Affine $A D E$ bundles over surfaces with $p_{g}=0$

Yunxia Chen ${ }^{1}$ • Naichung Conan Leung ${ }^{2}$

Received: 5 June 2014 / Accepted: 7 February 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract

Given any Kodaira curve C in a complex surface X, we construct a simply-laced affine Lie algebra bundle \mathcal{E} over X. When $p_{g}(X)=0$, we construct deformations of holomorphic structures on \mathcal{E} such that the new bundle is trivial over any $A D E$ curve C^{\prime} inside C and therefore descends to the singular surface obtained by contracting C^{\prime}.

1 Introduction

Let X be a complex surface and $\Lambda \subset \operatorname{Pic}(X)$ be a sublattice. If Λ is isomorphic to the root lattice $\Lambda_{\mathfrak{g}}$ of a simple Lie algebra \mathfrak{g}, then we have a root system Φ of \mathfrak{g} and we can associate a Lie algebra bundle $\mathcal{E}_{0}^{\mathfrak{g}}$ over $X[6,10,11]$:

$$
\mathcal{E}_{0}^{\mathfrak{g}}:=\mathcal{O}_{X}^{\oplus r} \oplus \bigoplus_{\alpha \in \Phi} \mathcal{O}_{X}(\alpha) .
$$

This can be generalized to the affine Lie algebra $\widehat{\mathfrak{g}}$ [9].
There are many instances when this happens. Here we list the following three cases as examples:
(1) When X_{n} is a del Pezzo surface, namely a blowup of \mathbb{P}^{2} at $n \leq 8$ points in general position (or $\mathbb{P}^{1} \times \mathbb{P}^{1}$), $\left\langle K_{X_{n}}\right\rangle^{\perp} \subset \operatorname{Pic}\left(X_{n}\right)$ is isomorphic to $\Lambda_{E_{n}}$. Thus we have an E_{n} bundle over X_{n}. By restriction, we have an E_{n}-bundle over any anti-canonical curve Σ in X_{n}. Notice that Σ is always a genus one curve. For a fixed elliptic curve Σ, the above

[^0]construction gives a bijection between del Pezzo surfaces containing Σ and E_{n}-bundles over $\Sigma[4,5,7,10,12,14]$. Such an identification was predicted by the F-theory/string duality in physics [7]. This was generalized to all simple Lie algebras in [10,11]. When $n=9, X_{9}$ is not Fano and $E_{9}=\hat{E}_{8}$ is an affine Lie algebra. Corresponding results for the \hat{E}_{8}-bundle over X_{9} are obtained in [9].
(2) When \widetilde{X} is the canonical resolution of a surface X with a rational double point of type \mathfrak{g}, then the corresponding exceptional curve $C=\bigcup C_{i}$ is an ADE curve of type \mathfrak{g}. Therefore all these C_{i} span a sublattice of $\operatorname{Pic}(\widetilde{X})$ which is isomorphic to $\Lambda_{\mathfrak{g}}$, thus giving a \mathfrak{g}-bundle $\mathcal{E}_{0}^{\mathfrak{g}}$ over \widetilde{X}. When $p_{g}(X)=0$, there exists a deformation $\mathcal{E}_{\varphi}^{\mathfrak{g}}$ of $\mathcal{E}_{0}^{\mathfrak{g}}$ such that $\mathcal{E}_{\varphi}^{\mathfrak{g}}$ is trivial over each C_{i}, thus it can descend to the singular surface X [2].
(3) When X is a relatively minimal elliptic surface, Kodaira classified all possible singular fibers (see e.g., [1]) and we call such a curve $C=\bigcup C_{i}$ a Kodaira curve. Its irreducible components C_{i} span a sublattice of $\operatorname{Pic}(X)$ which is isomorphic to the root lattice of an affine root system $\Phi_{\widehat{\mathfrak{g}}}$ and therefore we can construct an affine Lie algebra bundle $\mathcal{E}_{0}^{\widehat{\mathfrak{g}}}$ over X.

The motivations of this paper have three aspects. One is to generalize the results for $A D E$ bundles in [2] to affine $A D E$ bundles (see Theorem 1 below). The second is the natural question: if the del Pezzo surface X_{n} (resp. X_{9}) has a rational double point, does the E_{n} bundle (resp. \hat{E}_{8}-bundle) still exist? For this question, Friedman and Morgan gave a positive answer for del Pezzo surfaces [6]. In this paper, the authors will give a positive answer for both cases using a very different method (see Remark 22). The third is the following question: for a complex surface X with $p_{g}(X)=0$ and containing a Kodaira curve C, there is a natural affine $A D E$ bundle of the corresponding type over it, can we deform this bundle such that it can descend to the singular surface obtained by contracting any $A D E$ curve C^{\prime} inside C (Remark 23)?

Theorem 1 (Lemma 13, Proposition 17 and Theorem 21) Let X be a complex surface with $p_{g}=0$. If X has a Kodaira curve $C=\bigcup_{i=0}^{r} C_{i}$ of type $\widehat{\mathfrak{g}}$, then
(i) given any

$$
\left(\varphi_{C_{i}}\right)_{i=0}^{r} \in \Omega^{0,1}\left(X, \bigoplus_{i=0}^{r} \mathcal{O}\left(C_{i}\right)\right)
$$

with $\bar{\partial} \varphi_{C_{i}}=0$ for every i, it can be extended to

$$
\varphi=\left(\varphi_{\alpha}\right)_{\alpha \in \Phi_{\mathfrak{g}}^{+}} \in \Omega^{0,1}\left(X, \bigoplus_{\alpha \in \Phi_{-}^{+}} \mathcal{O}(\alpha)\right)
$$

such that $\bar{\partial}_{\varphi}:=\bar{\partial}+\operatorname{ad}(\varphi)$ is a holomorphic structure on $\mathcal{E}_{0}^{\widehat{\mathfrak{g}}}$. We denote the new bundle as $\mathcal{E}_{\varphi}^{\widehat{\mathfrak{g}}}$;
(ii) the new holomorphic structure $\bar{\partial}_{\varphi}$ is compatible with the Lie algebra structure on $\mathcal{E}_{0}^{\widehat{\mathfrak{g}}}$;
(iii) the new bundle $\mathcal{E}_{\varphi}^{\widehat{\mathfrak{Q}}}$ is trivial on C_{i} if and only if

$$
\left[\varphi_{C_{i}} \mid C_{i}\right] \neq 0 \in H^{1}\left(C_{i}, \mathcal{O}_{C_{i}}\left(C_{i}\right)\right) \cong \mathbb{C} ;
$$

(iv) there exists $\left[\varphi_{C_{i}}\right] \in H^{1}\left(X, \mathcal{O}\left(C_{i}\right)\right)$ such that $\left[\varphi_{C_{i}} \mid C_{i}\right] \neq 0$.

The organization of this paper is as follows. Section 2 gives the construction of the (affine) $A D E$ Lie algebra bundles directly from (affine) $A D E$ curves. In Sect. 3, we assume $p_{g}(X)=0$.

We construct deformations of the holomorphic structures on these bundles such that the new bundles are trivial over irreducible components of the curve.

Notation for a holomorphic bundle $\left(\mathcal{E}_{0}, \bar{\partial}_{0}\right)$ with $\mathcal{E}_{0}=\bigoplus_{i} \mathcal{O}\left(D_{i}\right), \bar{\partial}_{0}$ means the $\bar{\partial}$-operator for the direct sum holomorphic structure. If we construct a new holomorphic structure $\bar{\partial}_{\varphi}$ on \mathcal{E}_{0}, we denote the resulting bundle as \mathcal{E}_{φ}.

2 Affine $A D E$ bundles from affine $A D E$ curves

2.1 $A D E$ and affine $A D E$ curves

Definition 2 A curve $C=\bigcup C_{i}$ in a surface X is called an $A D E$ (resp. affine $A D E$) curve of type \mathfrak{g} (resp. $\widehat{\mathfrak{g}}$) if each C_{i} is a smooth (-2)-curve in X and the dual graph of C is a Dynkin diagram of the corresponding type.

It is known that C is an $A D E$ curve if and only if C can be contracted to a rational double point. In this case, the intersection matrix ($C_{i} \cdot C_{j}$) is negative definite [1].

If C is an affine $A D E$ curve, then the intersection matrix $\left(C_{i} \cdot C_{j}\right)$ is non positive definite and there exists n_{i} (these are unique if we ask n_{i} to be positive integers without common integers) such that $F:=\sum n_{i} C_{i}$ satisfies $F \cdot F=0$. Dynkin diagrams of affine $A D E$ types are drawn as follows and the corresponding $n_{i} C_{i}$ are labelled in the pictures. $A D E$ Dynkin diagrams can be obtained by removing the node corresponding to C_{0} (Fig. 1).

Remark 3 We will also call a nodal or cuspidal rational curve with trivial normal bundle an \widehat{A}_{0} curve.

Remark 4 By Kodaira's classification of singular fibers of relative minimal elliptic surfaces, every singular fiber is an affine $A D E$ curve unless it is rational with a cusp, tacnode or triplepoint (corresponding to type $I I$ or $I I I\left(\widehat{A}_{1}\right)$ or $V I\left(\widehat{A}_{2}\right)$ in Kodaira's notation), which can also be regarded as a degenerated affine $A D E$ curve of type $\widehat{A}_{0}, \widehat{A}_{1}$ or \widehat{A}_{2} respectively. In this paper, we will not distinguish affine $A D E$ curves from their degenerated forms since they have the same intersection matrices. We also call the affine $A D E$ curves as Kodaira curves.

Definition 5 A bundle E is called an $A D E$ (resp. affine $A D E$) bundle of type \mathfrak{g} (resp. $\widehat{\mathfrak{g}}$) if E has a fiberwise Lie algebra structure of the corresponding type.

In the following two subsections, we will recall an explicit construction of the Lie algebra \mathfrak{g}-bundle, loop Lie algebra $L \mathfrak{g}$-bundle and the affine Lie algebra $\widehat{\mathfrak{g}}$-bundle from (affine) $A D E$ curves in X.

2.2 ADE bundles

Suppose $C=\bigcup_{i=1}^{r} C_{i}$ is an $A D E$ curve of type \mathfrak{g} in X. We will construct the corresponding $A D E$ bundle $\mathcal{E}_{0}^{\mathfrak{g}}$ over X as follows [2].

Note the rank r of \mathfrak{g} equals the number of C_{i}. We set $\Phi:=\left\{\alpha=\left[\sum_{i=1}^{r} a_{i} C_{i}\right] \in\right.$ $\left.H^{2}(X, \mathbb{Z}) \mid \alpha^{2}=-2\right\}$. Then Φ is a simply-laced root system of \mathfrak{g} with a base $\Delta:=\left\{\left[C_{i}\right] \mid i=\right.$ $1,2, \ldots, r\}$. We have a decomposition $\Phi=\Phi^{+} \cup \Phi^{-}$into positive and negative roots. We define a bundle $\mathcal{E}_{0}^{(\mathfrak{g}, \Phi)}$ over X as follows:

$$
\mathcal{E}_{0}^{(\mathfrak{g}, \Phi)}:=\mathcal{O}^{\oplus r} \oplus \bigoplus_{\alpha \in \Phi} \mathcal{O}(\alpha) .
$$

Here $\mathcal{O}(\alpha)=\mathcal{O}\left(\sum_{i=1}^{r} a_{i} C_{i}\right)$ where $\alpha=\left[\sum_{i=1}^{r} a_{i} C_{i}\right]$. There is an inner product \langle,$\rangle on \Phi$ defined by $\langle\alpha, \beta\rangle:=-\alpha \cdot \beta$, negative of the intersection form.

For every open chart U of X, we take x_{α}^{U} to be a nonvanishing section of $\mathcal{O}_{U}(\alpha)$ and h_{i}^{U} $(1 \leq i \leq r)$ nonvanishing sections of $\mathcal{O}_{U}^{\oplus r}$. Define a Lie algebra structure [, $]_{\Phi}$ on $\mathcal{E}_{0}^{(\mathfrak{g}, \Phi)}$ such that $\left\{x_{\alpha}, \alpha \in \Phi ; h_{i}, 1 \leq i \leq r\right\}$ is the Chevalley basis [8], i.e.,
(a) $\left[h_{i}^{U}, h_{j}^{U}\right]_{\Phi}=0,1 \leq i, j \leq r$.
(b) $\left[h_{i}^{U}, x_{\alpha}^{U}\right]_{\Phi}=\left\langle\alpha, C_{i}\right\rangle x_{\alpha}^{U}, 1 \leq i \leq r, \alpha \in \Phi$.
(c) $\left[x_{\alpha}^{U}, x_{-\alpha}^{U}\right]_{\Phi}=h_{\alpha}^{U}$ is a \mathbb{Z}-linear combination of h_{i}^{U}.
(d) If α, β are independent roots, and $\beta-p \alpha, \ldots, \beta+q \alpha$ is the α-string through β, then $\left[x_{\alpha}^{U}, x_{\beta}^{U}\right]_{\Phi}=0$ if $q=0$, otherwise $\left[x_{\alpha}^{U}, x_{\beta}^{U}\right]_{\Phi}= \pm(p+1) x_{\alpha+\beta}^{U}$.

Fig. 1 Dynkin diagrams of affine $A D E$ types

Since \mathfrak{g} is a simply-laced Lie algebra, all the roots for \mathfrak{g} have the same length, we have any α-string through β is of length at most 2. So (d) can be written as $\left[x_{\alpha}^{U}, x_{\beta}^{U}\right]_{\Phi}=n_{\alpha, \beta} x_{\alpha+\beta}^{U}$, where $n_{\alpha, \beta}= \pm 1$ if $\alpha+\beta \in \Phi$, otherwise $n_{\alpha, \beta}=0$. It is easy to check that these Lie algebra structures are compatible with different trivializations of $\mathcal{E}_{0}^{(\mathfrak{g}, \Phi)}$ (see page 10 of [10] for more details). Hence $\mathcal{E}_{0}^{(\mathfrak{g}, \Phi)}$ is a Lie algebra bundle of type \mathfrak{g} over X.

2.3 Affine $A D E$ bundles

Suppose $C=\bigcup_{i=0}^{r} C_{i}$ is an affine $A D E$ curve of type $\widehat{\mathfrak{g}}$ in X. We will construct the corresponding affine $A D E$ bundle $\mathcal{E}_{0}^{\widehat{\mathfrak{g}}}$ of type $\widehat{\mathfrak{g}}$ over X as follows.

First, we choose an extended root of $\widehat{\mathfrak{g}}$, say C_{0}, then \mathfrak{g} is corresponding to the Dynkin diagram consists of those C_{i} with $i \neq 0$, i.e.,

$$
\Phi:=\left\{\alpha=\left[\sum_{i \neq 0} a_{i} C_{i}\right] \in H^{2}(X, \mathbb{Z}) \mid \alpha^{2}=-2\right\}
$$

is the root system of \mathfrak{g}. As above, we have a \mathfrak{g}-bundle

$$
\mathcal{E}_{0}^{(\mathfrak{g}, \Phi)}=\mathcal{O}^{\oplus r} \oplus \bigoplus_{\alpha \in \Phi} \mathcal{O}(\alpha)
$$

We define

$$
\mathcal{E}_{0}^{(L \mathfrak{g}, \Phi)}:=\bigoplus_{n \in \mathbb{Z}}\left(\mathcal{E}_{0}^{(\mathfrak{g}, \Phi)} \otimes \mathcal{O}(n F)\right)
$$

and

$$
\mathcal{E}_{0}^{(\widehat{\mathfrak{g}}, \Phi)}:=\bigoplus_{n \in \mathbb{Z}}\left(\mathcal{E}_{0}^{(\mathfrak{g}, \Phi)} \otimes \mathcal{O}(n F)\right) \oplus \mathcal{O} .
$$

We know

$$
\Phi_{\widehat{\mathfrak{g}}}:=\{\alpha+n F \mid \alpha \in \Phi, n \in \mathbb{Z}\} \bigcup\{n F \mid n \in \mathbb{Z}, n \neq 0\}
$$

is an affine root system and it decomposes into the union of positive and negative roots, i.e., $\Phi_{\widehat{\mathfrak{g}}}=\Phi_{\widehat{\mathfrak{g}}}^{+} \cup \Phi_{\widehat{\mathfrak{g}}}^{-}$, where

$$
\begin{aligned}
\Phi_{\widehat{\mathfrak{g}}}^{+} & =\left\{\sum a_{i} C_{i} \in \Phi_{\widehat{\mathfrak{g}}} \mid a_{i} \geq 0 \text { for all } i\right\} \\
& =\left\{\alpha+n F \mid \alpha \in \Phi^{+}, n \in \mathbb{Z}_{\geq 0}\right\} \cup\left\{\alpha+n F \mid \alpha \in \Phi^{-}, n \in \mathbb{Z}_{\geq 1}\right\} \cup\left\{n F \mid n \in \mathbb{Z}_{\geq 1}\right\}
\end{aligned}
$$

and $\Phi_{\widehat{\mathfrak{g}}}^{-}=-\Phi_{\widehat{\mathfrak{g}}}^{+}$.
To describe the Lie algebra structures, we proceed as before, for every open chart U of X, we take a local basis e_{i}^{U} of $\left.\mathcal{E}_{0}^{(\mathfrak{g}, \Phi)}\right|_{U}\left(e_{i}^{U}\right.$ is just h_{j}^{U} or x_{α}^{U} as above), $e_{n F}^{U}$ of $\left.\mathcal{O}(n F)\right|_{U}, e_{c}^{U}$ of $\left.\mathcal{O}\right|_{U}$, compatible with the tensor product, for example, $e_{n F}^{U} \otimes e_{m F}^{U}=e_{(n+m) F}^{U}$. Then define

$$
\begin{align*}
& {\left[e_{i}^{U} e_{n F}^{U}, e_{j}^{U} e_{m F}^{U}\right]_{L \mathfrak{g}, \Phi}:=\left[e_{i}^{U}, e_{j}^{U}\right]_{\Phi} e_{(n+m) F}^{U},} \tag{1}\\
& {\left[e_{i}^{U} e_{n F}^{U}+\lambda e_{c}^{U}, e_{j}^{U} e_{m F}^{U}+\mu e_{c}^{U}\right]_{\widehat{\mathfrak{g}}, \Phi}:=\left[e_{i}^{U}, e_{j}^{U}\right]_{\Phi} e_{(n+m) F}^{U}+n \delta_{n+m, 0} k\left(e_{i}^{U}, e_{j}^{U}\right) e_{c}^{U}} \tag{2}
\end{align*}
$$

Here $[,]_{\Phi}$ is the Lie bracket on $\mathcal{E}_{0}^{(\mathfrak{g}, \Phi)}$ and $k(x, y)=\operatorname{Tr}(\operatorname{ad}(x) \operatorname{ad}(y))$ is the Killing form on \mathfrak{g}.

Lemma 6 The above (1) [resp. (2)] defines a fiberwise loop (resp. affine) Lie algebra structure which is compatible with any trivialization of $\mathcal{E}_{0}^{(L \mathfrak{g}, \Phi)}$ (resp. $\mathcal{E}_{0}^{(\mathfrak{\mathfrak { g }}, \Phi)}$).

Proof See Proposition 23 of [9].
From the above lemma, we have the following result.
Proposition 7 If C is an affine ADE curve of type $\widehat{\mathfrak{g}}$ in X, then $\mathcal{E}_{0}^{(L \mathfrak{g}, \Phi)}\left(\right.$ resp. $\mathcal{E}_{0}^{(\widehat{\mathfrak{g}}, \Phi)}$) is a loop (resp. affine) Lie algebra bundle of type $L \mathfrak{g}$ (resp. $\widehat{\mathfrak{g}}$) over X.

Note any C_{i} with $n_{i}=1$ can be chosen as the extended root.
Proposition 8 The loop Lie algebra bundle $\left(\mathcal{E}_{0}^{(L \mathfrak{g}, \Phi)},[,]_{L \mathfrak{g}, \Phi}\right)$ does not depend on the choice of the extended root.

Proof Suppose $C_{k}(k \neq 0)$ is another root with $n_{k}=1$. We set

$$
\Psi=\left\{\beta=\left[\sum_{i \neq k} b_{i} C_{i}\right] \in H^{2}(X, \mathbb{Z}) \mid \beta^{2}=-2\right\} .
$$

Then Ψ is a root system of \mathfrak{g}. As before, we construct the Lie algebra bundle $\mathcal{E}_{0}^{(\mathfrak{g}, \Psi)}$ and $\mathcal{E}_{0}^{(L \mathfrak{g}, \Psi)}$ from Ψ.

We denote $\alpha_{0}:=\sum_{i \neq 0} n_{i} C_{i}=F-C_{0}$, the longest root in Φ. For any $\alpha=$ $\sum_{i \neq 0} a_{i}(\alpha) C_{i} \in \Phi, a_{k}(\alpha)$ can only be $0, \pm 1$. Hence there is a bijection between Φ and Ψ given by $\alpha \mapsto \beta=\alpha-a_{k}(\alpha) F$. Then from the definition of $\mathcal{E}_{0}^{(L \mathfrak{g}, \Phi)}$ and $\mathcal{E}_{0}^{(L \mathfrak{g}, \Psi)}$, we know they are the same as holomorphic vector bundles.

We compare the Lie brackets on them. We choose a local basis of $\mathcal{E}_{0}^{(L \mathfrak{g}, \Psi)}$ compatible with those of $\mathcal{E}_{0}^{(L \mathfrak{g}, \Phi)}$ and define $[,]_{L \mathfrak{g}, \Psi}$ similarly as $[,]_{L \mathfrak{g}, \Phi}$, i.e.,
(i) when $\beta=\alpha \in \Phi \cap \Psi$, we take $x_{\beta}=x_{\alpha}$;
(ii) when $\beta=\alpha+F \in \Psi^{+} \backslash \Phi$, we take $x_{\beta}=x_{\alpha} e_{F}$;
(iii) when $\beta=\alpha-F \in \Psi^{-} \backslash \Phi$, we take $x_{\beta}=x_{\alpha} e_{-F}$;
(iv) take $h_{i}(i \neq 0, k)$ as before, take $h_{0}=-h_{\alpha_{0}}$ as we want $\left[x_{C_{0}}, x_{-C_{0}}\right]_{L \mathfrak{g}, \Psi}=$ $\left[x_{-\alpha_{0}+F}, x_{\alpha_{0}-F}\right]_{L \mathfrak{g}, \Phi}$.
It is obvious [, $]_{L \mathfrak{g}, \Psi}=[,]_{L \mathfrak{g}, \Phi}$ on $\mathcal{E}_{0}^{(L \mathfrak{g}, \Psi)} \cong \mathcal{E}_{0}^{(L \mathfrak{g}, \Phi)}$.
For the affine case, we recall that the Killing form of \mathfrak{g} is the symmetric bilinear map $k: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathbb{C}$ defined by $k(x, y)=\operatorname{Tr}(\operatorname{ad}(x) \operatorname{ad}(y))$. It is ad-invariant, that is for $x, y, z \in$ $\mathfrak{g}, k([x, y], z)=k(x,[y, z])$.

Lemma 9 For any simple simply-laced Lie algebra \mathfrak{g} with a Chevalley basis $\left\{x_{\alpha}, \alpha \in\right.$ $\left.\Phi ; h_{i}, 1 \leq i \leq r\right\}$ and $m^{*}(\mathfrak{g})$ the dual Coxeter number of \mathfrak{g}, we have
(i) $k\left(h_{i}, x_{\alpha}\right)=0$ for any i and α;
(ii) $k\left(x_{\alpha}, x_{\beta}\right)=0$ for any $\alpha+\beta \neq 0$;
(iii) $k\left(h_{i}, h_{j}\right)=2 m^{*}(\mathfrak{g})\left\langle C_{i}, C_{j}\right\rangle$;
(iv) $k\left(x_{\alpha}, x_{-\alpha}\right)=2 m^{*}(\mathfrak{g})$ for any α.

Proof Directly from the Killing form k being ad-invariant or see [13].
Proposition 10 The affine Lie algebra bundle $\left(\mathcal{E}_{0}^{(\widehat{\mathfrak{g}}, \Phi)},[,]_{\widehat{\mathfrak{g}}, \Phi}\right)$ does not depend on the choice of the extended root.

Proof Follow the notation in Proposition 8, but we will take

$$
h_{0}=-h_{\alpha_{0}}+2 m^{*}(\mathfrak{g}) e_{c} .
$$

We will check that $[,]_{\widehat{\mathfrak{g}}, \Psi}=[,]_{\widehat{\mathfrak{g}}, \Phi}$ on $\mathcal{E}_{0}^{(\widehat{\mathfrak{g}}, \Psi)}=\mathcal{E}_{0}^{(\widehat{\mathfrak{g}}, \Phi)}$:
(a) when $\beta_{1}=\alpha_{1}+F, \beta_{2}=\alpha_{2}+F \in \Psi^{+} \backslash \Phi, \alpha_{1}, \alpha_{2} \in \Phi^{-} \backslash \Psi$ we have

$$
\left[h_{\beta_{1}} e_{n F}, h_{\beta_{2}} e_{m F}\right]_{\widehat{\mathfrak{g}}, \Psi}=n \delta_{n+m, 0} k\left(h_{\beta_{1}}, h_{\beta_{2}}\right) e_{c},
$$

which is the same with

$$
\left[h_{-\alpha_{1}} e_{n F}, h_{-\alpha_{2}} e_{m F}\right]_{\widehat{\mathfrak{g}}, \Phi}=n \delta_{n+m, 0} k\left(h_{\alpha_{1}}, h_{\alpha_{2}}\right) e_{c},
$$

since $k\left(h_{\beta_{1}}, h_{\beta_{2}}\right)=2 m^{*}(\mathfrak{g})\left\langle\beta_{1}, \beta_{2}\right\rangle=2 m^{*}(\mathfrak{g})\left\langle F-\alpha_{1}, F-\alpha_{2}\right\rangle=k\left(h_{\alpha_{1}}, h_{\alpha_{2}}\right)$.
(b) For $\left[h_{i} e_{n F}, x_{\alpha} e_{m F}\right]_{\mathfrak{g}, \Phi}$, automatically from $k\left(h_{i}, x_{\alpha}\right)=0$ and loop case.
(c) When $\beta=\alpha+F \in \Psi^{+} \backslash \Phi, \alpha \in \Phi^{-} \backslash \Psi$,

$$
\left[x_{\beta} e_{n F}, x_{-\beta} e_{m F}\right]_{\widehat{\mathfrak{g}}, \Psi}=h_{\beta} e_{(n+m) F}+n \delta_{n+m, 0} k\left(x_{\beta}, x_{-\beta}\right) e_{c},
$$

which is the same with

$$
\left[x_{-\alpha} e_{(n+1) F}, x_{\alpha} e_{(m-1) F}\right] \widehat{\mathfrak{g}, \Phi}=-h_{\alpha} e_{(n+m) F}+(n+1) \delta_{n+m, 0} k\left(x_{\alpha}, x_{-\alpha}\right) e_{c}
$$

by considering $m+n=0$ and $m+n \neq 0$ separately.
(d) For $\left[x_{\alpha_{1}} e_{n F}, x_{\alpha_{2}} e_{m F}\right] \widehat{\mathfrak{g}}, \Phi$ with $\alpha_{1}+\alpha_{2} \neq 0$, automatically from $k\left(x_{\alpha_{1}}, x_{\alpha_{2}}\right)=0$ and loop case.

For simplicity, we will omit Φ in $(\mathfrak{g}, \Phi),(L \mathfrak{g}, \Phi)$ and $(\widehat{\mathfrak{g}}, \Phi)$ when there is no confusion.

3 Trivialization of $\mathcal{E}_{0}^{\widehat{\mathfrak{g}}}$ over C_{i} after deformations

If $C=\bigcup C_{i}$ is an affine $A D E$ curve in X, then the corresponding $F=\sum n_{i} C_{i}$ satisfies $F \cdot F=0$, i.e., $\mathcal{O}_{F}(F)$ is a topologically trivial bundle. If $\mathcal{O}_{F}(F)$ is trivial holomorphically and $q(X)=0$, then from the long exact sequence of cohomologies induced by $0 \rightarrow \mathcal{O}_{X} \rightarrow$ $\mathcal{O}_{X}(F) \rightarrow \mathcal{O}_{F}(F) \rightarrow 0$, we know $H^{0}\left(X, \mathcal{O}_{X}(F)\right) \cong \mathbb{C}^{2}$. Hence F is a fiber of an elliptic fibration on X.

Suppose X is an elliptic surface, i.e., there is a smooth curve B and a surjective morphism $\pi: X \rightarrow B$ whose generic fiber $F_{b}(b \in B)$ is an elliptic curve. Assume π is singular at $b_{0} \in B$ and $F_{b_{0}}=\sum n_{i} C_{i}$ is a singular fiber of type $\widehat{\mathfrak{g}}$. Hence, we have a $\widehat{\mathfrak{g}}$-bundle $\mathcal{E}_{0}^{\widehat{\mathfrak{g}}}$ over X. The restriction of $\mathcal{E}_{0}^{\widehat{\mathfrak{g}}}$ to any fiber F_{b}, other than $F_{b_{0}}$, is trivial because $F_{b} \cap C_{i}=\varnothing$ for any i. However, $\left.\mathcal{E}_{0}^{\widehat{\mathfrak{g}}}\right|_{F_{b_{0}}}$ is not trivial, for instance $\left.\mathcal{O}\left(-C_{i}\right)\right|_{C_{i}} \cong \mathcal{O}_{\mathbb{P}^{1}}(2)$. Nevertheless, we will show that after deformations of holomorphic structures, $\mathcal{E}_{0}^{\widehat{\mathfrak{g}}}$ will become trivial on every irreducible component of $F_{b_{0}}$.

3.1 Review of $A D E$ cases

In our earlier paper [2], we showed how to take successive extensions to make the \mathfrak{g}-bundle $\mathcal{E}_{0}^{\mathfrak{g}}$ trivial on every component C_{i} of the $A D E$ curve $C=\bigcup_{i=1}^{r} C_{i}$.

Definition 11 Given any $\varphi=\left(\varphi_{\alpha}\right)_{\alpha \in \Phi^{+}} \in \Omega^{0,1}\left(X, \bigoplus_{\alpha \in \Phi^{+}} \mathcal{O}(\alpha)\right)$, we define $\bar{\partial}_{\varphi}: \Omega^{0,0}$ $\left(X, \mathcal{E}_{0}^{\mathfrak{g}}\right) \longrightarrow \Omega^{0,1}\left(X, \mathcal{E}_{0}^{\mathfrak{g}}\right)$ by

$$
\bar{\partial}_{\varphi}:=\bar{\partial}_{0}+\operatorname{ad}(\varphi):=\bar{\partial}_{0}+\sum_{\alpha \in \Phi^{+}} \operatorname{ad}\left(\varphi_{\alpha}\right),
$$

More explicitly, if we write $\varphi_{\alpha}=c_{\alpha}^{U} x_{\alpha}^{U}$ locally for some one form c_{α}^{U}, then $\operatorname{ad}\left(\varphi_{\alpha}\right)=$ $c_{\alpha}^{U} \operatorname{ad}\left(x_{\alpha}^{U}\right)$. It is easy to check that $\bar{\partial}_{\varphi}$ is well-defined and compatible with the Lie algebra structure, i.e., $\bar{\partial}_{\varphi}[,]_{\Phi}=0$. For $\bar{\partial}_{\varphi}$ to define a holomorphic structure, we need

$$
0=\bar{\partial}_{\varphi}^{2}=\sum_{\alpha \in \Phi^{+}}\left(\bar{\partial}_{0} c_{\alpha}^{U}+\sum_{\beta+\gamma=\alpha}\left(n_{\beta, \gamma} c_{\beta}^{U} \wedge c_{\gamma}^{U}\right)\right) \operatorname{ad}\left(x_{\alpha}^{U}\right) .
$$

That is $\bar{\partial}_{0} \varphi_{\alpha}+\sum_{\beta+\gamma=\alpha}\left(n_{\beta, \gamma} \varphi_{\beta} \wedge \varphi_{\gamma}\right)=0$ for any $\alpha \in \Phi^{+}$. Explicitly:

$$
\begin{cases}\bar{\partial}_{0} \varphi_{C_{i}}=0 & i \in\{1,2, \ldots, r\} \\ \bar{\partial}_{0} \varphi_{C_{i}+C_{j}}=n_{C_{i}, C_{j}} \varphi_{C_{i}} \wedge \varphi_{C_{j}} & \text { if } C_{i}+C_{j} \in \Phi^{+} \\ \vdots & \end{cases}
$$

Recall $\left\{C_{i}\right\}_{i=1}^{r} \subset \Phi^{+}$is a base.
Proposition 12 Given any $\left(\varphi_{C_{i}}\right)_{i=1}^{r} \in \Omega^{0,1}\left(X, \bigoplus_{i=1}^{r} \mathcal{O}\left(C_{i}\right)\right)$ with $\bar{\partial} \varphi_{C_{i}}=0$ for any i, it can be extended to $\varphi=\left(\varphi_{\alpha}\right)_{\alpha \in \Phi^{+}} \in \Omega^{0,1}\left(X, \bigoplus_{\alpha \in \Phi^{+}} \mathcal{O}(\alpha)\right)$ satisfying $\bar{\partial}_{\varphi}^{2}=0$, so that we have a holomorphic \mathfrak{g}-bundle $\mathcal{E}_{\varphi}^{\mathfrak{G}}$ over X.

The proof of this proposition uses the following lemma.
Lemma 13 If $p_{g}(X)=0$, then
(i) for any $\alpha \in \Phi^{+}, H^{2}(X, \mathcal{O}(\alpha))=0$.
(ii) the restriction homomorphism $H^{1}\left(X, \mathcal{O}_{X}\left(C_{i}\right)\right) \rightarrow H^{1}\left(X, \mathcal{O}_{C_{i}}\left(C_{i}\right)\right)$ is surjective.

Theorem 14 For any given i, the holomorphic \mathfrak{g}-bundle $\mathcal{E}_{\varphi}^{\mathfrak{Q}}$ over X is trivial on C_{i} if and only if $\left[\varphi_{C_{i}} \mid C_{i}\right] \neq 0$.

The proof of this theorem can be found in Theorem 9 of [2]. Note that part (ii) of Lemma 13 says that such $\varphi_{C_{i}}$ can always be found.

3.2 Trivializations in loop $A D E$ cases

Definition 15 Given any $\varphi=\left(\varphi_{\alpha}\right)_{\alpha \in \Phi_{\mathfrak{\mathfrak { G }}}^{+}} \in \Omega^{0,1}\left(X, \bigoplus_{\alpha \in \Phi_{\mathfrak{\mathfrak { G }}}^{+}} \mathcal{O}(\alpha)\right)$, we define $\bar{\partial}_{(\varphi, \Phi)}: \Omega^{0,0}$ $\left(X, \mathcal{E}_{0}^{L \mathfrak{g}}\right) \longrightarrow \Omega^{0,1}\left(X, \mathcal{E}_{0}^{L \mathfrak{g}}\right)$ by $\bar{\partial}_{(\varphi, \Phi)}:=\bar{\partial}_{0}+\operatorname{ad}(\varphi)$.

More explicitly, if we write $\varphi_{\alpha}=c_{\alpha}^{U} x_{\alpha}^{U}$ locally for some one form c_{α}^{U}, then by the decomposition of $\Phi_{\mathfrak{\mathfrak { g }}}^{+}$in Sect. 2.3, we have (here we omit the local chart U for simplicity):

$$
\begin{aligned}
\bar{\partial}_{(\varphi, \Phi)}:= & \bar{\partial}_{0}+\sum_{n \in \mathbb{Z}_{\geq 0}} \sum_{\alpha \in \Phi^{+}}\left(c_{\alpha+n F} \operatorname{ad}\left(x_{\alpha} e_{n F}\right)+c_{-\alpha+(n+1) F} \text { ad }\left(x_{-\alpha} e_{(n+1) F}\right)\right) \\
& +\sum_{n \in \mathbb{Z}_{\geq 0}} \sum_{i=1}^{r} c_{(n+1) F}^{i} \operatorname{ad}\left(h_{i} e_{(n+1) F}\right) .
\end{aligned}
$$

Proposition $16 \bar{\partial}_{(\varphi, \Phi)}$ is compatible with the Lie algebra structure on $\mathcal{E}_{0}^{L \mathfrak{g}}$.
Proof $\bar{\partial}_{(\varphi, \Phi)}[,]_{L \mathfrak{g}, \Phi}=0$ follows directly from the Jacobi identity.
For $\bar{\partial}_{(\varphi, \Phi)}$ to define a holomorphic structure, we need $\bar{\partial}_{(\varphi, \Phi)}^{2}=0$, which is equivalent to the following equations:

$$
\left\{\begin{aligned}
\bar{\partial}_{0} \varphi_{n F}^{i}= & \sum_{p+q=n} \sum_{\alpha \in \Phi^{+}} \pm a_{i}\left(h_{\alpha}\right) \varphi_{\alpha+p F} \wedge \varphi_{-\alpha+q F} \\
\bar{\partial}_{0} \varphi_{\alpha+n F}= & \sum_{p+q=n} \sum_{\alpha_{1}+\alpha_{2}=\alpha} \pm \varphi_{\alpha_{1}+p F} \wedge \varphi_{\alpha_{2}+q F} \\
& +\sum_{p+q=n} \sum_{i=1}^{r}\left\langle\alpha, C_{i}\right\rangle \varphi_{\alpha+p F} \wedge \varphi_{q F}^{i} \\
\bar{\partial}_{0} \varphi_{-\alpha+n F}= & \sum_{p+q=n} \sum_{\alpha_{2}-\alpha_{1}=\alpha} \pm \varphi_{\alpha_{1}+p F} \wedge \varphi_{-\alpha_{2}+q F} \\
& +\sum_{p+q=n} \sum_{i=1}^{r}\left\langle-\alpha, C_{i}\right\rangle \varphi_{-\alpha+p F} \wedge \varphi_{q F}^{i}
\end{aligned}\right.
$$

where $a_{i}\left(h_{\alpha}\right)$ is the coefficient of h_{i} in h_{α}.
Proposition 17 Given any $\left(\varphi_{C_{i}}\right)_{i=0}^{r} \in \Omega^{0,1}\left(X, \bigoplus_{i=0}^{r} \mathcal{O}\left(C_{i}\right)\right)$ with $\bar{\partial} \varphi_{C_{i}}=0$ for every i, it can be extended to $\varphi=\left(\varphi_{\alpha}\right)_{\alpha \in \Phi_{\mathfrak{\mathfrak { G }}}^{+}} \in \Omega^{0,1}\left(X, \bigoplus_{\alpha \in \Phi_{\mathfrak{g}}^{+}} \mathcal{O}(\alpha)\right)$ satisfying $\bar{\partial}_{\varphi}^{2}=0$. Namely we have a holomorphic Lg-bundle $\mathcal{E}_{\varphi}^{L \mathfrak{g}}$ over X.

In order to prove this proposition, we need the following lemma.
Lemma 18 If $p_{g}(X)=0$, then for any $\alpha \in \Phi^{+}, n \in \mathbb{Z}_{\geq 0}, H^{2}(X, \mathcal{O}(n F)), H^{2}(X, \mathcal{O}(\alpha+$ $n F)$) and $H^{2}(X, \mathcal{O}(-\alpha+(n+1) F))$ are zero.

Proof Since F is an effective divisor and $H^{0}\left(X, K_{X}\right)=0$, we have for any $n \geq$ $0, H^{0}\left(X, K_{X}(-n F)\right)=0$. This is equivalent to $H^{2}(X, \mathcal{O}(n F))=0$ by Serre duality. Similarly, $H^{2}(X, \mathcal{O}(\alpha+n F))=0$ follows from $H^{0}\left(X, K_{X}(-\alpha)\right) \cong H^{2}(X, \mathcal{O}(\alpha))=0$ (Lemma 13). The proof of $H^{2}(X, \mathcal{O}(-\alpha+(n+1) F))=0$ uses the fact that $F-\alpha$ is an effective divisor for any $\alpha \in \Phi^{+}$.

Proof of Proposition 17 The equation $\bar{\partial}_{(\varphi, \Phi)}^{2}=0$ can be rewritten as follows:

$$
\left\{\begin{array}{l}
\bar{\partial}_{0} \varphi_{C_{i}}=0 \quad \text { for } i \in\{1,2, \ldots, r\}, \\
\bar{\partial}_{0} \varphi_{\alpha}=\sum_{\alpha_{1}+\alpha_{2}=\alpha}\left(\pm \varphi_{\alpha_{1}} \wedge \varphi_{\alpha_{2}}\right), \\
\bar{\partial}_{0} \varphi_{-\alpha_{0}+F}=\bar{\partial}_{0} \varphi_{C_{0}}=0, \\
\bar{\partial}_{0} \varphi_{-\alpha+F}=\sum_{\alpha_{2}-\alpha_{1}=\alpha}\left(\pm \varphi_{\alpha_{1}} \wedge \varphi_{-\alpha_{2}+F}\right), \\
\bar{\partial}_{0} \varphi_{F}^{i}=\sum_{\alpha \in \Phi^{+}}\left(\pm a_{i}\left(h_{\alpha}\right) \varphi_{\alpha} \wedge \varphi_{-\alpha+F}\right), \\
\vdots
\end{array}\right.
$$

where $\alpha_{0}=F-C_{0}$ is the longest root in Φ.
Firstly, we can solve for all the $\varphi_{\alpha}\left(\alpha \in \Phi^{+}\right)$from $H^{2}(X, \mathcal{O}(\alpha))=0$ (Proposition 12). Secondly, we get all the $\varphi_{-\alpha+F}\left(\alpha \in \Phi^{+}\right)$from $H^{2}(X, \mathcal{O}(-\alpha+F))=0$. Thirdly, since we have all the φ_{α} and $\varphi_{-\alpha+F}$, we can solve for all the φ_{F}^{i} for $1 \leq i \leq r$ from $H^{2}(X, \mathcal{O}(F))=0$. Do this process for $\varphi_{\alpha+n F}, \varphi_{-\alpha+(n+1) F}$ and $\varphi_{(n+1) F}^{i}$ inductively on n.

By Lemma 13, there always exists $\varphi_{C_{i}} \in \Omega^{0,1}\left(X, \mathcal{O}\left(C_{i}\right)\right)$ such that $0 \neq\left[\varphi_{C_{i}} \mid C_{C_{i}}\right] \in$ $H^{1}\left(X, \mathcal{O}_{C_{i}}\left(C_{i}\right)\right) \cong \mathbb{C}$ for each $i=0,1, \ldots, r$.

Theorem 19 For any given i, the holomorphic Lg-bundle $\mathcal{E}_{\varphi}^{L \mathfrak{g}}$ over X is trivial on C_{i} if and only if $\left[\varphi_{C_{i}} \mid C_{C_{i}}\right] \neq 0$.

Proof The proof will be given in Sects. 3.4 and 3.5. In Sect. 3.4, we deal with all the loop $A D E$ cases except loop E_{8} case which will be analyzed in Sect. 3.5.

3.3 Trivializations in affine $A D E$ cases

Follow the notation in Sect. 3.2, we define $\bar{\partial}_{(\varphi, \Phi)}:=\bar{\partial}_{0}+\operatorname{ad}(\varphi)$ on $\mathcal{E}_{0}^{\widehat{\mathfrak{g}}}$. Note the adjoint action here is defined using the affine Lie bracket.

Proposition $20 \bar{\partial}_{(\varphi, \Phi)}$ is compatible with the Lie algebra structure on $\mathcal{E}_{0}^{\widehat{\mathfrak{g}}}$.
$\operatorname{Proof} \overline{\bar{\partial}}_{(\varphi, \Phi)}[,]_{\widehat{\mathfrak{g}}, \Phi}=0$ follows directly from the Jacobi identity and the Killing form being invariant under the adjoint action.

It is easy to see that $\bar{\partial}_{(\varphi, \Phi)}^{2}=0$ in the affine case is equivalent to $\bar{\partial}_{(\varphi, \Phi)}^{2}=0$ in the loop case. Hence we have a new holomorphic structure $\bar{\partial}_{(\varphi, \Phi)}$ on $\mathcal{E}_{0}^{\widehat{\mathfrak{g}}}$.

Theorem 21 For any given i, the holomorphic $\widehat{\mathfrak{g}}$-bundle $\mathcal{E}_{\varphi}^{\widehat{\mathfrak{g}}}$ over X is trivial on C_{i} if and only if $\left[\varphi_{C_{i}} \mid C_{C_{i}}\right] \neq 0$.

Proof This follows from Theorem 19, $0 \rightarrow \mathcal{O} \rightarrow \mathcal{E}_{\varphi}^{\widehat{\mathfrak{Q}}} \rightarrow \mathcal{E}_{\varphi}^{L \mathfrak{g}} \rightarrow 0$ and $\operatorname{Ext} t_{\mathbb{P}^{1}}^{1}(\mathcal{O}, \mathcal{O})=$ $H^{1}\left(\mathbb{P}^{1}, \mathcal{O}\right)=0$.

From the construction of $\bar{\partial}_{\varphi}$ in Sect. 3.1 and $\bar{\partial}_{(\varphi, \Phi)}$ above, we have the following observation: let X be a complex surface with $p_{g}(X)=0$. If $\Lambda \subset \operatorname{Pic}(X)$ is isomorphic to the root lattice $\Lambda_{\mathfrak{g}}$ (resp. $\Lambda_{\widehat{\mathfrak{g}}}$) of $A D E$ type (resp. affine $A D E$ type) and $C=\bigcup C_{i}$ is an $A D E$ curve of type \mathfrak{h} with each irreducible curve C_{i} from the corresponding root system $\Phi_{\mathfrak{g}}$ (resp. $\Phi_{\widehat{\mathfrak{g}}}$), then we can deform the Lie algebra bundle $\mathcal{E}_{0}^{\mathfrak{g}}$ (resp. $\mathcal{E}_{0}^{\widehat{\mathfrak{g}}}$) such that its deformation $\mathcal{E}_{\varphi}^{\mathfrak{g}}$ (resp. $\left.\mathcal{E}_{\varphi}^{\widehat{\mathrm{g}}}\right)$ is trivial over every C_{i}. To show this, we will describe the corresponding holomorphic structure $\bar{\partial}_{\varphi}\left(\operatorname{resp} . \bar{\partial}_{(\varphi, \Phi)}\right)$ in detail. We choose these C_{i} as basis of $\Phi_{\mathfrak{h}}$ and extend it to the basis of $\Phi_{\mathfrak{g}}$ (resp. $\Phi_{\widehat{\mathfrak{g}}}$), then construct $\bar{\partial}_{\varphi}\left(\right.$ resp. $\left.\bar{\partial}_{(\varphi, \Phi)}\right)$ as follows:
(1) for $\alpha \in \Phi_{\mathfrak{g}}^{+} \backslash \Phi_{\mathfrak{h}}^{+}$, take $\varphi_{\alpha}=0$;
(2) for $C_{i} \in \Phi_{\mathfrak{h}}^{+}$, take $\varphi_{C_{i}}$ such that $\left[\varphi_{C_{i}} \mid C_{i}\right] \neq 0$;
(3) for $\alpha \in \Phi_{\mathfrak{h}}^{+}, \alpha \neq C_{i}$, take φ_{α} such that $\bar{\partial}_{(\varphi, \mathfrak{h})}:=\bar{\partial}_{0}+\sum_{\alpha \in \Phi_{\mathfrak{h}}^{+}} \operatorname{ad}\left(\varphi_{\alpha}\right)$ satisfy $\bar{\partial}_{(\varphi, \mathfrak{h})}^{2}=0$.

It obviously that such φ_{α} exist and the corresponding $\bar{\partial}_{\varphi}\left(\operatorname{resp} . \bar{\partial}_{(\varphi, \Phi)}\right)$ satisfy the integrability condition. And from the above theorem, the new bundle $\mathcal{E}_{\varphi}^{\mathfrak{g}}$ (resp. $\mathcal{E}_{\varphi}^{\widehat{\mathfrak{g}}}$) is trivial over every C_{i}.

Remark 22 In particular, if the del Pezzo surface X_{n} (resp. X_{9}) has a rational double point, then we can construct an E_{n}-bundle (resp. \widehat{E}_{8}-bundle) on its minimal resolution such that its restriction to each irreducible component of the exceptional locus is trivial, then this E_{n} bundle (resp. \widehat{E}_{8}-bundle) can descend to the singular surface X_{n} (resp. X_{9}). Therefore for a del Pezzo surface $X_{n}\left(\right.$ resp. $\left.X_{9}\right)$ with a rational double point, the E_{n}-bundle (resp. \widehat{E}_{8}-bundle) still exists. The relationship between the deformability of the \widehat{E}_{8}-bundle and the geometry of X_{9} is shown in [3].

Remark 23 For a complex surface X with $p_{g}(X)=0$ and containing an $A D E$ curve (resp. Kodaira curve) C, we have a corresponding type $A D E$ bundle (resp. affine $A D E$ bundle). If we contract any $A D E$ curve C^{\prime} inside C, then we will get a singular surface with a rational double point. By the above observation, we can deform this bundle such that it can descend to this singular surface.

3.4 Proof (except the loop E_{8} case)

In this subsection, we use the symmetry of the affine $A D E$ Dynkin diagram (except \widehat{E}_{8}) to show that $\mathcal{E}_{\varphi}^{L \mathfrak{g}}$ is trivial on C_{i} if and only if $\left[\varphi_{C_{i}} \mid C_{i}\right] \neq 0$.

Recall that $\mathcal{E}_{\varphi}^{L \mathfrak{g}}$ and $\mathcal{E}_{0}^{L \mathfrak{g}}$ have the same underlying C^{∞}-vector bundle, but with a holomorphic structure $\bar{\partial}_{(\varphi, \Phi)}$ of the following upper triangular block shape:
$\bar{\partial}_{\varphi}=\left(\begin{array}{c|c|c|c|c}\ddots & \ddots & \ddots & \ddots & \ddots \\ \hline \ddots & \bar{\partial}_{\mathcal{E}_{\varphi}^{(\mathrm{g}, \Phi)}} \otimes \mathcal{O}((n+1) F) & * & * & \ddots \\ \hline \ddots & O & \bar{\partial}_{\mathcal{E}_{\varphi}^{(\mathrm{g}, \Phi)} \otimes \mathcal{O}(n F)} & * & \ddots \\ \hline \ddots & O & O & \bar{\partial}_{\mathcal{E}_{\varphi}^{(\mathrm{g}, \Phi)} \otimes \mathcal{O}((n-1) F)} & \ddots \\ \hline \ddots & \ddots & \ddots & \ddots & \ddots\end{array}\right)$.
i.e., $\mathcal{E}_{\varphi}^{L \mathfrak{g}}$ is constructed from successive extensions of these $\mathcal{E}_{\varphi}^{(\mathfrak{g}, \Phi)} \otimes \mathcal{O}(n F)(n \in \mathbb{Z})$.

Note $\left.\bar{\partial}_{(\varphi, \Phi)}\right|_{\mathcal{E}_{\varphi}^{(\mathfrak{g}, \Phi)}}=\bar{\partial}_{0}+\sum_{\alpha \in \Phi^{+}} \operatorname{ad}\left(\varphi_{\alpha}\right)$. By Theorem 14 , for every $i \neq 0, \mathcal{E}_{\varphi}^{(\mathfrak{g}, \Phi)}$ is trivial on C_{i} if and only if $\left[\varphi_{C_{i}} \mid C_{i}\right.$] $\neq 0$. We also know $\left.\mathcal{O}(F)\right|_{C_{i}}$ is trivial for every i because $F \cdot C_{i}=0$. Thus, when $i \neq 0,\left.\mathcal{E}_{\varphi}^{L \mathfrak{g}}\right|_{C_{i}}$ is constructed from successive extensions of trivial vector bundles over $C_{i} \cong \mathbb{P}^{1}$. This implies that $\mathcal{E}_{\varphi}^{L \mathfrak{g}} \mid C_{i}$ is trivial if and only if $\left[\varphi_{C_{i}} \mid C_{i}\right] \neq 0$ as $\operatorname{Ext}_{\mathbb{P}^{\mathbf{1}}}^{1}(\mathcal{O}, \mathcal{O})=H^{1}\left(\mathbb{P}^{1}, \mathcal{O}\right)=0$.

Now we consider $i=0$. Since $\widehat{\mathfrak{g}} \neq \widehat{E}_{8}$, the affine Dynkin diagram always admits a diagram automorphism, that means we can write $\mathcal{E}_{0}^{L \mathfrak{g}}$ as $\bigoplus_{n \in \mathbb{Z}}\left(\mathcal{E}_{0}^{(\mathfrak{g}, \Psi)} \otimes \mathcal{O}(n F)\right)$ (see Proposition 8). Suppose the extended root corresponding to Ψ is C_{k}, and the longest root in Ψ is β_{0}.

We will rewrite the holomorphic structure $\overline{\bar{\gamma}}_{(\varphi, \Phi)}$ in terms of the Ψ root system. Note $\bar{\partial}_{(\varphi, \Phi)}$ is determined by the loop Lie algebra structure which is independent of the choice of the extended root. We choose a local base of $\mathcal{E}_{0}^{(\mathfrak{g}, \Psi)}$ as in Proposition 8 and define $\bar{\partial}_{(\psi, \Psi)}$ to be the same with $\bar{\partial}_{(\varphi, \Phi)}$, then obviously $\psi_{D}=\varphi_{D}$ when $D \neq n F$.

Because $\left(\mathcal{E}_{\varphi}^{(L \mathfrak{g}, \Phi)}, \bar{\partial}_{(\varphi, \Phi)}\right)=\left(\mathcal{E}_{\psi}^{(L \mathfrak{g}, \Psi)}, \bar{\partial}_{(\psi, \Psi)}\right)$ as a holomorphic vector bundle, similar to the arguments in $\left(\mathcal{E}_{\varphi}^{(L \mathfrak{g}, \Phi)}, \bar{\partial}_{(\varphi, \Phi)}\right)$ case, we have when $i \neq k, \mathcal{E}_{\varphi}^{L \mathfrak{g}}$ is trivial on C_{i} if and only if $\left[\psi_{C_{i}} \mid C_{C_{i}}\right] \neq 0$. Note $\psi_{C_{0}}=\varphi_{-\alpha_{0}+F}=\varphi_{C_{0}}$. So we have Theorem 19 when $\mathfrak{g} \neq E_{8}$.

3.5 Proof for the loop E_{8} case

Similar to the above subsection, we have when $i \in\{1,2, \ldots, 8\}, \mathcal{E}_{\varphi}^{L E_{8}}$ is trivial on C_{i} if and only if $\left[\varphi_{C_{i}} \mid C_{i}\right] \neq 0$. The question is what about C_{0} ?

We recall $\mathcal{E}_{0}^{E_{8}}:=\mathcal{O}^{\oplus 8} \oplus \bigoplus_{\alpha \in \Phi} \mathcal{O}(\alpha)$. For any $\alpha \in \Phi$, we write $a_{1}(\alpha)$ as the coefficient of C_{1} in α, then $\left.\mathcal{O}(\alpha)\right|_{C_{0}} \cong \mathcal{O}_{\mathbb{P}^{1}}\left(a_{1}(\alpha)\right)$. Among Φ^{+}, there are 63 roots with $a_{1}(\alpha)=0$, corresponding to the positive roots of the Lie sub-algebra $E_{7} ; 56$ roots with $a_{1}(\alpha)=1$, corresponding to weights of the standard representation of $E_{7} ; 1$ root with $a_{1}(\alpha)=2$, which is just the longest root $\alpha_{0}=F-C_{0}$. We denote $\mathcal{E}_{0}^{E_{7}} \triangleq \mathcal{O}^{\oplus 7} \oplus \bigoplus_{\alpha \in \Phi, a_{1}(\alpha)=0} \mathcal{O}(\alpha), V_{0}^{+} \triangleq$ $\bigoplus_{\alpha \in \Phi, a_{1}(\alpha)=1} \mathcal{O}(\alpha)$ and $V_{0}^{-} \triangleq \bigoplus_{\alpha \in \Phi, a_{1}(\alpha)=-1} \mathcal{O}(\alpha)$, then

$$
\mathcal{E}_{0}^{E_{8}}=\mathcal{E}_{0}^{E_{7}} \oplus \mathcal{O} \oplus V_{0}^{+} \oplus V_{0}^{-} \oplus \mathcal{O}\left(\alpha_{0}\right) \oplus \mathcal{O}\left(-\alpha_{0}\right)
$$

When $\mathcal{O}(\alpha)$ is a summand of V_{0}^{+}, i.e., $\left.\mathcal{O}(\alpha)\right|_{C_{0}} \cong \mathcal{O}_{\mathbb{P}^{1}}(1)$, we have $\left.\mathcal{O}\left(\alpha+C_{0}\right)\right|_{C_{0}} \cong$ $\mathcal{O}_{\mathbb{P}^{1}}(-1)$ and $\alpha+C_{0}=F-\left(\alpha_{0}-\alpha\right)$ with $\left(\alpha_{0}-\alpha\right) \in \Phi^{+}$, that is $\mathcal{O}\left(\alpha+C_{0}\right)$ is a summand of $V_{0}^{-}(F)$. Since $F=\alpha_{0}+C_{0}$ satisfies $F \cdot F=0$, we have $\left.\mathcal{O}(F)\right|_{C_{0}} \cong \mathcal{O}_{\mathbb{P}^{1}},\left.\mathcal{O}\left(\alpha_{0}\right)\right|_{C_{0}} \cong$ $\mathcal{O}_{\mathbb{P}^{1}}(2)$ and $\left.\mathcal{O}\left(2 F-\alpha_{0}\right)\right|_{C_{0}} \cong \mathcal{O}_{\mathbb{P}^{1}}(-2)$.

For the loop E_{8}-bundle, we have

$$
\begin{aligned}
\mathcal{E}_{0}^{L E_{8}} & =\bigoplus_{n \in \mathbb{Z}}\left(\mathcal{E}_{0}^{E_{8}} \otimes \mathcal{O}(n F)\right) \\
& =\bigoplus_{n \in \mathbb{Z}}\left(\left(\mathcal{E}_{0}^{E_{7}} \oplus \mathcal{O} \oplus V_{0}^{+} \oplus V_{0}^{-} \oplus \mathcal{O}\left(\alpha_{0}\right) \oplus \mathcal{O}\left(-\alpha_{0}\right)\right) \otimes \mathcal{O}(n F)\right) \\
& =\bigoplus_{n \in \mathbb{Z}}\left(\left(\mathcal{E}_{0}^{E_{7}} \oplus \mathcal{O} \oplus V_{0}^{+} \oplus V_{0}^{-}(F) \oplus \mathcal{O}\left(\alpha_{0}-F\right) \oplus \mathcal{O}\left(F-\alpha_{0}\right)\right) \otimes \mathcal{O}(n F)\right) .
\end{aligned}
$$

We denote $L_{0}^{248} \triangleq \mathcal{E}_{0}^{E_{7}} \oplus \mathcal{O} \oplus V_{0}^{+} \oplus V_{0}^{-}(F) \oplus \mathcal{O}\left(\alpha_{0}-F\right) \oplus \mathcal{O}\left(F-\alpha_{0}\right)$. From definition of $\bar{\partial}_{\varphi}, \mathcal{E}_{\varphi}^{L E_{8}}$ is built from successive extensions of $L_{\varphi}^{248} \otimes \mathcal{O}(n F)$, i.e.,

$$
\bar{\partial}_{\varphi}=\left(\begin{array}{c|c|c|c}
\ddots & \ddots & \ddots & \ddots \\
\hline \ddots & \bar{\partial}_{L_{\varphi}^{248} \otimes \mathcal{O}((n+1) F)} & * & \ddots \\
\hline \ddots & O & \bar{\partial}_{L_{\varphi}^{248} \otimes \mathcal{O}(n F)} & \ddots \\
\hline \ddots & \ddots & \ddots & \ddots
\end{array}\right) .
$$

So if we can prove $\left[\varphi_{C_{0}} \mid C_{0}\right] \neq 0 \operatorname{implies}\left(L_{\varphi}^{248},\left.\bar{\partial}_{\varphi}\right|_{L_{\varphi}^{248}}\right)$ is trivial over C_{0}, then $\left(\mathcal{E}_{\varphi}^{L E_{8}}, \bar{\partial}_{\varphi}\right)$ is also trivial over C_{0} because of $\operatorname{Ext} t_{\mathbb{P}^{1}}^{1}(\mathcal{O}, \mathcal{O})=0$. Note

$$
\left.L_{0}^{248}\right|_{C_{0}} \cong \mathcal{O}_{\mathbb{P}^{1}}^{\oplus 133} \oplus \mathcal{O}_{\mathbb{P}^{1}} \oplus\left(\mathcal{O}_{\mathbb{P}^{1}}(1) \oplus \mathcal{O}_{\mathbb{P}^{1}}(-1)\right)^{\oplus 56} \oplus \mathcal{O}_{\mathbb{P}^{1}}(2) \oplus \mathcal{O}_{\mathbb{P}^{1}}(-2)
$$

In this decomposition, any of the 56 pairs of $\left\{\mathcal{O}_{\mathbb{P}^{1}}(-1), \mathcal{O}_{\mathbb{P}^{1}}(1)\right\}$ is the restriction of $\left\{\mathcal{O}(\alpha), \mathcal{O}\left(\alpha+C_{0}\right)=\mathcal{O}\left(F-\left(\alpha_{0}-\alpha\right)\right)\right\}$ to C_{0} for some α with $a_{1}(\alpha)=1$ and the triple $\left\{\mathcal{O}_{\mathbb{P}^{1}}(2), \mathcal{O}_{\mathbb{P}^{1}}, \mathcal{O}_{\mathbb{P}^{1}}(-2)\right\}$ is the restriction of $\left\{\mathcal{O}\left(-C_{0}\right), \mathcal{O}, \mathcal{O}\left(C_{0}\right)\right\}$ to C_{0}. We will show that the restriction of $\left.\bar{\partial}_{\varphi}\right|_{L_{\varphi}^{288}}$ to C_{0} gives a non-trivial extension for each of these pairs $\left\{\mathcal{O}_{\mathbb{P}^{1}}(-1), \mathcal{O}_{\mathbb{P}^{1}}(1)\right\}$ and the triple $\left\{\mathcal{O}_{\mathbb{P}^{1}}(-2), \mathcal{O}_{\mathbb{P}^{1}}, \mathcal{O}_{\mathbb{P}^{1}}(2)\right\}$.

In order to write $\left.\bar{\partial}_{\varphi}\right|_{L_{\varphi}^{248}}$ in matrix form, we need to decompose $\mathcal{E}_{0}^{E_{7}}$ into positive parts and non-positive parts, i.e., we denote $\mathcal{E}_{0}^{\left(E_{7},+\right)}:=\bigoplus_{\alpha \in \Phi^{+}, a_{1}(\alpha)=0} \mathcal{O}(\alpha)$ and $\mathcal{E}_{0}^{\left(E_{7},-\right)}:=$
$\mathcal{O}^{\oplus 7} \oplus \bigoplus_{\alpha \in \Phi^{-}, a_{1}(\alpha)=0} \mathcal{O}(\alpha)$. Then $\left.\bar{\partial}_{\varphi}\right|_{L_{\varphi}^{248}}$ can be written as follows: $\left(\left.\bar{\partial}_{\varphi}\right|_{L_{\varphi}^{248}}\right.$ is a upper triangle matrix since $\left.\bar{\partial}_{\varphi}\right|_{L_{\varphi} 248}$ maps any line bundle summand to other more "positive" line bundle summands, i.e., $\bar{\partial}_{\varphi}: \mathcal{O}(D) \rightarrow \mathcal{O}\left(D^{\prime}\right)$ is nonzero only if $D^{\prime}-D \geq 0$)
$\left.\bar{\partial}_{\varphi}\right|_{L_{\varphi}^{248}}=\left(\begin{array}{c|c|c|c|c|c|c}\bar{\partial}_{V_{\varphi}}^{-}(F) & A_{12} & A_{13} & A_{14} & A_{15} & A_{16} & A_{17} \\ \hline O & \bar{\partial}_{\mathcal{O}\left(F-\alpha_{0}\right)} & A_{23} & A_{24} & A_{25} & A_{26} & A_{27} \\ \hline O & O & \bar{\partial}_{V_{\varphi}^{+}} & A_{34} & A_{35} & A_{36} & A_{37} \\ \hline O & O & O & \bar{\partial}_{\mathcal{E}_{\varphi}^{\left(T_{7},+\right)}} & A_{45} & A_{46} & A_{47} \\ \hline O & O & O & O & \bar{\partial}_{\mathcal{O}} & A_{56} & A_{57} \\ \hline O & O & O & O & O & \bar{\partial}_{\mathcal{E}_{\varphi}^{\left(E_{7},-\right)}} & A_{67} \\ \hline O & O & O & O & O & O & \bar{\partial}_{\mathcal{O}\left(\alpha_{0}-F\right)}\end{array}\right)$.

Now we restrict this to C_{0}, the 56 pairs $\left\{\mathcal{O}_{\mathbb{P}^{1}}(-1), \mathcal{O}_{\mathbb{P}^{1}}(1)\right\}$ are in $V_{0}^{-}(F)\left|C_{0} \oplus V_{0}^{+}\right| C_{0}$. Since $A_{23}=(0,0, \ldots, 0)_{56 \times 1}$ and

$$
A_{13}=\left(\begin{array}{cccc}
\pm \varphi_{C_{0}} & * & \cdots & * \\
0 & \pm \varphi_{C_{0}} & \cdots & * \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \pm \varphi_{C_{0}}
\end{array}\right)_{56 \times 56}
$$

if $\left[\varphi_{C_{0}} \mid C_{0}\right] \neq 0$, then we have a trivialization of the 56 pairs $\left\{\mathcal{O}_{\mathbb{P}^{1}}(-1), \mathcal{O}_{\mathbb{P}^{1}}(1)\right\}$ over C_{0} by Lemma 32 in [2].

For the triple $\left\{\mathcal{O}_{\mathbb{P}^{1}}(-2), \mathcal{O}_{\mathbb{P}^{1}}, \mathcal{O}_{\mathbb{P}^{1}}(2)\right\}$, we review the trivialization of A_{1} Lie algebra bundle. In A_{1} case, we have an A_{1}-bundle $\mathcal{E}_{\varphi}^{A_{1}}$, which topologically is $\mathcal{E}_{0}^{A_{1}}=\mathcal{O} \oplus \mathcal{O}(C) \oplus$ $\mathcal{O}(-C)$, but with a holomorphic structure as follows:

$$
\bar{\partial}_{\varphi}=\left(\begin{array}{c|c|c}
\bar{\partial}_{0} & \pm \varphi_{C} & 0 \\
\hline 0 & \bar{\partial}_{0} & \pm \varphi_{C} \\
\hline 0 & 0 & \bar{\partial}_{0}
\end{array}\right),
$$

where $\varphi_{C} \in H^{0,1}(X, \mathcal{O}(C))$. From [2], we know if $\left[\left.\varphi_{C}\right|_{C}\right] \neq 0$, then $\mathcal{E}_{\varphi}^{A_{1}}$ is trivial on C. Back to our case, the triple $\left\{\mathcal{O}_{\mathbb{P}^{1}}(-2), \mathcal{O}_{\mathbb{P}^{1}}, \mathcal{O}_{\mathbb{P}^{1}}(2)\right\}$ has the corresponding submatrices $A_{25}=\left(\varphi_{C_{0}}\right)_{1 \times 1}, A_{57}=\left(\varphi_{C_{0}}\right)_{1 \times 1}$ and $A_{27}=(0)_{1 \times 1}$. Since $A_{23}, A_{24}, A_{26}, A_{47}$ and A_{67} are all zero matrices, from the trivialization of A_{1} Lie algebra bundle, we know if $\left[\varphi_{C_{0}} \mid C_{0}\right] \neq 0$, then we have a trivialization of the triple $\left\{\mathcal{O}_{\mathbb{P}^{1}}(-2), \mathcal{O}_{\mathbb{P}^{1}}, \mathcal{O}_{\mathbb{P}^{1}}(2)\right\}$ over C_{0}.

Hence if $\left[\varphi_{C_{0}} \mid C_{0}\right] \neq 0$, then $\left(L_{\varphi}^{248},\left.\bar{\partial}_{\varphi}\right|_{L_{\varphi}^{248}}\right)$ is trivial on C_{0}, which implies $\left(\mathcal{E}_{\varphi}^{L E_{8}}, \bar{\partial}_{\varphi}\right)$ is also trivial on C_{0}. Hence, we have Theorem 19 for $L E_{8}$ case.

Acknowledgments We are grateful to R. Friedman, E. Looijenga and J. J. Zhang for many useful comments and discussions. The first author is supported by the National Natural Science Foundation of China (No. 11501201), the China Postdoctoral Science Foundation (No. 2015M570334) and the Fundamental Research Funds for the Central Universities under Project No. 222201514322. The second author is supported by research grants from the Research Grants Council of the Hong Kong Special Administrative Region, China (Nos. 401411, 14302714).

References

2. Chen, Y.X., Leung, N.C.: ADE bundles over surfaces with ADE singularities. Int. Math. Res. Not. 15, 4049-4084 (2014)
3. Chen, Y.X., Leung, N.C.: Deformability of Lie algebra bundles and geometry of rational surfaces. Int. Math. Res. Not. (2015). doi:10.1093/imrn/rnv023
4. Donagi, R.: Principal bundles on elliptic fibrations. Asian J. Math 1(2), 214-223 (1997)
5. Donagi, R.: Taniguchi Lecture on Principal Bundles on Elliptic Fibrations. arXiv: hep-th/9802094 (1998)
6. Friedman, R., Morgan, J.W.: Exceptional groups and del Pezzo surfaces. In: Contemporary Mathematics 312, Symposium in Honor of C. H. Clemens, pp. 101-116 (2000)
7. Friedman, R., Morgan, J.W., Witten, E.: Vector bundles and F theory. Commun. Math. Phys. 187, 679-743 (1997)
8. Humphreys, J.E.: Introduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics 9. Springer-Verlag New York Inc. (1973)
9. Leung, N.C., Xu, M., Zhang, J.J.: Kac-Moody $\widetilde{E_{k}}$-bundles over elliptic curves and del Pezzo surfaces with singularities of type A. Math. Ann. 352, 805-828 (2012)
10. Leung, N.C., Zhang, J.J.: Moduli of bundles over rational surfaces and elliptic curves I: simply laced cases. J. Lond. Math. Soc. 80(3), 750-770 (2009)
11. Leung, N.C., Zhang, J.J.: Moduli of bundles over rational surfaces and elliptic curves II: non-simply laced cases. Int. Math. Res. Not. 24, 4597-4625 (2009)
12. Looijenga, E.: Rational surfaces with an anti-canonical cycle. Ann. Math. 114, 267-322 (1981)
13. Malagon, A.: Killing forms of isotropic Lie algebras. J. Pure Appl. Algebra 216, 2213-2224 (2012)
14. Xu, M., Zhang, J.J.: G-bundles over elliptic curves for non-simply laced Lie groups and configurations of lines in rational surfaces. Pac. J. Math. 261, 497-510 (2013)

[^0]: ® Yunxia Chen
 yxchen76@ecust.edu.cn
 Naichung Conan Leung
 leung@math.cuhk.edu.hk
 1 School of Science, East China University of Science and Technology, Meilong Road 130, Shanghai, China

 2 Department of Mathematics, The Institute of Mathematical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong

