Deformability of Lie Algebra Bundles and Geometry of Rational Surfaces

Yunxia Chen ${ }^{1}$ and Naichung Conan Leung ${ }^{2}$

${ }^{1}$ School of Science, East China University of Science and Technology, Meilong Road 130, Shanghai, China and ${ }^{2}$ The Institute of Mathematical Sciences and Department of Mathematics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong

Correspondence to be sent to: e-mail: yxchen76@163.com

When $X=X_{n}$ is a blowup of \mathbb{P}^{2} at n points x_{1}, \ldots, x_{n} with $n \leq 9$, there is a canonical (affine) Lie algebra bundle $\mathcal{E}_{0}^{E_{n}}$ over it, where E_{9} is the affine E_{8}. In this paper, we will give a detail study of the relationship between the geometry of X_{n} and the deformability of $\mathcal{E}_{0}^{E_{n}}$.

1 Introduction

A rational surface is a surface birationally equivalent to the projective plane, its minimal model is the projective plane \mathbb{P}^{2} or the Hirzebruch surface \mathbb{F}_{m} for $m=0$ or $m \geq 2$. In this paper, we consider $X=X_{n}$, a blowup of \mathbb{P}^{2} at n points x_{1}, \ldots, x_{n} with $n \leq 9$.

When $n \leq 8,\left\langle K_{X_{n}}\right\rangle^{\perp} \subset \operatorname{Pic}\left(X_{n}\right)$ is isomorphic to $\Lambda_{E_{n}}$, the root lattice of the simple Lie algebra E_{n}, then we have a root system Φ_{n} of E_{n} and we can associate a Lie algebra bundle $\mathcal{E}_{0}^{E_{n}}$ over $X_{n}[4,13,14]$,

$$
\mathcal{E}_{0}^{E_{n}}:=O_{X}^{\oplus n} \oplus \bigoplus_{\alpha \in \Phi_{n}} O_{X}(\alpha)
$$

By restriction, we have an E_{n}-bundle over any anti-canonical curve Σ in X_{n}. Note that Σ is always an elliptic curve. For a fixed elliptic curve Σ, the above construction gives a
bijection between del Pezzo surfaces containing Σ and E_{n}-bundles over $\Sigma[5,6,8,13,18]$. Such an identification was predicted by the F-theory/string duality in physics [8]. This was generalized to all simple Lie algebras in [13, 14].

When $n=9, X_{9}$ is not Fano and $E_{9}=\hat{E}_{8}$ is an affine Lie algebra. Corresponding results for the \hat{E}_{8}-bundle over X_{9} are obtained in [12].

In this paper, we explain how the geometry of X_{9} can be reflected by the deformability of the \hat{E}_{8}-bundle $\mathcal{E}_{0}^{\hat{E}_{8}}$ over it. Similar results for X_{n} and $\mathcal{E}_{0}^{E_{n}}$ with $n \leq 8$ can be easily deduced from this case. Among other things, we obtained the following results.

Theorem 1 (Theorem 8). $\mathcal{E}_{0}^{\hat{E}_{8}}$ is totally nondeformable if and only if the nine blowup points in \mathbb{P}^{2} are in general position.

Theorem 2 (Theorem 9). Suppose $-K_{X_{9}}$ is nef, then
(i) X_{9} admits an elliptic fibration with a multiple fiber of multiplicity m ($m \geq 1$) if and only if $\mathcal{E}_{0}^{\hat{E}_{8}}$ is deformable in $(-m K)$-direction but not in $(-m+1) K$-direction.
(ii) $\quad X_{9}$ has a (maximal) $A D E$ curve C of type \mathfrak{g} if and only if $\mathcal{E}_{0}^{\hat{E}_{8}}$ is (maximal) 01 \mathfrak{g}-deformable.
(iii) $\quad X_{9}$ has a (maximal) affine $A D E$ curve C of type $\hat{\mathfrak{g}}$ if and only if $\mathcal{E}_{0}^{\hat{E}_{8}}$ is (maximal) $\hat{\mathfrak{g}}$-deformable.

Here ADE means Lie algebras of types $A_{n}, D_{n}, E_{6}, E_{7}$ and E_{8}, where n can be any nature numbers.

The organization of this paper is as follows. Section 2 gives the construction of the (affine) $A D E$ Lie algebra bundles over X_{n}. In Section 3, we state the definition of deformability and the main theorems. Section 4 studies the negative curves in X_{9}. The proofs of the main theorems are in Section 5.

$2 \quad E_{n}$-Bundle Over X_{n} with $n \leq 9$

The Picard group $\operatorname{Pic}\left(X_{n}\right) \cong H^{2}\left(X_{n}, \mathbb{Z}\right)$ is a rank $n+1$ lattice with generators h, l_{1}, \ldots, l_{n}, where h is the class of lines in \mathbb{P}^{2} and l_{i} is the exceptional class of the blow-up at x_{i}. So $h^{2}=1=-l_{i}^{2}$ and $h \cdot l_{i}=0=l_{i} \cdot l_{j}, i \neq j$. Thus, $H^{2}\left(X_{n}, \mathbb{Z}\right) \cong \mathbb{Z}^{1, n}$. The canonical class is $K_{X_{n}}=-3 h+l_{1}+\cdots+l_{n}$. Denote

$$
\Phi_{n}:=\left\{\alpha \in H^{2}\left(X_{n}, \mathbb{Z}\right) \mid \alpha^{2}=-2, \alpha \cdot K=0\right\} .
$$

Then Φ_{n} is a root system of type E_{n} when $n \leq 8$ and Φ_{9} is an affine real root system of \hat{E}_{8} (also denoted as E_{9}). More explicitly, $\Phi_{\hat{E}_{8}}:=\Phi_{9} \cup\left\{m K_{X_{9}} \mid m \neq 0, m \in \mathbb{Z}\right\}$ forms a root system of (untwisted) affine E_{8}-type (i.e., \hat{E}_{8}-type) with $\Phi_{\hat{E}_{8}}^{r e}:=\Phi_{9}$ the set of real roots and $\Phi_{\hat{E}_{8}}^{i m}:=\left\{m K_{X_{9}} \mid m \neq 0, m \in \mathbb{Z}\right\}$ the set of imaginary roots (see [10] or [12]). We have an \hat{E}_{8}-bundle $\mathcal{E}_{0}^{\hat{E}_{8}}$ over X_{9} :

$$
\mathcal{E}_{0}^{\hat{E}_{8}}=O^{\oplus 9} \oplus \bigoplus_{\alpha \in \Phi_{\hat{E}_{8}}^{r e}} O(\alpha) \bigoplus_{\beta \in \Phi_{\dot{E_{8}}}^{i m}} O(\beta)
$$

The Lie algebra structure on $\mathcal{E}_{0}^{\hat{E}_{8}}$ is explained in [12]. When $n \leq 8, \mathcal{E}_{0}^{E_{n}}=O^{\oplus n} \oplus \bigoplus_{\alpha \in \Phi_{n}} O(\alpha)$ is an E_{n}-bundle over X_{n}.

Remark 3. We can construct an \hat{E}_{8}-bundle over a blowup of \mathbb{F}_{m} (Hirzebruch surface) at eight points similarly [3].

Definition 4. A curve $C=\cup C_{i}$ in a surface X is called an $A D E$ (respectively, affine $A D E$) curve of type \mathfrak{g} (respectively, $\hat{\mathfrak{g}}$) if each C_{i} is a smooth (-2)-curve in X and the dual graph of C is a Dynkin diagram of the corresponding type.

Suppose $C=\cup C_{i}$ is an (affine) $A D E$ curve of type \mathfrak{g} in X_{n}, then C_{i} 's generates a subroot system Φ inside Φ_{n} since $C_{i} \cdot K=0$ for every i. Therefore, the corresponding bundle $\mathcal{E}_{0}^{\mathfrak{G}}$ is a Lie algebra subbundle of $\mathcal{E}_{0}^{E_{n}}$.

Suppose $\mathcal{E}_{0}^{\mathfrak{g}}$ is a \mathfrak{g}-bundle over a surface X corresponding to a root system $\Lambda_{\mathfrak{g}} \subset$ $\operatorname{Pic}(X)$ of type \mathfrak{g}.

Definition 5. A Lie algebra subbundle \mathcal{F} of $\mathcal{E}_{0}^{\mathfrak{g}}$ is called strict, if there exists a subroot lattice Λ of $\Lambda_{\mathfrak{g}}$ such that \mathcal{F} is a direct sum of line bundles corresponding to the roots in Λ.

In order to describe $\mathcal{E}_{0}^{\hat{E}_{8}}$ as a central extension of a loop Lie algebra bundle over X_{9}, we pick any smooth (-1)-curve l in X_{9}, then we have

$$
\mathcal{E}_{0}^{\hat{E}_{8}} \cong \mathcal{E}_{0}^{E_{8}} \otimes\left(\bigoplus_{n \in \mathbb{Z}} O\left(n K_{X_{9}}\right)\right) \oplus O
$$

where $\mathcal{E}_{0}^{E_{8}}$ is the pull-back of the E_{8}-bundle over X_{8} via $\pi: X_{9} \rightarrow X_{8}$, the blow down map of l. The next proposition describes the converse.

Proposition 6. When $\mathcal{E}_{0}^{\hat{E}_{8}}$ is a central extension of a loop E_{8}-subbundle over X for some strict E_{8}-bundle $\mathcal{F}_{0}^{E_{8}}$ over X_{9}, that is,

$$
\mathcal{E}_{0}^{\hat{E}_{8}} \cong \mathcal{F}_{0}^{E_{8}} \otimes\left(\bigoplus_{n \in \mathbb{Z}} O\left(n K_{X_{9}}\right)\right) \oplus O
$$

as a Lie algebra bundle isomorphism, then there is a unique (possibly reducible) (-1)curve l in X such that $\mathcal{F}_{0}^{E_{8}}$ is constructed from those $\alpha \in \Lambda^{r e}$ satisfying $\alpha \cdot l=0$.

Proof. Denote $\Delta_{E_{8}}=\left\{\alpha_{1}, \ldots, \alpha_{8}\right\}$ as a root base of the corresponding E_{8} Lie algebra from $\mathcal{F}_{0}^{E_{8}}$, we need to find a unique (-1)-curve l in X such that $l \cdot \alpha_{i}=0$ for any α_{i} in $\Delta_{E_{8}}$. Since $\{ \pm 1\} \times W\left(\hat{E}_{8}\right)$ acts on the set of all root bases of \hat{E}_{8} simply transitively [11] and $W\left(\hat{E}_{8}\right)$ acts on the set of (-1)-curves [12], we only need to find l for one particular root base of any E_{8} in \hat{E}_{8} and show that such a l is unique. For example, if we take $\alpha_{1}=$ $h-l_{1}-l_{2}-l_{3}, \alpha_{k}=l_{k-1}-l_{k}$ for $k=2, \ldots 8$, then we can take $l=l_{9}$ and by the condition that $l \cdot \alpha_{i}=0, l^{2}=-1=l \cdot K$, we know such a l is unique.

3 Deformability of $\operatorname{such} \mathcal{E}_{0}^{\hat{E}_{8}}$

In this section, we will describe relationships between the geometry of X_{9} and the deformability of $\mathcal{E}_{0}^{\hat{E}_{8}}$.

Recall when $\operatorname{Pic}(X)$ contains a lattice Λ isomorphic to a root lattice $\Lambda_{\mathfrak{g}}$, then we have a \mathfrak{g}-bundle \mathcal{E} over $X[5,8,12-14]$.

$$
\mathcal{E}:=O^{\oplus r} \oplus \bigoplus_{\alpha \in \Phi} O(\alpha)
$$

Infinitesimal deformations of holomorphic structures on \mathcal{E} are parameterized by $H^{1}(X, \operatorname{End}(\mathcal{E}))$, and those which also preserve the Lie algebra structure are parameterized by $H^{1}(X, \operatorname{ad}(\mathcal{E}))=H^{1}(X, \mathcal{E})$ since \mathfrak{g} is simple. Hence we introduce the following definitions.

Definition 7.

(i) \mathcal{E} is called fully deformable if there exists a base $\Delta \subset \Phi$ such that $H^{1}(X, O(\alpha)) \neq 0$ for any $\alpha \in \Delta$.
(ii) \mathcal{E} is called \mathfrak{h}-deformable if there exists a strict \mathfrak{h} Lie algebra subbundle $\mathcal{E}^{\mathfrak{h}} \subseteq \mathcal{E}$ which is fully deformable.
(iii) \mathcal{E} is called deformable in α-direction for $\alpha \in \Phi$ if $H^{1}(X, O(\alpha)) \neq 0$.
(iv) \mathcal{E} is called totally nondeformable if $H^{1}(X, O(\alpha))=0$ for any $\alpha \in \Phi$.

After the definition of deformability, we state the main results of this paper in the following two theorems.

Theorem 8. $\mathcal{E}_{0}^{\hat{E}_{8}}$ over X_{9} is totally nondeformable if and only if the nine blowup points in \mathbb{P}^{2} are in general position.

Let us recall some facts about elliptic fibrations on X_{9} [15, 17]. Any elliptic fibration on X_{9} must be relatively minimal, that is, there is no (-1)-curves in any of its fibrations, as there is no elliptic fibration on X_{8}, this is because the Euler characteristic of any elliptic surface is a multiple of 12 [7] and also $\chi\left(X_{9}\right)=12$. There is at most one multiple fiber [9], say of multiplicity m. This happens precisely when there exists an irreducible pencil of degree $3 m$ in \mathbb{P}^{2} with nine base points, each of multiplicity m and X_{9} is the blow up of \mathbb{P}^{2} at these nine points. We can characterize the existence of such an elliptic fibration on X_{9} in terms of deformability of $\mathcal{E}_{0}^{\hat{E}_{8}}$ along imaginary root directions. For instance, X_{9} with $-K_{X_{9}}$ nef admits an elliptic fibration (without multiple fiber) if and only if $\mathcal{E}_{0}^{\hat{E}_{8}}$ is deformable in $(-m K)$-direction for some $m \in \mathbb{N}$ (with $m=1$). Deformability of $\mathcal{E}^{\hat{E}_{8}}$ can also detect the existence of $A D E$ or affine $A D E$ curves in X.

Theorem 9. Suppose $-K_{X_{9}}$ is nef, then
(i) X_{9} admits an elliptic fibration with a multiple fiber of multiplicity m ($m \geq 1$) if and only if $\mathcal{E}_{0}^{\hat{E}_{8}}$ is deformable in $(-m K)$-direction but not in $(-m+1) K$-direction.
(ii) $\quad X_{9}$ has an (maximal) $A D E$ curve C of type \mathfrak{g} if and only if $\mathcal{E}_{0}^{\hat{E}_{8}}$ is (maximal) \mathfrak{g}-deformable.
(iii) X_{9} has a (maximal) affine $A D E$ curve C of type $\hat{\mathfrak{g}}$ if and only if $\mathcal{E}_{0}^{\hat{E}_{8}}$ is (maximal) $\hat{\mathfrak{g}}$-deformable.

Here, we say an $A D E$ or affine $A D E$ curve C is maximal if it is not proper contained in another $A D E$ or affine $A D E$ curve. We say $\mathcal{E}_{0}^{\hat{E}_{8}}$ is maximal \mathfrak{g} (or $\hat{\mathfrak{g}}$) deformable if there does not exist another fully deformable (affine) Lie algebra subbundle of $\mathcal{E}_{0}^{\hat{E}_{8}}$ containing this \mathfrak{g} (or $\mathfrak{\mathfrak { g }}$) bundle.

4 Negative Curves in X_{9}

In this section, we study negative rational curves in X_{9}. We can get corresponding results for X_{n} with $n \leq 8$ from this $n=9$ case.

A divisor D in X is called a ($-m$)-class if $D \cdot D=-m$ and $D \cdot K=m-2$. An effective $(-m)$-class is called a $(-m)$-curve. Note when $D=\sum n_{i} C_{i}$ is a $(-m)$-curve, we will also denote the corresponding curve $\cup C_{i}$ as D.

Use the notations in the above section, every effective divisor $D=a h-\sum_{i=1}^{9} a_{i} l_{i} \in$ $\operatorname{Pic}\left(X_{9}\right)$ must have $a=D \cdot h \geq 0$. It is well known that all (-1)-classes are effective, and there are infinite number of them in X_{9}. There are also infinite number of (-2)-classes, but whether they are effective or not depends on the positions of the nine blow-up points.

Definition 10. Let x_{1}, \ldots, x_{n} be n distinct points in \mathbb{P}^{2}. These n points are said to be nonspecial with respect to Cremona transformations if for any Cremona transformation T with centers within x_{i} 's, the points y_{1}, \ldots, y_{n} corresponding to x_{i} 's under T are distinct points such that no three points among Y_{1}, \ldots, Y_{n} are collinear.

Definition 11 ([12]). Let x_{1}, \ldots, x_{9} be nine points in \mathbb{P}^{2}, we say they are in general position if they satisfy the following three conditions:
(i) they are distinct points in \mathbb{P}^{2};
(ii) they are nonspecial with respect to Cremona transformations;
(iii) there is a unique cubic curve passing through all of them.

The conditions (i) and (ii) mean that any eight of these nine points are in general position. That is, no lines pass through three of them, no conics pass through six of them, and no cubic curves pass through eight of them with one of the eight points being a double point.

If the 9 blowing up points are in general position, then there is no effective (-2)-class in X_{9} [12]. In general, there are at most finite number of $(-m)$-curves with $m \geq 3$.

Lemma 12. Let $D=a h-\sum_{i=1}^{9} a_{i} l_{i}$ be a ($-m$)-curve in X_{9} with $m \geq 3$, then
(i) $m \leq 9$;
(ii) $0 \leq a \leq 3$;
(iii) $-1 \leq a_{i} \leq 2$ for all i, and there exists some j with $a_{j}=1$;
(iv) there are finite number of such curves.

Proof. (i) Since D is a ($-m$)-curve, $D \cdot D=-m$ and $D \cdot K=m-2$, that is,

$$
\sum a_{i}^{2}=a^{2}+m \quad \text { and } \quad \sum a_{i}=3 a+m-2
$$

From the above two equations, we have

$$
(3 a+m-2)^{2}=\left(\sum a_{i}\right)^{2} \leq 9\left(\sum a_{i}^{2}\right)=9\left(a^{2}+m\right) .
$$

Thus, $a \leq \frac{-m^{2}+13 m-4}{6(m-2)}$, also $a \geq 0$ since D is effective, hence $m \leq 12$.
When $m \geq 10$, we must have $a=0$, that means $\sum a_{i}^{2}=m$ and $\sum a_{i}=m-2$, hence $\sum a_{i}^{2}-\sum a_{i}=2$, which implies every a_{i} satisfies $\left|a_{i}\right| \leq 1$ and there exists exactly one a_{i} with $a_{i}=-1$. But we also have $\sum a_{i}=m-2 \geq 8$, which is impossible since we only have nine a_{i} 's.
(ii) When $m \geq 4, a \leq \frac{-m^{2}+13 m-4}{6(m-2)} \leq \frac{8}{3}<3$. When $m=3, a \leq \frac{-m^{2}+13 m-4}{6(m-2)}=\frac{13}{3}<5$. Hence we only need to prove there is no (-3)-curve with $a=4$.

Suppose not, then there exists a_{i} 's such that $\sum a_{i}^{2}=19$ and $\sum a_{i}=13$. From $\sum a_{i}^{2}-\sum a_{i}=6$, we know $-2 \leq a_{i} \leq 3$. If there is any a_{i} with $a_{i}=3$, then the other a_{i} 's can only be 0 or 1 , but we have $\sum a_{i}=13$ and there is only nine a_{i} 's, which is impossible. Hence $-2 \leq a_{i} \leq 2$, from $\sum a_{i}^{2}-\sum a_{i}=6$, we can have at most three a_{i} 's equal to 2 , which is also impossible since $\sum a_{i}=13$.
(iii) From $\sum a_{i}^{2}=a^{2}+m, \sum a_{i}=3 a+m-2$ and $0 \leq a \leq 3$, we have

$$
\sum a_{i}=3 a+m-2 \geq a^{2}+m-2=\sum a_{i}^{2}-2 .
$$

Hence $-1 \leq a_{i} \leq 2$. And there are three cases:
Case 1 , one a_{i} equal to 2 , the others equal to 0 or 1 ;
Case 2, one a_{i} equal to -1 , the others equal to 0 or 1 ;
Case 3, all a_{i} 's are equal to 0 or 1 .
By $\sum a_{i}=3 a+m-2 \geq 1$, we know in case 2 and case 3 , there must exist some a_{i} with $a_{i}=1$. In case 1 , if there is no a_{i} with $a_{i}=1$, then $D=a h-2 l_{j}$. From $\sum a_{i}^{2}=a^{2}+m$, $\sum a_{i}=3 a+m-2$, we have $a=0, m=4$, hence $D=-2 l_{j}$, which is not an effective divisor.
(iv) It is obvious from the above results.

From this lemma, we can easily obtain the following as a corollary.
Corollary 13. If there exists a ($-m$)-curve in X_{9} with $m \geq 3$, then there also exists a $(-m+1)$-curve in X_{9}.

Proof. If $D \in\left|a h-\sum a_{i} l_{i}\right|$ is a ($-m$)-curve in X_{9} with $m \geq 3$, then there exists j with $a_{j}=1$ by (iii) of Lemma 12. It is easy to check that $D+l_{j}$ is a $(-m+1)$-curve in X_{9}.

If the nine blowing up points are in general position, then there is no (-2)-curve in X_{9}, as a consequence, there is also no ($-m$)-curve in X_{9} with $m \geq 3$. The following
result shows that this happens exactly when X_{9} is almost Fano. We include a proof here as we could not find it in the literatures.

Lemma 14. X_{9} has no ($-m$)-curve with $m \geq 3$ if and only if $-K_{X_{9}}$ is nef.

Proof. If $-K$ is nef, then from $C \cdot K^{-1}=2-m \geq 0$ for any ($-m$)-curve C, we know $m \leq 2$. Conversely, assume X_{9} has no ($-m$)-curve with $m \geq 3$. Since X_{9} is a blowup of \mathbb{P}^{2} at nine points $\left\{X_{i}\right\}_{i=1}^{9}$, we have an effective anti-canonical divisor D. Recall when D. $\Sigma<0$ for any irreducible curve Σ in X, Σ must be a component of D. So if D is an irreducible curve or a affine $A D E$ curve, then D is nef. We denote the image of D in \mathbb{P}^{2} as C, which is a cubic curve passing through these 9 blowing up points.
(i) If C is smooth, then we are done as $D \cong C$ and therefore irreducible.
(ii) If C is reduced and irreducible, then it must be a nodal or cuspidal cubic. If $\left\{X_{i}\right\}_{i=1}^{9} \cap \operatorname{sing}(C)=\varnothing(\operatorname{sing}(C)$ means the set of singular points on $C)$, then $D \cong C$ and we are done. Otherwise, say $x_{1} \in \operatorname{sing}(C)$ and we write the strict and proper transformations of C in $B l_{x_{1}}\left(\mathbb{P}^{2}\right)$ as C_{1} and $C_{1}+E$, respectively. Then the remaining x_{i} 's must have exactly 1 point (respectively, 7 points) lying on E (respectively, C_{1}) in order to avoid having ($-m$)-curve with $m \geq 3$. Thus, D is a affine $A D E$ curve of type \hat{A}_{1} or $I I I\left(\hat{A}_{1}\right)$ for C being a nodal or cuspidal, respectively.
(iii) If C is reduced and reducible, then $C=B \cup H_{0}$ or $H_{1} \cup H_{2} \cup H_{3}$ with B and H_{j} 's are conic and distinct lines in \mathbb{P}^{2}. As before, we must have exactly 6 x_{i}^{\prime} s on B and $3 x_{i}^{\prime}$'s on each H_{j} and none on $\operatorname{sing}(C)$. Thus, $D \cong C$ is a affine $A D E$ curve of type $\hat{A}_{1}, \hat{A}_{2}, I I I\left(\hat{A}_{1}\right)$, or $V I\left(\hat{A}_{2}\right)$.
(iv) If C is nonreduced, $C=3 H, D$ must have a ($-m$)-curve with $m \geq 3$.

Hence D is an irreducible curve or a affine $A D E$ curve, we are done.

In the following two lemmas, we will use [1, Lemma 2.21] to give a criteria of a curve in X_{n} being an $A D E$ or affine $A D E$ curve. Lemma 2.21 can be reformulated as follows: if $C=\bigcup_{i=1}^{r} C_{i}$ is a connected curve in a surface X satisfying: (i) $C_{i}^{2}=-2$ and C_{i}. $K_{X}=0$ for any i; (ii) $C_{i} \cdot C_{j} \leq 1$ for any $i \neq j$; (iii) $\left(C_{i} \cdot C_{j}\right)_{r \times r} \leq 0$. Then when $\left(C_{i} \cdot C_{j}\right)_{r \times r}<0$, C is an $A D E$ curve, otherwise, it is an affine $A D E$ curve.

Lemma 15. Suppose $-K_{X_{n}}(n \leq 8)$ is nef. Let $C=\cup C_{i}$ be a connected curve in X_{n}. If C. $K_{X_{n}}=0$, then C is an $A D E$ curve.

Proof. Since $-K_{X_{n}}$ is nef, $C \cdot K_{X_{n}}=0$ implies $C_{i} \cdot K_{X_{n}}=0$ for each i, that is, $\left[C_{i}\right] \in$ $\langle K\rangle^{\perp} \cong \Lambda_{E_{n}}$. We have $C_{i}^{2}<0$ and $\left(C_{i}+C_{j}\right)^{2}<0$ for any i and j. Together with the genus formula, we have $C_{i}^{2}=-2$ and $C_{i} \cdot C_{j} \leq 1$ for $i \neq j$. By [1, Lemma 2.21], we know C is an $A D E$ curve.

For $n=9$ case, we have the following lemma.
Lemma 16. Suppose $-K_{X_{9}}$ is nef. Let $C=\cup C_{i}$ be a connected curve in X_{9}. If $C \cdot K_{X_{9}}=0$ and $C_{i}+K_{X_{9}}$ is not effective for each i, then C is a smooth elliptic curve, an $A D E$ curve or an affine $A D E$ curve.

Proof. Since $-K_{X_{9}}$ is nef, $C \cdot K_{X_{9}}=0$ implies $C_{i} \cdot K_{X_{9}}=0$ for each i, that is, $\left[C_{i}\right] \in$ $\left\langle K_{X_{9}}\right\rangle^{\perp} \cong \Lambda_{E_{9}}$. We have $C_{i}^{2} \leq 0$ and $\left(C_{i}+C_{j}\right)^{2} \leq 0$ for any i and j. Moreover, for any effective divisor $D \in\left\langle K_{X_{9}}\right\rangle^{\perp}$, if $D^{2}=0$, then $D \in\left|m K_{X_{9}}\right|$ for some nonzero integer m. From $C_{i}^{2} \leq 0$ and genus formula, we have $C_{i}^{2}=-2$ or 0.

If there exists C_{i} such that $C_{i}^{2}=0$, then $C_{i} \in|m K|$ for some nonzero integer m. Since $C_{i}+K_{X_{9}}$ is not effective, we know $m=-1$, that is, $C_{i} \in|-K|$. If C is not irreducible, then there exists C_{j} which intersects C_{i}, which is impossible. So $C=C_{i} \in|-K|$ is an elliptic curve or an affine A_{0} curve by Lemma 14.

If $C_{i}^{2}=-2$ for any i, then $C_{i} \cdot C_{j} \leq 2$ for any $i \neq j$. If there exist C_{i} and C_{j} such that $C_{i} \cdot C_{j}=2$, then $\left(C_{i}+C_{j}\right)^{2}=0, C_{i}+C_{j} \in|m K|$ for some integer m. Hence $C=C_{i} \cup C_{j}$ is an affine A_{1} curve, this is because if C_{k} is another irreducible component of C and assume it intersects with C_{i}, then it must be an irreducible component of C_{j}, which contradicts to C_{j} being irreducible. Otherwise, we will have $C_{i}^{2}=-2$ for each i and $C_{i} \cdot C_{j} \leq 1$ for $i \neq j$. By [1, Lemma 2.21], we know C is an $A D E$ or affine $A D E$ curve.

5 Proof of Theorems 8 and 9

Proof of Theorem 8. If the nine blowup points in \mathbb{P}^{2} are in general position, then for any $\alpha \in \Phi_{9}$, we have $h^{0}(X, O(\alpha))=0$ [12]. Since $K \cdot K=0$, we also have $K-\alpha \in \Phi_{9}$ and therefore $h^{2}(X, O(\alpha))=0$ by Serre duality. However, the Riemann-Roch formula gives $\chi(X, O(\alpha))=1+\frac{\alpha^{2}-\alpha K}{2}=0$ and therefore $h^{1}(X, O(\alpha))=0$. For the imaginary roots $m K^{\prime} \mathrm{s}$, from [12, Lemma 4 and Proposition 11], we have $h^{0}(X, O(m K))=0$ and $h^{0}(X, O(-m K))=$ 1 for $m \geq 1$. By Serre duality and Riemann-Roch formula, we have $h^{1}(X, O(m K))=0$ for any imaginary root $m K$. Hence $\mathcal{E}_{0}^{\hat{E}_{8}}$ is totally nondeformable.

Conversely, if $\mathcal{E}_{0}^{\hat{E}_{8}}$ is totally nondeformable, then X has no (possibly reducible) (-2)-curve, hence no ($-n$)-curve with $n \geq 2$. By [16, Proposition 10], this implies the
nine blowup points are nonspecial with respect to Cremona transformations. Also from $h^{1}(X, O(m K))=0$ for any imaginary root $m K$, we obtain $h^{0}(X, O(-K))=1$, we have a unique cubic curve in \mathbb{P}^{2} passing through all of the blow-up points. Hence, the nine blow-up points in \mathbb{P}^{2} are in general position.

Proof of Theorem 9. (i) We have $h^{1}(X, O(-m K))=h^{0}(X, O(-m K))-1$ for any m by Riemann-Roch formula. So $\mathcal{E}_{0}^{\hat{E}_{8}}$ is deformable in $(-m K)$-direction if and only if $h^{0}(X, O(-m K))=2$.

Let $F_{0} \in|-K|$, then by [2, Proposition 2.2], X admits an elliptic fibration with a multiple fiber of multiplicity m if and only if $O_{F_{0}}\left(F_{0}\right)$ is of order m in $\operatorname{Pic}\left(F_{0}\right)$. But $O_{F_{0}}\left(m F_{0}\right) \cong O_{F_{0}}$ if and only if $h^{0}\left(O_{F_{0}}\left(m F_{0}\right)\right)=1$ as $O_{F_{0}}\left(m F_{0}\right)$ is topologically trivial. By the exact sequence

$$
0 \longrightarrow O_{X} \longrightarrow O_{X}\left(m F_{0}\right) \longrightarrow O_{F_{0}}\left(m F_{0}\right) \longrightarrow 0
$$

together with $h^{1}\left(X, O_{X}\right)=0$, we know $h^{0}\left(O_{X}\left(m F_{0}\right)\right)=1+h^{0}\left(O_{F_{0}}\left(m F_{0}\right)\right)$. So $m=\min$ $\left\{n: h^{0}\left(O_{F_{0}}\left(n F_{0}\right)\right)=1\right\}=\min \left\{n: h^{0}(X, O(-n K))=2\right\}$.
(ii) If X has an $A D E$ curve C of type \mathfrak{g}, we can use it to construct a fully deformable \mathfrak{g}-subbundle of $\mathcal{E}_{0}^{\hat{E}_{8}}$ as in Section 3.2. When C is maximal, then this \mathfrak{g}-subbundle is not contained in any other fully deformable Lie algebra subbundle of $\mathcal{E}_{0}^{\hat{E}_{8}}$.

Conversely, if $\mathcal{E}_{0}^{\hat{E}_{8}}$ is maximal \mathfrak{g}-deformable, then we can find a base $\Delta \subset \Phi_{\hat{E}_{8}}$ of \mathfrak{g} such that $h^{1}(X, O(\alpha)) \neq 0$ for every $\alpha \in \Delta$. Since $\chi(O(\alpha))=1+\frac{\alpha^{2}-\alpha \cdot K}{2}=0$, we must have $h^{0}(O(\alpha)) \neq 0$ or $h^{2}(O(\alpha))=h^{0}(O(K-\alpha)) \neq 0$, that is either α or $K-\alpha$ is effective. Hence, there must exist some integers m 's such that $\alpha+m K$ is effective because $-K$ is effective, we denote the largest such m as m_{α}.

We claim that for every $\alpha \in \Delta, C_{\alpha} \in\left|\alpha+m_{\alpha} K\right|$ is an irreducible (-2)-curve. If so, then $C=\bigcup_{\alpha \in \Delta} C_{\alpha}$ is a maximal $A D E$ curve of type \mathfrak{g}. If there exists reducible C_{α}, we write $C_{\alpha}=\cup D_{i}$. Then each D_{i} is perpendicular to K as $-K$ is nef and $C_{\alpha} \cdot K=0$. Since $C_{\alpha}+K$ is not effective, every $D_{i}+K$ is also not effective and $D_{i} \notin|-K|$. Hence $D_{i}^{2}=-2$ for any i as $D_{i}^{2}=0$ will imply $D_{i} \in|-K|$. We know C_{α} is connected, this is because if C_{α} is not connected, then one of its connected component must have self-intersection zero from $C_{\alpha}^{2}=-2$, which contradicts to $C_{\alpha}+K$ is not effective. Hence $C=\bigcup_{\alpha \in \Delta} C_{\alpha}$ is an (affine) $A D E$ curve by Lemma 16. It is obvious that this curve strictly contains a \mathfrak{g}-curve, which contradicts to $\mathcal{E}_{0}^{\hat{E}_{8}}$ being maximal \mathfrak{g}-deformable.
(iii) The proof is similar to (ii).

Remark 17. If X_{9} admits an elliptic fibration, then we can find m such that $h^{1}\left(X_{9}, O(-m K)\right) \neq 0$. Conversely, if $h^{1}\left(X_{9}, O(-m K)\right) \neq 0$, we need to add the condition of
$-K$ being nef to show that X admits an elliptic fibration. To see this, we take x_{1}, \ldots, x_{5} to be five points on a line $l \subset \mathbb{P}^{2}$, and another four generic points (not on l) x_{6}, \ldots, x_{9} in \mathbb{P}^{2}. Then we have an one parameter family of conics C_{t} 's passing through these four points. If we blow up \mathbb{P}^{2} at these nine points and denote the strict transforms of l and C_{t} with same notations, then $l^{2}=-4, C_{t}^{2}=0$. Moreover, $C_{t}+l \in|-K|$ and $h^{0}\left(X_{9}, O(-K)\right)=2$. But $-K$ is not nef as $(-K) \cdot l=-2$, which implies that X_{9} is not elliptic.

From the above, we can easily deduce similar results for the E_{n}-bundle $\mathcal{E}_{0}^{E_{n}}$ over X_{n} when $n \leq 8$, namely
(i) $\mathcal{E}_{0}^{E_{n}}$ is totally nondeformable if and only if the n blowup points in \mathbb{P}^{2} are in general position.
(ii) When $-K_{X_{n}}$ nef, $\mathcal{E}_{0}^{E_{n}}$ is maximal \mathfrak{g}-deformable if and only if X_{n} has a maximal \mathfrak{g} curve.

Acknowledgement

We are grateful to R. Friedman, E. Looijenga, and J.J. Zhang for many useful comments and discussions.

Funding

The work of the second author was supported by a research grant from the Research Grants Council of the Hong Kong Special Administrative Region, China (reference No. 401411).

References

[1] Barth, W., C. Peters, and A. Van de Ven. Compact Complex Surfaces. Berlin, Heidelberg, New York, Tokyo: Springer, 1984.
[2] Cantat, S. and I. Dolgachev. "Rational surfaces with a large group of automorphisms." Journal of the American Mathematical Society 25, no. 3 (2012): 863-905.
[3] Chen, Y. X. "Affine E_{8} basic representation bundles over rational surfaces with $c_{1}^{2}=0$." The Asian Journal of Mathematics (to appear).
[4] Chen, Y. X. and N. C. Leung. " $A D E$ bundles over surfaces with $A D E$ singularities." International Mathematics Research Notices 2013. doi: 10.1093/imrn/rnt065.
[5] Donagi, R. "Principal bundles on elliptic fibrations." The Asian Journal of Mathematics 1, no. 2 (1997): 214-23.
[6] Donagi, R. "Taniguchi lecture on Principal bundles on elliptic fibrations." (1998): preprint arXiv: hep-th/9802094.
[7] Friedman, R. Algebraic Surfaces and Holomorphic Vector Bundles. New York: Springer, 1988.
[8] Friedman, R., J. W. Morgan, and E. Witten. "Vector bundles and F-theory." Communications in Mathematical Physics 187, no. 3 (1997): 679-743.
[9] Fujimoto, Y. "On rational elliptic surfaces with multiple fibers." Publications of the RIMS, Kyoto University, no. 26 (1990): 1-13.
[10] Heckman, G. and E. Looijenga. "The Moduli Space of Rational Elliptic Surfaces." Algebraic Geometry 2000, Azumino (Hotaka), 185-248. Advanced Studies in Pure Mathematics 36. Tokyo: Mathematical Society of Japan, 2002.
[11] Kac, V. G. Infinite Dimensional Lie Algebras, 3rd ed. Cambridge: Cambridge University Press, 1994.
[12] Leung, N. C., M. Xu, and J. J. Zhang. "Kac-Moody \tilde{E}_{k}-bundles over elliptic curves and del Pezzo surfaces with singularities of type A." Mathematische Annalen 352, no. 4 (2012): 80528.
[13] Leung, N. C. and J. J. Zhang. "Moduli of bundles over rational surfaces and elliptic curves I: simply laced cases." Journal of the London Mathematical Society 80, no. 3 (2009): 750-70. 05
[14] Leung, N. C. and J. J. Zhang. "Moduli of bundles over rational surfaces and elliptic curves II: non-simply laced cases." International Mathematics Research Notices 2009, no. 24 (2009): 4597-625.
[15] Miranda, R. "Persson's list of singular fibers for a rational elliptic surface." Mathematische Zeitschrift 205, no. 1 (1990): 191-211.
[16] Nagata, M. "Rational surfaces, II." Memoirs of the College of Science, University of Kyoto, Series A, Mathematics 33, no. 2 (1960): 271-93.
[17] Persson, U. "Configuration of Kodaira fibers on rational elliptic surfaces." Mathematische Zeitschrift 205, no. 1 (1990): 1-47.
[18] Xu, M. and J. J. Zhang. "G-bundles over elliptic curves for non-simply laced Lie groups and configurations of lines in rational surfaces." Pacific Journal of Mathematics 261, no. 2 (2013): 497-510.

