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When X = Xn is a blowup of P
2 at n points x1, . . . , xn with n≤ 9, there is a canonical

(affine) Lie algebra bundle E En
0 over it, where E9 is the affine E8. In this paper, we will

give a detail study of the relationship between the geometry of Xn and the deformability

of E En
0 .

1 Introduction

A rational surface is a surface birationally equivalent to the projective plane, its minimal

model is the projective plane P
2 or the Hirzebruch surface Fm for m = 0 or m ≥ 2. In this

paper, we consider X = Xn, a blowup of P
2 at n points x1, . . . , xn with n≤ 9.

When n≤ 8, 〈KXn〉⊥ ⊂ Pic(Xn) is isomorphic to ΛEn, the root lattice of the simple

Lie algebra En, then we have a root system Φn of En and we can associate a Lie algebra

bundle E En
0 over Xn [4, 13, 14],

E En
0 := O⊕n

X ⊕
⊕
α∈Φn

OX(α).

By restriction, we have an En-bundle over any anti-canonical curve Σ in Xn. Note that

Σ is always an elliptic curve. For a fixed elliptic curve Σ , the above construction gives a
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2 Y. Chen and N. C. Leung

bijection between del Pezzo surfaces containing Σ and En-bundles over Σ [5, 6, 8, 13, 18].

Such an identification was predicted by the F-theory/string duality in physics [8]. This

was generalized to all simple Lie algebras in [13, 14].

When n= 9, X9 is not Fano and E9 = Ê8 is an affine Lie algebra. Corresponding

results for the Ê8-bundle over X9 are obtained in [12].

In this paper, we explain how the geometry of X9 can be reflected by the deforma-

bility of the Ê8-bundle E Ê8
0 over it. Similar results for Xn and E En

0 with n≤ 8 can be easily

deduced from this case. Among other things, we obtained the following results.

Theorem 1 (Theorem 8). E Ê8
0 is totally nondeformable if and only if the nine blowup

points in P
2 are in general position. �

Theorem 2 (Theorem 9). Suppose −KX9 is nef, then

(i) X9 admits an elliptic fibration with a multiple fiber of multiplicity m

(m ≥ 1) if and only if E Ê8
0 is deformable in (−mK)-direction but not in

(−m + 1)K-direction.

(ii) X9 has a (maximal) ADE curve C of type g if and only if E Ê8
0 is (maximal) Q1

g-deformable.

(iii) X9 has a (maximal) affine ADE curve C of type ĝ if and only if E Ê8
0 is

(maximal) ĝ-deformable. �

Here ADE means Lie algebras of types An, Dn, E6, E7 and E8, where n can be any nature

numbers.

The organization of this paper is as follows. Section 2 gives the construction of

the (affine) ADE Lie algebra bundles over Xn. In Section 3, we state the definition of

deformability and the main theorems. Section 4 studies the negative curves in X9. The

proofs of the main theorems are in Section 5.

2 En-Bundle Over Xn with n≤ 9

The Picard group Pic(Xn) ∼= H2(Xn, Z) is a rank n+ 1 lattice with generators h, l1, . . . , ln,

where h is the class of lines in P
2 and li is the exceptional class of the blow-up at xi.

So h2 = 1 = −l2
i and h · li = 0 = li · l j, i �= j. Thus, H2(Xn, Z) ∼= Z

1,n. The canonical class is

KXn = −3h + l1 + · · · + ln. Denote

Φn := {α ∈ H2(Xn, Z)|α2 = −2, α · K = 0}.
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Deformability of Lie Algebra Bundles and Geometry of Rational Surfaces 3

Then Φn is a root system of type En when n≤ 8 and Φ9 is an affine real root system

of Ê8 (also denoted as E9). More explicitly, ΦÊ8
:= Φ9 ∪ {mKX9 |m �= 0, m ∈ Z} forms a root

system of (untwisted) affine E8-type (i.e., Ê8-type) with Φre
Ê8

:= Φ9 the set of real roots

and Φim
Ê8

:= {mKX9 |m �= 0, m ∈ Z} the set of imaginary roots (see [10] or [12]). We have an

Ê8-bundle E Ê8
0 over X9:

E Ê8
0 = O⊕9 ⊕

⊕
α∈Φre

Ê8

O(α)
⊕

β∈Φim
Ê8

O(β).

The Lie algebra structure on E Ê8
0 is explained in [12]. When n≤ 8, E En

0 = O⊕n ⊕⊕
α∈Φn

O(α)

is an En-bundle over Xn.

Remark 3. We can construct an Ê8-bundle over a blowup of Fm (Hirzebruch surface) at

eight points similarly [3]. �

Definition 4. A curve C = ∪Ci in a surface X is called an ADE (respectively, affine ADE )

curve of type g (respectively, ĝ) if each Ci is a smooth (−2)-curve in X and the dual graph

of C is a Dynkin diagram of the corresponding type. �

Suppose C = ∪Ci is an (affine) ADE curve of type g in Xn, then Ci’s generates a

subroot system Φ inside Φn since Ci · K = 0 for every i. Therefore, the corresponding

bundle Eg
0 is a Lie algebra subbundle of E En

0 .

Suppose Eg
0 is a g-bundle over a surface X corresponding to a root system Λg ⊂

Pic(X) of type g.

Definition 5. A Lie algebra subbundle F of Eg
0 is called strict, if there exists a sub-

root lattice Λ of Λg such that F is a direct sum of line bundles corresponding to the

roots in Λ. �

In order to describe E Ê8
0 as a central extension of a loop Lie algebra bundle over

X9, we pick any smooth (−1)-curve l in X9, then we have

E Ê8
0

∼= E E8
0 ⊗

(⊕
n∈Z

O(nKX9)

)
⊕ O,

where E E8
0 is the pull-back of the E8-bundle over X8 via π : X9 → X8, the blow down map

of l. The next proposition describes the converse.
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4 Y. Chen and N. C. Leung

Proposition 6. When E Ê8
0 is a central extension of a loop E8-subbundle over X for some

strict E8-bundle F E8
0 over X9, that is,

E Ê8
0

∼=F E8
0 ⊗

(⊕
n∈Z

O(nKX9)

)
⊕ O,

as a Lie algebra bundle isomorphism, then there is a unique (possibly reducible) (−1)-

curve l in X such that F E8
0 is constructed from those α ∈ Λre satisfying α · l = 0.

Proof. Denote ΔE8 = {α1, . . . , α8} as a root base of the corresponding E8 Lie algebra from

F E8
0 , we need to find a unique (−1)-curve l in X such that l · αi = 0 for any αi in ΔE8 .

Since {±1} × W(Ê8) acts on the set of all root bases of Ê8 simply transitively [11] and

W(Ê8) acts on the set of (−1)-curves [12], we only need to find l for one particular root

base of any E8 in Ê8 and show that such a l is unique. For example, if we take α1 =
h − l1 − l2 − l3, αk = lk−1 − lk for k= 2, . . . 8, then we can take l = l9 and by the condition

that l · αi = 0, l2 = −1 = l · K, we know such a l is unique. ��

3 Deformability of such E Ê8
0

In this section, we will describe relationships between the geometry of X9 and the

deformability of E Ê8
0 .

Recall when Pic(X) contains a lattice Λ isomorphic to a root lattice Λg, then we

have a g-bundle E over X [5, 8, 12–14].

E := O⊕r ⊕
⊕
α∈Φ

O(α).

Infinitesimal deformations of holomorphic structures on E are parameterized by

H1(X, End(E)), and those which also preserve the Lie algebra structure are parame-

terized by H1(X, ad(E)) = H1(X, E) since g is simple. Hence we introduce the following

definitions.

Definition 7.

(i) E is called fully deformable if there exists a base Δ ⊂ Φ such that

H1(X, O(α)) �= 0 for any α ∈ Δ.

(ii) E is called h-deformable if there exists a strict h Lie algebra subbundle

Eh ⊆ E which is fully deformable.

(iii) E is called deformable in α-direction for α ∈ Φ if H1(X, O(α)) �= 0.

(iv) E is called totally nondeformable if H1(X, O(α)) = 0 for any α ∈ Φ. �
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Deformability of Lie Algebra Bundles and Geometry of Rational Surfaces 5

After the definition of deformability, we state the main results of this paper in

the following two theorems.

Theorem 8. E Ê8
0 over X9 is totally nondeformable if and only if the nine blowup points

in P
2 are in general position. �

Let us recall some facts about elliptic fibrations on X9 [15, 17]. Any elliptic fibra-

tion on X9 must be relatively minimal, that is, there is no (−1)-curves in any of its

fibrations, as there is no elliptic fibration on X8, this is because the Euler characteristic

of any elliptic surface is a multiple of 12 [7] and also χ(X9) = 12. There is at most one

multiple fiber [9], say of multiplicity m. This happens precisely when there exists an

irreducible pencil of degree 3m in P
2 with nine base points, each of multiplicity m and

X9 is the blow up of P
2 at these nine points. We can characterize the existence of such an

elliptic fibration on X9 in terms of deformability of E Ê8
0 along imaginary root directions.

For instance, X9 with −KX9 nef admits an elliptic fibration (without multiple fiber) if and

only if E Ê8
0 is deformable in (−mK)-direction for some m ∈ N (with m = 1). Deformability

of E Ê8
0 can also detect the existence of ADE or affine ADE curves in X.

Theorem 9. Suppose −KX9 is nef, then

(i) X9 admits an elliptic fibration with a multiple fiber of multiplicity m

(m ≥ 1) if and only if E Ê8
0 is deformable in (−mK)-direction but not in

(−m + 1)K-direction.

(ii) X9 has an (maximal) ADE curve C of type g if and only if E Ê8
0 is (maximal)

g-deformable.

(iii) X9 has a (maximal) affine ADE curve C of type ĝ if and only if E Ê8
0 is

(maximal) ĝ-deformable. �

Here, we say an ADE or affine ADE curve C is maximal if it is not proper con-

tained in another ADE or affine ADE curve. We say E Ê8
0 is maximal g (or ĝ) deformable

if there does not exist another fully deformable (affine) Lie algebra subbundle of E Ê8
0

containing this g (or ĝ) bundle.

4 Negative Curves in X9

In this section, we study negative rational curves in X9. We can get corresponding results

for Xn with n≤ 8 from this n= 9 case.
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6 Y. Chen and N. C. Leung

A divisor D in X is called a (−m)-class if D · D = −m and D · K = m − 2. An effec-

tive (−m)-class is called a (−m)-curve. Note when D =∑
niCi is a (−m)-curve, we will

also denote the corresponding curve ∪Ci as D.

Use the notations in the above section, every effective divisor D = ah −∑9
i=1 aili ∈

Pic(X9) must have a= D · h≥ 0. It is well known that all (−1)-classes are effective, and

there are infinite number of them in X9. There are also infinite number of (−2)-classes,

but whether they are effective or not depends on the positions of the nine blow-up

points.

Definition 10. Let x1, . . . , xn be n distinct points in P
2. These n points are said to be

nonspecial with respect to Cremona transformations if for any Cremona transformation

T with centers within xi’s, the points y1, . . . , yn corresponding to xi’s under T are distinct

points such that no three points among y1, . . . , yn are collinear. �

Definition 11 ([12]). Let x1, . . . , x9 be nine points in P
2, we say they are in general position

if they satisfy the following three conditions:

(i) they are distinct points in P
2;

(ii) they are nonspecial with respect to Cremona transformations;

(iii) there is a unique cubic curve passing through all of them. �

The conditions (i) and (ii) mean that any eight of these nine points are in general

position. That is, no lines pass through three of them, no conics pass through six of

them, and no cubic curves pass through eight of them with one of the eight points being

a double point.

If the 9 blowing up points are in general position, then there is no effective

(−2)-class in X9 [12]. In general, there are at most finite number of (−m)-curves with

m ≥ 3.

Lemma 12. Let D = ah −∑9
i=1 aili be a (−m)-curve in X9 with m ≥ 3, then

(i) m ≤ 9;

(ii) 0 ≤ a≤ 3;

(iii) −1 ≤ ai ≤ 2 for all i, and there exists some j with aj = 1;

(iv) there are finite number of such curves. �

Proof. (i) Since D is a (−m)-curve, D · D = −m and D · K = m − 2, that is,

∑
a2

i = a2 + m and
∑

ai = 3a + m − 2.
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Deformability of Lie Algebra Bundles and Geometry of Rational Surfaces 7

From the above two equations, we have

(3a + m − 2)2 =
(∑

ai

)2
≤ 9

(∑
a2

i

)
= 9(a2 + m).

Thus, a≤ −m2+13m−4
6(m−2)

, also a≥ 0 since D is effective, hence m ≤ 12.

When m ≥ 10, we must have a= 0, that means
∑

a2
i = m and

∑
ai = m − 2, hence∑

a2
i −∑

ai = 2, which implies every ai satisfies |ai| ≤ 1 and there exists exactly one ai

with ai = −1. But we also have
∑

ai = m − 2 ≥ 8, which is impossible since we only have

nine ai’s.

(ii) When m ≥ 4, a≤ −m2+13m−4
6(m−2)

≤ 8
3 < 3. When m = 3, a≤ −m2+13m−4

6(m−2)
= 13

3 < 5. Hence

we only need to prove there is no (−3)-curve with a= 4.

Suppose not, then there exists ai’s such that
∑

a2
i = 19 and

∑
ai = 13. From∑

a2
i −∑

ai = 6, we know −2 ≤ ai ≤ 3. If there is any ai with ai = 3, then the other ai’s

can only be 0 or 1, but we have
∑

ai = 13 and there is only nine ai’s, which is impossible.

Hence −2 ≤ ai ≤ 2, from
∑

a2
i −∑

ai = 6, we can have at most three ai’s equal to 2, which

is also impossible since
∑

ai = 13.

(iii) From
∑

a2
i = a2 + m,

∑
ai = 3a + m − 2 and 0 ≤ a≤ 3, we have

∑
ai = 3a + m − 2 ≥ a2 + m − 2 =

∑
a2

i − 2.

Hence −1 ≤ ai ≤ 2. And there are three cases:

Case 1, one ai equal to 2, the others equal to 0 or 1;

Case 2, one ai equal to −1, the others equal to 0 or 1;

Case 3, all ai’s are equal to 0 or 1.

By
∑

ai = 3a + m − 2 ≥ 1, we know in case 2 and case 3, there must exist some ai

with ai = 1. In case 1, if there is no ai with ai = 1, then D = ah − 2l j. From
∑

a2
i = a2 + m,∑

ai = 3a + m − 2, we have a= 0, m = 4, hence D = −2l j, which is not an effective divisor.

(iv) It is obvious from the above results. �

From this lemma, we can easily obtain the following as a corollary.

Corollary 13. If there exists a (−m)-curve in X9 with m ≥ 3, then there also exists a

(−m + 1)-curve in X9.

Proof. If D ∈ |ah −∑
aili| is a (−m)-curve in X9 with m ≥ 3, then there exists j with

aj = 1 by (iii) of Lemma 12. It is easy to check that D + l j is a (−m + 1)-curve in X9. ��

If the nine blowing up points are in general position, then there is no (−2)-curve

in X9, as a consequence, there is also no (−m)-curve in X9 with m ≥ 3. The following
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8 Y. Chen and N. C. Leung

result shows that this happens exactly when X9 is almost Fano. We include a proof here

as we could not find it in the literatures.

Lemma 14. X9 has no (−m)-curve with m ≥ 3 if and only if −KX9 is nef. �

Proof. If −K is nef, then from C · K−1 = 2 − m ≥ 0 for any (−m)-curve C , we know m ≤ 2.

Conversely, assume X9 has no (−m)-curve with m ≥ 3. Since X9 is a blowup of

P
2 at nine points {xi}9

i=1, we have an effective anti-canonical divisor D. Recall when D ·
Σ < 0 for any irreducible curve Σ in X, Σ must be a component of D. So if D is an

irreducible curve or a affine ADE curve, then D is nef. We denote the image of D in P
2

as C , which is a cubic curve passing through these 9 blowing up points.

(i) If C is smooth, then we are done as D ∼= C and therefore irreducible.

(ii) If C is reduced and irreducible, then it must be a nodal or cuspidal cubic.

If {xi}9
i=1 ∩ sing(C ) = ∅ (sing(C ) means the set of singular points on C ), then

D ∼= C and we are done. Otherwise, say x1 ∈ sing(C ) and we write the strict

and proper transformations of C in Blx1(P
2) as C1 and C1 + E, respectively.

Then the remaining xi’s must have exactly 1 point (respectively, 7 points)

lying on E (respectively, C1) in order to avoid having (−m)-curve with

m ≥ 3. Thus, D is a affine ADE curve of type Â1 or I I I (Â1) for C being a

nodal or cuspidal, respectively.

(iii) If C is reduced and reducible, then C = B ∪ H0 or H1 ∪ H2 ∪ H3 with B and

Hj’s are conic and distinct lines in P
2. As before, we must have exactly 6

xi’s on B and 3 xi’s on each Hj and none on sing(C ). Thus, D ∼= C is a affine

ADE curve of type Â1, Â2, I I I (Â1), or V I (Â2).

(iv) If C is nonreduced, C = 3H , D must have a (−m)-curve with m ≥ 3.

Hence D is an irreducible curve or a affine ADE curve, we are done. �

In the following two lemmas, we will use [1, Lemma 2.21] to give a criteria of

a curve in Xn being an ADE or affine ADE curve. Lemma 2.21 can be reformulated as

follows: if C =⋃r
i=1 Ci is a connected curve in a surface X satisfying: (i) C 2

i = −2 and Ci ·
KX = 0 for any i; (ii) Ci · C j ≤ 1 for any i �= j; (iii) (Ci · C j)r×r ≤ 0. Then when (Ci · C j)r×r < 0,

C is an ADE curve, otherwise, it is an affine ADE curve.

Lemma 15. Suppose −KXn (n≤ 8) is nef. Let C = ∪Ci be a connected curve in Xn. If C ·
KXn = 0, then C is an ADE curve. �
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Deformability of Lie Algebra Bundles and Geometry of Rational Surfaces 9

Proof. Since −KXn is nef, C ·KXn = 0 implies Ci · KXn = 0 for each i, that is, [Ci] ∈
〈K〉⊥ ∼= ΛEn. We have C 2

i < 0 and (Ci + C j)
2 < 0 for any i and j. Together with the genus for-

mula, we have C 2
i = −2 and Ci · C j ≤ 1 for i �= j. By [1, Lemma 2.21], we know C is an ADE

curve. �

For n= 9 case, we have the following lemma.

Lemma 16. Suppose −KX9 is nef. Let C = ∪Ci be a connected curve in X9. If C · KX9 = 0

and Ci + KX9 is not effective for each i, then C is a smooth elliptic curve, an ADE curve

or an affine ADE curve. �

Proof. Since −KX9 is nef, C · KX9 = 0 implies Ci · KX9 = 0 for each i, that is, [Ci] ∈
〈KX9〉⊥ ∼= ΛE9 . We have C 2

i ≤ 0 and (Ci + C j)
2 ≤ 0 for any i and j. Moreover, for any effec-

tive divisor D ∈ 〈KX9〉⊥, if D2 = 0, then D ∈ |mKX9 | for some nonzero integer m. From

C 2
i ≤ 0 and genus formula, we have C 2

i = −2 or 0.

If there exists Ci such that C 2
i = 0, then Ci ∈ |mK| for some nonzero integer m.

Since Ci + KX9 is not effective, we know m = −1, that is, Ci ∈ | − K|. If C is not irreducible,

then there exists C j which intersects Ci, which is impossible. So C = Ci ∈ | − K| is an

elliptic curve or an affine A0 curve by Lemma 14.

If C 2
i = −2 for any i, then Ci · C j ≤ 2 for any i �= j. If there exist Ci and C j such that

Ci · C j = 2, then (Ci + C j)
2 = 0, Ci + C j ∈ |mK| for some integer m. Hence C = Ci ∪ C j is an

affine A1 curve, this is because if Ck is another irreducible component of C and assume

it intersects with Ci, then it must be an irreducible component of C j, which contradicts

to C j being irreducible. Otherwise, we will have C 2
i = −2 for each i and Ci · C j ≤ 1 for

i �= j. By [1, Lemma 2.21], we know C is an ADE or affine ADE curve. �

5 Proof of Theorems 8 and 9

Proof of Theorem 8. If the nine blowup points in P
2 are in general position, then for

any α ∈ Φ9, we have h0(X, O(α)) = 0 [12]. Since K · K = 0, we also have K − α ∈ Φ9 and

therefore h2(X, O(α)) = 0 by Serre duality. However, the Riemann–Roch formula gives

χ(X, O(α)) = 1 + α2−αK
2 = 0 and therefore h1(X, O(α)) = 0. For the imaginary roots mK’s,

from [12, Lemma 4 and Proposition 11], we have h0(X, O(mK)) = 0 and h0(X, O(−mK)) =
1 for m ≥ 1. By Serre duality and Riemann–Roch formula, we have h1(X, O(mK)) = 0 for

any imaginary root mK. Hence E Ê8
0 is totally nondeformable.

Conversely, if E Ê8
0 is totally nondeformable, then X has no (possibly reducible)

(−2)-curve, hence no (−n)-curve with n≥ 2. By [16, Proposition 10], this implies the
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10 Y. Chen and N. C. Leung

nine blowup points are nonspecial with respect to Cremona transformations. Also from

h1(X, O(mK)) = 0 for any imaginary root mK, we obtain h0(X, O(−K)) = 1, we have a

unique cubic curve in P
2 passing through all of the blow-up points. Hence, the nine

blow-up points in P
2 are in general position. �

Proof of Theorem 9. (i) We have h1(X, O(−mK)) = h0(X, O(−mK)) − 1 for any m by

Riemann–Roch formula. So E Ê8
0 is deformable in (−mK)-direction if and only if

h0(X, O(−mK)) = 2.

Let F0 ∈ | − K|, then by [2, Proposition 2.2], X admits an elliptic fibration with

a multiple fiber of multiplicity m if and only if OF0(F0) is of order m in Pic(F0). But

OF0(mF0) ∼= OF0 if and only if h0(OF0(mF0)) = 1 as OF0(mF0) is topologically trivial. By

the exact sequence

0 −→ OX −→ OX(mF0) −→ OF0(mF0) −→ 0

together with h1(X, OX) = 0, we know h0(OX(mF0)) = 1 + h0(OF0(mF0)). So m = min

{n: h0(OF0(nF0)) = 1} = min{n: h0(X, O(−nK)) = 2}.
(ii) If X has an ADE curve C of type g, we can use it to construct a fully

deformable g-subbundle of E Ê8
0 as in Section 3.2. When C is maximal, then this

g-subbundle is not contained in any other fully deformable Lie algebra subbundle of E Ê8
0 .

Conversely, if E Ê8
0 is maximal g-deformable, then we can find a base Δ ⊂ ΦÊ8

of

g such that h1(X, O(α)) �= 0 for every α ∈ Δ. Since χ(O(α)) = 1 + α2−α·K
2 = 0, we must have

h0(O(α)) �= 0 or h2(O(α)) = h0(O(K − α)) �= 0, that is either α or K − α is effective. Hence,

there must exist some integers m’s such that α + mK is effective because −K is effective,

we denote the largest such m as mα.

We claim that for every α ∈ Δ, Cα ∈ |α + mα K| is an irreducible (−2)-curve. If so,

then C =⋃
α∈Δ Cα is a maximal ADE curve of type g. If there exists reducible Cα, we write

Cα = ∪Di. Then each Di is perpendicular to K as −K is nef and Cα · K = 0. Since Cα + K

is not effective, every Di + K is also not effective and Di /∈ | − K|. Hence D2
i = −2 for any

i as D2
i = 0 will imply Di ∈ | − K|. We know Cα is connected, this is because if Cα is not

connected, then one of its connected component must have self-intersection zero from

C 2
α = −2, which contradicts to Cα + K is not effective. Hence C =⋃

α∈Δ Cα is an (affine)

ADE curve by Lemma 16. It is obvious that this curve strictly contains a g-curve, which

contradicts to E Ê8
0 being maximal g-deformable.

(iii) The proof is similar to (ii). �

Remark 17. If X9 admits an elliptic fibration, then we can find m such that

h1(X9, O(−mK)) �= 0. Conversely, if h1(X9, O(−mK)) �= 0, we need to add the condition of
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−K being nef to show that X admits an elliptic fibration. To see this, we take x1, . . . , x5 to

be five points on a line l ⊂ P
2, and another four generic points (not on l) x6, . . . , x9 in P

2.

Then we have an one parameter family of conics Ct’s passing through these four points.

If we blow up P
2 at these nine points and denote the strict transforms of l and Ct with

same notations, then l2 = −4, C 2
t = 0. Moreover, Ct + l ∈ | − K| and h0(X9, O(−K)) = 2. But

−K is not nef as (−K) · l = −2, which implies that X9 is not elliptic. �

From the above, we can easily deduce similar results for the En-bundle E En
0 over

Xn when n≤ 8, namely

(i) E En
0 is totally nondeformable if and only if the n blowup points in P

2 are in

general position.

(ii) When −KXn nef, E En
0 is maximal g-deformable if and only if Xn has a maximal

g curve.
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