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Abstract. We construct a Lagrangian torus fibration on a smooth hypertoric variety and a corre-
sponding SYZ mirror variety using T-duality and generating functions of open Gromov–Witten in-
variants. The variety is singular in general. We construct a resolution of the variety using the wall and
chamber structure on the base of the SYZ fibration.

1. Introduction

Mirror symmetry has made powerful and striking predictions in enumerative geometry. It has
led to groundbreaking results in algebraic and differential geometry, number theory, gauge theory
and other branches of mathematics.

Strominger-Yau-Zaslow [SYZ96] proposed that mirror symmetry can be understood as torus
duality. It conjectured a geometric construction of mirror manifolds and a canonical transforma-
tion to derive the homological mirror symmetry conjecture [Kon95].

There have been a lot of breakthroughs in SYZ mirror symmetry. The Gross-Siebert program
[GS11] gave a purely algebraic method to reconstruct the mirror manifolds. Auroux [Aur07,
Aur09] provided a symplectic approach to SYZ and the Gross-Siebert program. Moreover, Floer
theory of wall-crossing was developed in Pascaleff-Tonkonog [PT17] based on the work of Seidel
[Sei]. Furthermore, based on the works of Fukaya-Oh-Ohta-Ono [FOOO09, FOOO10], Seidel
[Sei11] and Akaho-Joyce [AJ10], deformation and moduli theory of Lagrangian immersions are
being developed by Cho-Hong-Lau [CHL17, CHL, HL18] which enhance and generalize the SYZ
program. Floer theory of generic singular SYZ fibers and its relation with wall-crossing were
understood in [HKL18, RET]. Finally, the family Floer theory initiated by Fukaya [Fuk02] and
further developed by Tu [Tu14, Tu15] and Abouzaid [Abo, Abo17] provides a canonical functor
which realizes the SYZ mirror transformation.

In view of these recent developments, SYZ mirror symmetry can be understood via a local-to-
global approach. First we need to understand SYZ transformation for local geometries around
singular Lagrangians. Second we need to glue the local mirrors using Floer-theoretical methods.

Toric Calabi-Yau manifolds and their mirrors provide a rich source of local models. Wall-
crossing and SYZ mirror construction have been understood due to the works of Auroux [Aur07,
Aur09], Chan-Lau-Leung [CLL12], Abouzaid-Auroux-Katzarkov [AAK16] and Chan-Cho-Lau-
Tseng [CCLT16]. Using the local models, geometric transitions have been studied by Castano-
Bernard and Matessi [CnBM14] and other groups [Lau14, CPU16, KL, KL19, Lau].

In this paper we study SYZ for the hyper-Kähler analog of toric manifolds. Analogous to toric
manifolds, they are obtained as hyper-Kähler quotients of T˚Cn. Typical examples of hypertoric
manifolds include T˚CPn and crepant resolutions of An singularities. We expect that they should
provide useful local models to understand mirror symmetry for holomorphic symplectic mani-
folds.

The structure of the paper is as follows. In Section 2, we review the definition of proper-
ties of hypertoric varieties. We construct Lagrangian fibrations on hypertoric manifolds in Sec-
tion 3. It uses the techniques of Gross [Gro01] and Goldstein [Gol01] by symplectic reduction,
and Abouzaid-Auroux-Katzarkov [AAK16] by Moser argument. The Lagrangian fibrations have
codimension-one amoeba-like discriminant loci.

We carry out the SYZ mirror construction for hypertoric varieties in Section 4 with a brief review
of SYZ in Section 4.1. We first analyze the walls over which the Lagrangian torus fibers bound

1



SYZ MIRROR SYMMETRY FOR HYPERTORIC VARIETIES 2

holomorphic discs of Maslov index 0 (Section 4.2). The walls divide the base of a Lagrangian
fibration into chambers (Section 4.3). We then find all the holomorphic discs of Maslov index 2
bounded by a fiber in each chamber (Section 4.4) and show their regularity (Section 4.5). As a
result we obtain the generating functions of open Gromov–Witten invariants which are countings
of these holomorphic discs (Section 4.7). We compactify the manifold in order to have sufficiently
many boundary divisors (Section 4.6).

Finally, in Section 4.8, we construct a SYZ mirror variety as the spectrum of the ring of generat-
ing functions associated to boundary divisors. By construction the mirror we obtain is affine, and
is singular in general. It should be viewed as the affinization of a smooth mirror. A resolution
is necessary to better understand the geometry. We glue together a resolution using local charts
coming from the wall and chamber structure of the SYZ base. The gluing can be explained using
Floer-theoretical techniques as in [Sei, PT17, HL18], but we will leave this in future work. The
variety admits another resolution by a multiplicative hypertoric variety (Section 4.9). In general
these resolutions are topologically different. We conclude with the following theorems.

Theorem 1.1. Let Mu,λ be a smooth hypertoric variety, and D´ Ă Mu,λ a certain anti-canonical divisor
(given by Equation (4.2)). The SYZ mirror M_

u,λ of the pair (Mu,λ, D´) is the affine variety

M_
u,λ =

$

&

%

((u1, v1, . . . , ud, vd), (Z1, . . . , Zd)) P C2d ˆ (Cˆ)d | uivi =
ź

kPj

(1 + Zk), i = 1, . . . , d

,

.

-

,

which admits a canonical resolution given by the wall and chamber structure of the SYZ base.

The notations are explained in Section 4.7.

Theorem 1.2. Let M be a smooth hypertoric variety which is obtained as a hyper-Kähler quotient of T˚Cn

by a sub-torus K Ă Tn. Its SYZ mirror is birational to the multiplicative hypertoric variety µ´1(q)//χKC

where µ is the multiplicative moment map, and q P KC is determined by the Kähler parameters of M, and
χ P Hom(KC, Cˆ) is a generic character.

Below we introduce some important related works and questions that we wish to understand
in the future.

Closed-string equivariant mirror symmetry for hypertoric manifolds was found by Mcbreen
and Shenfeld [MS13]. They derived a presentation of the Td ˆCˆ-equivariant quantum cohomol-
ogy of a hypertoric manifold and relate it with the Gauss-Manin connection of the mirror moduli.
To understand the equivariant quantum cohomology from the SYZ perspective in this paper, we
need to study equivariant Floer theory.

In a recent preprint [MW18], Mcbreen and Webster showed that a category of equivariant co-
herent sheaves on a hypertoric variety are derived equivalent to the category of DQ-modules on
the corresponding Dolbeault hypertoric variety, establishing a version of homological mirror sym-
metry in the reverse direction. Dolbeault hypertoric varieties as defined in [MW18] are analog of
hyper-Kähler quotient of Ooguri-Vafa space and carry canonical special Lagrangian torus fibra-
tions.

In a subsequent work [GMW], Gammage, Mcbreen and Webster proved homological mirror
symmetry for multiplicative hypertoric varieties. Moreover, they conjectured that multiplicative
hypertoric varieties are complements of additive hypertoric varieties Mu,λ of some anti-canonical
divisors (Conjecture 1.7 of [GMW]). It is an interesting direction to understand the relation with
the anti-canonical divisor D´ used in this paper, and mirror transformation of objects from the
SYZ perspective.

Furthermore, we believe hypertoric varieties are useful to understand mirror symmetry for
cotangent bundles of smooth flag varieties. Toric degenerations of flag varieties were used to
construct their mirrors by Nishinou-Nohara-Ueda [NNU10, NU14]. It is reasonable to expect that
mirrors of the total spaces of cotangent bundles of flag varieties are closely related to the mirrors
of (singular) hypertoric varieties.



SYZ MIRROR SYMMETRY FOR HYPERTORIC VARIETIES 3

Acknowledgment. The first named author is grateful to Conan Leung for bringing his interest
to mirror symmetry for hypertoric varieties. The authors thank to Yoosik Kim and Hansol Hong
for useful discussions. The work of the first named author is partially supported by the Simons
collaboration grant.

2. Review of hypertoric varieties

In this section, we review the definition and basic properties of hypertoric varieties. We refer to
[BD00, HS02, Pro04] for more detailed account of the subject. All material in this section, except
Proposition 2.13, are from the existing literature.

2.1 Hypertoric varieties. Let tn and td be real vector spaces of dimension n and d, respectively.
Let tnZ Ă tn and tdZ Ă td be the integer lattices. Let te1, . . . , enu Ă tnZ be an integer basis and let
tě1, . . . , ěnu Ă (tnZ)

˚ be the dual basis. Given a collection u = tu1, . . . , unu Ă tdZ of n integer vectors
that span tdZ over Z, we define a map π : tn Ñ td by π(ei) = ui. We have the following exact
sequences:

0 ÝÑ k
ι
ÝÑ tn

π
ÝÑ td ÝÑ 0, (2.1)

0 ÐÝ (k)˚
ι˚
ÐÝ (tn)˚

π˚
ÐÝ (td)˚ ÐÝ 0, (2.2)

where k = ker π, and (2.2) is the dual sequence of 2.1. Exponentiating (2.1) gives an exact sequence
of real tori

0 ÝÑ K ÝÑ Tn ÝÑ Td ÝÑ 0. (2.3)

Let T˚Cn be equipped its standard hyper-Kähler structure. Let (z, w) = (z1, w1, . . . , zn, wn) be
the standard coordinates on T˚Cn. We consider T˚Cn equipped with the Kähler form ωR

ωR =

?
´1
2

n
ÿ

i=1

(dzi ^ dz̄i + dwi ^ dw̄i),

and holomorphic symplectic form ωC

ωC =
n
ÿ

i=1

dzi ^ dwi.

Let~t = (t1, . . . , tn) P Tn act on T˚Cn by

~t ¨ (z, w) = (t1z1, t´1
1 w1, . . . , tnzn, t´1

n wn),

preserving the hyper-Kähler structure. The hyper-Kähler moment map

(µR, µC) : T˚Cn Ñ (k)˚ ‘ (kC)
˚

for the restriction to K of the Tn-action on T˚Cn is given by

µR(z, w) =
1
2

n
ÿ

i=1

(|zi|
2 ´ |wi|

2)ι˚ ěi, µC(z, w) =
n
ÿ

i=1

(ziwi)ι
˚
C ěi.

Definition 2.1. Given a collection of primitive integer vectors u and parameters λ = (λR, λC) P (k)˚ ‘
(kC)

˚, the hyper-Kähler quotient

Mu,λ =
(

µ´1
R (λR)X µ´1

C
(λC)

)
/K

is called a hypertoric variety1.

1A usual convention is setting λC = 0 in the definition. In this paper we work with a generic complex structure and
do not make this assumption.
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Alternatively, Mu,λ can be constructed as the GIT quotient

Mu,λ = µ´1
C

(λC)//λR
KC = Proj

(
8
à

k=0
C[µ´1

C
(λC)]

λk
R

)
,

where KC the complexification of K, and λR P (k)
˚ is understood as a character λR : KC Ñ Cˆ.

The quotient torus Td = Tn/K acts on Mu,λ with the hyper-Kähler moment map

(µ̄R, µ̄C) : Mu,λ Ñ (td)˚ ‘ (tdC)
˚

given by

(µ̄R, µ̄C)[z, w] =
1
2

n
ÿ

i=1

(|zi|
2´ |wi|

2 + λ̂R,i)ěi‘

n
ÿ

i=1

(ziwi + λ̂C,i)ěi P Ker(ι˚)‘Ker(ι˚C) = (td)˚‘ (tdC)
˚,

where ((λ̂R,1, . . . , λ̂R,n), (λ̂C,1, . . . , λ̂C,n)) P (t
n)˚ ‘ (tnC)

˚ is a lift of λ. Note that this map is always
surjective.

Example 2.2. Let tu1, . . . , udu Ă td be a primitive integer basis. Define the map π : td+1 Ñ td by
π(ei) = ui for i = 1, . . . , d, and π(ed+1) = ud+1 :=

řd
j=1(´uj). K ãÑ Td+1 is then the diagonal

sub-torus. If we set λR P (k)
˚ to be a regular value, and λC = 0, then the hypertoric variety Mu,λ is T˚Pd

(equipped with the standard complex structure).

Example 2.3. Let u1 P t1 be a primitive integer vector. Define π : tn+1 Ñ t1 by π(ei) = u1 for
i = 1, . . . , n + 1. K ãÑ Tn+1 is then the subtorus

K = t(t1, . . . , tn+1) P Tn+1|

n+1
ź

i=1

ti = 1u.

For λR a regular value and λC = 0, the hypertoric variety Mu,λ is ČC2/Zn+1, the crepant resolution of An
singularity C2/Zn+1.

2.2 Hyperplane arrangements. Let Mu,λ be a hypertoric variety. Denote by HR = tHR,iu
n
i=1 and

HC = tHC,iu
n
i=1 the collections of hyperplanes

HR,i = ts P (td)˚| 〈s, ui〉´ λ̂R,i = 0u,

and
HC,i = tv P (tdC)

˚| 〈v, ui〉´ λ̂C,i = 0u.

HR and HC are called the associated hyperplane arrangements of Mu,λ. The hyperplane arrangements
HR and HC are independent of the choice of the lift of λ up to a translation and determine Mu,λ
up to a canonical isomorphism.

The following definition is important for smoothness of hypertoric varieties.

Definition 2.4. A hyperplane arrangement HR(resp. HC) is called simple if every subset of k hyperplanes
with nonempty intersection intersects in codimension k. HR(resp. HC) is called unimodular if every
collection of d linearly independent vectors tui1 , . . . , uidu spans tdZ over Z.

Remark 2.5. The holomorphic moment map µ̄C : Mu,λ Ñ (tdC)
˚ is a holomorphic (Cˆ)d-fibration, i.e.

generic fibers of µ̄C are biholomorphic to (Cˆ)d. If v0 P (tdC)
˚ is a point such that v0 P

Ş

iPI HC,i

for some nonempty subset I Ă t1, . . . , nu and v0 R HC,i for i R I, then µ̄´1
C

(v0) – (CY0 C)mint|I|,du ˆ

(Cˆ)maxtd´|I|,0u, where CY0 C denotes the union of two affine lines intersecting transversely at the origin.

See Figure 1 for examples of hyperplane arrangements.
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Figure 1. Examples of hyperplane arrangements. The left corresponds to ČC2/Z4
resolutions. The middle corresponds to T˚CP2. The right corresponds to a hy-
pertoric variety which contains both T˚F1 and T˚CP2

2.3 Geometry and topology of hypertoric varieties. Let A = tAiu
n
i=1 be the collection of affine

subspaces Ai = HR,i ˆ HC,i Ă (td)˚ ‘ (tdC)
˚. We have the following necessary and sufficient

conditions for Mu,λ to be an orbifold or smooth manifold:

Theorem 2.6 ([BD00, Theorem 3.2, 3.3]). Mu,λ is an orbifold with at worst Abelian quotient singularities
if and only if every d+ 1 distinct elements in A have empty intersection. It is a smooth manifold if and only
if, in addition, whenever d distinct elements Ai1 , ..., Aid have nonempty intersection, the set tui1 , . . . , uidu

spans tdZ over Z.

Corollary 2.7. For λC = 0, Mu,λ is a smooth manifold if and only if HR is both simple and unimodular.

Remark 2.8. The expression for the SYZ mirror in Theorem 4.26 still makes sense even when the hyperplane
arrangements are not simple nor unimodular. We speculate that it is useful for the study of hypertoric
degenerations.

For a generic choice of λC, Mu,λ is simply an affine variety.

Theorem 2.9 ([BD00, Theorem 5.1]). Let Mu,λ be a hypertoric orbifold, and suppose HC is simple.
Then, Mu,λ equipped with the complex structure inherited from T˚Cn is biholomorphic to affine variety
Spec

(
C[W]KC

)
, where W Ă T˚Cn ˆCd is defined by the equations

ziwi = 〈v, ui〉´ λ̂C,i, i = 1, . . . , n,

and KC acts on T˚Cn ˆCd by~t ¨ (z, w, v) = (t1z1, t´1
1 w1, . . . , tnzn, t´1

n wn, v).

In general it is difficult to write down an explicit hyper-Kähler metric. For a hypertoric variety,
the Kähler metric is descended from the standard metric on T˚Cn and has a simple expression.

Theorem 2.10 ([BD00, Theorem 8.3]). Let si = |zi|
2 ´ |wi|

2, vi = ziwi, and ri =
b

s2
i + 4vi v̄i. Then,

on the open dense subset of Mu,λ where the Td-action is free, the induced Kähler form ω is given by

ω =
1
4

ddc(2µ̄R, µ̄C)
˚

(
n
ÿ

i=1

(ri + 2λ̂R,i ln(si + ri))

)
, (2.4)

where dc =
?
´1(B̄ ´ B).

2.4 Circuits and primitive curve classes. The SYZ mirrors that we are going to construct de-
pend on Kähler parameters, which are recording the symplectic areas of primitive curve classes
in H2(Mu,λ, Z). The following definition is crucial to understand primitive curve classes in hy-
pertoric varieties.

Definition 2.11 ([MS13]). A circuit S Ă t1, . . . , nu in HR is a minimal subset satisfying
č

iPS

HR,i = H.
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A circuit S admits a unique splitting S = S+š

S´(up to swapping S+ and S´), which is
characterized by the equation

ÿ

iPS+

ui ´
ÿ

iPS´
ui = 0 P td.

For each circuit S, we fix the splitting S = S+š

S´ such that if we set

βS =
ÿ

iPS+

ei ´
ÿ

iPS´
ei,

then λ̂R(βS) ą 0 for any lift λ̂R P (t
n)˚ of λR.

βS is a primitive class in kZ = H2(Mu,λ; Z). It can be understood as a curve class obtained
from gluing holomorphic discs emanated from the hyperplanes indexed by S. We denote by qβS

the Kähler parameter associated to βS.

2.5 Cotangent bundles of toric varieties in a hypertoric variety. Let HR be the real hyperplane
arrangement of Mu,λ. Let ∆ be a convex polytope in (td)˚ with its interior being a chamber in
the complement of HR. We will assume ∆ is simple, which is the case when HR is simple. We
further assume λC = 0, so that Mu,λ is equipped with its canonical complex structure. Then,
the cotangent bundle T˚X∆ of the toric variety X∆ naturally embeds into Mu,λ as an open dense
subset.

Theorem 2.12 ([BD00, Theorem 7.1]). T˚X∆ with its canonical holomorphic-symplectic structure is Td-
equivariantly isomorphic to an open dense subset U∆ of Mu,λ. The hyper-Kähler metric of Mu,λ restricted
to the zero section of T˚X∆ is the Kähler metric on X∆ determined by ∆.

T˚X∆ ĂMu,λ was constructed in [BD00] as follows. For simplicity, let’s fix a lift

((λ̂R,1, . . . , λ̂R,n), (λ̂C,1, . . . , λ̂C,n)) P (t
n)˚ ‘ (tnC)

˚

of λ such that λ̂R,i = 0 and λ̂C,i = 0 for i = 1, . . . , d. Let tH+
R,iu

n
i=1 and tH´

R,iu
n
i=1 be the half-spaces

H+
R,i = ts P (t

d)˚| 〈s, ui〉´ λ̂R,i ě 0u,

H´
R,i = ts P (t

d)˚| 〈s, ui〉´ λ̂R,i ď 0u.

Let σ : t1, ..., nu Ñ t+,´u be the sign vector such that

∆ =
n
č

i=1

Hσ(i)
R,i ,

and let σ̄ be the sign vector such that σ̄(i) ‰ σ(i) for all i. Each face F of ∆ is given by an
intersection of hyperplanes

Ş

iPI HR,i, for some I Ă t1, . . . , nu. For F a face of ∆, we define a subset
YF Ă T˚Cn by

YF = t(z, w) P T˚Cn|zi = 0 ðñ i P I and σ(i) = +; wi = 0 ðñ i P I and σ(i) = ´u.

In particular, if F is the codimension-0 face, we have I = H, and

YF = t(z, w) P T˚Cn|zi ‰ 0 if σ(i) = +; wi ‰ 0, if σ(i) = ´u.

We define a Tn-invariant subset Y∆ Ă T˚Cn to be the union

Y∆ =
ď

F

YF,

where the union is over all faces F of ∆. T˚X∆ Ă Mu,λ is then constructed by restricting the
hyper-Kähler quotient construction to Y∆,

T˚X∆ =
(

Y∆ X µ´1
R (λR)X µ´1

C
(0)
)

/K.
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We provide here an explicit description of the complement of T˚X∆ in Mu,λ in term of its
moment map image. Let J be the collection of all subsets J Ă t1, . . . , nu such that the intersection
Ş

jPJ Hj is nonempty, and is not a face of ∆. Denote by ∆J the polytope

∆J =
č

jPJ

Hσ̄(j)
R,j .

Notice that ∆J is non-adjacent to ∆.

Proposition 2.13. The complement of T˚X∆ in Mu,λ is the union V∆ =
Ť

JPJ VJ , where

VJ = (µ̄R, µ̄C)
´1

∆J ˆ
č

jPJ

HC,j

 .

Proof. Let J P J, and denote by YJ Ă T˚CnzY∆ the subset

ZJ = t(z, w) P T˚Cn|zj = 0 ðñ j P J and σ(j) = +; wj = 0 ðñ j P J and σ(j) = ´u.

Restricting the hyper-Kähler quotient construction to ZJ gives

VJ =
(

YJ X µ´1
R (λR)X µ´1

C
(0)
)

/K ĂMu,λzT˚X∆.

By construction, we have Mu,λzT˚X∆ =
Ť

JPJ VJ . The image of VJ under the hyper-Kähler moment
map (µ̄R, µ̄C) is ∆J ˆ

Ş

jPJ HC,j. To see that it is disjoint from the image of T˚X∆, suppose we
have [z, w] P T˚X∆ with µ̄C([z, w]) P

Ş

jPJ HC,j, since J does not define a face of ∆, we must
have zj ‰ 0, wj = 0 and σ(j) = + or zj = 0, wj ‰ 0 and σ(j) = ´ for some j P J, but then

µ̄R([z, w]) R Hσ̄(j)
R,j Ą ∆J . �

Figure 2. A hypertoric manifold that contains both T˚CP2 and T˚F1. The closure
of the shaded region on the left (resp. right) corresponds to the image of the
complement of T˚CP2 (resp. T˚F1) under µ̄R.

In this paper we work with smooth hypertoric varieties. In addition to Mu,λ being smooth,
we shall assume HC to be simple for the rest of this paper. When HC is simple, under the
unimodularity assumption, Mu,λ is smooth for all choices of λR by Theorem 2.6. We do not
assume HR to be simple.
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3. Lagrangian torus fibrations on hypertoric varieties

In this section, we construct piecewise smooth Lagrangian torus fibrations on hypertoric vari-
eties. It was first suggested by Joyce in [Joy04] that special Lagrangian fibrations should in gen-
eral be piecewise smooth. In [AAK16], Abouzaid, Auroux and Katzarkov constructed piecewise
smooth Lagrangian torus fibrations on the anticanonical divisor complement X0 of the blowup
X = BlHˆt0uV ˆ C, where V is a toric variety and H Ă V is a hypersurface, by pulling back
Lagrangian torus fibrations on the symplectic reductions of X0 (which are isomorphic to the
open dense torus orbit V0 Ă V) and assembling them together. This construction is similar to
those previously considered by Gross [Gro01], Goldstein [Gol01], Castaño-Bernard and Matessi
[CnBM10, CnBM09]. The additional technical input in [AAK16] was the use of Moser’s trick to
interpolate between the reduced (possibly singular) Kähler forms and the torus-invariant Kähler
forms on V0.

3.1 Lagrangian torus fibrations on the reduced spaces. Denote by s = (s1, . . . , sn) the stan-
dard coordinates on (tn)˚ rescaled by a factor of 2, and v = (v1, . . . , vn) the standard complex-
coordinates on (tnC)

˚. We first construct Lagrangian torus fibrations on the symplectic reductions
Xs of Mu,λ at level s

2 P (t
d)˚ Ă (tn)˚. Xs can be constructed as

Xs = µ̄´1
R

( s
2

)
/(Tn/K).

For simplicity, we will assume from now on that the vectors u1, . . . , ud are linearly independent,
and write u` =

řd
i=1 a`iui for ` = d + 1, . . . , n. The coefficients a`i are integers, since tu1, . . . , udu

spans tdZ over Z. We also fix a lift ((λ̂R,1, . . . , λ̂R,n), (λ̂C,1, . . . , λ̂C,n)) P (t
n)˚ ‘ (tnC)

˚ of λ such that
λ̂R,i = 0 and λ̂C,i = 0 for i = 1, . . . , d. We can then identify the µ̄C : Mu,λ Ñ (tdC)

˚ with the map
(z1w1, . . . , zdwd) : Mu,λ Ñ Cd via the projection to the first d components. The restriction of µ̄C to
µ̄´1

R ( s
2 ) descends to a biholomorphism Xs Ñ (tdC)

˚. We can therefore identify the reduced spaces
Xs with Cd˚ equipped with complex-coordinates (v1, . . . , vd). We will abuse notations and write

si = |zi|
2 ´ |wi|

2, vi = ziwi,

and set
ri =

b

s2
i + 4vi v̄i.

for i = 1, . . . , n. These can be viewed as functions on Xs. In particular, si are constants. The Kähler
potential of the reduced Kähler form on Xs has a simple expression in term of si and ri.

Lemma 3.1. The Kähler potentials Kred,s for the reduced Kähler forms ωred,s on Xs are given by

Kred,s =
1
4

n
ÿ

i=1

(ri ´ si ln |si + ri|) . (3.1)

Proof. Consider the action of Tn and its complexification (Cˆ)n restricted to the invariant subvari-
ety W = µ´1

C
(λC) Ă T˚Cn. Xs can be obtained either as a symplectic reduction or a GIT quotient

of W,

Xs = (µ̃R|W)´1
( s

2

)
/Tn = W// s

2
(Cˆ)n,

where µ̃R is the moment map for the Tn-action on T˚Cn with respect ωR. For any (z, w) P W,
there exist a unique element ~t(z,w) P exp(itn) such that ~t(z,w) ¨ (z, w) P (µ̃R|W)´1 ( s

2
)
. Denote by

q : W Ñ (µ̃R|W)´1 ( s
2
)

the map q(z, w) =~t(z,w) ¨ (z, w), and by p : (µ̃R|W)´1 ( s
2
)
Ñ Xs the quotient

map. Let ω̂ be the pull-back of ωred,s on W via p ˝ q. Let χ s
2

: (Cˆ)n Ñ Cˆ the character given by
s
2 . By [BG97, Theorem 7], we have ω̂ = ddcK̂, for a Tn-invariant function K̂ on W defined as

K̂(z, w) = K0(~t(z,w) ¨ (z, w)) +
1

4π
ln |χ s

2
(~t(z,w))|

2, (3.2)
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where K0 is the Kähler potential 1
4
řn

i=1 |zi|
2 + |wi|

2 restricted to W. We have

K0

(
~t(z,w) ¨ (z, w)

)
=

1
4

n
ÿ

i=1

b

s2
i + 4vi v̄i, (3.3)

whereas

|χ s
2
(t(z,w))|

2 =
n
ź

i=1

|~t(z,w),i|
´2πsi .

~t(z,w),i is determined by
ˇ

ˇ

ˇ
(~t(z,w),izi

ˇ

ˇ

ˇ

2
´

ˇ

ˇ~̌t´1
(z,w),iwi

ˇ

ˇ

ˇ

2
= si.

This means

|~t(z,w),i|
2 =

si +
b

s2
i + 4|zi|

2|wi|
2

2|zi|
2 .

Thus,
1

4π
ln |χ s

2
(~t(z,w))|

2 =
1
4

n
ÿ

i=1

´si ln
ˇ

ˇ

ˇ

ˇ

si +
b

s2
i + 4|zi|

2|wi|
2
ˇ

ˇ

ˇ

ˇ

+ si ln(2|zi|
2). (3.4)

Notice that si in (3.3) and (3.4) are constants. Denote by ι : (µ̃R|W)´1 ( s
2
)
Ñ W the inclusion map.

Since ddc ln(2|zi|
2) = 0, the terms 1

4 si ln(2|zi|
2) do not contribute to ω̂. Thus, we have

p˚ωred,s = ι˚ω̂ = ι˚ddc

(
K̂(z, w)´

1
4

n
ÿ

i=1

si ln(2|zi|
2)

)
= ι˚ddc(p ˝ q)˚Kred,s = p˚ddcKred,s.

�

Remark 3.2. If we view

F =
1
4

n
ÿ

i=1

(ri ´ si ln |si + ri|)

as a function on (tn)˚‘ (tnC)
˚, it is then the Legendre transform of the Kähler potential 1

4
řn

i=1 |zi|
2 + |wi|

2

on T˚Cn. In [BD00], (2.4) was obtained as the Legendre transform of F restricted to the subspace (td)˚ ‘
(tdC)

˚ Ă (tn)˚ ‘ (tnC)
˚. We can alternatively derive (3.1) as the Legendre transform of F further restricted

to the subspace t s
2u ˆ (tdC)

˚ Ă (tn)˚ ‘ (tnC)
˚.

The reduced Kähler forms ωred,s are singular along the hyperplane HC,i, when s P HR,i. They
are also not invariant under any obvious Td-action on Xs – Cd. These obstacles to constructing
Lagrangian torus fibrations on the reduced spaces were also encountered in [AAK16]. We will use
their strategy to construct Lagrangian torus fibrations on Xs.

We first introduce an explicit family of smoothing ωsm,s of ωred,s:

ωsm,s = ddcKsm,s :=
1
4

ddc

(
n
ÿ

i=1

b

s2
i + 4vi v̄i + κ4 ´ si ln

ˇ

ˇ

ˇ

ˇ

si +
b

s2
i + 4vi v̄i + κ4

ˇ

ˇ

ˇ

ˇ

)
, (3.5)

where κ ą 0 is an arbitrarily small constant. ωsm,s is Kähler by construction. Since H2(Xs; R) = 0,
we have [ωsm,s] = [ωred,s]. We write v` =

řd
i a`ivi + b` for ` = d + 1, . . . , n, where b` P C are

constants determined by λC. Notice that the terms

1
4

ddc

(
n
ÿ

`=d+1

b

s2
` + 4v`v̄` + κ4 ´ si ln

ˇ

ˇ

ˇ

ˇ

s` +
b

s2
` + 4v`v̄` + κ4

ˇ

ˇ

ˇ

ˇ

)
in (3.5) are not invariant under the standard Td-action centered at a point in Cd. To remedy this,
let c = (c1, . . . , cd) P Cd be a point away from the hyperplanes in HC, and Td acts on Cd by the
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standard action centered at c. We isotope ωsm,s to the family of Td-invariant Kähler form ωinv,s
defined by averaging ωsm,s over the Td-action,

ωinv,s =
1

(2π)d

ż

gPTd
g˚ωsm,sdg.

Since ωinv,s is the exterior derivative of a Td-invariant 1-form (which is the Td-average of dcKsm,s),
its pullback to each Td-orbit must vanish. This means the Td-orbits in Xs are Lagrangian with
respect to ωinv,s.

We now prove the following lemma.

Lemma 3.3. There exists a family of homeomorphisms (φs)sP(td)˚ of Xs such that

(1) φs is a diffeomorphism if s R HR,i for i = 1, . . . , d. It is a diffeomorphism away from HC,i if
s P HR,i;

(2) φs intertwines the reduced (possibly singular)Kähler form ωred,s and the Td-invariant Kähler form
ωinv,s;

(3) φs depends on s continuously, and smoothly away from
Ťn

i=1 HR,i.

Proof. We construct φs as the composition of φsm,s and φinv,s such that φsm,s takes ωred,s to ωsm,s,
and φinv,s takes ωsm,s to ωinv,s, each satisfying the desired properties.

Step 1. We interpolate between ωred,s and ωsm,s via the family of Kähler forms ωt,s, t P [0, κ],
defined by

ωt,s = ddcKt,s :=
1
4

ddc

(
n
ÿ

i=1

rt,i ´ si ln |si + rt,i|

)
, (3.6)

where rt,i =
b

s2
i + 4vi v̄i + t4. We use Moser’s trick and look for the vector field Vt,s satisfying

LVt,s ωt,s +
d
dt

ωt,s = LVt,s ωt,s + ddc

(
dKt,s

dt

)
= 0.

By Cartan’s formula, we have

dιVt,s ωt,s = ´ddc

(
dKt,s

dt

)
,

from which we deduce

ιVt,s ωt,s = at,s := ´dc

(
dKt,s

dt

)
= ´

1
2

dc

(
n
ÿ

i=1

t3

si + rt,i

)
.

We write u` =
řd

i=1 a`iui for ` = 1, . . . , n, where a`i = δ`i for ` = 1, . . . , d. We denote i =
?
´1

so that it is not confused with the index i. We have

ωt,s =
ÿ

1ďi,jďd

ωt,s,ijdvi ^ dv̄j := i
ÿ

1ďi,jďd

(
n
ÿ

`=1

a`ia`j

(
(s` + rt,`)rt,` ´ 2|v`|2

(s` + rt,`)2rt,`

))
dvi ^ dv̄j,

and

at,s =
d
ÿ

i=1

at,s,idv̄i ´ āt,s,idvi := i
d
ÿ

i=1

(
n
ÿ

`=1

t3a`iv`
(s` + rt,`)2rt,`

)
dv̄i ´

(
n
ÿ

`=1

t3a`i v̄`
(s` + rt,`)2rt,`

)
dvi.

Denote by A = (Aij) the matrix with entries Aij = ωt,s,ij, and let A´1 = (Aji) be its inverse. The
vector field Vt,s is then given by

Vt,s =
d
ÿ

j=1

ft,s,j
B

Bvj
+ gt,s,j

B

Bv̄j
=

d
ÿ

j=1

(
d
ÿ

i=1

Ajiat,s,i

)
B

Bvj
+

(
d
ÿ

i=1

Aji āt,s,i

)
B

Bv̄j
.
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Vt,s is smooth except when t = 0 and s P HR,i, in which case it is singular along HC,i. We will
show that the flow of Vt,s is well-defined and Vt,s is complete.

Let I Ă t1, . . . , nu be a multi-index such that
Ş

kPI HC,k ‰ H. Let s P (td)˚ be a point such that
s P HR,k if and only if k P I, and let v0 P

Ş

kPI HC,k. To analyze the singularities of the functions
ft,s,j (the analysis for gt,s,j is identical and hence omitted), we consider the following limits:

lim
(t,v)Ñ(0,v0)

ft,s,j = lim
(t,v)Ñ(0,v0)

d
ÿ

i=1

Ajiat,s,i = lim
(t,v)Ñ(0,v0)

d
ÿ

i=1

Cji

det A
at,s,i,

where Cji is the (j, i)-cofactor of A. Since
Ş

kPJ HC,k ‰ H and the hyperplane arrangement HC

is simple, the vectors tukukPI are linearly independent. Thus we can assume I Ă t1, . . . , du by
rearranging the indices (notice that the coefficients in u` =

řd
i=1 a`iui, ` = d + 1, . . . , n, will change

accordingly). Let AI be the matrix obtained from A by removing the kth row and column for
k P I. Denote by AI,ij the matrix obtained from AI by removing the jth row and the ith. Note that
det AI ‰ 0 since AI is positive-definite, and det AI,ij is non-singular. As (t, v) Ñ (0, v0), det A is
dominated by the term (

ź

kPI

(sk + rt,k)rt,k ´ 2|vk|
2

(sk + rt,k)2rt,k

)
ˆ det AI .

while Cji is dominated by the term ź

kPIzti,ju

(sk + rt,k)rt,k ´ 2|vk|
2

(sk + rt,k)2rt,k

ˆ det AI,ij,

As (t, v) Ñ (0, v0), Cji blows up of at most the same order as det A, while at,s,i vanishes. This
shows that Vt,s extends continuously to be zero along its singular loci.

On the other hand, let gt,s be the Kähler metric determined by ωt,s. Since the Kähler metric on
Mu,λ is complete, gt,s is a complete metric whenever it is non-singular. Denote by ‖¨‖t,s be the
norm with respect to gt,s. Since Vt,s is dual vector field of at,s, we have

‖Vt,s‖t,s = ‖at,s‖t,s ď 2
d
ÿ

i=1

|at,s,i| ‖dvi‖t,s = O(|v|´
3
2 )

as |v| Ñ 8. Thus, Vt,s is uniformly bounded with respect to gt0,s, t0 ą 0.. We can therefore define
φsm,s to be the time-κ flow generated by Vt,s.

Step 2. We interpolate between ωsm,s and ωinv,s via the family of Kähler forms ω1t,s, t P [0, 1],
defined by

ω1t,s = tωinv,s + (1´ t)ωsm,s = ddc (tKinv,s + (1´ t)Ksm,s) ,

where Ksm,s is defined as in (3.5), and

Kinv,s =
1

(2π)d

ż

gPTd
g˚Ksm,sdg.

We again use Moser’s trick and look for the vector field V1t,s satisfying

LV1t,s
ω1t,s +

d
dt

ω1t,s = 0.

By Cartan’s formula, we have
dιV1t,s ω1t,s = ωsm,s ´ωinv,s,

from which we deduce
ιV1t,s ω1t,s = a1t,s = dc (Ksm,s ´ Kinv,s) .
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Writing out the relevant terms explicitly, we have

ω1t,s =
ÿ

1ďi,jďd

ω1t,s,ijdvi ^ dv̄j := i
ÿ

1ďi,jďd

(
n
ÿ

`=1

ta`ia`j

(2π)d

ż

gPTd
g˚
( (

(s` + rκ,`)rκ,` ´ 2|v`|2
)

(s` + rκ,`)2rκ,`

)
dg

+ (1´ t)a`ia`j

( (
(s` + rκ,`)rκ,` ´ 2|v`|2

)
(s` + rκ,`)2rκ,`

))
dvi ^ dv̄j,

and

a1t,s =
d
ÿ

i=1

a1t,s,idv̄i ´ ā1t,s,idvi := i
d
ÿ

i=1

(
n
ÿ

`=1

(
a`iv`

s` + rκ,`

)
´

1
(2π)d

ż

gPTd
g˚
(

a`iv`
s` + rκ,`

)
dg

)
dv̄i

´

(
n
ÿ

`=1

(
a`i v̄`

s` + rκ,`

)
´

1
(2π)d

ż

gPTd
g˚
(

a`i v̄`
s` + rκ,`

)
dg

)
dvi.

Let g1t,s be the complete Kähler metric determined by ω1t,s. Let ‖¨‖1t,s be the norm with respect
to g1t,s. Since V1t,s is the dual vector field of a1t,s, we have

∥∥V1t,s
∥∥1

t,s =
∥∥a1t,s

∥∥1
t,s ď 2

d
ÿ

i=1

|a1t,s,i| ‖dvi‖1t,s = O(|v|
1
2 ),

as |v| Ñ 8. Denote by ρ : Cd Ñ [0,8) the Riemannian distance function(from the origin) with
respect to the metric g1t,s. By [Gli97]. Let g be the auxiliary complete metric defined by

g =
g1t,s

L2(ρ1(v))
.

V1t,s is uniformly bounded with respect to g. Moreover, the time-1 flow φinv,s generated by V1t,s
intertwines ωsm,s and ωinv,s, as desired. �

Denote by T the tropical semi-field T = RY t´8u. Let c = (c1, . . . , cd) P Cd be a point away
from the hyperplanes in HC previously chosen to be the center of the Td-action. Recall that the
Td-orbits (where are regular fibers of (|v1´ c1|, . . . , |vd´ cd|)) are Lagrangian with respect to ωinv,s.

Definition 3.4. Let Logt : Cd Ñ Td be the map defined by

Logt(v1, . . . , vd) = (logt |v1 ´ c1|, . . . , logt |vd ´ cd|) ,

where t " 0 is a constant. Denote by πs : Xs Ñ Td the composition πs = Logt ˝ φs. πs is our preferred
Lagrangian torus fibration on Xs.

3.2 Lagrangian torus fibrations on hypertoric varieties and the discriminant loci.

Definition 3.5. We denote by π : Mu,λ Ñ B = Rd ˆ Td the map which sends a point x P µ̄´1
R ( s

2 )

to π(x) = (s, πs ([x])), where [x] P Xs is the Td-orbit of x. π is a piecewise smooth Lagrangian torus
fibration.

Let b = (s, τ) = (s1, . . . , sd, τ1, . . . , τd) P B. For generic values b, the fiber π´1(b) – T2d is a
smooth Lagrangian torus. When exactly k components of τ is ´8, the fiber π´1(b) degenerates
to a torus T2d´k. If s P HR,i and τ P πs (HC,i), the fiber π´1(b) is a pinched torus (i.e. a product of
immersed S2 and tori) of dimension 2d. We denote by Σ Ă B the set of all points over which the
fibers of π are singular:

Σ = BBY

(
n
ď

i=1

t(s, τ) P B|s P HR,i and τ P πs (HC,i)u

)
.

We will call Σ the discriminant loci of π (e.g. Fig 3). Let B0 = BzΣ. π restricts to a T2d-bundle over
B0, and induces an integral affine structure on B0.
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ℂ

ℂ×

ℂ2

Figure 3. Lagrangian fibrations on T˚CP1 and T˚CP2, where the base are RˆT

and R2 ˆT2, respectively. The complex hyperplanes are taken to be in general
positions.

4. SYZ mirror construction for hypertoric varieties

In this section, we carry out the SYZ mirror construction for smooth hypertoric varieties. We
begin by reviewing the SYZ construction.

4.1 The SYZ mirror construction. Let π : X Ñ B be a proper Lagrangian torus fibration of a
compact Kähler manifold (X, ω) of dimension d such that the base B is a compact manifold with
corners, and the preimage of each codimension-one facet of B is a smooth irreducible divisor
denoted by Di for 1 ď i ď m.

We assume that the regular Lagrangian fibers of π are special with respect to a nowhere-
vanishing meromorphic volume form Ω on X whose pole divisor is the boundary divisor D :=
řm

i=1 Di (and hence D is an anti-canonical divisor). We denote by B0 Ă B the complement of the
discriminant locus of π, and we assume that B0 is connected2. We denote by Lb a fiber of π over
b P B0.

Lemma 4.1 (Maslov index of disc classes [Aur07, Lemma 3.1]). For a disc class β P π2(X, Lb) where
b P B0, the Maslov index of β is µ(β) = 2[D] ¨ β.

Definition 4.2 (Wall [CLL12]). The wall W of a Lagrangian fibration π : X Ñ B is the set of points
b P B0 such that the fiber Lb bounds nonconstant holomorphic discs with Maslov index 0.

The complement of W Ă B0 consists of several connected components, which we call chambers.
Over different chambers the Lagrangian fibers behave differently in a Floer-theoretic sense. Away
from the wall W , the fibers are weakly unobstructed and the one-pointed open Gromov–Witten
invariants are well-defined using the machinery of Fukaya–Oh–Ohta–Ono [FOOO09].

Definition 4.3 (Open Gromov–Witten invariants [FOOO09]). For b P B0zW and β P π2(X, Lb), let
M1(β; Lb) be the moduli space of stable discs with one boundary marked point of class β, and [M1(β; Lb)]

vir

be the virtual fundamental class of M1(β; Lb). The open Gromov–Witten invariant associated to β is
nβ :=

ş

[M1(β;Lb)]vir ev˚[pt]PD, where ev : M1(β; Lb)Ñ Lb is the evaluation map at the boundary marked
point and [pt]PD is the Poincaré dual of the point class of Lb.

We will restrict to disc classes which are transversal to the boundary divisor D when we con-
struct the mirror space (while for the mirror superpotential we need to consider all disc classes).

2When the discriminant locus has codimension-two, B0 is automatically connected. Although the Lagrangian fibrations
on hypertoric varieties that we constructed have codimension-one discriminant loci, B0 is still connected.
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Definition 4.4 (Transversal disc class). A disc class β P π2(X, Lb) for b P B0 is said to be transversal to
the boundary divisor D, which is denoted as β&D, if it is represented by a map u with Im(u)XD being a
finite set of points and the intersections are transversal

Due to dimension reason, the open Gromov–Witten invariant nβ is nonzero only when the
Maslov index µ(β) = 2. When β is transversal to D or when X is semi-Fano, namely c1(α) = [D] ¨
α ě 0 for all holomorphic sphere classes α, the number nβ is invariant under small deformation
of complex structure and under Lagrangian isotopy in which all Lagrangian submanifolds in the
isotopy do not intersect D nor bound nonconstant holomorphic disc of Maslov index less than 2.

The SYZ mirror construction can be realized as follows [CLL12]. First, the semi-flat mirror
X_0 is defined as the space of pairs (Lb,∇) where b P B0 and ∇ is a flat U(1)-connection on the
trivial complex line bundle over Lb up to gauge. There is a natural map π_ : X_0 Ñ B0 given
by forgetting the second coordinate. The semi-flat mirror X_0 has a canonical complex structure

[Leu05] and the functions e´
ş

β ωHol∇(Bβ) on X_0 for disc classes β P π2(X, Lb) are called semi-flat
complex coordinates. Here Hol∇(Bβ) denotes the holonomy of the flat U(1)-connection ∇ along
Bβ P π1(Lb).

Then the generating functions of transversal open Gromov–Witten invariants are defined by

Ii(Lb,∇) :=
ÿ

βPπ2(X,Lb)
β¨Di=1,β&D

nβ exp

(
´

ż

β
ω

)
Hol∇(Bβ), (4.1)

for 1 ď i ď m, (Lb,∇) P (π_)´1(B0zW). They serve as quantum corrected complex coordinates.
The function Ii can be written in terms of the semi-flat complex coordinates, and hence they
generate a subring C[I1, . . . , Im] in the coordinate ring3 of (π_)´1(B0zW).

Definition 4.5. An SYZ mirror of X is the pair (X_, W) where X_ := Spec (C[I1, . . . , Im]) and

W :=
ÿ

βPπ2(X,Lb)

nβ exp

(
´

ż

β
ω

)
Hol∇(Bβ).

Moreover, X_ is called to be an SYZ mirror of X´D.

Remark 4.6. In general the mirror space X_ defined in this way, which only uses the generating functions
of stable discs emanated from boundary divisors, is always affine and can be singular. The reason is that our
construction ignores the local holomorphic functions living on the intermediate chambers in the base and
only take the coordinate functions into account.

Indeed for most hypertoric varieties this is the case. A resolution is necessary, and this will be carried out
in Section 4.8. The derived category is expected to be independent of the choice of a resolution. On the other
hand, the Lagrangian fibration π on X indeed canonically fixes the resolution if we look more closely into
Lagrangian Floer theory of the immersed fibers and glue in their formal deformation spaces. In this paper we
will perform the resolution by assuming some combinatorial rules resulting from Lagrangian Floer theory.

Remark 4.7. Note that W is a sum over all disc classes which are not necessarily transversal. If X is semi-
Fano, then every stable holomorphic disc class of Maslov index 2 is of the form β + α where β is transversal
with µ(β) = 2, and α P H2(X) with c1(α) = 0. Hence it takes the form W =

řm
i=1 aiIi where ai are

certain series in Kähler parameters. If X is not semi-Fano, then some algebraic manipulation is necessary to
write W as a series in Ii over the Novikov ring. In this paper we deal with X´D and hence do not concern
about W.

3In general we need to use the Novikov ring instead of C since Ii could be a formal Laurent series. In the cases that we
study later, Ii are Laurent polynomials whose coefficients are convergent, and hence the Novikov ring is not necessary.
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4.2 Maslov index 0 holomorphic discs and walls. Let c = (c1, . . . , cd) P (t
d
C)
˚ be as in Definition

3.4. Denote by D´i the divisor

D´i = t[z, w] PMu,λ|ziwi = ciu, (4.2)

and set D´ = D´1 + . . . + D´d . We will assume the isotopies φs in Lemma 3.3 preserves D´. This
can be achieved by modifying φs using the construction in [AAK16, Lemma B.2].

Lemma 4.8 (Maslov index formula). Let Lb = π´1(b) be the fiber of π : Mu,λ Ñ B over b P B0.
For any disc class β P π2(Mu,λ, Lb), the Maslov index µ(β) is twice the algebraic intersection number
β ¨ [D´].

Proof. Let Ω be the meromorphic volume form on Mu,λ with pole divisor D´ defined by

Ω =

Źd
i=1 dzi ^ dwi

śd
i=1 ziwi ´ ci

.

Let b = (s, τ). If s R HR,i for all i, the Tn/K-action on the level set µ̄´1
R

( s
2
)

containing Lb is free,
and hence µ̄´1

R

( s
2
)

is a trivial Td-bundle over Cd. From Lemma 3.3, we have a one parameter
family (φs,t)tP[0,1+κ] of homeomorphisms taking the projection µ̄C(Lb) Ă Cd of Lb to a standard
product torus centered at the point c. We can lift (φs,t)tP[0,1+κ] to µ̄´1

R ( s
2 ) by defining it to be

fiber-wise constant and extend it to a one parameter family of homeomorphisms of (Φb,t)tP[0,1+κ]

of Mu,λ. If s P HR,i, we can isotope Lb to a nearby smooth fiber Lb1 contained in a level set µ̄´1
R ( s1

2 )
with s1 R HR,i for all i, and then define (Φb,t)tP[0,1+κ] by pre-composing (Φb1,t)tP[0,1+κ] with this
isotopy. The phase function arg(Ω|Φb,1+κ(Lb)

) : Φb,1+κ(Lb)Ñ S1 is identically zero since Φb,1+κ(Lb)

is a special Lagrangian in Mu,λzD´. This means the map arg(Ω|Lb)˚ : π1(Lb) Ñ π1(S
1) = Z

induced by arg(Ω|Lb) : Lb Ñ S1 is trivial, and hence the Maslov class of Lb vanishes in Mu,λzD´,
i.e. arg(Ω|Lb) lifts to a real-valued function. It is then a well known fact (see [Aur07, Lemma 3.1]
and [AAK16]) that µ(β) = 2β ¨D´. �

Proposition 4.9. The set of points b P B0 such that the fiber Lb bound nontrivial holomorphic discs of
Maslov index 0 is the union

Ťn
i=1 Wi, where Wi is defined by

Wi = t(s, τ) P B0|τ P πs(HC,i)u.

We will refer to Wi as the walls of Lagrangian torus fibration π : Mu,λ Ñ B.

Proof. Let Lb be the fiber of π over b = (s, τ) P B0. Then, Lb is contained in the level set µ̄´1
R ( s

2 ).
Let u : (D2, BD2) Ñ (Mu,λ, Lb) be a holomorphic disc with boundary in Lb representing a disc
class β P π2(Mu,λ, Lb) with µ(β) = 0. Denote by Lred the projection of Lb to Cd via µ̄C. Lred is a
Lagrangian torus with respect to ωred,s, and its projection to the ith component is a loop around
ci. The image of the holomorphic disc µ̄C ˝ u : (D2, BD2) Ñ (Cd, Lred) is contained in Cdztcu by
Proposition 4.8. By maximal principle, µ̄C ˝ u is necessarily constant. This means the image of u
is contained in a fiber µ̄´1

C
(v0) for some v0 P Cd.

If b R Wi for all i, then we have v0 R HC,i for all i. In this case, µ̄´1
C

(v0) – (Cˆ)d, while
µ̄´1

C
(v0)X Lb = Td is a product torus in (Cˆ)d centered at the origin. Maximal principle then

implies that u is necessarily constant.
On the other hand, let I Ă t1, . . . , nu be the set of indices such that b P Wi and suppose I ‰ H.

Then, we can have v0 P HC,i for i P I1 where I1 Ă I is a nonempty subset. In which case, µ̄´1
C

(v0) –

(CY0 C)|I
1| ˆ (Cˆ)d´|I1|. µ̄´1

C
(v0)X Lb = Td is a product torus in (CY0 C)|I

1| ˆ (Cˆ)d´|I1| such
that each CY0 C contains a S1-component of Td in one of the irreducible components (depending
on the signs of the corresponding components of s). It is then easy to see that µ̄´1

C
(v0)X Lb

bounds exactly |I1| nonconstant holomorphic discs(and all their multiple covers) of Maslov index
0. �
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Remark 4.10. The construction of (φs)sP(td)˚ in Lemma 3.3 gives us an one-parameter family of homeo-
morphisms of B0 taking each Wi to (RdzHR,i)ˆLogt(HC,i), where Logt(HC,i) is a amoeba that retracts to
a tropical hyperplane in Td as t Ñ8. Since we only need the wall and chamber structure on B0 for the mir-
ror construction, which is purely combinatorial, we will simply illustrate each Wi as a tropical hyperplane
in Td (see Fig 4.3).

4.3 Chambers and simply connected affine charts. Let H be a tropical hyperplane in Td defined
by the tropical polynomial maxtτi1 , . . . , τim , au. H divides Td into tropical chambers each of which
a monomial of the defining equation attains maximum. We label the chamber where the constant
a attains maximum by 0, and the chamber where the monomial τi P tτi1 , . . . , τimu attains maximum
by i. Using this convention, we can label the chambers given by a simple arrangement of tropical
hyperplanes tHiu

n
i=1 by n-tuples h = (h1, . . . , hn), where hi P t0, . . . , du indicates the position of

the chamber relative to Hi.
Let H = tHiu

n
i=1 be the arrangement of tropical hyperplanes Hi, where Hi is the tropical

limit of Logt(HC,i). We can choose λC such that for ` = d + 1, . . . , n, |b`| (in the expression
v` =

řd
i=1 a`,ivi + b`) are distinct powers of t, making H simple (i.e. every subset of k tropical

hyperplanes with nonempty intersection intersects in codimension k). We will denote by Ch both
the tropical chambers and their preimages in B0. This shall not cause any confusion. Notice that
the wall and chamber structure on B0 depend on the choice of λC.

H1

H3

H2

(0,0,0)

(0,0,2)

(2,0,2)

(2,2,2) (1,2,2)

(1,0,2)

(1,1,2)

(1,1,1)(1,1,0)(1,0,0)

D2

D1

Figure 4. Tropical hyperplane arrangement and chambers

Let σ be a sign vector. We cover B0 by simply connected affine charts B0
σ defined by

B0
σ = t(s, τ) P B0|s P Hσ(i)

R,i if τ P πs(HC,i) and s P Rd if τ R πs(HC,i) for all iu.

4.4 Effective disc classes of Maslov index 2. Let b P B0
σ and assume b is inside a chamber Ch.

In particular, this means b R Wi for all i. Let β´1 , . . . , β´d P π2(Mu,λ, Lb) be disc classes given
by primitive cycles γσ,1, . . . , γσ,d P H1(Lb, Z) such that γσ,i vanishes in the singular fibers over
D´i , and let α1, . . . , αn P π2(Mu,λ, Lb) be disc classes given by primitive cycles γσ,d+1, . . . , γσ,d+n P

H1(Lb, Z) such that γσ,d+i vanishes in the fibers over the interior discriminant locus t(s, τ) P B|s P
HR,i and τ P πs (HC,i)u. When b P Wi, αi is the Maslov index 0 disc class described in Proposition
4.9.

We now classify the effective disc classes β P π2(Mu,λ, Lb) of Maslov index 2.
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Proposition 4.11. The effective disc classes β P π2(Mu,λ, Lb) of Maslov index 2 are of the following form:

β = β´j + δ1αj1 + . . . + δNαjN , j = 1, . . . , d, (4.3)

where δk P t0, 1u, and j1, . . . , jN P t1, . . . , nu are the set of indices such that hjk = j. This means the
projections of holomorphic discs of class β in B cross the walls Wj1 , . . . , WjN .

Proof. Let u : (D2, BD2) Ñ (Mu,λ, Lb) be a holomorphic disc of Maslov index 2. For i = 1, . . . , n,
denote by Zi and Wi the the divisors

Zi = t[z, w] PMu,λ|zi = 0u,

and
Wi = t[z, w] PMu,λ|wi = 0u.

Let h(j) = tj1, . . . , jNu. By Proposition 4.8 and positivity of intersection, u intersects exactly
one divisor D´j with multiplicity 1. Thus, u cannot intersect both Zi and Wi for i P h(j) by a
winding number argument. For a splitting I+

š

I´ = h(j) of h(j), we define an open subset
U(I+ ,I´) ĂMu,λ by

U(I+ ,I´) = t[z, w] PMu,λ|zi ‰ 0 if i P t1, . . . , nuzI´; wi ‰ 0 if i P I´u. (4.4)

We have Lb P U(I+ ,I´) for all splittings (I+, I´), and u(D2) Ă U(I+ ,I´) for exactly one (I+, I´) since
b R Wi for all i. Note that each U(I+ ,I´) is biholomorphic to the trivial (Cˆ)d-bundle over Cd. Let
(v1, . . . , vd, ν1, . . . , νd) be the complex coordinates on U(I+ ,I´) with vi = ziwi the base coordinates
and νi the fiber coordinates. Assume u(D2) Ă U(I+ ,I´) and write u : (D2, BD2)Ñ (U(I+ ,I´), Lb) as

u(ζ) = (v1(ζ), . . . , vd(ζ), ν1(ζ), . . . , νd(ζ)).

By maximal principle, only the vj-component of u is nonconstant. The vj-component of u is
unique up to reparametrization. This means all holomorphic discs u of Maslov index 2 with
u(D2) Ă U(I+ ,I´) for a splitting (I+, I´) represent the same disc class in π2(Mu,λ, Lb), which we
denote by β(I+ ,I´).

For i P I, set sgn(i) = + if i P I+ and sgn(i) = ´ if i P I´. We claim that β(I+ ,I´) =

β´j + δ1αj1 + . . . + δNαjN , where δk = 1 if sgn(jk) ‰ σ(jk), and δk = 0 if sgn(jk) = σ(jk). Since Mu,λ

is simply connected (see [BD00, Theorem 6.7]), the following long exact sequence

¨ ¨ ¨ Ñ π2(Lb) = 0 Ñ π2(Mu,λ) – H2(Mu,λ, Z) = kZ ãÑ π2(Mu,λ, Lb)Ñ π1(Lb)Ñ π1(Mu,λ) = 0 Ñ ¨ ¨ ¨

shows that π2(Mu,λ, Lb) is generated by the disc classes β1, . . . , βd, α1, . . . , αn. This combined with
the intersection numbers of these generators with the divisors proves our claim. �

4.5 Regularity and open Gromov–Witten invariants. We now prove regularity of the disc classes
in (4.3) and compute relevant open Gromov–Witten invariants necessary for the mirror construc-
tion. Our strategies of proofs are similar to that of Lemma 7 and Corollary 8 in [Aur15].

Let u : (D2, BD2) Ñ (Mu,λ, Lb) be a holomorphic disc. Denote by (E ,F ) the sheaf of holomor-
phic sections of E = u˚TMu,λ with boundary values in F = (u|BD2)˚TLb. Denote by A0(E, F)
the sheaf of smooth sections of E with boundary values in F, and A(0,1)(E) the sheaf of smooth
E-valued (0, 1)-forms.

Lemma 4.12. [CO06, Lemma 6.2] The sequence

0 ÝÑ (E ,F ) ÝÑ A0(E, F) B̄
ÝÑ A(0,1)(E) ÝÑ 0 (4.5)

defines a fine resolution of (E ,F ).

Proposition 4.13. The holomorphic discs representing classes in (4.3) are Fredholm regular, i.e. its lin-
earization B̄ is surjective.
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Proof. Let u : (D2, BD2) Ñ (Mu,λ, Lb) be a holomorphic disc of class β in (4.3) in . Denote by ured
the composition µ̄C ˝ u : (D2, BD2) Ñ (Cd, Lred), where Lred = µ̄C(Lb). Let LR and LC be the real
and complex spans of the vector fields generating the Tn/K-action. Suppose β ¨ [D´j ] = 1, then,
as noted in the proof of Proposition 4.11, both Lb and the image of u are contained in an open set
U(I+ ,I´) (see (4.4)) for a splitting (I+, I´) of h(j). The Tn/K-action is free on U(I+ ,I´), and thus
we have the following short exact sequences:

0 ÝÑ LC ÝÑ TMu,λ ÝÑ µ̄˚CTCd ÝÑ 0, (4.6)

0 ÝÑ LR ÝÑ TLb ÝÑ µ̄˚CTLred ÝÑ 0, (4.7)

in U(I+ ,I´). Pulling back the exact sequences above via u, we find that E admits a trivial holo-
morphic subbundle u˚LC, with a trivial real subbundle (u|BD2)˚LR Ă F on the boundary. Since
the B̄-operator for complex-valued functions on the unit disc with trivial real boundary condition
on the boundary circle is surjective, the surjectivity of B̄ on sections of E with boundary condi-
tions F is then equivalent to the surjectivity of B̄ on the quotient bundle E/u˚LC = u˚redTCd with
boundary conditions F/(u|BD2)˚LR = (ured|BD2)˚TLred. Since only the jth component of ured is
nonconstant, the surjectivity of B̄ reduces to a one-dimensional Riemann-Hilbert problem which
then follows from Theorem II and III in [Oh95]. �

Proposition 4.14. With the notations as in Proposition 4.11, we have

nβ =

#

1 for β = β´j + δ1αj1 + . . . + δNαjN ,
0 otherwise.

Proof. Due to dimension reason, we have nβ = 0 for µ(β) ‰ 2. Suppose β is an effective disc class
with µ(β) = 2, intersecting the divisor D´j . Denote by p P BD2 be the unique boundary marked

point on the unit disc D2. Let Lred = µ̄C(Lb) Ă Cd, and let β̄ = (µ̄C)˚β P π2(C
d, Lred). Denote by

D̄´i the divisor t(v1, . . . , vd) P Cd|vi = ciu. We have β̄ ¨ [D̄´j ] = 1, and β̄ ¨ [D̄´i ] = 0 for i ‰ j. Let’s
first consider the moduli space M1(Lred, β̄). By maximal principle, for any [ū] P M1(Lred, β̄), all
but the jth component of ū are constant, and the jth component of ū is unique up to automorphisms
of D2 fixing p. Thus, for each q P Lred, there exists a unique [ū] P M1(Lred, β̄) with ū(p) = q.
Moreover, the map ev : M1(Lred, β̄)Ñ Lred given by evaluation at the boundary marked point is a
diffeomorphism. Now, consider the projection M1(Lb, β)ÑM1(Lred, β̄) given by post-composing
holomorphic discs u : (D2, BD2) Ñ (Mu,λ, Lb) with µ̄C. We will show momentarily that for any
given [ū] PM1(Lred, β̄), and a lift q̃ P Lb of q, there exist a unique [u] PM1(Lb, β) with µ̄C ˝ u = ū
and u(p) = q̃. Any holomorphic disc in M1(Lb, β) has its image is contained in U(I+ ,I´) for a
splitting (I+, I´) of h(j). Recall that U(I+ ,I´) is biholomorphic to the trivial (Cˆ)d-bundle over
Cd. Denote by (v1, . . . , vd, ν1, . . . , νd) the complex coordinates on this open set with v1, . . . , vd being
the base coordinates and ν1, . . . , νd being the fiber coordinates. Write q̃ = (q̃1, . . . , q̃2d). We define
the lift of ū to be the holomorphic disc u : (D2, BD2)Ñ (U(I+ ,I´), Lb) defined by

u(ζ) = (ū(ζ), q̃d+1, . . . , q̃2d).

We have a free Td-action on M1(Lb, β) given by composing holomorphic discs [u] P M1(Lb, β)
with the Td-action on Mu,λ. The orbits of this action are exactly the fibers of M1(Lb, β) Ñ

M1(Lred, β̄). Therefore, M1(Lb, β) Ñ M1(Lred, β̄) is a Td-bundle. Since the evaluation map
ev : M1(Lb, β)Ñ Lb is Td-equivariant, it is again a diffeomorphism, i.e. it is of degree ˘1.

As for the orientations of M1(Lb, β), recall that a spin structure on Lb determines an orientation
on M1(Lb, β) (see [FOOO09, Chapter 8]). Since Lred is isotopic to the standard product torus in Cd,
we can choose the standard spin structure on Lred such that ev : M1(Lred, β̄)Ñ Lred is orientation-
preserving. We choose the spin structure on Lb to be standard along the Td-orbits and consistent
under the splitting (4.7) with the spin structure previously chosen on Lred. Then, with the induced
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orientation on M1(Lb, β), the evaluation map ev : M1(Lb, β) Ñ Lb is orientation-preserving, i.e.
it is of degree 1. �

Proposition 4.15. Lb is weakly unobstructed.

Proof. Due to degree reason, only stable holomorphic discs of Maslov index less than or equal to
2 can contribute to mb

0. In our case there is no stable discs with negative Maslov index (Prop. 4.8).
Thus the only discs with Maslov index less than 2 are the constant ones, which are not stable since
there is only one output marking. For an effective disc class β of Maslov index 2, the evaluation
map at the boundary marked point gives a diffeomorphism M1(Lb, β) Ñ Lb (Prop. 4.14). Hence

mb
0, which is the sum over β of ev˚[M1(Lb, β)] weighted by T´

ş

β ω (where T is the formal Novikov
parameter), is proportional to the fundamental class of Lb. �

4.6 Partial compactifications of hypertoric varieties. Our idea of constructing the mirror M_
u,λ is

to construct coordinate functions of M_
u,λ by counting holomorphic discs emanating from bound-

ary divisors of Mu,λ. The problem is that in our situation, B has only d codimension-one boundary,
while we need 2d coordinate functions. To resolve this, one may consider counting holomorphic
cylinders (with one boundary component on L and the other asymptotic to infinity), which re-
quires the extra work of defining rigorously the corresponding Gromov–Witten invariants. An-
other way is to consider a partial compactification of Mu,λ by adding divisors at infinity and count
the additional holomorphic Maslov index 2 discs emanated from these divisors. We will use the
second approach in this paper. This method was used in [CLL12], [AAK16] to construct mirrors
of Calabi-Yau toric varieties, and blow-ups of toric varieties along a hypersurface.

Recall from Remark 2.5 that the holomorphic moment map µ̄C : Mu,λ Ñ Cd is a holomorphic
(Cˆ)d-fibration. We can partially compactify Mu,λ by extending µ̄C to a holomorphic (Cˆ)d-
fibration over (P1)d.

Let ([ζ1 : ζ̃1], . . . , [ζn : ζ̃n]) be the homogeneous coordinates on (P1)n. We embed Cd into (P1)n

via the map (v1, . . . , vd) ÞÑ ([v1 : 1], . . . , [vd : 1], [vd+1 : 1], . . . , [vn : 1]), where v` =
řd

k=1 a`kvk + b`
for ` = d+ 1, . . . , n,. Its closure Cd in (P1)n is defined by the following homogeneous polynomials

f` = ζ̃1 . . . ζ̃dζ` ´
d
ÿ

i=1

a`i ζ̃1 . . . ζi . . . ζ̃d ζ̃` + b` ζ̃1 . . . ζ̃d ζ̃`, ` = d + 1, . . . , n,

and is biholomorphic to (P1)d. The hyperplanes tHC,iu
n
i=1 extends naturally to divisors tH̄C,iu

n
i=1

on Cd defined by

H̄C,i = t([ζ1 : ζ̃1], . . . , [ζn : ζ̃n]) P Cd|ζi = 0u.

Let E be total space of the rank 2n complex vector bundle on (P1)n defined by

E = O(H̄C,1)‘O1 ‘ . . .‘O(H̄C,n)‘On Ñ (P1)n,

where Oi = O are trivial complex line bundles. Denote by wi the fiber coordinate of Oi, zi the
local coordinate of the O(H̄C,i) over Ui = tζ̃i ‰ 0u, and z̃i the local coordinate of O(H̄C,i) over
Ũi = tζi ‰ 0u. The gluing between O(H̄C,i)|Ui and O(H̄C,i)|Ũi

is given by zi ζ̃i = ζi z̃i. For i =

1, . . . , d, let gi = zi ζ̃iwi ´ ζi. Let V Ă E the subvariety defined by the ideal ( fd+1, . . . , fn, g1, . . . , gn).
We now define a (Cˆ)n-action on E. For ~t = (t1, . . . , tn) P (Cˆ)n, let ~t act on O(H̄C,i) via

multiplication by ti and on Oi via multiplication by t´1
i . Let~t act trivially on the base (P1)n. V

is then a (Cˆ)n-invariant subvariety of E. Let KC Ă (Cˆ)n, and λR : KC Ñ Cˆ be the same as in
Definition 2.1. Then, the GIT quotient

Mu,λ = V//λR
KC

is a partial compactification of Mu,λ. The embedding Mu,λ ãÑMu,λ is holomorphic and (Cˆ)n/KC-
equivariant.
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Alternatively, we can construct Mu,λ via symplectic reduction. Notice that the subbundles
O(H̄C,i) Ñ (P1)n of E are the pullbacks of O(1) Ñ P1 via the projections (P1)n Ñ P1 to the
ith component. The sum of pullbacks of Fubini-Study form then defines a Kähler form on the
total space of the subbundle

Àn
i=1 O(H̄C,i). Combined with the standard symplectic form on

the fibers of Oi, we have a Tn-invariant Kähler form ωE on E. We can construct Mu,λ as the
symplectic reduction of V at level λR with respect to the action of the maximal torus K Ă KC and
the restriction of ωE to V. This equips Mu,λ with a Tn/K-invariant Kähler form ω̄.

We can then construct a Lagrangian torus fibration

π̄ : Mu,λ Ñ B̄ = Rd ˆ (RY t˘8u)d

using symplectic reductions as in Section 3. The reduced spaces are biholomorphic to (P1)d. Since
the reduced spaces are now compact, the construction of π̄ is simple applications of Moser’s trick,
and hence omitted. The discriminant loci Σ̄ of π̄ is the union Σ and the new boundaries of B̄ at
infinity. Notice that we have B̄zΣ̄ = B0 Ă B.

Remark 4.16. If we were to strictly follow the SYZ construction outlined in Section 4.1, we could have
compactified Mu,λ by compactifying the fiber directions of E. However, since the cycles γσ,d+1, . . . , γσ,2d P

H1(Lb, Z) (see Section 4.4) are monodromy-invariant, the count of holomorphic discs emanated from the
these additional divisors would receive no quantum correction. Therefore, it suffices to consider the partial
compactification Mu,λ.

We now state the results analogous to Propositions 4.8, 4.9, 4.11, 4.13, 4.15 and 4.14 in order to
define the additional generating functions. We will be brief since the proofs are nearly identical
to the previous ones.

Denote by D+
i the divisor given by

D+
i = t(tζ̃i = 0uXV)//λR

KCu.

Let D+ :=
řd

i=1 D+
i , and set D := D´ + D+. We will assume the isotopies obtained from Moser’s

tricks leaves D invariant.

Proposition 4.17. Let Lb be the fiber of π̄ : Mu,λ Ñ B̄ over b P B0. For any disc class β P π2(Mu,λ, Lb),
the Maslov index µ(β) is equal to twice the algebraic intersection number β ¨ [D].

Proof. We first extend the meromorphic volume form Ω (see Proposition 4.8) on Mu,λ to a mero-
morphic volume form on Mu,λ with generically simple poles along D. Consider the form

Ω̄ =

Źn
i=1 d log ξi ^ d log wi

śn
i=1 1´ ci

ξi

defined on U = tζ̃i ‰ 0,@iu Ă E. Its restriction to UXV descends to Ω on Mu,λ. Let I Ă t1, . . . , nu,
and set UI = tζ̃i ‰ 0,@i P Iu, ŨI = tζi ‰ 0,@i P Iu. Let I´

š

I+ be a splitting of t1, . . . , nu. We
extend Ω̄ to W by defining it to be

(´1)sgn(I´,I+) (
Ź

iPI´ d log ξi ^ d log wi)
(
Ź

jPI+ ´d log ξ̃ j ^ d log wj

)
(
ś

iPI´ 1´ ci
ξi

) (
ś

jPI+ 1´ cj ξ̃ j

)
on UI´ X ŨI+ , where sgn(I´, I+) is the sign of the concatenation of I´ and I+ as a permutation.
Note that the expression above is simply given by rewriting Ω̄ under the change of coordinates.
We denote the extension of Ω̄ to E again by Ω̄. Ω̄ is (Cˆ)n-invariant, hence its restriction to V de-
scends to a meromorphic volume form on Mu,λ, which is the extension of Ω. With Ω̄ constructed,
the proof then follows from Proposition 4.8. �

The restriction of the projection E Ñ (P1)n to V descends to a holomorphic (Cˆ)d-fibration
ρ : Mu,λ Ñ (P1)d, extending µ̄C : Mu,λ Ñ Cd. We denote by ρ0 = µ̄C : Mu,λzD+ Ñ Cd, and
ρ8 : Mu,λzD´ Ñ Cd the restrictions of ρ to the respective domains.
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Proposition 4.18. The walls of the Lagrangian torus fibration π̄ : Mu,λ Ñ B̄ are the sets tWiu
n
i=1 defined

in Proposition 4.9.

Proof. Since B̄zΣ̄ = B0, any fiber over B0 is contained in Mu,λ. By Proposition 4.17, any Maslov
index 0 holomorphic disc u : (D2, BD2) Ñ (Mu,λ, Lb) is contained in Mu,λ. Composing u with ρ0
reduces this to Proposition4.9. �

We again denote by Ch and B0
σ the chambers and simply connected affine charts on B0 Ă B̄,

respectively. Let’s fix a reference point b P B0
σ and assume b P Ch. We now classify the effective

disc classes β P π2(Mu,λ, Lb) with µ(β) = 2.
We express any vector v in the basis tu1, . . . , udu, and denote the corresponding coefficients by

v(i).

Proposition 4.19. Denote by β+
1 , . . . , β+

d P π2(Mu,λ, Lb) the disc classes given by the cycles γσ,1 . . . , γσ,d P

H1(Lb, Z) (see Section 4.4) vanishing on D+
1 , . . . , D+

d . The effective disc classes β P π2(Mu,λ, Lb) with
µ(β) = 2 are of the form

β = β˘j + δ1αj1 + . . . + δNαjN , j = 1, . . . , d, (4.8)

where δi P t0, 1u, and j1, . . . , jN P t1, . . . , nu is the set of indices such that hjk = j if β has the β´j

component, and it is the set indices such that u(j)
jk
‰ 0 and hjk ‰ j if β has the β+

j component. This means
the projections of holomorphic discs of class β in B̄ cross the walls Wj1 , . . . , WjN .

Proof. By Proposition 4.17, an effective disc class β P π2(Mu,λ, Lb) with µ(β) = 2 must intersects
either D´ or D+ with multiplicity 1. In either case, we can classify the effective disc classes by
using local charts as in Proposition 4.11. �

Proposition 4.20. The holomorphic discs representing classes in (4.8) are Fredholm regular.

Proof. Let u : (D2, BD2) Ñ (Mu,λ, Lb) be a holomorphic disc representing β in (4.8). By the same
argument as in 4.13, regularity of u is equivalent to regularity of ρ0 ˝ u if β ¨ [D´] = 1 and of
ρ8 ˝ u if β ¨ [D+] = 1, which is then a one-dimensional Riemann-Hilbert problem and follows
from Theorem II and III of [Oh95]. �

Proposition 4.21. With the notations as in Proposition 4.19, we have

nβ =

#

1 for β = β˘j + δ1αj1 + . . . + δNαjN ,
0 otherwise.

Proof. The proof is identical to that of Proposition 4.14 except we have Td-bundles M1(Lb, β) Ñ
M1(ρ0(Lb), (ρ0)˚(β)) and M1(Lb, β)ÑM1(ρ8(Lb), (ρ8)˚(β)) depending on whether β ¨ [D´] =
1 or β ¨ [D+] = 1. �

Similar to Proposition 4.15, we have

Proposition 4.22. Lb is weakly unobstructed.

4.7 Generating functions of open Gromov–Witten invariants and wall-crossing. Denote by
M_

0 the semi-flat mirror of Mu,λ(see Section 4.1). The semi-flat complex coordinates on M_
0 is

defined as follows.
For each simply connected affine chart B0

σ, we have an open subset M_
0,σ = (π_)´1(B0

σ) ĂM_
0 .

For each σ, we fix a reference point bσ P B0
σ. Let tγσ,1, . . . , γσ,2du Ă H1(Lbσ

) be the cycles described
in Section 4.4 and note that they form a primitive integer basis.

Definition 4.23. The semi-flat complex coordinates on M_
0 is defined locally on the charts M_

0,σ by

Zσ,i(Lb,∇) = exp

(
´

ż

Γσ,i(b)
ω̄

)
Hol∇(γσ,i(b)), i = 1, . . . , 2d,
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where γσ,i(b) P H1(Lb, Z) is the parallel transport of γσ,i, and Γσ,i(b) is the cylinder given by parallel-
transporting γσ,i.

The transition map between the charts M_
0,σ and M_

0,σ1 is given by (exponential of) the integral
affine transformation between B0

σ and B0
σ1 .

Definition 4.24. The generating functions uj (resp. vj) for discs emanated from boundary divisors D´j
(resp. D+

j ) for j = 1, . . . , d, are given by

uj(Lb,∇) =
ÿ

βPπ2(X,Lb)

β¨D´j =1,β&D

nβ exp

(
´

ż

β
ω̄

)
Hol∇(Bβ).

vj(Lb,∇) =
ÿ

βPπ2(X,Lb)
β¨D+

j =1,β&D

nβ exp

(
´

ż

β
ω̄

)
Hol∇(Bβ).

Let Cσ,i = exp
(
´
ş

β´i
ω̄
)

and Cσ,d+i = exp
(
´
ş

αi
ω̄
)

for i = 1, . . . , d, where β´i , αi P H2(Mu,λ, Lbσ
)

are as descried in Section 4.4. Since the cycles γσ,d+1, . . . , γσ,2d P H1(Lb, Z) are monodromy-
invariant, we have Cσ,d+iZσ,d+i = Cσ1,d+iZσ1,d+i on M_

0,σXM_
0,σ1 for any pair σ, σ1 of sign vectors.

Thus, Zi := Cσ,d+iZσ,d+i are global holomorphic functions on M_
0 .

Let S` be the circuits corresponding to the relation u` =
řd

i=1 a`iui for ` = d + 1, . . . , n. We have
Kähler parameters qβS` associated to the primitive curve classes βS` (see Section 2.4). Let

Z` := qβS`

d
ź

i=1

Z
u(i)
`

d+i = qβS`

d
ź

i=1

Za`i
d+i.

The generating functions can be expressed locally in term of semi-flat complex coordinates as
follows.

Proposition 4.25. For j = 1, . . . , d, denote by j be the collection of all k P t1, . . . , nu such that u(j)
k ‰ 0.

On the open subset (π_)´1(B0
σ X Ch) ĂM_

0 , we have

uj = Cσ,jZσ,j(1 + Z j1) . . . (1 + Z jN ),

where j1, . . . , jN are the set of indices such that hji = j, and

vj = exp

(
ż

P1
j

´ω̄

)
C´1

σ,j Z´1
σ,j

 ź

kPjztj1,...,jNu

1 + Zk

 .

where P1
j is the holomorphic sphere obtained from gluing β´j and β+

j in H2(Mu,λ, Lbσ
).

Proof. This follows from Propositions 4.19, 4.21 and Definitions 4.23,4.24 (see also [CLL12, Propo-
sition 4.39]). �

4.8 SYZ mirror and its resolution. Set qβS` = exp
(
´
ş

βS`
ω̄
)

. Since the curve classes βS` are con-

tained in Mu,λ, we can rescale ω̄ such that exp
(
´
ş

βS`
ω̄
)
= exp

(
´
ş

βS`
ω
)

. By Definition 4.5, an

SYZ mirror is given by Spec(R) where R is the subring of coordinate ring on (π_)´1(B0z
Ťn

i Wi)
generated by the functions ui and vi for i = 1, . . . , d. By combining the above propositions, we
obtain the following.
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Theorem 4.26. An SYZ mirror of Mu,λ ´D´ is

M_
u,λ =

$

&

%

((u1, v1, . . . , ud, vd), (Z1, . . . , Zd)) P C2d ˆ (Cˆ)d|ujvj =
ź

kPj

(1 + Zk), j = 1, . . . , d

,

.

-

.

For simplicity we have rescaled the variables ui so that the constant terms exp
(
´
ş

P1
j

ω̄

)
for

j = 1, . . . , d do not appear in the above expression.

Example 4.27. An SYZ mirror of T˚P2 is the subvariety of C4 ˆ (Cˆ)2 given by

u1v1 = (1 + Z1)(1 + qβS3 Z´1
1 Z´1

2 );

u2v2 = (1 + Z2)(1 + qβS3 Z´1
1 Z´1

2 ).

Note that this subvariety is singular at the one-dimensional loci tZ1 = ´1, Z2 = qβS3 , u1 = v1 = 0u and
tZ2 = ´1, Z1 = qβS3 , u2 = v2 = 0u.

In general M_
u,λ is singular. The wall and chamber structure of the Lagrangian torus fibration

explained in Section 4.3 gives a resolution of M_
u,λ, provided that Mu,λ is smooth. In the following

we construct this resolution. The construction can be justified by Lagrangian Floer theory of
immersed Lagrangians which is explained in [HL18, HKL18] (see also [Sei97] and [PT17] for more
Floer theoretical aspects on gluing the chambers). We will study more about Lagrangian Floer
theory in future work. In the following we glue up the resolution from local charts by hand.

Step 1. First we glue the charts corresponding to smooth torus fibers by wall-crossing functions.
Recall that we have a collection of tropical hyperplanes which divide the base into chambers
(see Figure 4.3 and Section 4.3 for the labels). For each chamber Ch, we define a chart Uh –

(Cˆ)d ˆ (Cˆ)d by

Uh =
!(

(u(h)
1 , v(h)

1 , . . . , u(h)
d , v(h)

d ), (Z1, . . . , Zd)
)
P (Cˆ)2d ˆ (Cˆ)dˇ

ˇu(h)
i v(h)

i = 1, i = 1, . . . , d
)

.

Consider a pair of chambers Ch and Ch1 where h = (h1, . . . , hn) and h1 = (h11, . . . , h1n). For
j = 1, . . . , d, let Jj,h,h1 be the set of all indices k P t1, . . . , nu such that hk ‰ h1k and either hk = j
or h1k = j. These indices label the hyperplanes which give walls in between the two chambers
involving the j-th direction.

Let Uh,h1 Ă Uh be the open subset defined by

Uh,h1 =

$

&

%

(
(u(h)

1 , v(h)
1 , . . . , u(h)

d , v(h)
d ), (Z1, . . . , Zd)

)
P Uh

ˇ

ˇ1 + Zk ‰ 0 for all k P
d
ď

j=1

Jj,h,h1

,

.

-

.

Let δ
(h,h1)
j = δ

(h1,h)
j = 0 if Jj,h,h1 = H. Let δ

(h,h1)
j = 1 and δ

(h1,h)
j = 0 if there exist(and hence for all)

k P Jj,h,h1 such that h1k = j. Let δ
(h,h1)
j = 0 and δ

(h1,h)
j = 1 if there exist k P Jj,h,h1 such that hk = j.

We glue Uh and Uh1 via the biholomorphism ψh,h1 : Uh,h1 Ñ Uh1,h defined by

u(h1)
j = u(h)

j

 ź

kPJj,h,h1

(1 + Zk)
´1


δ
(h,h1)
j

 ź

kPJj,h,h1

1 + Zk


δ
(h1 ,h)
j

;

v(h1)
j = v(h)

j

 ź

kPJj,h,h1

1 + Zk


δ
(h,h1)
j

 ź

kPJj,h,h1

(1 + Zk)
´1


δ
(h1 ,h)
j

and the variables Zi are identified trivially.
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Step 2. We now glue in the charts corresponding to singular SYZ fibers. For each tropical
hyperplane H Ă Td, we can associate to it its dual simplex ∆ Ă (Rd)˚. (Note that ∆ can have di-
mension less than d.) For k ě 1, each k-dimensional face σ of ∆ corresponds to a d´ k-dimensional
tropical stratum Hσ of H. The 0-dimensional faces(vertices) of ∆ corresponds to the tropical cham-
bers adjacent to H. We will denote by |σ| the dimension of σ, and note that σ is itself a simplex.
Let ∆1, . . . , ∆n be the dual simplexes of the tropical hyperplanes H1, . . . , Hn.

We will abuse notation and denote by H both the tropical hyperplane arrangement H = tHiu
n
i=1

and the union H =
Ťn

i=1 Hi. We define a stratification of H as follows. Let σ = tσj1 , . . . , σjνu be a
collection such that σji is a face of ∆ji , and set |σ| :=

ř

σjPσ |σj|. Let Hσ Ă H be the set

Hσ =
č

σjPσ

(Hj)σj .

We define the 0-dimensional strata of H to be points of the form Hσ where |σ| = d. We then
define the `-dimensional strata of H for for ` ě 1 to be the connected components of HσzH`´1,
where |σ| = d´ `, and H`´1 denotes the union of the (`´ 1)-dimensional strata Θ of H.

Let te1, . . . , edu be the standard basis on (Rd)˚, and denote byă,ą the standard pairing between
Rd and (Rd)˚. For each σ with 1 ď |σ| ď d, we associate to it a collection of primitive and linearly
independent vectors t~aσ

1 , . . . ,~aσ
` u parallel to Hσ . For each σjk P σ, we associate to it a collection

of primitive vectors t~a
σjk
1 , . . . ,~a

σjk
|σjk
|+1u such that ~a

σjk
i is normal to the ith facet of σjk (notice that the

number of facets of σjk is |σjk |+ 1), and parallel to
Ş

σjPσ,j‰jk (Hj)σj . In particular, we can choose

t~a
σjk
1 , . . . ,~a

σjk
|σjk
|+1u such that~a

σjk
|σjk
|+1 = ´

ř|σjk
|

i=1 ~a
σjk
i .

For each `-dimensional stratum Θ, there exists a unique collection σ = tσj1 , . . . , σjνu such that
|σ| = d´ `, and Θ Ă Hσ . We will call a stratum Θ admissible if

Şν
k=1 HR,jk ‰ H.

Now, we associate to each admissible stratum Θ a chart UΘ defined by

UΘ =

$

’

&

’

%

(
(x

(Θ,σji
)

1 , . . . , x
(Θ,σji

)

|σji
|+1)i=1,...,ν, (y(Θ)

1 , . . . , y(Θ)
` ), (Z1, . . . , Zd)

)
P

(
śν

i=1 C
|σji
|+1
)
ˆ (Cˆ)` ˆ (Cˆ)d

s.t.
ś|σji

|+1
k=1 x

(Θ,σji
)

k = 1 + Z ji , i = 1, . . . , ν

,

/

.

/

-

.

We glue UΘ to the resulting space from Step 1. For any tropical chamber Ch adjacent to Θ, we
define an open embedding ψh,Θ : Uh Ñ UΘ by

y(Θ)
k =

d
ź

i=1

(u(h)
i )ăei ,~aσ

ką, k = 1, . . . , `;

x
(Θ,σji

)

k =
d
ź

m=1

(u(h)
m )ăem ,~a

σji
k ą i = 1, . . . , ν;

if the kth facet of σji is adjacent to the vertex of σji corresponding to the chamber Ch, and

x
(Θ,σji

)

k = (1 + Z ji )
d
ź

m=1

(u(h)
m )ăem ,~a

σji
k ą i = 1, . . . , ν,

otherwise. The variables Zi are identified trivially.
We denote the smooth variety obtained from this gluing by ĆM_

u,λ. We have H0(ĆM_
u,λ,O

ĆM_
u,λ
) =

R. Thus, the resolution ĆM_
u,λ ÑM_

u,λ is the affinization map.
Figure 5 shows an example of the above gluing procedure.
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Remark 4.28. ĆM_
u,λ is equipped with a holomorphic symplectic form

řd
i=1 d log ui ^ d log Zi and a holo-

morphic volume form

Ω_ =
d
ź

i=1

d log ui ^ d log Zi

where are preserved under the change of coordinates (up to signs). Let γ P H2d(ĆM
_
u,λ) and consider the

period integrals
ż

γ
Ω_. (4.9)

Let π = (Z1, . . . , Zd) : ĆM_
u,λ Ñ (Cˆ)d be projection map. π is a (Cˆ)d-fibration over base (Cˆ)d.

Denote by H the union of multiplicative hyperplanes

H =
n
ď

i=1

tZ P (Cˆ)d|qiZ
λ̂R,i
i = ´1u,

where qi = 1, for i = 1, . . . , d and q` = qβS` , for ` = d + 1, . . . , n. The period integrals (4.9) reduces to
integration over relative cycles γ1 P Hd((C

ˆ)d, H),

ż

γ1

d
ź

i=1

d log Zi

by dimension reduction similar to the case of toric varieties (see e.g. [CLT13]). In [MS13], Mcbreen and
Shenfeld observed that certain period integrals on (Cˆ)d with local coefficients satisfy the same GKZ system
as the Td ˆCˆ-equivariant quantum cohomology.

1+Z1

1+Z2

1+Z4

u1 v1

v2

u2

u1 v1=1+Z1
u2 v2=1+Z4

1+Z3

x1

x2

x3

Z1

Z1Z2Z3=q1

Z2

Z3

Z4

Z1Z2Z4=q2

x1x2x3=1+Z4

This is not an admissible intersection since
the corresponding real hyperplanes do not intersect.
It does not give an extra chart.

Figure 5. An example of gluing. The left is the tropical hyperplane arrangement,
and the right is the real hyperplane arrangement. Each admissible intersection
stratum gives a local chart and they are glued to adjacent chambers according to
the vectors associated to the variables.
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4.9 Multiplicative hypertoric varieties. In this subsection, we show that smooth multiplicative
hypertoric varieties (see e.g.[Gan18]) provide alternative resolutions to our SYZ mirrors.

Let’s first review the construction of multiplicative hypertoric varieties. Let

(T˚Cn)˝ = t(z, w) P T˚Cn|1 + ziwi ‰ 0, i = 1, . . . , nu.

We equip (T˚Cn)˝ with the holomorphic symplectic form

ω˝ =
n
ÿ

i

dzi ^ dwi

1 + ziwi
.

Let~t = (t1, . . . , tn) P (Cˆ)n act on (T˚Cn)˝ by

~t ¨ (z, w) = (t1z1, t´1
1 w1, . . . , tnzn, t´1

n wn).

This action comes with a (Cˆ)n-valued moment map(for the general theory of Lie-group valued
moment maps, see [AM98]) µ̃ : (T˚Cn)˝ Ñ (Cˆ)n given by

µ̃(z, w) = ((1 + z1w1), . . . , (1 + znwn)) .

Let KC Ă (Cˆ)n be the subtorus defined by the collection of vectors u as in Section 2.1. Let
(ι˚ij)1ďiďn´d,1ďjďn be the matrix associated to ι˚ : (tn)˚ Ñ k˚. The multiplicative moment map
µ : (T˚Cn)˝ Ñ KC of the (Cˆ)n-action on (T˚Cn)˝ restricted to KC is given by

µ(z, w) =

 n
ź

j=1

(1 + zjwj)
ι˚1j , . . . ,

n
ź

j=1

(1 + zjwj)
ι˚
(n´d)j

 .

Let η = (η1, . . . , ηn´d) P KC, and let χ : KC Ñ Cˆ be a character. We define a multiplicative
hypertoric variety to be the GIT quotient

Xu,χ,η = µ´1(η)//χKC.

or equivalently,

Xu,χ,η = Proj

(
à

kě0
O
(

µ´1(η)
)χk
)

.

Set q =
(
(´1)σd+1+1qβSd+1 , . . . , (´1)σn+1qβSn

)
P KC, where σ` is the parity of

řd
i=1 a`i, and a`i

are coefficients in u` =
řd

i=1 a`iui. Consider the multiplicative hypertoric variety Xu,0,q. We have

Xu,0,q = Spec
(

C[µ´1(q)]KC

)
,

where C[µ´1(q)]KC denotes the KC-invariant subring of C[µ´1(q)].
Let Π = (π˚ji)1ďjďn,1ďiďd be the matrix associated to the map π˚ : (td)˚ Ñ (tn)˚ with respect to

the ordered basis u1, . . . , ud. (π˚ji)1ďj,iďd is the identity d by d matrix. Since Π is totally unimodular,
the remaining entries take values in t´1, 0, 1u. The columns of Π correspond to KC-invariant

polynomials zi =
śn

j=1 x
|π˚ji |

ij and wi =
śn

j=1 y
|π˚ji |

ij , where xij = zj, yij = wj if π˚ji ě 0, and
xij = wj, yij = zj if π˚ji ă 0. Denote by S the multiplicative system generated by zi, wi, and ziwi
for i = 1, . . . , d.

Lemma 4.29. S´1C[µ´1(q)]KC is generated by z˘1
i , w˘1

i , and (ziwi)
˘1 for i = 1, . . . , d.

Proof. Let f =
śn

i=1 zai
i
śn

i=1 wbi
i be an arbitrary nonconstant Laurent monomial in S´1C[µ´1(q)].

If f is not divisible by neither z˘1
i nor w˘1

i for i = 1, . . . , d, then the vector xa1 ´ b1, . . . , an ´ bny is
not in the kernel of ι˚ : (tn)˚ Ñ k˚ unless it is the zero vector. In the first case, f is not KC-invariant,
while in the second case, f is a product of (ziwi)

˘1. �

Proposition 4.30. For a generic choice of χ, Xu,χ,q is a resolution of M_
u,λ.
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Proof. We have a ring homomorphism ϕ : R Ñ C[µ´1(q)]KC given by

ϕ(ui) = (´1)sgn
(
řn

j=1 |π
˚
ji |
)

zi, ϕ(vi) = wi, ϕ(Zi) = ´1´ ziwi, for i = 1, . . . , d.

Denote by R1 the ring obtained by localizing R at the multiplicative system generated by ui, vi,
and 1 + Zi for i = 1, . . . , d. The induced map ϕ˚ : Xu,0,q Ñ M_

u,λ is birational since ϕ descends
to a ring isomorphism R1 – S´1C[µ´1(q)]KC . When the Kähler parameters of Mu,λ are generic
(i.e. HR is simple), Xu,χ,q is smooth and is independent of χ, and therefore we have a resolution
of M_

u,λ by Xu,χ,q. On the other hand, if the Kähler parameters are not generic, Xu,0,q is singular.
However, the affinization map Xu,χ,q Ñ Xu,0,q = Spec(H0(Xu,χ,q,OXu,χ,q)) is a resolution. In this
case, the composition Xu,χ,q Ñ Xu,0,q ÑM_

u,λ is a resolution. �
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