) = φ(q1, . . . , ql)
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by

(5.3) q̌a = qa(1 + δa+n−1)

n−1∏
j=0

(1 + δj)
−(νj , va+n−1), a = 1, . . . , l.

We claim that this gives the inverse of the mirror map:

Conjecture 5.1. The map φ is an isomorphism locally near the large radius
limit and gives the inverse of the mirror map ψ. In other words, there exists
a basis γ1, . . . , γl of Hn(X̌,Z) such that

qa = exp

(
−
∫
γa

Ω̌q̌

)
,

for a = 1, . . . , l, where q̌ = φ(q) is defined as above. Hence, q̌1(q), . . . , q̌l(q)
are flat coordinates on MC(X̌).

In the literature, various integrality properties of mirror maps and their
inverses (see e.g. [32]) have been established. This suggests that the coeffi-
cients in the Taylor expansions of these maps have enumerative meanings.
This is exactly what the above conjecture says for the inverse mirror map,
namely, it can be expressed in terms of the open Gromov-Witten invariants
nβi+α for X.9 See Remark 5.7 below for a geometric reason why we have
integrality for the inverse mirror map in case X is a toric Calabi-Yau 3-fold
of the form KS , where S is a toric Fano surface.

In practice, one computes the mirror map by solving a system of linear
differential equations associated to the toric Calabi-Yau manifold X. For
i = 0, 1, . . . ,m − 1, denote by θi the differential operator Ci

∂
∂Ci

. For j =
1, . . . , n, let

Tj =
m−1∑
i=0

vji θi,

where vji = (νj , vi). For a = 1, . . . , l, let

�a =
∏

i:Qai>0

(
∂

∂Ci

)Qai
−

∏
i:Qai<0

(
∂

∂Ci

)−Qai
where Qaj = − (νj , va+n−1) for j = 0, . . . , n − 1, and Qai = δi,a+n−1 for

i = n, . . . ,m − 1. Then, the A-hypergeometric system (also called GKZ
system) of linear differential equations associated to X is given by

TjΦ(C) = 0 (j = 1, . . . , n), �aΦ(C) = 0 (a = 1, . . . , l).

9As we mentioned in the introduction, Gross and Siebert were the first to conjecture
such a relation between canonical flat coordinates and disk counting invariants. More
precisely, they found that canonical coordinates can be obtained by imposing a normal-
ization condition on slabs, which are in-turn believed to be related to the counting of
tropical disks. See Conjecture 0.2 in [18].
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If we denote by X̌C the noncompact Calabi-Yau manifold (5.1) parameter-
ized by C = (C0, C1, . . . , Cm−1) ∈ Cm and Ω̌C a holomorphic volume form
on it, then, for any n-cycle γ ∈ H3(X̌,Z), the period

Πγ(C) =

∫
γ

Ω̌C ,

as a function of C = (C0, C1, . . . , Cm−1), satisfies the aboveA-hypergeometric
system (see e.g. [21] and [24]).

By imposing the constraints (5.2), the A-hypergeometric system is re-
duced to a set of Picard-Fuchs equations (see the examples in Subsection
5.3), which are satisfied by the periods

Πγ(q̌) =

∫
γ

Ω̌q̌, γ ∈ Hn(X̌,Z),

as functions of q̌ ∈ MC(X̌). Now, let Φ1(q̌), . . . ,Φl(q̌) be a basis of the
solutions of this set of Picard-Fuchs equations with a single logarithm. Then
there is a basis γ1, . . . , γl of Hn(X̌,Z) such that

Φa(q̌) =

∫
γa

Ω̌q̌

for a = 1, . . . , l, and the mirror map ψ :MC(X̌)→MK(X) is given by

ψ(q̌) = (exp(−Φ1(q̌)), . . . , exp(−Φl(q̌))).

In the literature, the mirror map is computed by solving the Picard-Fuchs
equations ([1], [16]). One can then also compute (the Taylor series expansion
of) its inverse. To give evidences for Conjecture 5.1, we need to compute the
open Gromov-Witten invariants nβi+α and then compare the map φ define
by (5.3) with the inverse mirror map.

5.2. Computation of open Gromov-Witten invariants. In this sub-
section, we compute the open Gromov-Witten invariants nβi+α for a class
of examples using the results in [5] and [27]. We first establish some general
basic properties for these invariants.

Lemma 5.2. Let XΣ be a toric manifold defined by a fan Σ. Suppose that
there exists ν ∈M such that ν defines a holomorphic function on XΣ whose
zero set contains all the toric prime divisors Di ⊂ XΣ. Then the image
of any non-constant holomorphic map u : P1 → XΣ lies entirely inside the
union

⋃
i Di of the toric prime divisors in XΣ. In particular this holds for

a toric Calabi-Yau manifold X.

Proof. Denote the holomorphic function corresponding to ν ∈M by f . Then
f ◦ u gives a holomorphic function on P1, which must be a constant by the
maximal principle. f ◦ u cannot be constantly non-zero since otherwise, the
image of u lies entirely inside the open orbit (C×)n ⊂ XΣ, which forces u to
be a constant map. Thus f ◦ u ≡ 0, which implies that the image of u lies
in the union of the toric prime divisors in XΣ.
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For a toric Calabi-Yau manifold X, we have (ν , vi) = 1 > 0 for i =
0, 1, . . . ,m − 1. This implies that the meromorphic function corresponding
to ν has no poles and its zero set is exactly

⋃
i Di. �

It is known that nβi = 1 by the results of Cho-Oh [8]. In addition, we
have

Proposition 5.3. Suppose that α ∈ Heff
2 (X,Z) − {0}, where Heff

2 (X,Z) is
the semi-group of all classes of holomorphic curves in X. Then nβi+α = 0
unless the toric prime divisor Di ⊂ X corresponding to vi is compact.

Proof. Suppose thatM1(F, βi +α) is non-empty. Then α 6= 0 is realized by
a non-constant genus zero stable map to X, whose image Q must lie inside⋃m−1
i=0 Di by Lemma 5.2. Q has non-empty intersection with the holomorphic

disk representing βi ∈ π2(X,T) for generic toric fiber T. This implies that
there must be some components of Q which lie inside Di and have non-empty
intersection with the open orbit (C×)n−1 ⊂ Di. But if Di is non-compact,
then the fan of Di is simplicial convex incomplete, and so Di itself is a toric
manifold satisfying the condition of Lemma 5.2. This forces Q to have empty
intersection with (C×)n−1 ⊂ Di, which is a contradiction. �

¿From now on, we shall restrict ourselves to the case where X is the total
space of the canonical line bundle of a toric Fano manifold, i.e. X = KZ ,
where Z is a toric Fano manifold. Note that there is only one compact toric
prime divisor D0 ⊂ X (the zero section Z ↪→ KZ) which corresponds to the
primitive generator v0. By the above proposition, it suffices to compute the
numbers nβ0+α for α ∈ Heff

2 (X,Z)− {0}.
Let Σ̄ be the refinement of Σ by adding the ray generated by v∞ := −v0

(and then completing it into a convex fan), and let X̄ = PΣ̄. This gives a
toric compactification of X, and v∞ corresponds to the toric prime divisor
D∞ = X̄ −X.

Theorem 5.4 (Theorem 1.1 in Chan [5]). Let X = KZ , where Z is a toric

Fano manifold. Fix a toric fiber T ⊂ X. For α ∈ Heff
2 (X,Z) − {0} ⊂

Heff
2 (X̄,Z) − {0}, we have the following equality between open and closed

Gromov-Witten invariants

nβ0+α = GWX̄,h+α
0,1 (P.D.[pt]).

Here, h ∈ H2(X̄,Z) is the fiber class of the P1-bundle X̄ → Z, P.D.[pt] ∈
H2n(X̄,C) is the Poincaré dual of a point in X̄, and the 1-point genus zero

Gromov-Witten invariant GWX̄,h+α
0,1 (P.D.[pt]) is defined by

GWX̄,h+α
0,1 (P.D.[pt]) =

∫
[M0,1(X̄,h+α)]

ev∗(P.D.[pt]),

where [M0,1(X̄, h+ α)] is the virtual fundamental cycle of the moduli space

M0,1(X̄, h+ α) of genus zero stable maps to X̄ with 1 marked point in the

class h+ α and ev :M0,1(X̄, h+ α)→ X̄ is the evaluation map.
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Sketch of proof. Denote by Mop and Mcl the moduli spaces M1(T, β0 + α)

and M0,1(X̄, h+ α) respectively. Fix a point p ∈ T ⊂ X̄. Then let

M ev=p
op := ev−1(p), M ev=p

cl := ev−1(p)

be the fibers of the evaluation maps ev : Mop → T and ev : Mcl → X̄
respectively.
M ev=p

op ,M ev=p
cl have Kuranishi structures induced naturally from those on

Mop,Mcl respectively. We have (trivial) evaluation maps ev : M ev=p
op → {p},

ev : M ev=p
cl → {p} and virtual fundamental cycles

[M ev=p
op ], [M ev=p

cl ] ∈ H0({p},Q) = Q.

Moreover, by Lemma A1.43 in [11], we have

nβ0+α = [M ev=p
op ] and GWX̄,h+α

0,1 (P.D.[pt]) = [M ev=p
cl ].

Hence, to prove the desired equality, it suffices to show that M ev=p
op ,M ev=p

cl
are isomorphic as Kuranishi spaces.

Let σop = ((Σop, z), u) be a point in M ev=p
op . This consists of a genus

0 nodal Riemann surface Σop with nonempty connected boundary and a
boundary marked point z ∈ ∂Σop and a stable holomorphic map u : (Σop, ∂Σop)→
(X̄,T) with u(z) = p representing the class β0 +α. By applying the results
of Cho-Oh [8], we see that Σop must be singular and can be decomposed as
Σop = Σop

0 ∪Σ1, where Σop
0 = ∆ is the unit disk and Σ1 is a genus zero nodal

curve, such that the restrictions of u to Σop
0 and Σ1 represent the classes β0

and α respectively (Proposition 4.2 in [5]).
Now, there exists a unique holomorphic disk u∞ : (∆, ∂∆)→ (X̄,T) with

class β∞ (which corresponds to v∞ = −v0 and intersects D∞ at one point)
such that its boundary ∂u∞ coincides with ∂u but with opposite orientations
(Proposition 4.3 in [5]). We can then glue the maps u : (Σop, ∂Σop) →
(X̄,T), u∞ : (∆, ∂∆)→ (X̄,T) along the boundary to give a map u′ : Σ→
X̄, where Σ is the union of Σop and ∆ by identifying their boundaries. The
map u′ has class β0 + β∞ + α = h+ α ∈ H2(X̄,Z).

This defines a map j : M ev=p
op →M ev=p

cl . To see that j is a bijective map,

let σcl = ((Σ, z), u) be representing a point in M ev=p
cl , which consists of a

genus 0 nodal curve Σ with a marked point z ∈ Σ and a stable holomorphic
map u : Σ→ X̄ such that u(z) = p. One can show that Σ must be singular
and decomposes as Σ = Σ0 ∪ Σ1, where Σ0 = P1 and Σ1 is genus 0 nodal
curve such that the restrictions of u to Σ0 and Σ1 represent the classes h
and α respectively (Proposition 4.4 in [5]). Now, the Lagrangian torus T
cuts the image of u|Σ0 into two halves, one representing β0 and the other
representing β∞. We can then reverse the above construction and defines
the inverse of j.

Furthermore, from these descriptions of the structures of the maps in
M ev=p

op ,M ev=p
cl , it is evident that they have the same Kuranishi structures.

We refer the reader to Proposition 4.5 in [5] for a rigorous proof of this
assertion. �
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By the above theorem, we can use techniques for computing closed Gromov-
Witten invariants (e.g. localization) to compute the open Gromov-Witten
invariants nβ0+α. When dimX = 3, blow-up and flop arguments can be

employed to relate the 1-point invariant GWX̄,h+α
0,1 (P.D.[pt]) to certain local

BPS invariants of another toric Calabi-Yau manifold. This idea is developed
in more details in [27]. As a special case of the results in [27], we have the
following

Theorem 5.5 (Theorem 1.2 in Lau-Leung-Wu [27]). Let X = KS, where

S is a toric Fano surface, and let Y = KS̃ where S̃ is the toric blow up of
S at a toric fixed point q. Let X̄ and Ȳ be the toric compactifications of X
and Y respectively as before. Then we have

GWX̄,h+α
0,1 (P.D.[pt]) = GWȲ ,α̃−e

0,0 ,

where h ∈ H2(X̄,Z) is the fiber class as before, e ∈ H2(S̃,Z) ⊂ H2(Ȳ ,Z) is

the class of the exceptional divisor, and α̃ ∈ H2(S̃,Z) is the total transform

of α ∈ H2(S,Z) under the blowing up S̃ → S. If S̃ is also Fano, then we
further have

GWX̄,h+α
0,1 (P.D.[pt]) = GWY,α̃−e

0,0 .

Here, the invariant on the right-hand-side is the local BPS invariant of the
toric Calabi-Yau 3-fold Y defined by

GWY,α̃−e
0,0 =

∫
[M0,0(S̃,α̃−e)]

ctop(R1forget∗ev∗KS̃),

where [M0,0(S̃, α̃ − e)] is the virtual fundamental cycle of the moduli space

M0,0(S̃, α̃ − e) of genus zero stable maps to S̃ in the class α̃ − e, forget :

M0,1(S̃, α̃ − e) → M0,0(S̃, α̃ − e) is the map forgetting the marked point,

ev : M0,1(S̃, α̃ − e) → S̃ is the evaluation map and ctop denotes top Chern
class.

Sketch of proof. A toric fixed point q ∈ S corresponds to a toric fixed point
p ∈ D∞ ⊂ X̄. First we blow up p to get X1, whose defining fan Σ1 is
obtained by adding the ray generated by w = v∞+u1 +u2 to Σ̄, where v∞,
u1 and u2 are the normal vectors to the three facets adjacent to p. Now
〈u1, u2, w〉R and 〈u1, u2, v0〉R form two adjacent simplicial cones in Σ1, and
we may employ a flop to obtain a new toric variety Ȳ , whose fan contains
the adjacent cones 〈w, v0, u1〉R and 〈w, v0, u2〉R (see Figure 11). In fact Ȳ is

the toric compactification of Y = KS̃ , where S̃ is the toric blow up of S at
the torus-fixed point q. By using the equalities of Gromov-Witten invariants
for blowing up [22, 14] and flop [30], one has

GWX̄,h+α
0,1 ([pt]) = GWX1,h+α

0,0 = GWȲ ,α̃−e
0,0 .
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If we further assume that S̃ is Fano, then any rational curve representing
α̃− e ∈ H2(S̃,Z) ⊂ H2(Ȳ ,Z) never intersects D∞. Thus

GWȲ ,α̃−e
0,0 = GWY,α̃−e

0,0 .

u1 w

u0 u2

u1 w

u2u0

Figure 11. A flop.

�

Combining the above two theorems, we get

Corollary 5.6. Let S be a smooth toric Fano surface and X = KS. Fix

α ∈ Heff
2 (X,Z)− {0} = Heff

2 (S,Z)− {0}. Suppose the toric blow-up S̃ of S
at a toric fixed point is still a toric Fano surface. Then we have

(5.4) nβ0+α = GWY,α̃−e
0,0

where Y = KS̃, e ∈ H2(S̃,Z) is the class of the exceptional divisor, and

α̃ ∈ H2(S̃,Z) is the pull-back (via Poincaré duality) of α ∈ H2(S,Z) under

the blowing up S̃ → S.

We conclude that the instanton-corrected mirror X̌ of X = KS is given
by

X̌ =

(u, v, z1, z2) ∈ C2 × (C×)2 : uv = 1 + δ0(q) +

m−1∑
j=1

ecizwi


where

δ0(q) =
∑

α∈Heff
2 (X,Z)−{0}

GWY,α̃−e
0,0 qα.

Remark 5.7. Since the class α̃−e ∈ H2(S̃,Z) = H2(Y,Z) is primitive, there

is no multiple-cover contribution and hence GWY,α̃−e
0,0 is indeed an integer.

Hence, the coefficients of the Taylor series expansions of δ0 and hence the
map ψ we define are all integers. This explains why we have integrality
properties for the inverse mirror maps.

The invariants on the right hand side of the formula (5.4) have been
computed by Chiang-Klemm-Yau-Zaslow [7]. Making use of their results,
we can now give supportive evidences for Conjecture 5.1 in various examples.
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5.3. Examples. In this subsection, we shall use the results in the previous
section to give evidences for Conjecture 5.1 in various examples.

5.3.1. KP1. Consider our familiar example X = KP1 . The generators of
the 1-dimensional cones of the defining fan Σ are v0 = (0, 1), v1 = (1, 1)
and v2 = (−1, 1), as shown in Figure 2. We equip X with a toric Kähler
structure ω so that the associated moment polytope P is given by

P = {(x1, x2) ∈ R2 : x2 ≥ 0, x1 + x2 ≥ 0,−x1 + x2 ≥ −t1},

where t1 =
∫
l ω > 0 and l ∈ H2(X,Z) is the class of the zero section in KP1 .

To complexify the Kähler class, we set ωC = ω + 2π
√
−1B, for some real

two-form B (the B-field). We let t =
∫
l ω

C ∈ C.

Since D0, the zero section of KP1 → P1, is the only compact toric prime
divisor, by Proposition 5.3 and Theorem 4.37, the instanton-corrected mirror
is given by

X̌ = {(u, v, z) ∈ C2 × C× : uv = 1 +

∞∑
k=1

nβ0+klq
k + z +

q

z
},

where q = exp(−t).
Now, the toric compactification of X is X̄ = P(KP1⊕OP1) = F2 (a Hirze-

bruch surface). Using Theorem 5.4, the open Gromov-Witten invariants
nβ0+kl can easily be computed as F2 is symplectomorphic to F0 = P1 × P1

(see [5] and also [4] and [10]). The result is

nβ0+kl =

{
1 if k = 0, 1;

0 otherwise.

Hence, the corrected mirror X̌ can be written as

X̌ = {(u, v, z) ∈ C2 × C× : uv = (1 +
q

z
)(1 + z)}.

We remark that this agrees with the formula written down by Hosono (See
Proposition 3.1 and the following remark in [21]). We have Q = (−2, 1, 1),
and both MC(X̌) and MK(X) can be identified with the punctured unit
disk ∆∗. The map φ : ∆∗ → ∆∗ we define is thus given by q 7→ q̌(q) =
q(1 + q)−2.

In this example, the period of X̌ can be computed directly. Recall that the
holomorphic volume form on X̌ is given by Ω̌ = d log u∧d log z. There is an
embedded S2 ⊂ X̌ given by {(u, v,−1 + (1− q)t) ∈ X̌ : |u| = |v|, 0 ≤ t ≤ 1}.
Let γ ∈ H2(X̌,Z) be its class. Then∫

γ
Ω̌ = − log q = t.

This verifies Conjecture 5.1 for KP1 . �
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5.3.2. OP1(−1) ⊕ OP1(−1). For X = OP1(−1) ⊕ OP1(−1), the generators
of the 1-dimensional cones of the defining fan Σ are v0 = (0, 0, 1), v1 =
(1, 0, 1), v2 = (0, 1, 1) and v3 = (1,−1, 1). We equip X with a toric Kähler
structure ω so that the associated moment polytope P is given by

P = {(x1, x2, x3) ∈ R3 : x3 ≥ 0, x1 +x3 ≥ 0, x2 +x3 ≥ 0, x1−x2 +x3 ≥ −t1},

where t1 =
∫
l ω > 0 and l ∈ H2(X,Z) is the class of the embedded P1 ⊂ X.

To complexify the Kähler class, we set ωC = ω + 2π
√
−1B, for some real

two-form B (the B-field). We let t =
∫
l ω

C ∈ C.
Since there is no compact toric prime divisors in X (see Figure 12 below),

by Proposition 5.3 and Theorem 4.37, the instanton-corrected mirror is given
by

X̌ = {(u, v, z1, z2) ∈ C2 × (C×)2 : uv = 1 + z1 + z2 + qz1z
−1
2 },

where q = exp(−t).

Figure 12. OP1(−1)⊕OP1(−1).

Both MC(X̌) and MK(X) can be identified with the punctured unit
disk ∆∗ and the map φ : ∆∗ → ∆∗ we define in (5.3) is the identity map.
This agrees with the fact Φ(q̌) = − log q̌ is the unique (up to addition and
multiplication by constants) solution with a single logarithm of the Picard-
Fuchs equation

((1− q̌)θ2
q̌)Φ(q̌) = 0,

where θq̌ denotes q̌ ∂∂q̌ , which implies that the mirror map ψ is the identity.

Hence, Conjecture 5.1 also holds for this example. �

5.3.3. KP2. The primitive generators of the 1-dimensional cones of the fan
Σ defining X = KP2 can be chosen to be v0 = (0, 0, 1), v1 = (1, 0, 1), v2 =
(0, 1, 1) and v3 = (−1,−1, 1). We equip X with a toric Kähler structure ω
associated to the moment polytope

P = {(x1, x2, x3) ∈ R3 :

x3 ≥ 0, x1 + x3 ≥ 0, x2 + x3 ≥ 0,−x1 − x2 + x3 ≥ −t1},
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where t1 =
∫
l ω > 0 and l ∈ H2(X,Z) = H2(P2,Z) is the class of a line in

P2 ⊂ X. To complexify the Kähler class, we set ωC = ω + 2π
√
−1B, where

B is a real two-form (the B-field). We let t =
∫
l ω

C ∈ C.
There is only one compact toric prime divisor D0 which is the zero section

P2 ↪→ KP2 and it corresponds to v0. By Proposition 5.3 and Theorem 4.37,
the instanton-corrected mirror X̌ is given by

X̌ =


(u, v, z1, z2) ∈ C2 × (C×)2 :

uv =

(
1 +

∞∑
k=1

nβ0+klq
k

)
+ z1 + z2 +

q

z1z2

 ,

where q = exp(−t).
By Corollary 5.6, we have

nβ0+kl = GW
Y,kf+(k−1)e
0,0 ,

where Y = KF1 , F1 is the blowup of P2 at a point and e, f ∈ H2(F1,Z) are
the classes of the exceptional divisor and the fiber of the blowup F1 → P2.
See Figure 13 below.

l

f

e

l

Figure 13. Polytope picture for KP2 and KF1 .

The local BPS invariants GW
Y,kf+(k−1)e
0,0 have been computed by Chiang-

Klemm-Yau-Zaslow and the results can be found on the ”sup-diagonal” of
Table 10 in [7]:

nβ0+l = −2,

nβ0+2l = 5,

nβ0+3l = −32,

nβ0+4l = 286,

nβ0+5l = −3038,

nβ0+6l = 35870,

...
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Using these results, we can write the instanton-corrected mirror explicitly
as

X̌ =

{
(u, v, z1, z2) ∈ C2 × (C×)2 : uv = 1 + δ0(q) + z1 + z2 +

q

z1z2

}
,

where

δ0(q) = −2q + 5q2 − 32q3 + 286q4 − 3038q5 + . . . .

Now, both MC(X̌) and MK(X) can be identified with the punctured
unit disk ∆∗. Our map φ : ∆∗ → ∆∗ is therefore given by

q 7→ q̌(q) := q(1− 2q + 5q2 − 32q3 + 286q4 − 3038q5 + . . .)−3.

On the other hand, the mirror map and its inverse have been computed
by Graber-Zaslow in [16]. First of all, the Picard-Fuchs equation associated
to KP2 is

[θ3
q̌ + 3q̌θq̌(3θq̌ + 1)(3θq̌ + 2)]Φ(q̌) = 0,

where θq̌ denotes q̌ ∂∂q̌ , the solution of which with a single logarithm is given

by

Φ(q̌) = − log q̌ −
∞∑
k=1

(−1)k

k

(3k)!

(k!)3
q̌k.

Hence, the mirror map ψ : ∆∗ → ∆∗ can be written explicitly as

q̌ 7→ q(q̌) = exp(−Φ(q̌)) = q̌ exp

( ∞∑
k=1

(−1)k

k

(3k)!

(k!)3
q̌k

)
.

The inverse mirror map can be computed and is given by

q 7→ q + 6q2 + 9q3 + 56q4 + 300q5 + 3942q6 + . . .

= q(1− 2q + 5q2 − 32q3 + 286q4 − 3038q5 + . . .)−3.

This shows that φ coincides with the inverse mirror map up to degree 5
which provides evidence to Conjecture 5.1 for KP2 .

5.3.4. KP1×P1. ForX = KP1×P1 , the primitive generators of the 1-dimensional
cones of the defining fan Σ can be chosen to be v0 = (0, 0, 1), v1 = (1, 0, 1), v2 =
(0, 1, 1), v3 = (−1, 0, 1) and v4 = (0,−1, 1). We equip X with a toric Kähler
structure ω so that the associated moment polytope P is defined by the
following inequalities

x3 ≥ 0, x1 + x3 ≥ 0, x2 + x3 ≥ 0,−x1 + x3 ≥ −t′1,−x2 + x3 ≥ −t′2.

Here, t′1 =
∫
l1
ω, t′2 =

∫
l2
ω > 0 and l1, l2 ∈ H2(X,Z) = H2(P1 × P1,Z) are

the classes of the P1-factors in P1 × P1. To complexify the Kähler class, we
set ωC = ω + 2π

√
−1B, where B is a real two-form (the B-field). We let

t1 =
∫
l1
ωC, t2 =

∫
l2
ωC ∈ C.
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There is only one compact toric prime divisor D0 which is the zero section
P1 × P1 ↪→ KP1×P1 . By Proposition 5.3 and Theorem 4.37, the instanton-

corrected mirror X̌ is given by

X̌ =

{
(u, v, z1, z2) ∈ C2 × (C×)2 : uv = 1 + δ0(q1, q2) + z1 + z2 +

q1

z1
+
q2

z2

}
,

where qa = exp(−ta) (a = 1, 2) and

1 + δ0(q1, q2) =
∑

k1,k2≥0

nβ0+k1l1+k2l2q
k1
1 q

k2
2 .

For simplicity, denote nβ0+k1l1+k2l2 by nk1,k2 . By Corollary 5.6, we have

nk1,k2 = GW
Y,k1L1+k2L2+(k1+k2−1)e
0,0 ,

where Y = KdP2 , dP2 is the blowup of P1×P1 at one point or, equivalently,
the blowup of P2 at two points, e ∈ H2(dP2,Z) is the class of the exceptional
divisor of the blowup dP2 → P1 × P1 and L1, L2 ∈ H2(dP2,Z) are the strict
transforms of l1, l2 ∈ H2(P1 × P1,Z) respectively. See Figure 14 below.

l1

l2

L1

L2

e

Figure 14. Polytope picture for KP1×P1 and KdP2 .

The local BPS invariants GW
Y,k1L1+k2L2+(k1+k2−1)e
0,0 have again been com-

puted by Chiang-Klemm-Yau-Zaslow and the results can be read from ”anti-
diagonals” of Table 3 on p. 42 in [7]:

n0,0 = 1,

n1,0 = n0,1 = 1,

n2,0 = n0,2 = 0, n1,1 = 3,

n3,0 = n0,3 = 0, n2,1 = n1,2 = 5,

n4,0 = n0,4 = 0, n3,1 = n1,3 = 7, n2,2 = 35,

n5,0 = n0,5 = 0, n4,1 = n1,4 = 9, n3,2 = n2,3 = 135,

...

Hence,

δ0(q1, q2) = q1 + q2 + 3q1q2 + 5q2
1q2 + 5q1q

2
2 + 7q3

1q2 + 35q2
1q

2
2 + 7q1q

3
2

+9q4
1q2 + 135q3

1q
2
2 + 135q2

1q
3
2 + 9q1q

4
2 + . . . .
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Now, bothMC(X̌) andMK(X) can be identified with (∆∗)2, and we have
Q1 = (−2, 1, 0, 1, 0), Q2 = (−2, 0, 1, 0, 1). So our map φ : (∆∗)2 → (∆∗)2 is
given by

(q1, q2) 7→ (q1(1 + δ0(q1, q2))−2, q2(1 + δ0(q1, q2))−2).

On the other hand, we can compute the mirror map and its inverse by
solving the following Picard-Fuchs equations:

(θ2
1 − 2q̌1(θ1 + θ2)(1 + 2θ1 + 2θ2))Φ(q̌1, q̌2) = 0,

(θ2
2 − 2q̌2(θ1 + θ2)(1 + 2θ1 + 2θ2))Φ(q̌1, q̌2) = 0,

where θa denotes q̌a
∂
∂q̌a

for a = 1, 2. The two solutions to these equations

with a single logarithm are given by

Φ1(q̌1, q̌2) = − log q̌1 − f(q̌1, q̌2), Φ2(q̌1, q̌2) = − log q̌2 − f(q̌1, q̌2),

where

f(q̌1, q̌2)

= 2q̌1 + 2q̌2 + 3q̌2
1 + 12q̌1q̌2 + 3q̌2

2 +
20

3
q̌3

1 + 60q̌2
1 q̌2 + 60q̌1q̌

2
2 +

20

3
q̌3

2

+
35

2
q̌4

1 + 280q̌3
1 q̌2 + 630q̌2

1 q̌
2
2 + 280q̌1q̌

3
2 +

35

2
q̌4

2

+
252

5
q̌5

1 + 1260q̌4
1 q̌2 + 5040q̌3

1 q̌
2
2 + 5040q̌2

1 q̌
3
2 + 1260q̌1q̌

4
2 +

252

5
q̌5

2

+ . . . .

This gives the mirror map ψ : (∆∗)2 → (∆∗)2:

(q̌1, q̌2) 7→ (q̌1 exp(f(q̌1, q̌2)), q̌2 exp(f(q̌1, q̌2))).

We can then invert this map and the result is given by

(q1, q2) 7→ (q1(1− F (q1, q2)), q2(1− F (q1, q2)))

where

F (q1, q2) = 2q1 + 2q2 − 3q2
1 − 3q2

2 + 4q3
1 + 4q2

1q2 + 4q1q
2
2 + 4q3

2

−5q4
1 + 25q2

1q
2
2 − 5q4

2 + . . . .

Now, we compute

(1− F (q1, q2))−1/2 = 1 + q1 + q2 + 3q1q2 + 5q2
1q2 + 5q1q

2
2

+7q3
1q2 + 35q2

1q
2
2 + 7q1q

3
2

+9q4
1q2 + 135q3

1q
2
2 + 135q2

1q
3
2 + 9q1q

4
2 + . . .

= 1 + δ0(q1, q2).

This shows that the inverse mirror map agrees with the map φ we define up
to degree 5, and this gives evidence to Conjecture 5.1 for KP1×P1 .
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ematics, Progr. Math., vol. 244, Birkhäuser Boston, Boston, MA, 2006, pp. 321–385,
MR2181810, Zbl 1114.14027.

[27] S.-C. Lau, N.C. Leung, and B. Wu, A relation for Gromov-Witten invariants of local
Calabi-Yau threefolds, to appear in Math. Res. Lett., arXiv:1006.3828.

[28] N.C. Leung, Mirror symmetry without corrections, Comm. Anal. Geom. 13 (2005),
no. 2, 287–331, MR2154821, Zbl 1086.32022.

[29] N.C. Leung, S.-T. Yau, and E. Zaslow, From special Lagrangian to Hermitian-Yang-
Mills via Fourier-Mukai transform, Adv. Theor. Math. Phys. 4 (2000), no. 6, 1319–
1341, MR1894858, Zbl 1033.53044.

[30] A.-M. Li and Y.-B. Ruan, Symplectic surgery and Gromov-Witten invariants of
Calabi-Yau 3-folds, Invent. Math. 145 (2001), no. 1, 151–218, MR1839289, Zbl
1062.53073.

[31] A. Strominger, S.-T. Yau, and E. Zaslow, Mirror symmetry is T -duality, Nuclear
Phys. B 479 (1996), no. 1-2, 243–259, MR1429831, Zbl 0896.14024.

[32] J. Zhou, Some integrality properties in local mirror symmetry, preprint 2010,
arXiv:1005.3243.

Department of Mathematics, The Chinese University of Hong Kong, Shatin,
N.T., Hong Kong

E-mail address: kwchan@math.cuhk.edu.hk

Institute for the Physics and Mathematics of the Universe (IPMU), Uni-
versity of Tokyo, Kashiwa, Chiba 277-8583, Japan

E-mail address: siucheong.lau@ipmu.jp

Department of Mathematics and the Institute of Mathematical Sciences,
The Chinese University of Hong Kong, Shatin, N.T., Hong Kong

E-mail address: leung@math.cuhk.edu.hk

http://arxiv.org/abs/0907.4108
http://arxiv.org/abs/1006.3828
http://arxiv.org/abs/1005.3243

	1. Introduction
	2. The SYZ mirror construction
	2.1. Proper Lagrangian fibrations and semi-flat mirrors
	2.2. Open Gromov-Witten invariants
	2.3. T-duality with corrections

	3. Fourier transform
	3.1. Fourier transform on tori
	3.2. Family version of Fourier transform

	4. Mirror construction for toric Calabi-Yau manifolds
	4.1. Gross fibrations on toric Calabi-Yau manifolds
	4.2. Topological considerations for X
	4.3. Toric modification
	4.4. Topological considerations for X'
	4.5. Wall crossing phenomenon
	4.6. Mirror construction

	5. Enumerative meanings of (inverse) mirror maps
	5.1. The conjecture
	5.2. Computation of open Gromov-Witten invariants
	5.3. Examples

	References

