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Abstract Given any Kodaira curve C in a complex surface X, we construct a simply-laced
affine Lie algebra bundle £ over X. When p,(X) = 0, we construct deformations of holo-
morphic structures on € such that the new bundle is trivial over any ADE curve C’ inside C
and therefore descends to the singular surface obtained by contracting C’.

1 Introduction

Let X be a complex surface and A C Pic (X) be a sublattice. If A is isomorphic to the root
lattice A4 of a simple Lie algebra g, then we have a root system @ of g and we can associate
a Lie algebra bundle 53 over X [6,10,11]:

& = 0% & P ox(@).
acd
This can be generalized to the affine Lie algebrag [9].
There are many instances when this happens. Here we list the following three cases as
examples:

(1) When X, is a del Pezzo surface, namely a blowup of P? at n < 8 points in general
position (or P! x P1), (Kxn)l C Pic (X,) is isomorphic to Ag,. Thus we have an E,-
bundle over X,,. By restriction, we have an E,-bundle over any anti-canonical curve ¥
in X,,. Notice that X is always a genus one curve. For a fixed elliptic curve X, the above
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construction gives a bijection between del Pezzo surfaces containing ¥ and E, -bundles
over X [4,5,7,10,12,14]. Such an identification was predicted by the F-theory/string
duality in physics [7]. This was generalized to all simple Lie algebras in [10,11]. When
n =9, Xgisnot Fano and Eg = Eg is an affine Lie algebra. Corresponding results for
the £ g-bundle over Xg are obtained in [9].

(2) When X is the canonical resolution of a surface X with a rational double point of type
g, then the corresponding exceptional curve C = |J C; is an ADE curve of type g.
Therefore all these C; span a sublattice of Pic()? ) which is isomorphic to Ay, thus
giving a g-bundle £ over X. When p,(X) = 0, there exists a deformation £§ of &
such that &g is trivial over each C;, thus it can descend to the singular surface X [2].

(3) When X is a relatively minimal elliptic surface, Kodaira classified all possible singular
fibers (see e.g., [1]) and we call such a curve C = | J C; a Kodaira curve. Its irreducible
components C; span a sublattice of Pic (X) which is isomorphic to the root lattice of an
affine root system @ and therefore we can construct an affine Lie algebra bundle Eg
over X.

The motivations of this paper have three aspects. One is to generalize the results for ADE
bundles in [2] to affine ADE bundles (see Theorem 1 below). The second is the natural
question: if the del Pezzo surface X, (resp. Xo9) has a rational double point, does the E,,-
bundle (resp. Eg—bundle) still exist? For this question, Friedman and Morgan gave a positive
answer for del Pezzo surfaces [6]. In this paper, the authors will give a positive answer for
both cases using a very different method (see Remark 22). The third is the following question:
for a complex surface X with p, (X) = 0 and containing a Kodaira curve C, there is a natural
affine ADE bundle of the corresponding type over it, can we deform this bundle such that
it can descend to the singular surface obtained by contracting any ADE curve C’ inside C
(Remark 23)?

Theorem 1 (Lemma 13, Proposition 17 and Theorem 21) Let X be a complex surface with
pe = 0.If X has a Kodaira curve C = | J;_, C; of type g, then

(i) given any
,
(pc)i—g € ! (Xv @O(Ci))
i=0
with 5<PC,~ = 0 for every i, it can be extended to

0= @acor € 2 (X, P O@)

ae¢g
such that 5¢ := 8 +ad(¢) is a holomorphic structure on Eg . We denote the new bundle
as 55,' ;
(i1) the new holomorphic structure ﬁ(p is compatible with the Lie algebra structure on Eg ;
(iii) the new bundle Eg is trivial on C; if and only if

lclc] # 0 € H'(Ci. Oc (C1) = C;
(iv) there exists [¢c,] € HY (X, O(C})) such that [oc;lc;1 # 0.
The organization of this paper is as follows. Section 2 gives the construction of the (affine)

ADE Lie algebra bundles directly from (affine) ADE curves. In Sect. 3, we assume py (X) = 0.

@ Springer



Affine ADE bundles over surfaces with pg = 0

We construct deformations of the holomorphic structures on these bundles such that the new
bundles are trivial over irreducible components of the curve.

Notation for a holomorphic bundle (&, o) with & = P ; O(Dy), 9o means the 5—opgrator
for the direct sum holomorphic structure. If we construct a new holomorphic structure d,, on
&o, we denote the resulting bundle as &£,.

2 Affine ADE bundles from affine ADE curves
2.1 ADE and affine ADE curves

Definition 2 A curve C = |J C; in a surface X is called an ADE (resp. affine ADE) curve of
type g (resp. @) if each C; is a smooth (—2)-curve in X and the dual graph of C is a Dynkin
diagram of the corresponding type.

It is known that C is an ADE curve if and only if C can be contracted to a rational double
point. In this case, the intersection matrix (C; - C;) is negative definite [1].

If C is an affine ADE curve, then the intersection matrix (C; - C;) is non positive definite
and there exists n; (these are unique if we ask n; to be positive integers without common
integers) such that F := > n;C; satisfies F - F = 0. Dynkin diagrams of affine ADE types
are drawn as follows and the corresponding 7;C; are labelled in the pictures. ADE Dynkin
diagrams can be obtained by removing the node corresponding to Cy (Fig. 1).

Remark 3 We will also call a nodal or cuspidal rational curve with trivial normal bundle an
Ag curve.

Remark 4 By Kodaira’s classification of singular fibers of relative minimal elliptic surfaces,
every singular fiber is an affine ADE curve unless it is rational with a cusp, tacnode or
triplepoint (corresponding to type II or 111 (A1) or VI(A3) in Kodaira’s notation), which can
also be regarded as a degenerated affine ADE curve of type Ao, A} or Ay respectively. In
this paper, we will not distinguish affine ADE curves from their degenerated forms since they
have the same intersection matrices. We also call the affine ADE curves as Kodaira curves.

Definition 5 A bundle E is called an ADE (resp. affine ADE) bundle of type g (resp.g) if E
has a fiberwise Lie algebra structure of the corresponding type.

In the following two subsections, we will recall an explicit construction of the Lie algebra
g-bundle, loop Lie algebra Lg-bundle and the affine Lie algebra g-bundle from (affine) ADE
curves in X.

2.2 ADE bundles

Suppose C = |J;_; C; is an ADE curve of type g in X. We will construct the corresponding
ADE bundle & over X as follows [2].

Note the rank r of g equals the number of C;. We set & = {a = [Zle a,-Ci] €
H?*(X,Z)|a*> = —2}. Then ® is a simply-laced root system of g with a base A := {[C;]|i =
1,2, ...,r}. We have a decomposition ® = ®+ U &~ into positive and negative roots. We
define a bundle Ség’@ over X as follows:

g8 = 0% & (P o).

aed
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Here O(a) = O (37/_; a;C;) where @ = [>/_, a;C;]. There is an inner product (, ) on ®
defined by (, B) := —« - B, negative of the intersection form.
For every open chart U of X, we take xg to be a nonvanishing section of Oy («) and hlU

(1 < i < r) nonvanishing sections of O%r . Define a Lie algebra structure [, ] on 5(59 ')
such that {x,, @ € ®; h;, 1 <i <r}isthe Chevalley basis [8], i.e.,

@ [hY, WY1e=0,1<i, j<r.
o) Y, xle = (@, Ci)xY, 1 <i<r acd.
(©) [xY, xY 1o = hY is a Z-linear combination of 1Y .

(d) If «, B are independent roots, and 8 — pa, ..., B + g is the «-string through B, then

[x¢, xg 1o = 0if g = 0, otherwise [x, xf'lo = £(p + DxJ, 4.

1Cy
A/IL : e o o0
101 102 1Cn—2 lon—llcn
1Cy 1C,

Dn : o o o0
101 202 20n—3 20n—210n—1

1Cy
2Cs

Eg : ° ® ® °
1C4 20y 3C5 2C; 1Cs

2C7
Er: o—o—o—I—o—o—Q

1C4 20y 3Cs 4Cy 3Cs 2Cs 10y

3C%
ES : ® ® I

[ 4 @ @ L 4 @
1Cy 2C,7 3Cy, 4Cs5 5C4 6C5 4Cs 207

Fig. 1 Dynkin diagrams of affine ADE types
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Since g is a simply-laced Lie algebra, all the roots for g have the same length, we have any
a-string through B is of length at most 2. So (d) can be written as [xg, Xg]cp = na,ﬁxg_’_ﬂ,
where ny g = £1lifa+ B € @, otherwise ny g = 0. Itis easy to check that these Lie algebra
structures are compatible with different trivializations of Ség’q)) (see page 10 of [10] for more

details). Hence Ség “®) is aLie algebra bundle of type g over X.

2.3 Affine ADE bundles

Suppose C = Ji_, C; is an affine ADE curve of type g in X. We will construct the corre-

sponding affine ADE bundle £; of type g over X as follows.
First, we choose an extended root of g, say Cy, then g is corresponding to the Dynkin
diagram consists of those C; withi # 0, i.e.,

:={a=|> aC | € H (X, Z)oa* = -2
i£0

is the root system of g. As above, we have a g-bundle

£0Y = 0% & P 0.

aed
We define
e =P (s e 0mp))
nez
and
e = PEF? @ 0mF) @ 0.
nez
‘We know

bz :={a+nFlaecdn eZ}U{nFln €Z,n # 0}
is an affine root system and it decomposes into the union of positive and negative roots, i.e.,
ot U S
&5 = <I>§ U d)ﬁ’ where
ot = {Za,-ci € dsla; > 0 for all i}
= {Ol+nF|Ol ed,ne Zzo}U{a-i-anx ed ,ne Zzl}U{nFln € Zzl}

and @5 = —@% .

To describe the Lie algebra structures, we proceed as before, for every open chart U of X,
we take a local basis el.U of Ség’q)) lu (efj is just hﬁj or xal/ as above), efl]F of OnF)|y, ef.] of
O|y, compatible with the tensor product, for example, efl]F ® e% F= ef]n +m)F Then define

U U U, U —r1,U U U
[ei €nF>€j emF]Lg o = Leejloeiimp ey

U U U U U U _|l,u u U u U\, U
[ei e, p + Ae; €] emF—i—,ueC] = [ei . €; ]q}e<n+m)F+n8n+m‘ok (el. ,ej)ec.

9.0
(@)
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Here [, ]o is the Lie bracket on &% ® and k(x, y) = Tr(ad(x) ad(y)) is the Killing form
on g.

Lemma 6 The above (1) [resp. (2)] defines a fiberwise loop (resp. affine) Lie algebra struc-
ture which is compatible with any trivialization of SéLg’CD) (resp. Eég’®)).

Proof See Proposition 23 of [9]. m]

From the above lemma, we have the following result.

Proposition 7 If C is an affine ADE curve of type g in X, then SéLg‘qJ) (resp. Séa'q))) isa
loop (resp. affine) Lie algebra bundle of type Lg (resp.g) over X.

Note any C; with n; = 1 can be chosen as the extended root.

Proposition 8 The loop Lie algebra bundle (5(§Lg’ (D), [, 1Lg,®) does not depend on the choice
of the extended root.

Proof Suppose Cy (k # 0) is another root with ny = 1. We set

U=1{p= Zb,-Ci € HX(X,7)|p*> = -2
ik

Then W is a root system of g. As before, we construct the Lie algebra bundle Ség ) and
SéLg’\p) from V.

We denote oy = Zi#o n;iCi = F — Cp, the longest root in ®. For any o =
Zi#o ai(@)C; € @, ar(a) can only be 0, 1. Hence there is a bijection between ® and

W given by a +— B = o — ax(a) F. Then from the definition of EéLg’q)) and g(ng,\I/),

know they are the same as holomorphic vector bundles.
We compare the Lie brackets on them. We choose a local basis of Sél‘g’\l/) compatible

with those of 50(L9,<1>) and define [, 1, v similarly as [, 1,0, i.€.,

we

(i) when B =a € ® NW, we take xg = xq;
(ii) when B =« + F € W\, we take xg = xqeF;
(iii) when B =a — F € W™\ ®, we take xg = xqe_r;
(iv) take h; (i # 0,k) as before, take hg = —hy, as we want [xc,, X_c,lrg,w
[X—ao+Fs Xag—FlLg, -

(Lg, V) ~ o(Lg,®)
giheY) = glla®)

It is obvious [, I.g,w = [, 114, 0N o

For the affine case, we recall that the Killing form of g is the symmetric bilinear map
k:g x g —C defined by k(x, y) = Tr(ad(x) ad(y)). It is ad-invariant, that is for x, y, z €
g, k([x, y],2) = k(x, [y, z])-

Lemma 9 For any simple simply-laced Lie algebra g with a Chevalley basis {xq, o €
®; hi, 1 <i <r}andm*(g) the dual Coxeter number of g, we have

(1) k(h;,xy) =0 foranyi and o;
(ii) k(xq,xp) =0 foranya+ B #0;
(i) k(h;, hj) =2m*(g)(Ci, Cj);
(iv) k(xg, x—q) = 2m™(g) for any «.
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Proof Directly from the Killing form k being ad-invariant or see [13]. O

Proposition 10 The affine Lie algebra bundle (Séﬁ’q)) , [, I3, @) does not depend on the choice
of the extended root.

Proof Follow the notation in Proposition 8, but we will take
ho = —hg, +2m™*(g)e..

We will check that [, g.w = [, Ig.o on £ = &9

(a) when 1 =a1 + F, B =ar + F e U\ D, a1, 0p € P\ W we have
(g enF. hp,emrlgw = nutm,0k(hg,, hp,)ec,
which is the same with
[h—cienr, h—a,emFlg o = N8y pm ok(ha, hay)ec,

since k(hg,, hg,) = 2m™(9)(B1, B2) = 2m™ (@)(F — a1, F — a2) = k(hg,, hay)-
(b) For [h;enF, xqemFlg, o, automatically from k(h;, xo) = 0 and loop case.
(c) WhenB=a+ F e VT\®, € d\V,

[xpenF, x—pemrlg.w = hge(ntmyF + ndntm 0k(xp, x—_plec,
which is the same with
[xfae(n+l)F7 xae(mfl)F]/gf,CD = _hae(ner)F + 0+ 1)8n+m,0k(xa, X_q)ec,

by considering m + n = 0 and m + n # 0 separately.
(d) For [xq,enF, Xasemrlg o With a1 + o # 0, automatically from k (x4, Xo,) = 0 and
loop case. O

For simplicity, we will omit @ in (g, ®), (Lg, ®) and (g, ®) when there is no confusion.

3 Trivialization of 8;)@ over C; after deformations

If C = |J C; is an affine ADE curve in X, then the corresponding F = > n;C; satisfies
F-F =0,i.e., Op(F) is a topologically trivial bundle. If Of (F) is trivial holomorphically
and ¢(X) = 0, then from the long exact sequence of cohomologies induced by 0 — Ox —
Ox(F) = Op(F) — 0, we know H%(X, Ox(F)) = C2. Hence F is a fiber of an elliptic
fibration on X.

Suppose X is an elliptic surface, i.e., there is a smooth curve B and a surjective morphism
m:X — B whose generic fiber F, (b € B) is an elliptic curve. Assume 7 is singular at
by € B and Fp, = > n;C; is a singular fiber of type g. Hence, we have a g-bundle £] over
X. The restriction of Sg to any fiber F},, other than Fj,, is trivial because Fj, N C; = @ for
any i. However, Eg | Fy, is not trivial, for instance O(—C;)|c; = Op1(2). Nevertheless, we
will show that after deformations of holomorphic structures, 53 will become trivial on every
irreducible component of Fp,.
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3.1 Review of ADE cases

In our earlier paper [2], we showed how to take successive extensions to make the g-bundle
85’ trivial on every component C; of the ADE curve C = |J/_, C;.

Definition 11 Given any ¢ = (@q)yco+ € Q0 1(x, Bocor O)), we define 5(,): Q0.0
(X, &) — Q1(X, &) by

3y 1= 3o +ad(g) :=do + Z ad (¢q)

aedt

More explicitly, if we write gy = cg xg locally for some one form cg , then ad(py) =
cé’ ad(xé/ ). It is easy to check that 9, is well-defined and compatible with the Lie algebra
structure, i.e., dy[, ]lo = 0. For 9, to define a holomorphic structure, we need

72 —
0=0,= > (docl + > (nppcf ncl)|adeed).
acdt Bt+y=a
That is 9@y + 2 piy—apy9p A @y) =0forany o € &+, Explicitly:

dogpc, =0 iefl,2,...,r}

dopc,+c; =nc,.c;9c, Noc; ifCi+Cjedt

Recall {C;}/_, C @7 is a base.

Proposition 12 Given any (¢c,)i_, € Q0 l(x, Di_, O(Ci)) with 5§0C,~ = 0 foranyi, it
can be extended to ¢ = (Pq)gco+ € QO1(x, DBoco+ O@)) satisfying 55 = 0, so that we
have a holomorphic g-bundle 55 over X.

The proof of this proposition uses the following lemma.

Lemma 13 Ifpy(X) =0, then

(i) forany a € ®*, H*(X, O(a)) = 0.
(ii) the restriction homomorphism HY(X, 0x(C))) - HY(X, Oc, (C})) is surjective.

Theorem 14 For any given i, the holomorphic g-bundle Sg over X is trivial on C; if and
only if [ec; lc;1 # 0.

The proof of this theorem can be found in Theorem 9 of [2]. Note that part (ii) of Lemma
13 says that such ¢, can always be found.

3.2 Trivializations in loop ADE cases

Definition 15 Given any ¢ = (¢a),cpr € QO (X, Pyepr O@)), we define 3y, p): 200
g g
(X, 6% — QUN(X, £5%) by 3.0 := 90 + ad(g).
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More explicitly, if we write ¢, = c{xU locally for some one form ¢V, then by the

decomposition of @g in Sect. 2.3, we have (here we omit the local chart U for simplicity):

(g, i= o + Z Z (catnF ad(xqenF) + C—qrn1)F ad (X—ge(r1)F))

n€Zs>p acdt
R
+ D0 >l ad (hiepinr) .
neZsq i=1
Proposition 16 5(%@ is compatible with the Lie algebra structure on é’OL g,

Proof 5(%@ [, 1Lg,# = O follows directly from the Jacobi identity. O

- . =2 . . .
For 0y, ¢) to define a holomorphic structure, we need B(qu,) = 0, which is equivalent to
the following equations:

000hr =2 pigen 2acor Tai(hae)PatpF A P—atqF,
0PatnF = 2 prgen D tarma TPa1+pF A PariqF

+ 3 pigen 2iet (@ Ci) Qaipr AGL L,
0P—atnF = 2 pigen Day—ay—a TPa1+pF N PariqF

2 g imt (=0 Ci) 9t pF A G,

where a; (h,,) is the coefficient of /; in h,,.

Proposition 17 Given any (¢c;)i_, € Q01(x, @i, O(C)) with 5<pc, = 0 for every i, it
can be extended to ¢ = (@q) ycpt € QO l(x, DB, cor O@)) satisfying gi = 0. Namely we
g g

have a holomorphic Lg-bundle E(f 9 over X.
In order to prove this proposition, we need the following lemma.

Lemma 18 If po(X) = 0, then for any a € ®*, n € Z=o, H*(X, O(nF)), H*(X, O(cx +
nF)) and H*(X, O(—a + (n + 1)F)) are zero.

Proof Since F is an effective divisor and HO(X,Kx) = 0, we have for any n >
0, HO(X, Kx(—nF)) = 0. This is equivalent to HX(X,0mF)) = 0 by Serre duality.
Similarly, H2(X, O(a + nF)) = 0 follows from H%(X, Kx(—a)) = H*(X, O(a)) = 0
(Lemma 13). The proof of H2(X,O(—a + (n + 1)F)) = 0 uses the fact that F — « is an
effective divisor for any o € . O

Proof of Proposition 17 The equation 5%%@) = 0 can be rewritten as follows:
50<.0c,» =0 forief{l,2,...,r},

3090 = X 4ar—a (Fba A Par)

00¢—agtF = 009c, =0,

p-a+F = 2er—ai=a (£0u1 A p—ar+F)

309k =D ot (Eai(he)pa N P—atF) .
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where ag = F — Cj is the longest root in .

Firstly, we can solve for all the gy (@ € ®T) from H 2(X,0() =0 (Proposition 12).
Secondly, we get all the ¢_o 4 (@ € ) from H? (X, O(—a + F)) = 0. Thirdly, since we
have all the ¢, and ¢_, 1 F, we can solve for all the ¢}, for 1 <i < r from H2(X, O(F)) = 0.
Do this process for @y 4nF, ¢—a+n+1)F and (pfn HDF inductively on n. ]

By Lemma 13, there always exists ¢¢;, € QO%L(X, O(C;)) such that 0 # loclc] €
H' (X, Oc,(C;)) = Cforeachi =0,1,...,r.

Theorem 19 For any given i, the holomorphic Lg-bundle &fg over X is trivial on C; if and
only if [pc;1c;1 # 0.

Proof The proof will be given in Sects. 3.4 and 3.5. In Sect. 3.4, we deal with all the loop
ADE cases except loop Eg case which will be analyzed in Sect. 3.5. O

3.3 Trivializations in affine ADE cases

Follow the notation in Sect. 3.2, we define 9(y,0) := do + ad(¢) on é'g . Note the adjoint
action here is defined using the affine Lie bracket.

Proposition 20 3, o) is compatible with the Lie algebra structure on 5g .

Proof 3(g.a)l, Ig.0 = 0 follows directly from the Jacobi identity and the Killing form being
invariant under the adjoint action. O

. =2 . . . =2 .
It is easy to see that 9, ¢ = 0 in the affine case is equivalent to 9, 4y = 0 in the loop

case. Hence we have a new holomorphic structure 9y, o) on &j.

Theorem 21 For any given i, the holomorphic g-bundle Eg over X is trivial on C; if and
only if [ec; lc;1 # 0.

Proof This follows from Theorem 19,0 — O — &8 — £4% — 0 and Ext},(0,0) =
H'(P', 0)=0. a]

From the construction of 5(p in Sect. 3.1 and 5(%@ above, we have the following obser-
vation: let X be a complex surface with pe (X) = 0.If A C Pic(X) is isomorphic to the root
lattice A4 (resp. Ag) of ADE type (resp. affine ADE type) and C = |J C; is an ADE curve
of type h with each irreducible curve C; from the corresponding root system @4 (resp. ®g),

then we can deform the Lie algebra bundle 6‘3 (resp. 6(’)3) such that its deformation £ (resp.
&g) is trivial over every C;. To show this, we will describe the corresponding holomorphic
structure 9, (resp. d(p,¢)) in detail. WE choose tllese C; as basis of &y and extend it to the
basis of @ (resp. ®g), then construct d, (resp. 9y, a)) as follows:

(1) fora e @g\dﬁ, take ¢y = 0;

(2) for C; € dD:;, take ¢c; such that [¢c;|c;]1 # 0;

(3) fora € @, o # C;, take gy such that 9y ) = 50—1—20[6@; ad (g, ) satisfy 5?%,’) =0.

It obviously that such ¢ exist and the corresponding 9, (resp. 3y, ¢)) satisfy the integra-

bility condition. And from the above theorem, the new bundle &f,’ (resp. 5(,9) is trivial over
every C;.
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Affine ADE bundles over surfaces with pg = 0

Remark 22 In particular, if the del Pezzo surface X, (resp. Xo) has a rational double point,
then we can construct an E,-bundle (resp. Eg—bundle) on its minimal resolution such that
its restriction to each irreducible component of the exceptional locus is trivial, then this E,,-
bundle (resp. fg-bundle) can descend to the singular surface X, (resp. Xo). Therefore for a
del Pezzo surface X,, (resp. Xo) with a rational double point, the E,,-bundle (resp. E, g-bundle)
still exists. The relationship between the deformability of the Eg-bundle and the geometry
of Xog is shown in [3].

Remark 23 For a complex surface X with pg(X) = 0 and containing an ADE curve (resp.
Kodaira curve) C, we have a corresponding type ADE bundle (resp. affine ADE bundle). If
we contract any ADE curve C’ inside C, then we will get a singular surface with a rational
double point. By the above observation, we can deform this bundle such that it can descend
to this singular surface.

3.4 Proof (except the loop Eg case)

In this subsection, we use the symmetry of the affine ADE Dynkin diagram (except Eg) to
show that Sq[; 9 is trivial on C; if and only if [¢c;|c;1 # 0.

Recall that 5};‘ ¢ and S(f 9 have the same underlying C*°-vector bundle, but with a holo-
morphic structure 9y, ¢) of the following upper triangular block shape:

85;9"")®0((n+1)1r)

0 a

|
<
I

S VROmF)

% 0 85@“"”)@0(@—1)1?)

ie., &59 is constructed from successive extensions of these &f,g’q)) Q O(nF) (n € 7).

Note 5(¢,q>)|£;g.q>) =99 + Zae¢+ ad(¢y). By Theorem 14, for every i # 0, Eéjg’q)) is
trivial on C; if and only if [¢c; |c;] # 0. We also know O(F)|c; is trivial for every i because
F - C; = 0. Thus, when i # 0, S(f gIc,. is constructed from successive extensions of trivial
vector bundles over C; = P!. This implies that 6}5 9 |c; is trivial if and only if [¢c;|c;] # O
as Exty, (0,0) = H'(P', 0) = 0. R

Now we consideri = 0. Sinceg # Es, the affine Dynkin diagram always admits a diagram
automorphism, that means we can write EOL % as D, EZ(E(()g ) ® O(nF)) (see Proposition §).
Suppose the extended root corresponding to W is Cy, and the longest root in W is fy.

We will rewrite the holomorphic structure 0y, ¢) in terms of the W root system. Note
0 (¢, ) is determined by the loop Lie algebra structure which is independent of the choice of
the extended root. We choose a local base of So(g’w) as in Proposition 8 and define 9y v) to
be the same with 5@,@), then obviously ¥yp = ¢p when D # nF.

Because (&f;l‘g ’(D), 5@@)) = (Sl(pl‘g’ly), 5(,/,,\1,)) as a holomorphic vector bundle, similar
to the arguments in (S(E,Lg’@, 9y, @) case, we have when i # k, 6}5 9 is trivial on C; if and
only if [V¢;|c;]1 # 0. Note V¢, = ¢—ay+F = @c,- S0 we have Theorem 19 when g # Eg.
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3.5 Proof for the loop Eg case

Similar to the above subsection, we have wheni € {1, 2, ..., 8}, E(f Es is trivial on C ; if and
only if [pc;|c;] # 0. The question is what about C?

We recall 858 =098 g Doco O). For any o € ®, we write a1 («) as the coefficient
of Cy in «, then O(a)|c, = Opi(ai(a)). Among &, there are 63 roots with aj(x) = 0,
corresponding to the positive roots of the Lie sub-algebra E7; 56 roots with aj() = 1,
corresponding to weights of the standard representation of E7; 1 root with aj (o) = 2, which
is just the longest root ap = F — C. We denote 557 £ 0% ® Byew.a )0 OW@), Vi £

Deco.arw=1 0@ and Vg = Byep 4 o)=—1 O(@), then
=6 @O0D V) ®Vy ®O(cg) & O(—a).

When O(«) is a summand of V0+, ie., O()|c, = Opi (1), we have O(a + Co)lc, =
Opi(=l)anda+Cop = F — (g — ) with (g — ) € &, thatis O(a + Cp) is a summand
of Vy (F). Since F = ap + Co satisfies F' - F = 0, we have O(F)|c, = Op1, O(ao)lc, =
Op1(2) and ORF — ag)lc, = Op1 (—2).

For the loop Eg-bundle, we have

&' =@ (& e omm)

nez

@D (&7 @08V @ V5 ®0@) & 0-a) & OwF))

nez
=D ((&57 @00 Vi © Vg () @ O@o — F) & O(F — a)) ® O F)).
nez
We denote L(z)48 & 557 DOD VO+ ®V, (F)® O(axg — F) ® O(F — a). From definition
of 5(/), 8£ Es s built from successive extensions of Lé“s ® OnF),i.e.,

5L§,48®(9((n+1)F) *

|
<
I

o 5L§;“‘®O(nF)

248
14

is also trivial over Cy because of E)ct]}},1 (0, 0) = 0. Note

Soif we can prove [gc, |, ] # 0 implies (L2*, 3, | 2s8) is trivial over Co, then (&/I;ES, dp)

L§®1c, = 08P © Op1 @ (Opi (1) @ Opi (—1)®° © Opi (2) B Opi (-2).

In this decomposition, any of the 56 pairs of {Opi(—1), Opi(1)} is the restriction of
{O(a), O(a + Cp) = O(F — (ag — )} to Co for some o with aj() = 1 and the triple
{Op1(2), Op1, Op1 (=2)} is the restriction of {O(—Cp), O, O(Cyp)} to Co. We will show
that the restriction of 9| L2 1o Cp gives a non-trivial extension for each of these pairs
{Op1 (—=1), Opi (1)} and the triple {Op1 (=2), Op1, Op1 (2)}.

In order to write 9| 2% in matrix form, we need to decompose S(f ’ into positive parts

and non-positive parts, i.e., we denote S(gE7’+) = @ae¢+,a1(a)=0 O(a) and S(gE7'7) =
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0% ® Byea-ar(@)—0 O@). Then 5¢|L%4s can be written as follows: (5¢|L§48 is a upper
triangle matrix since 9| 1248 Maps any line bundle summand to other more “positive” line

bundle summands, i.e., 5¢ :O(D) - O(D/) is nonzero only if D —D >0)

3y, r) Ap2 Az A4 Als Ale Ay
Y 0O (F—ap) Ax Aoy Ass Az An7
0 o Ay Az4 Aszs Asze A3y
F) = [9) 0 0 ER A A A
0yl 28 85)57 + 745 46 47
0 [9) [9) [9) 90 Ase As7
[9) 0 0 0 0 0 q57.0) Ag7
v _
(0] 0 0 (0] (@] (0] 00(ag—F)

Now we restrict this to Co, the 56 pairs {Op1 (—1), Opi (1)} are in V; (F)lc, ® V' lc,-
Since A>3 = (0,0, ...,0)56x1 and

Foc, * e *
0 :l:(pco Ce *
Az = ) . ,
0 0 o E0co / sexse

if [pcylcy] # O, then we have a trivialization of the 56 pairs {Opi (—1), Op1 (1)} over Cq by
Lemma 32 in [2].

For the triple {Op1 (—2), Op1, Opi (2)}, we review the trivialization of A; Lie algebra
bundle. In A; case, we have an A;-bundle &2, which topologically is ng '=0000C)®
O(—C), but with a holomorphic structure as follows:

do +oc 0
=] 0 9o *oc ,
0 0 3o

where pc € HY' (X, O(C)). From [2], we know if [eclc] # O, then &Z" is trivial on
C. Back to our case, the triple {Op1 (—2), Op1, Opi (2)} has the corresponding submatrices
Azs = (@cy)1x1, As7 = (@cy)1x1and Az7 = (0)1x1.Since A2z, Azsq, Az, Ag7and Ag; are
all zero matrices, from the trivialization of Ay Lie algebra bundle, we know if [¢c,|c,] # O,
then we have a trivialization of the triple {Opi (—2), Op1, Op1 (2)} over Cy.

Hence if [pcylc,] # 0. then (L28, 9| 12 s trivial on Co, which implies &5
also trivial on Cy. Hence, we have Theorem 19 for L Eg case.

Es 3, is
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