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Abstract Given any Kodaira curve C in a complex surface X , we construct a simply-laced
affine Lie algebra bundle E over X . When pg(X) = 0, we construct deformations of holo-
morphic structures on E such that the new bundle is trivial over any ADE curve C ′ inside C
and therefore descends to the singular surface obtained by contracting C ′.

1 Introduction

Let X be a complex surface and � ⊂ Pic (X) be a sublattice. If � is isomorphic to the root
lattice �g of a simple Lie algebra g, then we have a root system � of g and we can associate
a Lie algebra bundle Eg

0 over X [6,10,11]:

Eg
0 := O⊕r

X ⊕
⊕

α∈�

OX (α).

This can be generalized to the affine Lie algebra ĝ [9].
There are many instances when this happens. Here we list the following three cases as

examples:

(1) When Xn is a del Pezzo surface, namely a blowup of P
2 at n ≤ 8 points in general

position (or P
1 × P

1),
〈
KXn

〉⊥ ⊂ Pic (Xn) is isomorphic to �En . Thus we have an En-
bundle over Xn . By restriction, we have an En-bundle over any anti-canonical curve �

in Xn . Notice that � is always a genus one curve. For a fixed elliptic curve �, the above
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construction gives a bijection between del Pezzo surfaces containing � and En-bundles
over � [4,5,7,10,12,14]. Such an identification was predicted by the F-theory/string
duality in physics [7]. This was generalized to all simple Lie algebras in [10,11]. When
n = 9, X9 is not Fano and E9 = Ê8 is an affine Lie algebra. Corresponding results for
the Ê8-bundle over X9 are obtained in [9].

(2) When X̃ is the canonical resolution of a surface X with a rational double point of type
g, then the corresponding exceptional curve C = ⋃

Ci is an ADE curve of type g.
Therefore all these Ci span a sublattice of Pic(X̃) which is isomorphic to �g, thus
giving a g-bundle Eg

0 over X̃ . When pg(X) = 0, there exists a deformation Eg
ϕ of Eg

0
such that Eg

ϕ is trivial over each Ci , thus it can descend to the singular surface X [2].
(3) When X is a relatively minimal elliptic surface, Kodaira classified all possible singular

fibers (see e.g., [1]) and we call such a curve C = ⋃
Ci a Kodaira curve. Its irreducible

components Ci span a sublattice of Pic (X) which is isomorphic to the root lattice of an
affine root system �ĝ and therefore we can construct an affine Lie algebra bundle E ĝ

0
over X .

The motivations of this paper have three aspects. One is to generalize the results for ADE
bundles in [2] to affine ADE bundles (see Theorem 1 below). The second is the natural
question: if the del Pezzo surface Xn (resp. X9) has a rational double point, does the En-
bundle (resp. Ê8-bundle) still exist? For this question, Friedman and Morgan gave a positive
answer for del Pezzo surfaces [6]. In this paper, the authors will give a positive answer for
both cases using a very different method (see Remark 22). The third is the following question:
for a complex surface X with pg(X) = 0 and containing a Kodaira curve C , there is a natural
affine ADE bundle of the corresponding type over it, can we deform this bundle such that
it can descend to the singular surface obtained by contracting any ADE curve C ′ inside C
(Remark 23)?

Theorem 1 (Lemma 13, Proposition 17 and Theorem 21) Let X be a complex surface with
pg = 0. If X has a Kodaira curve C = ⋃r

i=0 Ci of type ĝ, then

(i) given any

(ϕCi )
r
i=0 ∈ �0,1

(
X,

r⊕

i=0

O(Ci )

)

with ∂ϕCi = 0 for every i , it can be extended to

ϕ = (ϕα)α∈�+
ĝ

∈ �0,1
(
X,

⊕

α∈�+
ĝ

O(α)
)

such that ∂ϕ := ∂ + ad(ϕ) is a holomorphic structure on E ĝ
0 . We denote the new bundle

as E ĝ
ϕ ;

(ii) the new holomorphic structure ∂ϕ is compatible with the Lie algebra structure on E ĝ
0 ;

(iii) the new bundle E ĝ
ϕ is trivial on Ci if and only if

[ϕCi |Ci ] �= 0 ∈ H1(Ci ,OCi (Ci )) ∼= C;
(iv) there exists [ϕCi ] ∈ H1(X,O(Ci )) such that [ϕCi |Ci ] �= 0.

The organization of this paper is as follows. Section 2 gives the construction of the (affine)
ADELie algebra bundles directly from (affine)ADE curves. In Sect. 3, we assume pg(X) = 0.
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We construct deformations of the holomorphic structures on these bundles such that the new
bundles are trivial over irreducible components of the curve.

Notation for a holomorphic bundle (E0, ∂0) with E0 = ⊕
i O(Di ), ∂0 means the ∂-operator

for the direct sum holomorphic structure. If we construct a new holomorphic structure ∂ϕ on
E0, we denote the resulting bundle as Eϕ .

2 Affine ADE bundles from affine ADE curves

2.1 ADE and affine ADE curves

Definition 2 A curve C = ⋃
Ci in a surface X is called an ADE (resp. affine ADE) curve of

type g (resp. ĝ) if each Ci is a smooth (−2)-curve in X and the dual graph of C is a Dynkin
diagram of the corresponding type.

It is known that C is an ADE curve if and only if C can be contracted to a rational double
point. In this case, the intersection matrix (Ci · C j ) is negative definite [1].

If C is an affine ADE curve, then the intersection matrix (Ci ·C j ) is non positive definite
and there exists ni (these are unique if we ask ni to be positive integers without common
integers) such that F := ∑

niCi satisfies F · F = 0. Dynkin diagrams of affine ADE types
are drawn as follows and the corresponding niCi are labelled in the pictures. ADE Dynkin
diagrams can be obtained by removing the node corresponding to C0 (Fig. 1).

Remark 3 We will also call a nodal or cuspidal rational curve with trivial normal bundle an
Â0 curve.

Remark 4 By Kodaira’s classification of singular fibers of relative minimal elliptic surfaces,
every singular fiber is an affine ADE curve unless it is rational with a cusp, tacnode or
triplepoint (corresponding to type II or III( Â1) or VI( Â2) in Kodaira’s notation), which can
also be regarded as a degenerated affine ADE curve of type Â0, Â1 or Â2 respectively. In
this paper, we will not distinguish affine ADE curves from their degenerated forms since they
have the same intersection matrices. We also call the affine ADE curves as Kodaira curves.

Definition 5 A bundle E is called an ADE (resp. affine ADE) bundle of type g (resp. ĝ) if E
has a fiberwise Lie algebra structure of the corresponding type.

In the following two subsections, we will recall an explicit construction of the Lie algebra
g-bundle, loop Lie algebra Lg-bundle and the affine Lie algebra ĝ-bundle from (affine) ADE
curves in X .

2.2 ADE bundles

Suppose C = ⋃r
i=1 Ci is an ADE curve of type g in X . We will construct the corresponding

ADE bundle Eg
0 over X as follows [2].

Note the rank r of g equals the number of Ci . We set � := {α = [∑r
i=1 aiCi

] ∈
H2(X, Z)|α2 = −2}. Then � is a simply-laced root system of g with a base 	 := {[Ci ]|i =
1, 2, . . . , r}. We have a decomposition � = �+ ∪ �− into positive and negative roots. We
define a bundle E(g,�)

0 over X as follows:

E(g,�)
0 := O⊕r ⊕

⊕

α∈�

O(α).
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Here O(α) = O (∑r
i=1 aiCi

)
where α = [∑r

i=1 aiCi
]
. There is an inner product 〈, 〉 on �

defined by 〈α, β〉 := −α · β, negative of the intersection form.
For every open chart U of X , we take xUα to be a nonvanishing section of OU (α) and hUi

(1 ≤ i ≤ r ) nonvanishing sections of O⊕r
U . Define a Lie algebra structure [, ]� on E(g,�)

0
such that {xα, α ∈ �; hi , 1 ≤ i ≤ r} is the Chevalley basis [8], i.e.,

(a) [hUi , hUj ]� = 0, 1 ≤ i, j ≤ r .

(b) [hUi , xUα ]� = 〈α, Ci 〉 xUα , 1 ≤ i ≤ r, α ∈ �.
(c) [xUα , xU−α]� = hUα is a Z-linear combination of hUi .
(d) If α, β are independent roots, and β − pα, . . . , β + qα is the α-string through β, then

[xUα , xUβ ]� = 0 if q = 0, otherwise [xUα , xUβ ]� = ±(p + 1)xUα+β .

Ê6 : � � � � �

�

�

1C1 2C2 3C3 2C4 1C5

2C6

1C0

Ê7 : � � � � � � �

�

1C1 2C2 3C3 4C4 3C5 2C6

2C7

1C0

Ê8 : � � � � � � � �

�

1C0 2C1 3C2 4C3 5C4 6C5 4C6

3C8

2C7

Ân : � � � � �

�

�������

�������

� � �

1C1 1C2 1Cn−2 1Cn−11Cn

1C0

D̂n : � � � � �� � �

1C1 2C2 2Cn−3 2Cn−21Cn−1

1Cn1C0

Fig. 1 Dynkin diagrams of affine ADE types
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Since g is a simply-laced Lie algebra, all the roots for g have the same length, we have any
α-string through β is of length at most 2. So (d) can be written as [xUα , xUβ ]� = nα,βxUα+β ,
where nα,β = ±1 if α +β ∈ �, otherwise nα,β = 0. It is easy to check that these Lie algebra

structures are compatible with different trivializations of E(g,�)
0 (see page 10 of [10] for more

details). Hence E(g,�)
0 is a Lie algebra bundle of type g over X .

2.3 Affine ADE bundles

Suppose C = ⋃r
i=0 Ci is an affine ADE curve of type ĝ in X . We will construct the corre-

sponding affine ADE bundle E ĝ
0 of type ĝ over X as follows.

First, we choose an extended root of ĝ, say C0, then g is corresponding to the Dynkin
diagram consists of those Ci with i �= 0, i.e.,

� :=
⎧
⎨

⎩α =
⎡

⎣
∑

i �=0

aiCi

⎤

⎦ ∈ H2(X, Z)|α2 = −2

⎫
⎬

⎭

is the root system of g. As above, we have a g-bundle

E(g,�)
0 = O⊕r ⊕

⊕

α∈�

O(α).

We define

E(Lg,�)
0 :=

⊕

n∈Z

(
E(g,�)
0 ⊗ O(nF)

)

and

E (̂g,�)
0 :=

⊕

n∈Z
(E(g,�)

0 ⊗ O(nF)) ⊕ O.

We know

�ĝ := {α + nF |α ∈ �, n ∈ Z}
⋃

{nF |n ∈ Z, n �= 0}
is an affine root system and it decomposes into the union of positive and negative roots, i.e.,
�ĝ = �+

ĝ ∪ �−
ĝ , where

�+
ĝ =

{∑
aiCi ∈ �ĝ|ai ≥ 0 f or all i

}

= {
α + nF |α ∈ �+, n ∈ Z≥0

} ∪ {
α + nF |α ∈ �−, n ∈ Z≥1

} ∪ {
nF |n ∈ Z≥1

}

and �−
ĝ = −�+

ĝ .
To describe the Lie algebra structures, we proceed as before, for every open chartU of X ,

we take a local basis eUi of E(g,�)
0 |U (eUi is just hUj or xUα as above), eUnF ofO(nF)|U , eUc of

O|U , compatible with the tensor product, for example, eUnF ⊗ eUmF = eU(n+m)F . Then define

[
eUi e

U
nF , eUj e

U
mF

]

Lg,�
:= [eUi , eUj ]�eU(n+m)F , (1)

[
eUi e

U
nF + λeUc , eUj e

U
mF + μeUc

]

ĝ,�
:=

[
eUi , eUj

]

�
eU(n+m)F + nδn+m,0k

(
eUi , eUj

)
eUc .

(2)
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Here [, ]� is the Lie bracket on E(g,�)
0 and k(x, y) = Tr(ad(x) ad(y)) is the Killing form

on g.

Lemma 6 The above (1) [resp. (2)] defines a fiberwise loop (resp. affine) Lie algebra struc-
ture which is compatible with any trivialization of E(Lg,�)

0 (resp. E (̂g,�)
0 ).

Proof See Proposition 23 of [9]. ��
From the above lemma, we have the following result.

Proposition 7 If C is an affine ADE curve of type ĝ in X, then E(Lg,�)
0 (resp. E (̂g,�)

0 ) is a
loop (resp. affine) Lie algebra bundle of type Lg (resp. ĝ) over X.

Note any Ci with ni = 1 can be chosen as the extended root.

Proposition 8 The loopLie algebra bundle (E(Lg,�)
0 , [, ]Lg,�) does not depend on the choice

of the extended root.

Proof Suppose Ck (k �= 0) is another root with nk = 1. We set

 =
⎧
⎨

⎩β =
⎡

⎣
∑

i �=k

biCi

⎤

⎦ ∈ H2(X, Z)|β2 = −2

⎫
⎬

⎭ .

Then  is a root system of g. As before, we construct the Lie algebra bundle E(g,)
0 and

E(Lg,)
0 from .
We denote α0 := ∑

i �=0 niCi = F − C0, the longest root in �. For any α =∑
i �=0 ai (α)Ci ∈ �, ak(α) can only be 0, ±1. Hence there is a bijection between � and

 given by α �→ β = α − ak(α)F . Then from the definition of E(Lg,�)
0 and E(Lg,)

0 , we
know they are the same as holomorphic vector bundles.

We compare the Lie brackets on them. We choose a local basis of E(Lg,)
0 compatible

with those of E(Lg,�)
0 and define [, ]Lg, similarly as [, ]Lg,�, i.e.,

(i) when β = α ∈ � ∩ , we take xβ = xα;
(ii) when β = α + F ∈ +\�, we take xβ = xαeF ;
(iii) when β = α − F ∈ −\�, we take xβ = xαe−F ;
(iv) take hi (i �= 0, k) as before, take h0 = −hα0 as we want [xC0 , x−C0 ]Lg, =

[x−α0+F , xα0−F ]Lg,�.

It is obvious [, ]Lg, = [, ]Lg,� on E(Lg,)
0

∼= E(Lg,�)
0 . ��

For the affine case, we recall that the Killing form of g is the symmetric bilinear map
k: g × g →C defined by k(x, y) = Tr(ad(x) ad(y)). It is ad-invariant, that is for x, y, z ∈
g, k([x, y], z) = k(x, [y, z]).
Lemma 9 For any simple simply-laced Lie algebra g with a Chevalley basis {xα, α ∈
�; hi , 1 ≤ i ≤ r} and m∗(g) the dual Coxeter number of g, we have

(i) k(hi , xα) = 0 for any i and α;
(ii) k(xα, xβ) = 0 for any α + β �= 0;
(iii) k(hi , h j ) = 2m∗(g)〈Ci ,C j 〉;
(iv) k(xα, x−α) = 2m∗(g) for any α.
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Proof Directly from the Killing form k being ad-invariant or see [13]. ��

Proposition 10 The affine Lie algebra bundle (E (̂g,�)
0 , [, ]̂g,�) does not depend on the choice

of the extended root.

Proof Follow the notation in Proposition 8, but we will take

h0 = −hα0 + 2m∗(g)ec.

We will check that [, ]̂g, = [, ]̂g,� on E (̂g,)
0 = E (̂g,�)

0 :

(a) when β1 = α1 + F, β2 = α2 + F ∈ +\�, α1, α2 ∈ �−\ we have

[hβ1enF , hβ2emF ]̂g, = nδn+m,0k(hβ1 , hβ2)ec,

which is the same with

[h−α1enF , h−α2emF ]̂g,� = nδn+m,0k(hα1 , hα2)ec,

since k(hβ1 , hβ2) = 2m∗(g)〈β1, β2〉 = 2m∗(g)〈F − α1, F − α2〉 = k(hα1 , hα2).
(b) For [hi enF , xαemF ]̂g,�, automatically from k(hi , xα) = 0 and loop case.
(c) When β = α + F ∈ +\�, α ∈ �−\,

[xβenF , x−βemF ]̂g, = hβe(n+m)F + nδn+m,0k(xβ, x−β)ec,

which is the same with

[x−αe(n+1)F , xαe(m−1)F ]̂g,� = −hαe(n+m)F + (n + 1)δn+m,0k(xα, x−α)ec,

by considering m + n = 0 and m + n �= 0 separately.
(d) For [xα1enF , xα2emF ]̂g,� with α1 + α2 �= 0, automatically from k(xα1 , xα2) = 0 and

loop case. ��

For simplicity, we will omit � in (g,�), (Lg,�) and (̂g,�) when there is no confusion.

3 Trivialization of E ĝ
0 over Ci after deformations

If C = ⋃
Ci is an affine ADE curve in X , then the corresponding F = ∑

niCi satisfies
F · F = 0, i.e., OF (F) is a topologically trivial bundle. If OF (F) is trivial holomorphically
and q(X) = 0, then from the long exact sequence of cohomologies induced by 0 → OX →
OX (F) → OF (F) → 0, we know H0(X,OX (F)) ∼= C

2. Hence F is a fiber of an elliptic
fibration on X .

Suppose X is an elliptic surface, i.e., there is a smooth curve B and a surjective morphism
π : X → B whose generic fiber Fb (b ∈ B) is an elliptic curve. Assume π is singular at
b0 ∈ B and Fb0 = ∑

niCi is a singular fiber of type ĝ. Hence, we have a ĝ-bundle E ĝ
0 over

X . The restriction of E ĝ
0 to any fiber Fb, other than Fb0 , is trivial because Fb ∩ Ci = ∅ for

any i . However, E ĝ
0 |Fb0 is not trivial, for instance O(−Ci )|Ci

∼= OP1(2). Nevertheless, we

will show that after deformations of holomorphic structures, E ĝ
0 will become trivial on every

irreducible component of Fb0 .
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3.1 Review of ADE cases

In our earlier paper [2], we showed how to take successive extensions to make the g-bundle
Eg
0 trivial on every component Ci of the ADE curve C = ⋃r

i=1 Ci .

Definition 11 Given any ϕ = (ϕα)α∈�+ ∈ �0,1(X,
⊕

α∈�+ O(α)), we define ∂ϕ :�0,0

(X, Eg
0 ) −→ �0,1(X, Eg

0 ) by

∂ϕ := ∂0 + ad(ϕ) := ∂0 +
∑

α∈�+
ad (ϕα) ,

More explicitly, if we write ϕα = cUα xUα locally for some one form cUα , then ad(ϕα) =
cUα ad(xUα ). It is easy to check that ∂ϕ is well-defined and compatible with the Lie algebra
structure, i.e., ∂ϕ[, ]� = 0. For ∂ϕ to define a holomorphic structure, we need

0 = ∂
2
ϕ =

∑

α∈�+

⎛

⎝∂0c
U
α +

∑

β+γ=α

(
nβ,γ c

U
β ∧ cUγ

)
⎞

⎠ ad(xUα ).

That is ∂0ϕα + ∑
β+γ=α(nβ,γ ϕβ ∧ ϕγ ) = 0 for any α ∈ �+. Explicitly:
⎧
⎪⎪⎨

⎪⎪⎩

∂0ϕCi = 0 i ∈ {1, 2, . . . , r}
∂0ϕCi+C j = nCi ,C j ϕCi ∧ ϕC j if Ci + C j ∈ �+
...

Recall {Ci }ri=1 ⊂ �+ is a base.

Proposition 12 Given any (ϕCi )
r
i=1 ∈ �0,1(X,

⊕r
i=1 O(Ci )) with ∂ϕCi = 0 for any i , it

can be extended to ϕ = (ϕα)α∈�+ ∈ �0,1(X,
⊕

α∈�+ O(α)) satisfying ∂
2
ϕ = 0, so that we

have a holomorphic g-bundle Eg
ϕ over X.

The proof of this proposition uses the following lemma.

Lemma 13 If pg(X) = 0, then

(i) for any α ∈ �+, H2(X,O(α)) = 0.
(ii) the restriction homomorphism H1(X,OX (Ci )) → H1(X,OCi (Ci )) is surjective.

Theorem 14 For any given i , the holomorphic g-bundle Eg
ϕ over X is trivial on Ci if and

only if [ϕCi |Ci ] �= 0.

The proof of this theorem can be found in Theorem 9 of [2]. Note that part (ii) of Lemma
13 says that such ϕCi can always be found.

3.2 Trivializations in loop ADE cases

Definition 15 Given any ϕ = (ϕα)α∈�+
ĝ

∈ �0,1(X,
⊕

α∈�+
ĝ
O(α)), we define ∂(ϕ,�):�0,0

(X, ELg
0 ) −→ �0,1(X, ELg

0 ) by ∂(ϕ,�) := ∂0 + ad(ϕ).
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More explicitly, if we write ϕα = cUα xUα locally for some one form cUα , then by the
decomposition of �+

ĝ in Sect. 2.3, we have (here we omit the local chart U for simplicity):

∂(ϕ,�) := ∂0 +
∑

n∈Z≥0

∑

α∈�+

(
cα+nF ad(xαenF ) + c−α+(n+1)F ad

(
x−αe(n+1)F

))

+
∑

n∈Z≥0

r∑

i=1

ci(n+1)F ad
(
hi e(n+1)F

)
.

Proposition 16 ∂(ϕ,�) is compatible with the Lie algebra structure on E Lg
0 .

Proof ∂(ϕ,�)[, ]Lg,� = 0 follows directly from the Jacobi identity. ��

For ∂(ϕ,�) to define a holomorphic structure, we need ∂
2
(ϕ,�) = 0, which is equivalent to

the following equations:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂0ϕ
i
nF = ∑

p+q=n
∑

α∈�+ ±ai (hα)ϕα+pF ∧ ϕ−α+qF ,

∂0ϕα+nF = ∑
p+q=n

∑
α1+α2=α ±ϕα1+pF ∧ ϕα2+qF

+∑
p+q=n

∑r
i=1 〈α,Ci 〉ϕα+pF ∧ ϕi

qF ,

∂0ϕ−α+nF = ∑
p+q=n

∑
α2−α1=α ±ϕα1+pF ∧ ϕ−α2+qF

+∑
p+q=n

∑r
i=1 〈−α,Ci 〉ϕ−α+pF ∧ ϕi

qF ,

where ai (hα) is the coefficient of hi in hα .

Proposition 17 Given any (ϕCi )
r
i=0 ∈ �0,1(X,

⊕r
i=0 O(Ci )) with ∂ϕCi = 0 for every i , it

can be extended to ϕ = (ϕα)α∈�+
ĝ

∈ �0,1(X,
⊕

α∈�+
ĝ
O(α)) satisfying ∂

2
ϕ = 0. Namely we

have a holomorphic Lg-bundle E Lg
ϕ over X.

In order to prove this proposition, we need the following lemma.

Lemma 18 If pg(X) = 0, then for any α ∈ �+, n ∈ Z≥0, H2(X,O(nF)), H2(X,O(α +
nF)) and H2(X,O(−α + (n + 1)F)) are zero.

Proof Since F is an effective divisor and H0(X, KX ) = 0, we have for any n ≥
0, H0(X, KX (−nF)) = 0. This is equivalent to H2(X,O(nF)) = 0 by Serre duality.
Similarly, H2(X,O(α + nF)) = 0 follows from H0(X, KX (−α)) ∼= H2(X,O(α)) = 0
(Lemma 13). The proof of H2(X,O(−α + (n + 1)F)) = 0 uses the fact that F − α is an
effective divisor for any α ∈ �+. ��
Proof of Proposition 17 The equation ∂

2
(ϕ,�) = 0 can be rewritten as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂0ϕCi = 0 for i ∈ {1, 2, . . . , r} ,

∂0ϕα = ∑
α1+α2=α

(±ϕα1 ∧ ϕα2

)
,

∂0ϕ−α0+F = ∂0ϕC0 = 0,

∂0ϕ−α+F = ∑
α2−α1=α

(±ϕα1 ∧ ϕ−α2+F
)
,

∂0ϕ
i
F = ∑

α∈�+ (±ai (hα)ϕα ∧ ϕ−α+F ) ,
...
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where α0 = F − C0 is the longest root in �.
Firstly, we can solve for all the ϕα(α ∈ �+) from H2(X,O(α)) = 0 (Proposition 12).

Secondly, we get all the ϕ−α+F (α ∈ �+) from H2(X,O(−α + F)) = 0. Thirdly, since we
have all the ϕα and ϕ−α+F , we can solve for all the ϕi

F for 1 ≤ i ≤ r from H2(X,O(F)) = 0.
Do this process for ϕα+nF , ϕ−α+(n+1)F and ϕi

(n+1)F inductively on n. ��
By Lemma 13, there always exists ϕCi ∈ �0,1(X, O(Ci )) such that 0 �= [ϕCi |Ci ] ∈

H1(X, OCi (Ci )) ∼= C for each i = 0, 1, . . . , r .

Theorem 19 For any given i , the holomorphic Lg-bundle E Lg
ϕ over X is trivial on Ci if and

only if [ϕCi |Ci ] �= 0.

Proof The proof will be given in Sects. 3.4 and 3.5. In Sect. 3.4, we deal with all the loop
ADE cases except loop E8 case which will be analyzed in Sect. 3.5. ��
3.3 Trivializations in affine ADE cases

Follow the notation in Sect. 3.2, we define ∂(ϕ,�) := ∂0 + ad(ϕ) on E ĝ
0 . Note the adjoint

action here is defined using the affine Lie bracket.

Proposition 20 ∂(ϕ,�) is compatible with the Lie algebra structure on E ĝ
0 .

Proof ∂(ϕ,�)[, ]̂g,� = 0 follows directly from the Jacobi identity and the Killing form being
invariant under the adjoint action. ��

It is easy to see that ∂
2
(ϕ,�) = 0 in the affine case is equivalent to ∂

2
(ϕ,�) = 0 in the loop

case. Hence we have a new holomorphic structure ∂(ϕ,�) on E ĝ
0 .

Theorem 21 For any given i , the holomorphic ĝ-bundle E ĝ
ϕ over X is trivial on Ci if and

only if [ϕCi |Ci ] �= 0.

Proof This follows from Theorem 19, 0 → O → E ĝ
ϕ → ELg

ϕ → 0 and Ext1
P1

(O,O) =
H1(P1,O) = 0. ��

From the construction of ∂ϕ in Sect. 3.1 and ∂(ϕ,�) above, we have the following obser-
vation: let X be a complex surface with pg(X) = 0. If � ⊂ Pic(X) is isomorphic to the root
lattice �g (resp. �ĝ) of ADE type (resp. affine ADE type) and C = ⋃

Ci is an ADE curve
of type h with each irreducible curve Ci from the corresponding root system �g (resp. �ĝ),

then we can deform the Lie algebra bundle Eg
0 (resp. E ĝ

0 ) such that its deformation Eg
ϕ (resp.

E ĝ
ϕ ) is trivial over every Ci . To show this, we will describe the corresponding holomorphic

structure ∂ϕ (resp. ∂(ϕ,�)) in detail. We choose these Ci as basis of �h and extend it to the
basis of �g (resp. �ĝ), then construct ∂ϕ (resp. ∂(ϕ,�)) as follows:

(1) for α ∈ �+
g \�+

h , take ϕα = 0;

(2) for Ci ∈ �+
h , take ϕCi such that [ϕCi |Ci ] �= 0;

(3) forα ∈ �+
h , α �= Ci , takeϕα such that ∂(ϕ,h) := ∂0+∑

α∈�+
h
ad(ϕα) satisfy ∂

2
(ϕ,h) = 0.

It obviously that such ϕα exist and the corresponding ∂ϕ (resp. ∂(ϕ,�)) satisfy the integra-

bility condition. And from the above theorem, the new bundle Eg
ϕ (resp. E ĝ

ϕ ) is trivial over
every Ci .
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Remark 22 In particular, if the del Pezzo surface Xn (resp. X9) has a rational double point,
then we can construct an En-bundle (resp. Ê8-bundle) on its minimal resolution such that
its restriction to each irreducible component of the exceptional locus is trivial, then this En-
bundle (resp. Ê8-bundle) can descend to the singular surface Xn (resp. X9). Therefore for a
del Pezzo surface Xn (resp. X9) with a rational double point, the En-bundle (resp. Ê8-bundle)
still exists. The relationship between the deformability of the Ê8-bundle and the geometry
of X9 is shown in [3].

Remark 23 For a complex surface X with pg(X) = 0 and containing an ADE curve (resp.
Kodaira curve) C , we have a corresponding type ADE bundle (resp. affine ADE bundle). If
we contract any ADE curve C ′ inside C , then we will get a singular surface with a rational
double point. By the above observation, we can deform this bundle such that it can descend
to this singular surface.

3.4 Proof (except the loop E8 case)

In this subsection, we use the symmetry of the affine ADE Dynkin diagram (except Ê8) to
show that ELg

ϕ is trivial on Ci if and only if [ϕCi |Ci ] �= 0.

Recall that ELg
ϕ and ELg

0 have the same underlying C∞-vector bundle, but with a holo-
morphic structure ∂(ϕ,�) of the following upper triangular block shape:

∂ϕ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . .
. . .

. . .

. . . ∂E(g,�)
ϕ ⊗O((n+1)F)

∗ ∗ . . .

. . . O ∂E(g,�)
ϕ ⊗O(nF)

∗ . . .

. . . O O ∂E(g,�)
ϕ ⊗O((n−1)F)

. . .

. . .
. . .

. . .
. . .

. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

i.e., ELg
ϕ is constructed from successive extensions of these E(g,�)

ϕ ⊗ O(nF) (n ∈ Z).

Note ∂(ϕ,�)|E(g,�)
ϕ

= ∂0 + ∑
α∈�+ ad(ϕα). By Theorem 14, for every i �= 0, E(g,�)

ϕ is

trivial on Ci if and only if [ϕCi |Ci ] �= 0. We also knowO(F)|Ci is trivial for every i because

F · Ci = 0. Thus, when i �= 0, ELg
ϕ |Ci is constructed from successive extensions of trivial

vector bundles over Ci ∼= P
1. This implies that ELg

ϕ |Ci is trivial if and only if [ϕCi |Ci ] �= 0
as Ext1

P1
(O,O) = H1(P1,O) = 0.

Nowwe consider i = 0. Since ĝ �= Ê8, the affineDynkin diagram always admits a diagram
automorphism, that means we can write E Lg

0 as
⊕

n∈Z(E(g,)
0 ⊗O(nF)) (see Proposition 8).

Suppose the extended root corresponding to  is Ck , and the longest root in  is β0.
We will rewrite the holomorphic structure ∂(ϕ,�) in terms of the  root system. Note

∂(ϕ,�) is determined by the loop Lie algebra structure which is independent of the choice of

the extended root. We choose a local base of E(g,)
0 as in Proposition 8 and define ∂(ψ,) to

be the same with ∂(ϕ,�), then obviously ψD = ϕD when D �= nF .

Because (E(Lg,�)
ϕ , ∂(ϕ,�)) = (E(Lg,)

ψ , ∂(ψ,)) as a holomorphic vector bundle, similar

to the arguments in (E(Lg,�)
ϕ , ∂(ϕ,�)) case, we have when i �= k, ELg

ϕ is trivial on Ci if and
only if [ψCi |Ci ] �= 0. Note ψC0 = ϕ−α0+F = ϕC0 . So we have Theorem 19 when g �= E8.
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3.5 Proof for the loop E8 case

Similar to the above subsection, we have when i ∈ {1, 2, . . . , 8}, E LE8
ϕ is trivial on Ci if and

only if [ϕCi |Ci ] �= 0. The question is what about C0?
We recall EE8

0 := O⊕8 ⊕ ⊕
α∈� O(α). For any α ∈ �, we write a1(α) as the coefficient

of C1 in α, then O(α)|C0
∼= OP1(a1(α)). Among �+, there are 63 roots with a1(α) = 0,

corresponding to the positive roots of the Lie sub-algebra E7; 56 roots with a1(α) = 1,
corresponding to weights of the standard representation of E7; 1 root with a1(α) = 2, which
is just the longest root α0 = F − C0. We denote EE7

0 � O⊕7 ⊕ ⊕
α∈�,a1(α)=0 O(α), V+

0 �⊕
α∈�,a1(α)=1 O(α) and V−

0 �
⊕

α∈�,a1(α)=−1 O(α), then

EE8
0 = EE7

0 ⊕ O ⊕ V+
0 ⊕ V−

0 ⊕ O(α0) ⊕ O(−α0).

When O(α) is a summand of V+
0 , i.e., O(α)|C0

∼= OP1(1), we have O(α + C0)|C0
∼=

OP1(−1) and α +C0 = F − (α0 −α) with (α0 −α) ∈ �+, that isO(α +C0) is a summand
of V−

0 (F). Since F = α0 + C0 satisfies F · F = 0, we have O(F)|C0
∼= OP1 , O(α0)|C0

∼=
OP1(2) and O(2F − α0)|C0

∼= OP1(−2).
For the loop E8-bundle, we have

ELE8
0 =

⊕

n∈Z

(
EE8
0 ⊗ O(nF)

)

=
⊕

n∈Z

((
EE7
0 ⊕ O ⊕ V+

0 ⊕ V−
0 ⊕ O(α0) ⊕ O(−α0)

)
⊗ O(nF)

)

=
⊕

n∈Z

((
EE7
0 ⊕ O ⊕ V+

0 ⊕ V−
0 (F) ⊕ O(α0 − F) ⊕ O(F − α0)

)
⊗ O(nF)

)
.

We denote L248
0 � EE7

0 ⊕ O ⊕ V+
0 ⊕ V−

0 (F) ⊕ O(α0 − F) ⊕ O(F − α0). From definition

of ∂ϕ, ELE8
ϕ is built from successive extensions of L248

ϕ ⊗ O(nF), i.e.,

∂ϕ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . .
. . .

. . . ∂L248
ϕ ⊗O((n+1)F) ∗ . . .

. . . O ∂L248
ϕ ⊗O(nF)

. . .

. . .
. . .

. . .
. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

So if we can prove [ϕC0 |C0 ] �= 0 implies (L248
ϕ , ∂ϕ |L248

ϕ
) is trivial overC0, then (ELE8

ϕ , ∂ϕ)

is also trivial over C0 because of Ext1
P1

(O,O) = 0. Note

L248
0 |C0

∼= O⊕133
P1

⊕ OP1 ⊕ (OP1(1) ⊕ OP1(−1))⊕56 ⊕ OP1(2) ⊕ OP1(−2).

In this decomposition, any of the 56 pairs of {OP1(−1),OP1(1)} is the restriction of
{O(α),O(α + C0) = O(F − (α0 − α))} to C0 for some α with a1(α) = 1 and the triple
{OP1(2),OP1 ,OP1(−2)} is the restriction of {O(−C0),O,O(C0)} to C0. We will show
that the restriction of ∂ϕ |L248

ϕ
to C0 gives a non-trivial extension for each of these pairs

{OP1(−1),OP1(1)} and the triple {OP1(−2),OP1 ,OP1(2)}.
In order to write ∂ϕ |L248

ϕ
in matrix form, we need to decompose EE7

0 into positive parts

and non-positive parts, i.e., we denote E(E7,+)
0 := ⊕

α∈�+,a1(α)=0 O(α) and E(E7,−)
0 :=
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O⊕7 ⊕ ⊕
α∈�−,a1(α)=0 O(α). Then ∂ϕ |L248

ϕ
can be written as follows: (∂ϕ |L248

ϕ
is a upper

triangle matrix since ∂ϕ |L248
ϕ

maps any line bundle summand to other more “positive” line

bundle summands, i.e., ∂ϕ : O(D) → O(D
′
) is nonzero only if D

′ − D ≥ 0)

∂ϕ |L248
ϕ

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂V−
ϕ (F) A12 A13 A14 A15 A16 A17

O ∂O(F−α0) A23 A24 A25 A26 A27

O O ∂V+
ϕ

A34 A35 A36 A37

O O O ∂E(E7,+)
ϕ

A45 A46 A47

O O O O ∂O A56 A57

O O O O O ∂E(E7,−)
ϕ

A67

O O O O O O ∂O(α0−F)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Now we restrict this to C0, the 56 pairs {OP1(−1),OP1(1)} are in V−
0 (F)|C0 ⊕ V+

0 |C0 .
Since A23 = (0, 0, . . . , 0)56×1 and

A13 =

⎛

⎜⎜⎜⎝

±ϕC0 ∗ · · · ∗
0 ±ϕC0 · · · ∗
...

...
. . .

...

0 0 · · · ±ϕC0

⎞

⎟⎟⎟⎠

56×56

,

if [ϕC0 |C0 ] �= 0, then we have a trivialization of the 56 pairs {OP1(−1),OP1(1)} over C0 by
Lemma 32 in [2].

For the triple {OP1(−2),OP1 ,OP1(2)}, we review the trivialization of A1 Lie algebra
bundle. In A1 case, we have an A1-bundle E A1

ϕ , which topologically is E A1
0 = O ⊕ O(C) ⊕

O(−C), but with a holomorphic structure as follows:

∂ϕ =

⎛

⎜⎜⎝

∂0 ±ϕC 0

0 ∂0 ±ϕC

0 0 ∂0

⎞

⎟⎟⎠ ,

where ϕC ∈ H0,1(X,O(C)). From [2], we know if [ϕC |C ] �= 0, then E A1
ϕ is trivial on

C . Back to our case, the triple {OP1(−2),OP1 ,OP1(2)} has the corresponding submatrices
A25 = (ϕC0)1×1, A57 = (ϕC0)1×1 and A27 = (0)1×1. Since A23, A24, A26, A47 and A67 are
all zero matrices, from the trivialization of A1 Lie algebra bundle, we know if [ϕC0 |C0 ] �= 0,
then we have a trivialization of the triple {OP1(−2),OP1 ,OP1(2)} over C0.

Hence if [ϕC0 |C0 ] �= 0, then (L248
ϕ , ∂ϕ |L248

ϕ
) is trivial on C0, which implies (ELE8

ϕ , ∂ϕ) is
also trivial on C0. Hence, we have Theorem 19 for LE8 case.
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