
j. differential geometry

95 (2013) 419-481

THIN INSTANTONS IN G2-MANIFOLDS
AND SEIBERG-WITTEN INVARIANTS
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Abstract

For two nearby disjoint coassociative submanifolds C and C′ in
a G2-manifold, we construct thin instantons with boundaries lying
on C and C′ from regular J-holomorphic curves in C. We explain
their relationship with the Seiberg-Witten invariants for C.

1. Introduction

Intersection theory of Lagrangian submanifolds is an essential part
of symplectic geometry. By counting the number of holomorphic disks
bounding intersecting Lagrangian submanifolds, Floer and others de-
fined the celebrated Floer homology theory. It plays an important role in
mirror symmetry for Calabi-Yau manifolds and string theory in physics.
In M-theory, Calabi-Yau threefolds are replaced by seven dimensional
G2-manifolds M (i.e. oriented Octonion manifolds [26]). The analogs
of holomorphic disks (resp. Lagrangian submanifolds) are instantons or
associative submanifolds (resp. coassociative submanifolds or branes) in
M [25]. In [17], the Fredholm theory for instantons with coassociative
boundary conditions has been set up. However, existence of instantons
is still a difficult problem. As a first step, we want to give a construction
modeled on the work of Fukaya and Oh [10] in symplectic geometry. As
it was shown in [10], if we choose two nearby Lagrangian submanifolds
in such a way that one is the graph of a closed one form on the other,
then the holomorphic disks bounding two are closely related to gradient
flow lines of the one form. Searching for the analog in G2-geometry leads
us to study the following problem.

Problem: Given two nearby coassociative submanifolds C and C ′

in a (almost) G2-manifold M , relate the number of instantons in M
bounding C ∪ C ′ to the Seiberg-Witten invariants of C.

The basic idea is as follows: When the coassociative submanifold C ′ is
sufficiently close to C, then it is the graph of a self-dual two form on C.
This two form is essentially a symplectic form on C away from the inter-
section C ∩C ′. Instantons bounding C ∪C ′ would become holomorphic
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curves on C when C ′ collapses onto C modulo the possible bubblings. By
the seminal work of Taubes [36] on the equivalence of Gromov-Witten
and Seiberg-Witten invariants, we expect that the number counted with
algebraic weights of such instantons is given by the Seiberg-Witten in-
variants of C.

Settling the above problem completely is very difficult at the current
stage. We treat the special case when C and C ′ are disjoint, i.e. C is
a symplectic four manifold in this paper. The basic tool is the gluing
technique. But even in this simpler case, the set up is quite different
from the Lagrangian Floer theory (cf. Fukaya and Oh [10]). Our do-
mains are three dimensional instead of two dimensional, and we have to
deform the submanifolds rather than deforming the maps as was done
in Floer theory. This is because we do not have the luxury of applying
the conformal geometry in dimension two to transform the problem of
finding holomorphic curves into the one of finding holomorphic maps.
Furthermore, the linear theory is more difficult in this case since we
have to deal with a problem that lacks uniform ellipticity, as we will
explain in Section 3.3. Since the G2 form is cubic, the needed quadratic
estimate of the 3-dimensional instanton equation appears unavailable in
the Lp setting (see end of Section 4.3). So we set up the problem in the
Schauder setting, and in linear theory we need to go further from Lp

estimates to Schauder estimates. This is different from [10].
As C ′ should be sufficiently close to C, we assume that they arise in

a one-parameter smooth family of coassociative submanifolds Ct with
small t. Contracting with the normal vector field n := dCt/dt|t=0 for
the infinitesimal deformation with the G2-form Ω, we obtain a closed
self-dual two form ιnΩ ∈ Ω2

+ (C0). Using the induced metric, from n one
can define an almost complex structure J = Jn on C0 away from the
zero set of ιnΩ (see (2) for details).

Theorem 1. Suppose that (M,Ω) is a G2-manifold and {Ct} is a
one-parameter smooth family of coassociative submanifolds in M . When
ιnΩ ∈ Ω2

+ (C0) is nonvanishing, then:

1) (Proposition 6) If {At} is any one-parameter family of associative
submanifolds (i.e. instantons) in M satisfying

∂At ⊂ Ct ∪ C0, lim
t→0

At ∩C0 = Σ0 in the C1-topology,

then Σ0 is a Jn-holomorphic curve in C0.
2) (Theorem 27) Conversely, every regular Jn-holomorphic curve Σ0

(namely those for which the linearization of ∂Jn on Σ0 is surjec-
tive) in C0 is the limit of a family of associative submanifolds At

as described above.

Notice that in the product situation, where

(M,Ω) :=
(
X × S1,ReΩX + ωX ∧ dθ

)
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(cf. Section 2.2) with (X,ΩX) being a Calabi-Yau threefold, then our
theorem would follow from the work of [10].

The paper is organized as follows: In Section 2, we first recall some
basics of Floer theory; next we describe their G2-counterparts; then we
explain the connection between instantons and Seiberg-Witten invari-
ants; and last we study the deformation of instantons with the aim to
generalize to almost instantons. In Section 3, we first study the linear
differential operator D (defined in (19)) on a type of thin 3-manifold,
which is a linear approximation of the instanton equation; then we give
the L2 and Schauder estimates of its inverse D−1. In Section 4, we first
compare the linearized instanton equation on almost instantons with the
operator D on linear models, then we use the implicit function theorem
to perturb almost instantons to true instantons, thus proving our main
theorem.
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2. Instantons of dimension 2 and 3

2.1. Review of symplectic geometry. Given any symplectic mani-
fold (X,ω) of dimension 2n, there exists a compatible metric g so that
the equation

ω (u, v) = g (Ju, v)

defines a Hermitian almost complex structure

J : TX → TX ,

that is, J2 = −id and g (Ju, Jv) = g (u, v).
A holomorphic curve, or instanton of dimension 2, is a two di-

mensional submanifold Σ in X whose tangent bundle is preserved by J .
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Equivalently, Σ is calibrated by ω, i.e. ω|Σ = volΣ. By algebraic count-
ing of the number of instantons in X, one can define a highly nontrivial
invariant for the symplectic structure on X, called the Gromov-Witten
invariant.

When the instanton Σ has nontrivial boundary, then the correspond-
ing boundary value problem would require ∂Σ to lie on a Lagrangian
submanifold L in X, i.e. dimL = n and ω|L = 0. Floer studied the
intersection theory of Lagrangian submanifolds and defined the Floer
homology group HF (L,L′) under certain assumptions.

Suppose that X is a compact Calabi-Yau manifold, i.e. the holonomy
group of the Levi-Civita connection is inside SU (n); equivalently, J is
an integrable complex structure on X and there exists a holomorphic
volume form ΩX ∈ Ωn,0 (X) on X satisfying

(−1)
n(n−1)

2 (i/2)nΩX ∧ Ω̄X = ωn/n!.

Under the mirror symmetry transformation, HF (L,L′) is expected to
correspond to the Dolbeault cohomology group of coherent sheaves in
the mirror Calabi-Yau manifold.

A Lagrangian submanifold L in X is called a special Lagrangian
submanifold with phase zero (resp. π/2) if ImΩX |L = 0 (resp. ReΩX |L
= 0). With suitable choice of orientation of L, L is calibrated by ReΩX |L
(resp. ImΩX |L), that is, ReΩX |L is the volume form of L. They play
important roles in the Strominger-Yau-Zaslow mirror conjecture for
Calabi-Yau manifolds [35].

When X is a Calabi-Yau threefold, there are conjectures of Vafa and
others (e.g. [3][14]) that relate the (partially defined) open Gromov-
Witten invariant of the number of instantons with Lagrangian bound-
ary condition to the large N Chern-Simons invariants of knots in three
manifolds.

2.2. Counting instantons in (almost) G2-manifolds. Notice that
a real linear homomorphism J : Rm → R

m being a Hermitian complex
structure on R

m is equivalent to the following conditions: for any vector
v ∈ R

m, we have:

1) Jv is perpendicular to v.
2) |Jv| = |v|.
We can generalize J to the case involving more than one vector. We

call a skew symmetric bilinear map

× : Rm ⊗ R
m → R

m

a (2-fold) vector cross product if it satisfies:

(i) (u× v) is perpendicular to both u and v.
(ii) |u× v| = Area of parallelogram spanned by u and v = |u ∧ v| .
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The obvious example of this is the standard vector product on R
3. By

identifying R3 with ImH, the imaginary part of the quaternion numbers,
we have

u× v = Im v̄u.

The same formula defines a vector cross product on R
7 = ImO, the

imaginary part of the octonion numbers. Brown and Gray [15] showed
that these two are the only possible vector cross product structures on
R
m up to the automorphism of Rm.
Suppose that M is a seven dimensional Riemannian manifold with a

vector cross product × on each of its tangent spaces. The analog of the
symplectic form is a degree three differential form Ω on M defined as
follows:

Ω (u, v, w) = g (u× v,w) .

Definition 2. Suppose that (M,g) is a Riemannian manifold of di-
mension seven with a vector cross product × on its tangent bundle.
Then

1) M is called an almost G2-manifold if dΩ = 0.
2) M is called a G2-manifold if ∇Ω = 0 with ∇ being the Levi-

Civita connection.

Remark 3. M is a G2-manifold if and only if its holonomy group
is inside the exceptional Lie group G2 = Aut (O). The geometry of G2-
manifolds can be interpreted as the symplectic geometry on its knot
space (see e.g. [25], [29]).

A typical family of examples of G2-manifolds can be obtained via
the product manifold M := X × S1 with (X,ωX) being a Calabi-Yau
threefold with a holomorphic volume form ΩX , and the G2-form is given
by

Ω = ReΩX + ωX ∧ dθ.
Next we define the analogs of holomorphic curves and Lagrangian

submanifolds in the G2 setting.

Definition 4. Suppose that A is a three dimensional submanifold
of an almost G2-manifold M . We call A an instanton or associative
submanifold if TA is preserved by the vector cross product ×.

Harvey and Lawson [18] showed that A ⊂ M is an instanton if and
only if A is calibrated by Ω, i.e. Ω|A = volA. This is in turn equivalent
to τ |TA = 0 in our Lemma 7 for τ defined in (3) (i.e. Corollary 1.7 in
Section IV.1.A. of [18] and Corollary 14 in [25]).

In M-theory, associative submanifolds are also called M2-branes. In
the case whenM = X×S1 with X a Calabi-Yau threefold, Σ×S1 (resp.
L×{p}) is an instanton inM if and only if Σ (resp. L) is a holomorphic
curve (resp. special Lagrangian submanifold with zero phase) in X.
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A natural interesting question is to count the number of instantons
in M . In the special case of M = X × S1, these numbers are related to
the conjectural invariants proposed by Joyce [22] by counting special
Lagrangian submanifolds in Calabi-Yau threefolds, and the product of
holomorphic curves with S1. This problem has been discussed by many
physicists. For example, Harvey and Moore discussed in [19] the mirror
symmetry aspects of these invariants; Aganagic and Vafa in [3] related
these invariants to the open Gromov-Witten invariants for local Calabi-
Yau threefolds; Beasley and Witten argued in [4] that when there is a
moduli of instantons, then one should count them using the Euler char-
acteristic of the moduli space. The compactness issues of the moduli of
instantons are a very challenging problem because the bubbling-off phe-
nomena of (3-dimensional) instantons have not been well understood.
This makes it very difficult to define an honest invariant by counting
instantons.

Analogous to the Floer homology for Lagrangian intersections, when
an instanton A has a nontrivial boundary, ∂A 6= φ, one should require
it to lie inside a brane or a coassociative submanifold to make it a
well-posed elliptic problem (see [17] for Fredholmness and index com-
putation), i.e. submanifolds of maximal dimension in M where the re-
striction of Ω is zero. Branes are the analog of Lagrangian submanifolds
in symplectic geometry.

Definition 5. Suppose that C is a submanifold of an almost G2-
manifold M . We call C a coassociative submanifold if

Ω|C = 0 and dimC = 4.

For example, when M = X × S1 with X a Calabi-Yau threefold,
H×S1 (resp. C×{p}) is a coassociative submanifold inM if and only if
H (resp. C) is a special Lagrangian submanifold with phase π/2 (resp.
complex surface) in X. In [25], J.H. Lee and the first author showed

that the isotropic knot space K̂S1X of X admits a natural holomorphic

symplectic structure. Moreover, K̂S1H (resp. K̂S1C) is a complex La-

grangian submanifold in K̂S1X with respect to the complex structure J
(resp. K).

Constructing special Lagrangian submanifolds with zero phase in X
with boundaries lying on H (resp. C) corresponds to the Dirichlet (resp.
Neumann) boundary value problem for minimizing volume among La-
grangian submanifolds as studied by Schoen, Wolfson ([33], [34]), and
Butcher [5]. For a general G2-manifold M , the natural boundary value
for an instanton is a coassociative submanifold. Similar to the inter-
section theory of Lagrangian submanifolds in symplectic manifolds, we
propose to study the following problem: Count the number of instantons
in G2-manifolds bounding two coassociative submanifolds.
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The product of a coassociative submanifold with a two dimensional
plane inside the eleven dimension spacetime M × R

3,1 is called a D5-
brane in M-theory. Counting the number of M2-branes between two
D5-branes has also been studied in the physics literature.

In general, this is a very difficult problem. For instance, counting
S1-invariant instantons in M = X × S1 is the open Gromov-Witten
invariant. However, when the two coassociative submanifolds C and C ′

are close to each other, we can relate the number of thin instantons
between them to the number of J-holomorphic curves in C (Theorem
1), and hence, by Taubes’ work, to the Seiberg-Witten invariant of C.

2.3. Relationships to Seiberg-Witten invariants. To determine
the number of instantons between nearby coassociative submanifolds,
we first recall the deformation theory of compact coassociative subman-
ifolds C inside any G2-manifoldM , as developed by McLean [28]. Given
any normal vector field n ∈ Γ

(
NC/M

)
, the interior product ιnΩ is natu-

rally a self-dual two form on C because of Ω|C = 0. This gives a natural
identification,

Γ
(
NC/M

) ≃→ Λ2
+ (C)

n→ η0 = ιnΩ.(1)

Furthermore, infinitesimal deformations of coassociative submanifolds
are parameterized by self-dual harmonic two forms η0 ∈ H2

+ (C), and
they are always unobstructed, i.e. any such forms with sufficiently small
norm give actual deformations to nearby coassociative submanifolds (see
section 4 of [28]). Notice that the zero set of η0 is the intersection of C
with a infinitesimally nearby coassociative submanifold Ct, that is,

{η0 = 0} = lim
t→0

(C ∩ Ct) ,

where C = C0 and η0 = dCt/dt|t=0.
Since

η0 ∧ η0 = η0 ∧ ∗η0 = |η0|2 ∗ 1,
η0 defines a natural symplectic structure on Creg := C\ {η0 = 0}. If we
normalize η0 to η,

η = η0/ |η0| ,
then the equation

η (u, v) = g (Ju, v)

defines a Hermitian almost complex structure J on Creg. The J is de-
termined by η, which in turn is determined by n, so we denote it by Jn.
More explicitly, for u ∈ TCreg,

(2) Jn (u) = |n|−1 n× u.
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The next proposition says that when two coassociative submanifolds
C and C ′ come together, not necessarily disjoint, then the limit of in-
stantons bounding them will be a Jn-holomorphic curve Σ in Creg with
boundary C ∩ C ′.

Proposition 6. Let M be a G2-manifold. Suppose that for some
ε0 > 0, there is a smooth map

ψ : C × [0, ε0] −→M

such that for each t ∈ [0, ε0] , ψt (·) := ψ (·, t) is a smooth immersion
of C into M as a coassociative submanifold Ct := ψ (C × {t}). Suppose
that n = dCt/dt|t=0 ∈ Γ

(
NC/M

)
is nowhere vanishing, and

φt : Σ× [0, t] −→M

is a smooth family of instantons in M such that for each t ∈ (0, ε0], φt
is an associative immersion with boundary condition

φt (Σ× {0}) ⊂ C0 := ψ (C × {0}) , φt (Σ× {t}) ⊂ Ct := ψ (C × {t}) .
Suppose that the C1-limit of φt (Σ× {0}) exists as t → 0. Then Σ0 :=
limt→0 φt (Σ× {0}) is a Jn-holomorphic curve in C0.

Proof. Let us denote the boundary component of At =Image(φt) in
C0 by Σt, i.e. Σt := φt (Σ× {0}). Let wt be a unit normal vector field
for Σt in At. We claim that wt is perpendicular to C0. To see this, note
that TAt being preserved by the vector cross product implies that

wt = u× v

for some tangent vectors u and v in Σt. In fact, for any unit vector
u ∈ TΣt, v := wt×u ∈ TΣt by associativity condition of At and v ⊥ wt,
and

u× v = −u× (u× wt)

= τ (u, u,wt) + g (u,wt) u+ g (u, u)wt

= 0 + 0 + wt = wt,

where we have used in the second line the definition of τ in (3) and τ
is a (vector-valued) form. Therefore, given any tangent vector w along
C0, we have

g (wt, w) = g (u× v,w) = Ω (u, v, w) = 0,

where the last equality follows from C0 being coassociative and Σt ⊂ C0.
Reparameterize φt : Σ × [0, ε] → M when necessary, then for small t
we can assume that d

dsφt (z, s)
∣∣
s=0

is parallel to wt (z) for any z ∈ Σ.
Noting that

φt (z, 0) ⊂ C0 and φt (z, t) ⊂ Ct,
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we see limt→0 wt (z) is parallel to(
dCt

dt

∣∣∣∣
t=0

)∣∣∣∣
Σ0

= n ∈ Γ
(
Σ0, NC0/M

)
.

Therefore, along Σ0,

lim
t→0

wt (z) = |n (z)|−1 n (z) .

For any ut ∈ TΣt, wt × ut ⊥ wt in associative At, so

wt × ut ∈ TΣt.

Since Σt → Σ0 in C1 topology, for any u ∈ TΣ0, u can be realized as
the limit of ut. Therefore

Jn (u) = |n|−1 n× u = lim
t→0

(wt × ut) ∈ lim
t→0

TΣt = TΣ0,

i.e. Σ0 is a Jn-holomorphic curve in C0 with respect to the almost com-
plex structure Jn defined in (2). q.e.d.

The reverse of the above proposition is also true (Theorem 27). The
Lagrangian analog of it was proven by Fukaya and Oh in [10]. On the
other hand, by the celebrated work of Taubes, we expect that the num-
ber (counted with algebraic weights) of such holomorphic curves in C0

equals the Seiberg-Witten invariant of C0. We conjecture the following
statement.

Conjecture: Suppose that C and C ′ are nearby coassociative sub-
manifolds in a G2-manifold M . Then the number of instantons counted
with algebraic weights inM with small volume and with boundary lying
on C ∪ C ′ is given by the Seiberg-Witten invariants of C.

The main result of our paper is to solve a special case of the above
conjecture; namely, we will concentrate on the case that C and C ′ are
both compact and they do NOT intersect. (In the remainder of the
paper, we will always assume C and C ′ are compact and they do NOT
intersect.) The basic ideas are (i) the limit of such instantons is a J-
holomorphic curve for almost complex structure J compatible to the
(degenerated) symplectic form η on C coming from its deformations
as coassociative submanifolds and this process can be reversed; (ii) the
number of J-holomorphic curves in the four manifold C should be re-
lated to the Seiberg-Witten invariant of C by the work of Taubes ([37],
[38]). Note that one only gets one symplectic form η (and hence one
almost complex structure J) from a given coassociative deformation of
C, though of course one can get more (from different coassociative de-
formations).

Suppose that η is a self-dual two form on C with constant length
√
2;

in particular, it is a (non-degenerate) symplectic form, and Σ is a smooth
holomorphic curve in C, possibly disconnected. If Σ is regular in the
sense that the linearized Cauchy-Riemann operator DΣ∂̄J has trivial
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cokernel [36], then Taubes showed that the perturbed Seiberg-Witten
equations,

F+
a = q (ψ)− r

√
−1η,

DA(a)ψ = 0,

have solutions for all sufficiently large r. Here a is a connection on
the complex line bundle E over C whose first Chern class equals the
Poincaré dual of Σ, PD [Σ], Fa is the curvature 2-form of E and F+

a is
the projection of Fa to ∧2

+ (C), ψ is a section of the twisted spinor bundle

S+ = E⊕
(
K−1 ⊗ E

)
and DA(a) is the twisted Dirac operator, and q (·)

is a certain canonical quadratic map from S+ to i · ∧2
+ (C). The number

of such solutions (counted with algebraic weights) is the Seiberg-Witten
invariant SWC (Σ) of C. Furthermore, the converse is also true; namely,
the Seiberg-Witten invariant SWC (Σ) is equal to the Gromov-Witten
invariants counting holomorphic curves Σ. Thus Taubes established an
equivalence between Seiberg-Witten theory and Gromov-Witten theory
for symplectic four manifolds. This result has far reaching applications
in four dimensional symplectic geometry.

For a general four manifold C with nonzero b+ (C), using a generic
metric, any self-dual two form η on C defines a degenerate symplectic
form on C, i.e. η is a symplectic form on the complement of {η = 0},
which is a finite union of circles (see [12][21]). Therefore, one might
expect to have a relationship between the Seiberg-Witten invariants
of C and the number of holomorphic curves with boundaries {η = 0} in
C. Part of this Taubes’ program has been verified in [37], [38].

Suppose that η is a nowhere vanishing self-dual harmonic two form
on a coassociative submanifold C in a G2-manifoldM . For any holomor-
phic curve Σ in C, we want to construct an instanton in M bounding C
and C ′, where C ′ is a small deformation of the coassociative submani-
fold C along the normal direction given by η. Notice that C and C ′ do
not intersect. We will construct such an instanton using a perturbation
argument which requires a lower bound on the first eigenvalue for the
appropriate elliptic operator. Recall that the deformation of an instan-
ton is governed by a twisted Dirac operator. We will reinterpret it as a
complexified version of the Cauchy-Riemann operator in Section 3.1.

2.4. Deformation of instantons. To construct an instanton A in M
from a holomorphic curve Σ in C, we need to perturb an almost in-
stanton A′ to a honest one using a quantitative version of the implicit
function theorem. Let us first recall the deformation theory of instan-
tons A ([18] and [25]) in a Riemannian manifold (M,g) with a parallel
(or closed) r-fold vector cross product

× : ΛrTM → TM .
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In our situation, we have r = 2. By taking the wedge product with TM ,
we obtain a homomorphism τ ,

τ : Λr+1TM → Λ2TM ∼= Λ2T ∗M ,

where the last isomorphism is induced from the Riemannian metric. As
a matter of fact, the image of τ lies inside the subbundle g

⊥
M which is

the orthogonal complement of gM ⊂ so (TM) ∼= Λ2T ∗M , the bundle of
infinitesimal isometries of TM preserving ×. That is,

τ ∈ Ωr+1
(
M, g⊥M

)
.

Lemma 7. ([18], [25]) An r + 1 dimensional submanifold A⊂M is
an instanton, i.e. TA is preserved by ×, if and only if

τ |A = 0 ∈ Ωr+1
(
A, g⊥M

)
.

This lemma is important in describing deformations of an instanton.
Mclean [28] used this to show that the normal bundle to an instanton
A is a twisted spinor bundle over A and infinitesimal deformations of A
are parameterized by twisted harmonic spinors.

In our present situation, (M,g) is a G2-manifold. Using the cross
product, we can identify g

⊥
M ⊂ Λ2T ∗M ∼= Λ2TM with the tangent

bundle TM , i.e. for u ∧ v ∈ Λ2TM , we identify it with w ∈ TM that
w = u × v. Then we can also characterize τ ∈ Ω3 (M,TM) by the
following formula:

(∗Ω) (u, v, w, z) = g (τ (u, v, w) , z) .

More explicitly,

(3) τ (u, v, w) = −u× (v × w)− g (u, v)w + g (u,w) v.

Therefore A⊂M is an instanton if and only if ∗A (τ |A) = 0 ∈ TM |A.
Example. The G2 manifold R

7:

R
7 ≃ ImO ≃ ImH⊕H = {(x1i+ x2j+ x3k, x4 + x5i+ x6j+ x7k)} ,

the standard basis consists of ei =
∂

∂xi
(i = 1, 2, . . . 7), and the multipli-

cation × for (a, b) , (c, d) ∈ ImH⊕H ≃ ImO is

(4) (a, b)× (c, d) = (ac− d∗b, da+ bc∗)

(Cayley–Dickson construction), where z∗ denotes the conjugate of the
quaternion z. The G2 form Ω is

Ω = ω123 − ω167 − ω527 − ω563 − ω154 − ω264 − ω374,
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and the form τ is the following ((5.4) in [28]):

τ =
(
ω256 − ω247 + ω346 − ω357

) ∂

∂x1
+
(
ω156 − ω147 − ω345 + ω367

) ∂

∂x2

+
(
ω245 − ω267 − ω146 − ω157

) ∂

∂x3
+
(
ω567 − ω127 + ω136 − ω235

) ∂

∂x4

+
(
ω126 − ω467 + ω137 + ω234

) ∂

∂x5
+
(
ω457 − ω125 − ω134 + ω237

) ∂

∂x6

+
(
ω124 − ω456 − ω135 − ω236

) ∂

∂x7
,

(5)

where ωijk = dxi∧dxj∧dxk. ImH⊕{0} is associative (i.e. an instanton),
and {0}⊕H is coassociative.

As a matter of fact, if A is already close to being an instanton, then
we only need the normal components of ∗A (τ |A) to vanish.

Proposition 8. There is a positive constant δ such that for any 3-
plane A in

(
R
7,Ω

)
with |τ |A| < δ, A is an instanton if and only if

∗A (τ |A) ∈ TA.

Proof. McLean observed (from formula (5.6) in [28]) that if At is a
family of linear subspaces in M ∼= R

7 with A0 an instanton, then

∗At

(
dτ |At

dt

)∣∣∣∣
t=0

∈ NA0/M ⊂ TM |A0 .

We may assume that A is spanned by e1, e2 and ẽ3 = e3+
∑7

a=4 taea for
some small ta’s where ei’s are a standard basis for R7, in particular e1×
e2 = e3. This is because the natural action of G2 on the Grassmannian
Gr (2, 7) is transitive. An easy computation (cf. equation (5.4) in [28])
shows that the normal component of ∗ (τ |A) in NA/M is given by

∗ (τ |A)⊥ = −t5 (e4)⊥ + t4 (e5)
⊥ + t7 (e6)

⊥ − t6 (e7)
⊥ ,

where (·)⊥ denote the orthogonal projection onto NA/M . When ta’s are

all zero, we have (ea)
⊥ = ea for 4 ≤ a ≤ 7. In particular, they are

linearly independent when ta’s are small. In that case, ∗ (τ |A)⊥ = 0 will
actually imply that ta = 0 for all a, i.e. A is an instanton in M . Hence
the proposition. q.e.d.

This proposition will be needed later when we perturb an almost
instanton to an honest one. We also need to identify the normal bundle
NA/M to an instanton A with a twisted spinor bundle over A as following
[28]: We denote P to be the SO (4)-frame bundle of NA/M . Using the
identification

a : SO (4) = (Sp (1)× Sp (1)) /± (1, 1) → SO (H) ,

(p, q) · y = pyq̄, with p, q ∈ Sp (1) and y ∈ H.
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Mclean [28] showed that the normal bundle NA/M can be identified as
an associated bundle to P for the representation SO (4) → SO (H) given
by (p, q) · y = pyq̄. The spinor bundle S of A is associated to P for the
representation s : SO (4) → SO (H) given by (p, q) · y = yq̄. Let E be
the associated bundle to P for the representation e : SO (4) → SO (H)
given by (p, q) · y = py. Then because the 3 representations a, s, and e
have the relation

a = s ◦ e,
we obtain

NA/M
∼= S⊗H E.

An alternative proof ofNA/M
∼= S⊗HE using explicit frame identification

is contained in the proof of the next theorem.
We re-derive McLean’s theorem on deformation of associative sub-

manifolds A in a G2 manifold M . The original proof (Theorem 5.2 in
[28]) is not quite precise: the associative form τ ∈ Ω3 (M,TM) is vector-
valued rather than a usual differential form, so the pull back operation
and Cartan formula need to be clarified. The key is to define a suitable
notion of pull back for vector-valued forms. Our calculation is flexible
and can be extended to almost associative submanifolds in later sections.
Other proofs were given in [2] and [16].

Theorem 9 (McLean). Under the correspondence of normal vector
fields with twisted spinors, the Zariski tangent space to associative sub-
manifolds at an associative sub-manifold A is the space of harmonic
twisted spinors on A, that is, the kernel of the twisted Dirac operator.

Proof. For any section V of NA/M with C0 norm smaller than the
injectivity radius δ0 of M , we define a nonlinear map

F : Γ
(
NA/M

)
→ Ω3 (A, i∗TM) ,

F (V ) = TV ◦ (expV )∗ τ,(6)

where for the embedding expV : A → M , (expV )∗ pulls back the
differential form part of the tensor τ , and TV : Texpp(tV )M → TpM pulls

back the vector part of the tensor τ by parallel transport along the
geodesic expp (tV ). There is an ambiguity of the form part and vector
part of tensor τ up to a scalar function-valued matrix transform Θ and
Θ−1 respectively, but by the linearity of TV and (expV )∗ on scalar
function factors, one can easily show the definition of F is independent
on such Θ, so F is well-defined. We make F more explicit by using a good
frame. At a point p ∈ A, we pick two orthonormal vectors {W1,W2} in
TpA, then with respect to the induced connection ∇A on A, we parallel
transport {W1,W2,W3 =W1 ×W2} from p to a neighborhood B in A
along geodesic rays from p. From the construction we see

(7) ∇A
Wi
Wj (p) = 0, for 1 ≤ i, j ≤ 3.
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Then at any q ∈ B ⊂ A, we have orthonormal basis

{W1 (q) ,W2 (q) ,W3 (q) =W1 (q)×W2 (q)}
spanning TqA. (This uses that W1 (q) ×W2 (q) and the parallel trans-
portedW3 (p) are both orthogonal toW1 (q) andW2 (q) in 3 dimensional
A). We further choose a smooth normal unit vector field W4 on B in M
as follows: we choose a W4 ∈ NA/M (p) , then use the parallel transport

of NA/M with respect to the induced connection ∇⊥ in NA/M defined

as ∇⊥ = ⊥∇ from the metric on M , where ⊥ : TM → NA/M is the
natural projection. Thus on B,

W4 ⊥ {W1,W2,W1 ×W2} .
Using Lemma A.15 in [18] (Cayley–Dickson construction), we can
uniquely extend {Wα (q)}1,2,3,4 to basis {Wα (q)}α=1,2,...,7 of TqM , such
that

Wi+3 (q) =Wi (q)×W4 (q)

for i = 1, 2, 3, and the correspondence

(8) TqM ∋Wα
i↔ eα ∈ ImO, α = 1, 2, . . . , 7

preserves the inner product · and cross product ×, where {eα}α=1,2,...,7

is the standard basis of R7 ≃ ImO defined in the previous example. So
locally NA/M is trivialized as B × H, and at any q ∈ B, by the above
basis Wα we have algebra isomorphism

TqM = TqA⊕NA/M (q)
i≃ ImH⊕H ≃ ImO

that smoothly depends on q ∈ B. Hence NA/M is a quaternion valued
bundle over A isomorphic to S ⊗H E. From our construction we also
have

(9) ∇⊥
Wi
Wk (p) = 0 for i = 1, 2, 3 and k = 4, 5, 6, 7,

because ∇⊥
Wi
W4 (p) = 0 by construction of W4, and for k = 5, 6, 7, say

k = 5,

∇⊥
Wi
W5 (p) = ⊥ (∇Wi (W1 ×W4)) (p)

= ⊥ (∇WiW1 ×W4 +W1 ×∇WiW4) (p)

= ∇A
Wi
W1 (p)×W4 +W1 ×∇⊥

Wi
W4 (p) = 0,(10)

where the second row is because NA/M (p) ×W4 ⊂ TpA (for ImO ≃
ImH⊕H, (0,H)× (0, 1) ⊂ (ImH, 0) by (4)) and W1 × TpA ⊂ TpA by
associative condition. We remark that the parallel transport in NA/M

w.r.t ∇⊥ is an isometry, for if ∇⊥
TW = 0 for section W in NA/M , then

(11) ∇T 〈W,W 〉 = 2 〈∇TW,W 〉 = 2
〈
∇⊥

TW,W
〉
= 0.
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Next, for each q ∈ B, we parallel transport the frame {Wα (q)}α=1,2,...,7

along geodesical rays emanating from q in M in NA/M (q) directions up
to length δ0. This extends the frame to a tubular neighborhood of A in
M . Then ∇VWα (q) = 0 for any V ∈ Γ

(
NA/M

)
. If we write

τ = ωα ⊗Wα (α = 1, 2, . . . , 7)

following Einstein’s summation convention, then

F (V ) (q) = (expV )∗ ωα (q)⊗ TVWα

(
expq V

)
.

We have

F ′ (0)V =
d

dt

∣∣∣∣
t=0

F (tV )

=
d

dt

∣∣∣∣
t=0

[(exp tV )∗ ωα ⊗ TtVWα]

= LV ω
α ⊗Wα + ωα ⊗∇VWα

= d (iV ω
α)⊗Wα + iV dω

α ⊗Wα + ωα ⊗∇VWα.(12)

Since ∇τ = 0 and ∇VWα (q) = 0 by the parallel property of τ and Wα,
we have

0 = ∇V τ (q) = ∇V ω
α⊗Wα (q)+ω

α⊗∇VWα (q) = ∇V ω
α (q)⊗Wα (q) ,

and so ∇V ω
α (q) = 0. Since ∇ = d + A and in normal coordinates the

connection 1-form A vanishes at q along the fiber direction of NA/M , we
have iV dω

α (q) = 0. Therefore, by (12), at q we have

(13) F ′ (0)V (q) = d (iV ω
α)⊗Wα (q) .

By our choice of Wa, the τ = ωa⊗Wα at q is the standard form (5), and
by the parallel property of the cross product × and τ , in the neighbor-
hood of q in M the τ is also of standard form as (5), in the sense that
the coordinate vector ∂

∂ωi is replaced by the frame Wi, and ω
ijk = dxi∧

dxj ∧ dxk is replaced by W ∗
i ∧W ∗

j ∧W ∗
k where W ∗

α is the dual vector of
Wα. Namely,

τ = (W ∗
2 ∧W ∗

5 ∧W ∗
6 −W ∗

2 ∧W ∗
4 ∧W ∗

7 + · · · )⊗W1 + similar terms.

This is because ∇V (τ (Wi,Wj,Wk)) = 0 for V ∈ Γ
(
NA/M

)
, by ∇τ = 0

and the parallel property of {Wα}α=1,2,...,7 in NA/M directions. There-

fore from (13), similar to the way of deriving (5.6) in [28], and noting
dW ∗

i (p) = 0 (i = 1, 2, . . . 7) from (7) and (9), we get

F ′ (0)V (p) = d (iV ω
α)⊗Wα (p)(14)

= DV (p)⊗W ∗
1 ∧W ∗

2 ∧W ∗
3 (p)

= DV (p)⊗ dvolA (p) ,
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where for V = V 4W4 + V 5W5 + V 6W6 + V 7W7,

DV (p) = −
(
V 5
1 + V 6

2 + V 7
3

)
W4 +

(
V 4
1 + V 6

3 − V 7
2

)
W5

+
(
V 4
2 − V 5

3 + V 7
1

)
W6 +

(
V 4
3 + V 5

2 − V 6
1

)
W7

is the twisted Dirac operator (5.2) in [28] and also (17) below, with
V k
i = dV k (Wi), and dvolA = W ∗

1 ∧W ∗
2 ∧W ∗

3 is the induced volume
form on A ⊂ M since {Wα}α=1,2,3 is the orthonormal basis of TA.
Since p ∈ A and the section V are arbitrary, we have

(15) F ′ (0) = D ⊗ dvolA.

Note that both sides of the above identity are independent on the choice
of the frame {Wα}α=1,2,...,7. If the normal vector field V is induced from

deformation of associative submanifolds {At}0≤t≤ε0
, i.e.

At = expU (t) ·A for U (t) ∈ Γ
(
NA/M

)
and U ′ (0) = V,

then differentiating F (U (t)) = 0 at t = 0 and using (15) we get DV = 0
on A, namely V is a harmonic twisted spinor. q.e.d.

Remark 10. 1) The vector field V is only defined on A ⊂M , but
along the geodesic rays from A in the fiber directions of NA/M , one
can extend V to an open neighborhood of A by parallel transport;
therefore the Lie derivative LV ω for any 3-form ω on M makes
sense in this neighborhood. However, the Lie derivative of ω re-
stricted on A, namely i∗A (LV ω) for the inclusion iA : A →֒ M , is
actually independent of the extension of V , as mentioned in [28].
One can see this from the Cartan formula

LV ω = d (iV ω) + iV dω

as follows: On A, the second term iV dω is independent on the
extension of V . For the first term d (iV ω), since we restrict it on
A ⊂ M , one can directly check that this term only involves the
derivatives of the section V and ω in tangent directions of A, for
any derivative in normal direction will contribute a covector not
in T ∗A and make the corresponding summand in i∗A (LV ω) vanish.
So i∗A (LV ω) is independent on the extension of V and ω to M .

2) In the preceding proof, the normal vector field V is used only to
ensure that expV : A→ M is an embedding and give d (iV ω

α)⊗
Wα a twisted Dirac operator interpretation on the normal bundle
NA/M . Actually, to write down the linearization of F , one only
needs the normal bundle of A in M in differential topology sense
(namely at any p ∈ A, NA/M (p)+TpA = TpM , but not necessarily
NA/M (p) ⊥ TpA). If we denote the differential topological normal

bundle by N top
A/M , then for section V ∈ Γ

(
N top

A/M

)
with small C0

norm, expV : A → M is an embedding so we can define the
linearization of F as before.
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3) The linearization formula

(16) F ′ (0)V = d (iV ω
α)⊗Wα + iV dω

α ⊗Wα + ωα ⊗∇VWα

holds for any section V ∈ Γ
(
N top

A/M

)
, and any tangent frame

{Wa}i=1,2,...7 along any submanifold A ⊂ M (not necessarily as-

sociative). The term d (iV ω
α) ⊗Wα is the principal symbol term

of the first order linear differential operator F ′ (0) and behaves
functorially under the diffeomorphism between two manifolds. To
get F ′ (0)V (p) = d (iV ω

α)⊗Wα (p), one only needs to choose the
frame {Wα}α=1,...,7 that is parallel along the curves expp (tv) for

all p ∈ A and v ∈ N top
A/M (p).

4) On an almost instanton A, its normal bundle is not closed under ×
by TA in general, so the linearized instanton equation F ′ (0)V can
NOT be interpreted as a twisted Dirac operator. For this reason,
we will seldom use the twisted Dirac operator, but mainly (16) to
do computations and estimates of F ′ (0)V , with the aid of good
local frames {Wa}i=1,2,...7.

5) At a point p in a general 3-manifold A ⊂ M with volume form
dvolA, we can write the linearization

F ′ (0)V (p) = G ◦ V (p)⊗dvolA (p) ,

where G is a first order linear differential operator, whose principal
symbol depends on the algebraic relation of the frame {Wa} under
the products × and · , and the volume form on A. Besides the asso-
ciative {Wa}i=1,2,3+coassociative {Wa}i=4,5,6,7 type frame, there
may be some other type of frames leading to a meaningful differ-
ential operator G.

By McLean’s theorem, the normal bundle to any instanton A is a
twisted spinor bundle S over A corresponding to the representation
SO (4) → SO (H) given by (p, q) · y = pyq̄. Let D be the twisted Dirac
operator on A. We want to write it down explicitly in local coordinates
near p. We let {Wα}7α=1 be a local orthonormal frame constructed as
above. Suppose

V = V 4W4 + V 5W5 + V 6W6 + V 7W7

is a normal vector field to A and we write the covariant differentiation of
V as ∇ (V ) := V α

i Wα ⊗ ωi with
{
ωi
}
being the co-frame dual to {Wi};

then the twisted Dirac operator is

(17) D =W1 ×∇1 +W2 ×∇2 +W3 ×∇3,

where ∇i := ∇⊥
Wi

(i = 1, 2, 3). For instance, when the G2 manifold is
ImO ≃ ImH⊕H and the instanton is ImH, then by viewing V as a H

valued function, V = V 4+ iV 5+ jV 6+kV 7, the twisted Dirac operator
is D = i∇1 + j∇2 + k∇3. Expression (17) can be easily shown to be
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independent on the choice of orthonormal basis {Wa}i=1,2,3 of TA; thus

D is globally defined on A. From (17) and (9) we have

DV (p) = (W1 ×∇1 +W2 ×∇2 +W3 ×∇3)(
V 4W4 + V 5W5 + V 6W6 + V 7W7

)

= −
(
V 5
1 + V 6

2 + V 7
3

)
W4 +

(
V 4
1 + V 6

3 − V 7
2

)
W5

+
(
V 4
2 − V 5

3 + V 7
1

)
W6 +

(
V 4
3 + V 5

2 − V 6
1

)
W7.(18)

We remark that away from p the expression of DV may have more 0-th
order terms in general.

3. Dirac Equation on Thin 3-manifolds

3.1. A simplified model. To motivate our analytical estimates for
later sections, let us first consider a simplified model. Suppose that
Aε = [0, ε]×Σ is a three manifold and (x1, z) are coordinates on Aε. On
Aε we put a warped product metric gAε,h = h (z) dx21 + gΣ, where Σ is
a Riemann surface with a background metric gΣ and h (z) > 0 is a C∞

function on Σ. Let e1 be the unit tangent vector field on Aε normal to
Σ, namely along the x1-direction and e1 = h−1/2 (z) ∂

∂x1
. We introduce

a first order linear differential operator D that

(19) D = e1 · ∇1 + ∂̄ = e1 · h−1/2 (z)
∂

∂x1
+ ∂̄,

where ∇1 = ∇e1 = h−1/2 (z) ∂
∂x1

, and ∂̄ =
(
∂, ∂

∗)
is the Dirac operator

on the Dolbeault complex Ω0,∗
C

(L) of Hermitian line bundle L over the
Riemann surface Σ with a connection ∇ (cf. Proposition 3.67 of [6] or
Proposition 1.4.25 of [31], by taking the Kahler manifold to be Σ and
the Hermitian line bundle to be L). Here ∂̄ acts on the spinor bundle
SΣ := S

+ ⊕ S
− via the following identification:

(20)
Ω0
C
(L)⊕ Ω0,1

C
(L)

(∂,∂
∗
)−→ Ω0,1

C
(L)⊕ Ω0

C
(L)

↓ ↓
S
+ ⊕ S

− ∂̄−→ S
− ⊕ S

+

where on the left S
+ and S

− are identified to complex line bundles L
and L ⊗ Λ0,1

C
(Σ) respectively, ∂ : Ω0

C
(L) → Ω0,1

C
(L) is the Dolbeault

operator, and ∂
∗
: Ω0,1

C
(L) → Ω0

C
(L) is its formal adjoint operator. The

Dolbeault operator ∂ depends on the complex structures j on Σ, J on
L, and the connection ∇ of L.

When h (z) is a constant, from the spinor bundle SΣ = S
+ ⊕ S

−

over Σ one can construct a spinor bundle S over the odd dimensional
manifold Aε := [0, ε] × Σ by taking the Cartesian product of SΣ with
[0, ε] (see Chapter 22 in [8]). When there is no confusion, we also write
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S = S
+ ⊕ S

− where the S
± are the Cartesian products of the S

± of
SΣ with [0, ε]. [8] also constructs a Dirac operator on the spinor bundle
S →Aε right from the Dirac operator ∂̄ on the spinor bundle SΣ→Σ,
and it is D =e1 · ∇1 + ∂̄ as in (19). For general h (z), our D is a Dirac
type operator but not necessarily a genuine Dirac operator.

Let’s recall the Clifford multiplication of TAε on S. Since S is the
Cartesian product of SΣ with [0, ε], it is enough to define the Clifford
multiplication · of e1 on SΣ. Let σ be the volume element of the Clifford
bundle Cl (Σ), σ2 = 1. Then S

+ and S
− are the ±1 eigenbundles of σ

and SΣ = S
+⊕S

−. Since the Clifford multiplication · of e1 on SΣ satisfies
e21 = −1, the natural choice of the action e1· on SΣ is to let S+ and S

− be
the ±i eigenbundles; namely, for (u, v) ∈ S

+⊕S
−, e1 · (u, v) = (iu,−iv).

The connection of S along the x1 direction is trivial.
Given z0 ∈ Σ, in its neighborhood in Σ we can choose a complex

coordinate z = x2+ ix3 ∈ C with ∂
∂x2

, ∂
∂x3

orthonormal at z0. We locally

trivialize the spinor bundle SΣ= S
+ ⊕ S

− → Σ as

H = C+ Cj = C
2 →C.

We may choose the trivialization such that the Dirac operator
(
∂, ∂

∗)∣∣∣
z0

=
(
∂z,−∂z

)
.

We may write the section V of S → Aε as V = (u, v) := u+vj ∈S+⊕S
−

with

u = V 4 + iV 5 ∈ S
+ ≃ C,

v = V 6 + iV 7 ∈ S
+ ≃ C, and vj ∈ S

+j = S
−.

With these understood, we may write (19) as

DV =

[
i 0
0 −i

](
h−1/2 (z)

∂

∂x1
+

[
0 −i∂

∗

i∂ 0

])[
u
v

]
(21)

at z0=

[
i 0
0 −i

](
h−1/2 (z)

∂

∂x1
+

[
0 i∂z
i∂z 0

])[
u
v

]

=
(
(∇1u+ i∂zv) +

(
∇1v + i∂zu

)
· j
)
· i

= (i∇1u− ∂zv) +
(
−i∇1v+∂zu

)
· j,(22)

where at z0 we have the identification

∂ = ∂z =
1

2
(∇2 + i∇3) , − ∂

∗
= ∂z =

1

2
(∇2 − i∇3)

with ∇i = ∇ ∂
∂xi

for i = 2, 3 and ∇1 = h−1/2 (z) ∂
∂x1

. We will also denote

−i∂
∗
= ∂+ and i∂ = ∂−

respectively. They satisfy ∂+ = (∂−)∗.
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This implies that the equation DV = 0 is equivalent to the following
equations, an analog of the Cauchy-Riemann equation,

∂−u+ h−1/2 (z)
∂v

∂x1
=0,

∂+v + h−1/2 (z)
∂u

∂x1
=0.(23)

We put the boundary condition

(24) v|∂Aε = 0.

(The more precise formulation will be given in (25).) It is similar to the
totally real boundary condition for J-holomorphic maps. When h (z) is
a constant, it is a special case of the theory of boundary value problems
for Dirac operators developed in [8]. For general h (z), the fact that the
boundary value problem is Fredholm follows from our elliptic estimates
in Subsection 3.3. Also see [17] for relevant discussion.

Later in Section 4, we will apply the above D to the case when
h (z) = |n (z)|2, where n (z) = d

dtCt

∣∣
t=0

is the normal vector field on
C0 coming from the deformation of coassociative submanifolds Ct, and
the Hermitian line bundle L is the normal bundle NΣ0/C0

of the Jn-
holomorphic curve Σ0 in a coassociative manifold C0, whose connection
∇ is the normal connection from the induced metric of Σ0 ⊂ C0.

3.2. First eigenvalue estimates. In this subsection we will establish
a quantitative estimate of the eigenvalue of the linearized operator for
the simplified model Aε = [0, ε]×Σ with warped product metric gAε,h =
h (z) dx21 + gΣ, where Σ is a compact Riemann surface, and h (z) is a
smooth function on Σ with 1

K ≤ h ≤ K for some constant K > 0. The
volume form of this metric on Aε is

dvolAε = h
1
2 (z) dvolΣdx1.

We introduce the following function spaces for spinors V = (u, v)
over Aε.

Definition 11. Let S be the spinor bundle over (Aε, gAε) and V be a
smooth section of S.

1) We define the norm

‖V ‖Lm,p(Aε,S)
:=


 ∑

α+β≤m

∫ ε

0

∫

Σ

∣∣∣(∇x1)
α (∇Σ)

β V
∣∣∣
p
h

1
2 (z) dvolΣdx1




1/p

and

‖V ‖Cm(Aε,S)
:=

∑

α+β≤m

sup
∣∣∣(∇x1)

α (∇Σ)
β V
∣∣∣



THIN INSTANTONS AND SEIBERG-WITTEN INVARIANTS 439

where ∇x1 and ∇Σ are the covariant differentiation along x1-
direction and Σ-directions (i.e. two tangent directions on Σ) re-
spectively with respect to the metric gAε , and the Lp-norm is with
respect to gAε too. By the standard Sobolev embedding theorem,
we have an ε independent constant C such that for any smooth
section V,

‖V ‖Lp(Aε,S)
≤ C ‖V ‖Lm,q(Aε,S)

, for p ≤ 3q

3−mq

‖V ‖Cm(Aε,S)
≤ C ‖V ‖Ll,p(Aε,S)

, for p ≥ 3

l −m

as long as ε is bounded below and above by some universal con-
stant. For a later purpose, let us fix ε ∈ [1/2, 3/2] .

2) We define the function spaces

Lm,p (Aε,S) :=
{
V = (u, v) ∈ Γ (Aε,S) | ‖V ‖Lm,p(Aε,S)

< +∞
}

and Lm,p
− (Aε,S) (resp.Lm,p

+ (Aε,S) ) to be the closure (with re-
spect to the norm ‖·‖Lm,p(Aε)

) of the subspace of smooth sections

V = (u, v) ∈ Γ (Aε,S) such that v ∈ C∞
0 (Aε\∂Aε) (resp. u ∈

C∞
0 (Aε\∂Aε)), where C∞

0 (Aε\∂Aε) denotes the space of smooth
functions with compact support inside Aε\∂Aε. Let us also intro-
duce the space

Cm (Aε,S) :=
{
V = (u, v) ∈ Γ (Aε,S) | ‖V ‖Cm(Aε,S)

< +∞
}
,

Cm
− (Aε,S) :=

{
V = (u, v) ∈ Γ (Aε,S) | ‖V ‖Cm(Aε,S)

< +∞, v|∂Aε = 0
}
.

Let D be the operator (19) in our linear model. We will impose bound-
ary conditions for sections V that D acts on. It is known (cf. [8] Theorem
21.5) that the Dirac operators

(25) D± := D|
L1,2
±

: L1,2
± (Aε,S) → L2 (Aε,S)

give well-posed local elliptic boundary problems and their formal adjoint
operators are D∗

± = D∓. This boundary condition restricted on smooth

sections V = (u, v) in L1,2
− (Aε,S) means

(26) v|∂Aε = 0, i.e. v (0,Σ) = v (ε,Σ) = 0.

The following theorem compares the first eigenvalue for Dirac opera-
tor ∂̄ on the Riemann surface Σ with the operator D on product three
manifold Aε. The theorem refers to the L2 metric which is defined as
follows: Let U, V be two sections in L2 (Aε,S). We let the inner product
〈·, ·〉L2(Aε,S)

be

〈U, V 〉L2(Aε,S)
:=

∫

[0,ε]

∫

Σ
〈U, V 〉 (x1, z) h

1
2 (z) dvolΣdx1,
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where in the integral the 〈·, ·〉 is the inner product in fibers of the spinor
bundle S. We let

|V (x1, z)|2 := 〈V (x1, z) , V (x1, z)〉
‖V ‖2L2(Aε,S)

:= 〈V, V 〉L2(Aε,S)
.

Theorem 12. Suppose λ∂− is the first eigenvalue of the Laplacian

∆Σ = ∂+∂− acting on the space L1,2
− (Σ,S+) and λ∂+ is the first eigen-

value of the Laplacian ∆Σ = ∂−∂+ acting on the space L1,2
+ (Σ,S−).

Let

λD± := inf
06=V ∈L1,2

± (Aε,S)

‖DV ‖2L2(Aε,S)

‖V ‖2L2(Aε,S)

.

(Notice the boundary conditions (25) and (26) for V .) Then for the

operator D± : L1,2
± (Aε,S) → L2 (Aε,S), we have

λD± ≥ min
1

K

{
λ∂± ,

2

Kε2
−K

∥∥∥h−
1
2

∥∥∥
2

C1(Σ)

}
,

where K > 0 is some constant such that 1
K ≤ h (z) ≤ K for all z ∈ Σ.

Proof. In the following we will assume the volume form dvolAε =
dvolΣdx1 to simplify calculation. General cases can be reduced to this
case by observing
(27)

‖DV ‖2L2(Aε,S)

‖V ‖2L2(Aε,S)

≥
∫
Aε
|DV |2K−1/2dvolΣdx1∫
Aε
|V |2K1/2dvolΣdx1

=
1

K

∫
Aε
|DV |2 dvolΣdx1∫

Aε
|V |2 dvolΣdx1

from the condition 1
K ≤ h (z) ≤ K. It is enough to consider the case

D− : L1,2
− (Aε,S) → L2 (Aε,S). The D+ case is similar. For any V =

(u, v) ∈ L1,2
− (Aε) , we have

〈DV,DV 〉L2(Aε,S)
=

∫

Aε

(
h−1 (z)

∣∣∣∣
∂V

∂x1

∣∣∣∣
2

+ 2

〈
h−

1
2 (z)

∂V

∂x1
,

[
0 ∂+

∂− 0

]
V

〉

+
∣∣∂+v

∣∣2 +
∣∣∂−u

∣∣2
)
dvolAε
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Using the formula ∂− = (∂+)
∗
, we have

∫

Aε

〈
h−

1
2 (z)

∂V

∂x1
,

[
0 ∂+

∂− 0

]
V

〉
dvolAε

=

∫

Aε

(〈
h−

1
2
∂u

∂x1
, ∂+v

〉
+

〈
h−

1
2
∂v

∂x1
, ∂−u

〉)
dvolAε

( ∵ S = S
+⊕S

− orthogonal decomposition)

=

∫

Aε

(〈
∂−
(
h−

1
2
∂u

∂x1

)
, v

〉
−
〈
h−

1
2 v, ∂−

(
∂u

∂x1

)〉)
dvolAε

+

∫

{ε}×Σ

〈
h−

1
2 v, ∂−u

〉
dvolΣ −

∫

{0}×Σ

〈
h−

1
2 v, ∂−u

〉
dvolΣ

=

∫

Aε

(〈
∂−
(
h−

1
2

)
· ∂u
∂x1

, v

〉
+

〈
h−

1
2∂−

(
∂u

∂x1

)
, v

〉

−
〈
h−

1
2 v, ∂−

(
∂u

∂x1

)〉)
dvolAε (since v vanishes on ∂Aε)

=

∫

Aε

〈
∂−
(
h−

1
2

)
· ∂u
∂x1

, v

〉
dvolAε

( ∵ the above 2nd and 3rd terms cancel).(28)

Therefore

2

∣∣∣∣
∫

Aε

〈
h−

1
2 (z)

∂V

∂x1
,

[
0 ∂+

∂− 0

]
V

〉
dvolAε

∣∣∣∣

≤ 2

∫

Aε

∣∣∣∣
〈
∂−
(
h−

1
2

)
· ∂u
∂x1

, v

〉
dvolAε

∣∣∣∣

≤
∥∥∥h−

1
2

∥∥∥
C1(Σ)

∫

Aε

∣∣∣∣2
〈
∂u

∂x1
, v

〉
dvolAε

∣∣∣∣

≤
∫

Aε

(
1

K
|ux1 |2 +K

∥∥∥h−
1
2

∥∥∥
2

C1(Σ)
|v|2
)
dvolAε .(29)

In order to estimate
∫
Aε
h−1 (z) |Vx1 |2 dvolAε , we notice that, for any fixed

point p ∈ Σ, v|[0,ε]×{p} can be treated as a C-valued function over the
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interval [0, ε] with boundary value v (0, z) = 0. Hence

∫ ε

0
|v|2 dx1 =

∫ ε

0

∣∣∣∣
∫ x1

0

∂v

∂x1
(t) dt

∣∣∣∣
2

dx1

≤
∫ ε

0

(∫ x1

0
ds

)(∫ x1

0

∣∣∣∣
∂v

∂x1
(t)

∣∣∣∣
2

dt

)
dx1

≤
∫ ε

0
x1dx1

∫ ε

0

∣∣∣∣
∂v

∂x1
(t)

∣∣∣∣
2

dt

≤ K
ε2

2

∫ ε

0
h−1 (z)

∣∣∣∣
∂v

∂x1
(t)

∣∣∣∣
2

dt,(30)

where the last inequality is by 1
K ≤ h (z) ≤ K for all z ∈ Σ. Putting

(29) , (30) in 〈DV,DV 〉L2(Aε,S)
, we have

〈DV,DV 〉L2(Aε,S)

≥
∫

Aε

(
h−1 (z) |ux1 |2 +

∣∣∂−u
∣∣2 + h−1 (z) |vx1 |2 +

∣∣∂+v
∣∣2

− 2

∣∣∣∣
〈
h−

1
2 (z)

∂V

∂x1
,

[
0 ∂+

∂− 0

]
V

〉∣∣∣∣

)
dvolAε

≥
∫

Aε

((
h−1 (z)− 1

K

)
|ux1 |2 +

∣∣∂−u
∣∣2 + h−1 (z) |vx1 |2

−K
∥∥∥h−

1
2

∥∥∥
2

C1(Σ)
|v|2

)
dvolAε(by (29))

≥ 0 + λ∂−

∫

Aε

|u|2 dvolAε +
(

2

Kε2
−K

∥∥∥h−
1
2

∥∥∥
2

C1(Σ)

)∫

Aε

|v|2 dvolAε

(by definition of λ∂− and (30))

≥ min

{
λ∂− ,

2

Kε2
−K

∥∥∥h−
1
2

∥∥∥
2

C1(Σ)

}(∫

Aε

(
|u|2 + |v|2

)
dvolAε

)

= min

{
λ∂− ,

2

Kε2
−K

∥∥∥h−
1
2

∥∥∥
2

C1(Σ)

}
‖V ‖2L2(Aε,S)

.

For general volume form dvolAε = h
1
2 (z) dvolΣdx1, by (27) there is an

extra factor 1
K for the lower bound of the L2 eigenvalue λD± . Hence the

result. q.e.d.

Suppose V = (u, v) ∈ C∞ (Aε,S) ∩ L1,2
− (Aε,S) and W = (f, g) ∈

C∞ (Aε,S)∩L2 (Aε,S) and D is the operator (19). Then with respect to
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the induced volume form dvolAε = h1/2 (z) dΣdx1 on (Aε, gAε,h), we have∫

Aε

〈DV,W 〉 dvolAε

=

∫ ε

0

∫

Σ

[〈
i
(
h−1/2ux1

+ ∂+v
)
, f
〉
−
〈
i
(
h−1/2vx1

+ ∂−u
)
, g
〉]
h1/2dΣdx1

= i

∫ ε

0

∫

Σ

[
−〈u, fx1

〉+
〈
h1/2v, ∂−f

〉
−
〈
h1/2u, ∂+g

〉
+ 〈v, gx1

〉
]
dΣdx1

+ i

∫

Σ

(〈u, f〉 |ε0 − 〈v, g〉 |ε0) dΣ

= i

∫ ε

0

∫

Σ

[〈
u,−fx1

− h1/2∂+g
〉
+
〈
v, gx1

+ h1/2∂−f
〉]
dΣdx1

+ i

∫

Σ

(〈u, f〉 |ε0 − 〈v, g〉 |ε0) dΣ

=

∫ ε

0

∫

Σ

〈
u, i
(
h−1/2fx1

+ ∂+g
)〉

−
〈
v, i
(
h−1/2gx1

+ ∂−f
)〉(

h1/2dΣdx1

)

+ i

∫

Σ

(〈u, f〉 |ε0 − 〈v, g〉 |ε0) dΣ

=

∫

Aε

〈V,DW 〉 dvolAε + i

∫

Σ

(〈u, f〉 |ε0 − 〈v, g〉 |ε0) dΣ
(31)

since h is independent of x1. This is the Green’s formula.
When V ∈ L1,2

− (Aε,S) and W ∈ L1,2
+ (Aε,S) , the above boundary

terms are zero, so we have
∫

Aε

〈DV,W 〉 dvolAε =

∫

Aε

〈V,DW 〉 dvolAε .

This implies thatD is a self-adjoint operator from L1,2
± (Aε,S) to L

1,2
∓ (Aε,S)

in the sense of [8]. Since L1,2
+ (Aε,S) is dense in L2 (Aε,S) , this implies

thatD : L1,2
− (Aε,S) → L2 (Aε,S) is surjective if and only if kerD|L1,2

+ (Aε,S)
=

0 ⊂ L1,2
+ (Aε,S). By Theorem 12, for small enough ε, we have

kerD|L1,2
+ (Aε,S)

= 0 ⇐ ker ∂−∂+ = 0 ⇔ ker ∂+ = 0,

where the last “⇔” is because (∂+)
∗
= ∂−. Hence we have obtained the

following result.

Theorem 13. Let λ∂− and λ∂+ be the first eigenvalue for ∂+∂− and

∂−∂+ respectively. For D : L1,2
− (Aε,S) → L2(Aε,S), if ε is sufficiently

small, then we have

ker ∂− = {0} ⇔ λ∂− > 0 ⇒ D injective,

ker ∂+ = {0} ⇔ λ∂+ > 0 ⇒ D surjective.

Especially if both λ∂− , λ∂+ > 0, then D is one-to-one and onto.
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3.3. Schauder estimates for the linear model. In this section we
will develop the necessary linear theory for the equation

DV =W on Aε = Σ× [0, ε]

with a warped product metric gAε,h := h (z) dx21 + gΣ, where D is the
operator (19) in our linear model. The key issue is to estimate the op-
erator norm of the inverse operator of D with explicit dependence on ε,
as ε goes to zero. When ε is further away from zero, say ε ∈ [1/2, 3/2],
we have ε-free Schauder estimates. For ε small, we overcome the dif-
ficulty coming from ε by choosing an appropriate integer k so that
kε ∈ [1/2, 3/2] and we extend any solution V = (u, v) on Aε to Akε

in an Lp sense by suitable reflection. However, much care will be needed
to obtain the Cα-estimate, because after the reflection of W across the
boundary of Aε, it will no longer be continuous in general. This prob-
lem will be resolved in the case (ii) part of the proof of the following
theorem.

Estimating the operator norm of D−1 in the Schauder setting rather
than in the Lp setting is crucial. Since our goal is to construct instantons
A governed by the equation τ |A = 0, which involves the associative 3-
form τ , for deformations of an approximate solution A by normal vector
fields V in M that are in W 1,p class, the nonlinear equation will have
cubic terms of ∇V that are outside the Lp space. The cubic terms also
cause difficulty for obtaining desired quadratic estimates for the implicit
function theorem in the Lp setting (see Remark 25).

The Schauder estimates are harder to obtain than for the Cauchy-
Riemann type equations, partly because in our equation (23), the de-
rivative of v only controls the ∂x1 and ∂̄z derivatives of u, not the full
derivatives.

We recall the definition of Hölder norms for functions f on a domain
Ω in R

n:

[f ]α;Ω := sup
x,y∈Ω
x 6=y

|f (x)− f (y)|
|x− y|α ,(32)

[f ]Cα(Ω) = ‖f‖C0(Ω) + [f ]α;Ω ,

[f ]C1,α(Ω) = ‖f‖C1(Ω) + [∇f ]α;Ω .
Using trivialization of the bundle S over Aε, the Hölder norms for sec-
tions V of the bundle S are defined by patching the (finitely many)
C1,α-coordinate charts on Aε.

Theorem 14. Let D : L1,2
− (Aε,S) → L2 (Aε,S) be the operator (23)

defined on Aε = Σ× [0, ε] with warped product metric gAε,h := h (z) dx21+
gΣ. Suppose that the first eigenvalues for ∂−∂+ and ∂+∂− are bounded
below by λ > 0. Then for any 0 < α < 1 and p > 3 there is a positive
constant C = C (α, p, λ, h) independent of ε such that for any V ∈
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C1,α
− (Aε,S) and W ∈ Cα (Aε,S) satisfying

DV =W,

we have

C ‖V ‖C1,α
− (Aε,S)

≤ ε
−
(

3
p
+2α

)

‖W‖Cα(Aε,S)
.

In other words, there exists a right inverse

Qε : C
α (Aε,S) → C1,α

− (Aε,S)

of D : C1,α
− (Aε,S) → Cα (Aε,S) such that ‖Qε‖ ≤ Cε

−
(

3
p
+2α

)

.

Proof. For the operator (23), it is known (cf. [8] Theorem 21.5) that
the Dirac operators

D± := D|L1,2
±

: L1,2
± (Aε,S) → L2 (Aε,S)

give well-posed local elliptic boundary problems. Using the orthogonal
decomposition S = S

+⊕S
−, we write sections V = (u, v) ∈ C∞

− (Aε,S)
andW = (w1, w2) ∈ C∞ (Aε,S), where u,w1 are sections of S

+ and v,w2

are sections of S−. So the equation DV =W may be explicitly written
as (cf. equation (23))

{
h−1/2 (z)ux1 + ∂+v = w1

h−1/2 (z) vx1 + ∂−u = w2
with v|∂Aε = 0.

To make the exposition more transparent, we will assume that h ≡ 1,
and it is clear from the proof below that the argument works equally
well for any h (z) ∈ C∞ (Σ) such that 1

K ≤ h (z) ≤ K for some constant
K > 0. For any 0 < ε < 3/2, we take an integer k = k (ε) > 0 (which
depends on ε) such that

k (ε) ε ∈ [1/2, 3/2] .

For notation brevity, we will write k for k (ε) in the remainder of our pa-
per. Then Akε = Σ× [0, kε] is a product region whose second component
has length uniformly bounded below and above for any ε. We divide the
estimates into two cases: Case (i): Suppose that w1 = 0. Then we will
have along the boundary ∂Aε, ux1 = 0 since v = 0. Since v|∂Aε = 0, we
can extend v from Aε to Akε by odd reflection along the walls Σ × {jε}
with 0 ≤ j ≤ k − 1, while still keeping v in C1,α (Akε). Similarly, we
consider an even extension of u to Akε; then u is still in C1,α (Akε) since
ux1 |∂Aε = 0. The extension formula is

v (x, z) =

{
−v ((2j + 2) ε− x, z) for x ∈ [(2j + 1) ε, (2j + 2) ε]

v (x− 2jε, z) for x ∈ [2jε, (2j + 1) ε]
,

u (x, z) =

{
u ((2j + 2) ε− x, z) for x ∈ [(2j + 1) ε, (2j + 2) ε]

u (x− 2jε, z) for x ∈ [2jε, (2j + 1) ε]
.

This will induce an even extension of w2 so that the equation DV =W
is satisfied in the Cα sense on Akε. The motivation of even and odd
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extension is to have an ε-independent Lp and Schauder estimate. By
differentiating both sides of the equation vx1 + ∂−u = w2 with respect
to x1, we obtain an equation which is equivalent to the Dirichlet problem
of the second order elliptic equation

vx1x1 − ∂−∂+v =
∂w2

∂x1
and v|∂Akε = 0,

ux1x1 − ∂+∂−u = −∂+w2,

noting that ∂−∂+ is a positive operator. (Since u, v are only in C1,α,
they should be understood as weak solutions of the above equations.)
Since the Cα-norm is preserved under the above extension, Schauder
and Lp interior estimate for the second order elliptic equation on the
region

Akε ⊂ A2kε ∪ A−2kε

would then imply that there are constants C (α) and C̃ (p) independent
of ε (because kε ∈ [1/2, 3/2]) such that

‖w2‖Cα(Aε,S−) + ‖V ‖C0(Aε,S)
= ‖w2‖Cα(A2kε∪A−2kε,S−) + ‖V ‖C0(A2kε∪A−2kε,S)

≥ C (α) ‖V ‖C1,α(Akε,S)

= C (α) ‖V ‖C1,α
− (Aε,S)

,(33)

and

‖w2‖Lp(A2kε∪A−2kε,S−) + ‖V ‖Lp(A2kε∪A−2kε,S)
≥ 4C̃ (p) ‖V ‖

L1,p
− (Akε,S)

(cf. [13] section 8.11 Theorem 8.32 and [30] Theorem B.3.2 respec-
tively), so

‖w2‖Lp(Aε,S−) + ‖V ‖Lp(Aε,S)
≥ C̃ (p) ‖V ‖L1,p

− (Aε,S)

by periodicity of reflection. We also have

‖V ‖C0(Aε,S)
≤ ‖V ‖

C
1−3/p
− (Aε,S)

≤ C (p, λ) ‖W‖C0(Aε,S)
,

whose proof is identical to that of (38) in the following case (ii). Plugging
this into (33), we have

(34) C (α) ‖V ‖C1,α
− (Aε,S)

≤ (C (p, λ) + 1) ‖w2‖Cα(Aε,S−) .

Case (ii): Suppose that w2 = 0 and w1 ∈ Cα (Aε,S
+) . Since v = 0, this

implies that if we consider the odd extension of v and the even extension
of u to A2kε∪ A−2kε as in the previous case, then they induce an odd
extension of w1 so that the equation

(35)

{
ux1 + ∂+v = w1

vx1 + ∂−u = 0

is satisfied in the weak sense on A2kε ∪ A−2kε. Notice that w1 does not
vanish on ∂Aε in general, so after the odd extension, w1 is no longer
continuous, but still we have w1 ∈ Lp (A2kε ∪ A−2kε,S) for ∀p. Since Akε
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is a proper subdomain in A2kε ∪ A−2kε and kε ∈ [1/2, 3/2] , the interior

Lp-estimate then implies that there is a constant C̃ (p) independent of
ε such that

‖w1‖Lp(A2kε∪A−2kε,S−) + ‖V ‖Lp(A2kε∪A−2kε,S)
≥ 4C̃ (p) ‖V ‖

L1,p
− (Akε,S)

.

By the periodicity of w1 and V, that is

(36) ‖w1‖Lp(Akε,S−) + ‖V ‖Lp(Akε,S)
≥ C̃ (p) ‖V ‖L1,p

− (Akε,S)
.

Then we proceed to the Lp estimates of V purely in terms of W . It
follows from (36) and Theorem 12 that for ε < 3/2, we have

‖W‖L2(Aε,S)
≥ C (λ) ‖V ‖L2(Aε,S)

for V ∈ C∞
− (Aε,S)

with the constant C (λ) dependent on λ∂+ but independent of ε. To go
from L2 to Lp, note the following interpolation inequality:

‖V ‖Lp(Akε,S)
=

(∫

Akε

|V |p
)1/p

≤ ‖V ‖
p−1
p

C0(Akε,S)
·
(∫

Akε

|V |
)1/p

≤ p− 1

p
δ

p
p−1 ‖V ‖

p−1
p

· p
p−1

C0(Akε,S)
+

1

p

1

δp

(∫

Akε

|V |
) p

p

(by Young’s Inequality)

=
p− 1

p
δ

p
p−1 ‖V ‖C0(Akε,S)

+
1

p

1

δp
‖V ‖L1(Akε,S)

≤ C
(
δ

p
p−1 ‖V ‖L1,p(Akε,S)

+ δ−p ‖V ‖L2(Akε,S)

)

(by Sobolev embedding),

where C is independent of ε in the last inequality because kε ∈ [1/2, 3/2].
Putting this into (36), we have
(
C̃ (p)− Cδ

p
p−1

)
‖V ‖L1,p(Akε,S)

≤ ‖W‖Lp(Akε,S)
+ Cδ−p ‖V ‖L2(Akε,S)

≤ ‖W‖Lp(Akε,S)
+
Cδ−p

C (λ)
‖W‖L2(Akε,S)

≤ ‖W‖Lp(Akε,S)

(
1 +

Cδ−p

C (λ)

)
.

So

(37) ‖V ‖
L1,p
− (Akε,S)

≤
(
C̃ (p)− Cδ

p
p−1

)−1
(
1 +

Cδ−p

C (λ)

)
‖W‖Lp(Akε,S)

.

Fix a small δ such that C̃ (p)− Cδ
p

p−1 > 0 and let the constant

C̃ (p, λ) :=
(
C̃ (p)− Cδ

p
p−1

)−1
(
1 +

Cδ−p

C (λ)

)
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which is independent of ε. Then for p > 3, by Sobolev embedding

C
1−3/p
− (Akε,S) →֒ L1,p

− (Akε,S) and (37), we have

‖V ‖
C

1−3/p
− (Aε,S)

= ‖V ‖
C

1−3/p
− (Akε,S)

≤ C ‖V ‖
L1,p
− (Akε,S)

≤ C · C̃ (p, λ) ‖W‖Lp(Akε,S)

≤ C (p, λ) ‖W‖C0(Akε,S)
= C (p, λ) ‖W‖C0(Aε,S)

,(38)

where the constant C (p, λ) = C · C̃ (p, λ)
(
3
2vol (Σ)

) 1
p is independent of

ε. We remark that the above argument also works in case (i), so (38)
holds in all cases. In the following, we give the Schauder estimate of
V = (u, v). Differentiating the second equation in (35) with respect to
x1, we get the Dirichlet problem of the second order elliptic equation
for (weak solutions) v and u:

vx1x1 − ∂−∂+v = −∂−w1 and v|∂Aε = 0,(39)

ux1x1 − ∂+∂−u = ∂x1w1.

Recall that in [13] chapter 4, the non-dimensional Schauder norm
‖f‖′

Ck,α(Ω) is defined as

(40) ‖f‖′
Ck,α(Ω) = Σk

j=0d
j
∣∣Dju

∣∣
0;Ω

+ dk+α
[
Dku

]
α;Ω

,

where d is the diameter of Ω. For component v, since v|∂Aε = 0, the
standard Schauder estimate for second order elliptic equation on radius
ε half balls Bε with centers on ∂Aε (cf. [13] Section 8.11 for regularity
of weak solutions and Section 4.4 equation (4.43)) gives

ε ‖w1‖′Cα(Bε,S+) + ‖v‖C0
−(Bε,S)

≥ C (α) ‖v‖′
C1,α

− (Bε/2,S),

or equivalently, by the definition of ‖f‖′
Ck,α(Ω),

ε ‖w1‖Cα(Bε,S+)′ + ‖v‖C0
−(Bε,S)

≥ C (α)
[
‖v‖C0

−(Bε/2,S) + ε ‖∇v‖C0
−(Bε/2,S) + ε1+α [∇v]α;(Bε/2,S)

]
,

(41)

and hence

(42) ε ‖w1‖Cα(Bε,S+) + ‖v‖C0
−(Bε,S)

≥ C (α) ε1+α ‖v‖C1,α
− (Bε/2,S)

,

where the constant C (α) is independent of ε. Covering Aε by such
radius-ε half balls and radius-ε/2 full balls centered on meridian Σ ×
{ε/2} and taking supremum on Aε, we have

(43) ε ‖w1‖Cα(Aε,S+) + ‖v‖C0
−(Aε,S)

≥ C (α) ε1+α ‖v‖C1,α
− (Aε,S)

.
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By combining this with the fact that v|∂Aε=0, and the definition of the
Schauder norm, we have

(44) ‖v‖C0
−(Aε,S)

≤ ‖v‖
C

1−3/p
− (Aε,S)

ε1−3/p ≤ C (p, λ) ‖w1‖C0(Aε,S)
ε1−

3
p .

Plugging these into (43), we obtain
(45)

C (α) ‖v‖
C1,α

− (Aε,S)
≤ ε−α ‖w1‖Cα(Aε,S+) + C (p, λ) ‖w1‖C0(Aε,S)

ε
−
(

3
p
+α

)

.

For the component u, its boundary value is nonzero, so we cannot di-
rectly apply the above inequalities as v. First we derive the C0 estimate
of u, using the assumption that ∂+∂− has trivial kernel on Σ. Consider
the section u of the bundle S

+ → Σ defined as

u (z) =

∫ ε

0
u (x1, z) dx1.

From equation (35), we have

∂−u (z) = −
∫ ε

0
h−1/2 (z) ∂x1v (x1, z) dx1

= h−1/2 (z) (v (0, z)− v (ε, z)) = 0.

But from the assumption that ∂+∂− has trivial kernel on Σ, we get that

u (z) ≡ 0.

Let Re u and Imu be the real and imaginary parts of the section u
(notice that S+ is a complex line bundle). Then for any fixed z ∈ Σ,

∫ ε

0
Re u (x1,z) dx1 = 0 =

∫ ε

0
Imu (x1,z) dx1.

By the mean value theorem for the R-valued function Re u (x1,z), there
exists s ∈ [0, ε] depending on z, such that Re u (s, z) = 0. Therefore, for
x1 6= s, by the definition of the Schauder norm, we have

|Reu (x1, z)| =
|Reu (x1, z)− Re u (s, z)|

|x1 − s|1−
3
p

· |x1 − s|1−
3
p

≤ ‖Reu‖C1−3/p(Aε,S)
ε
1− 3

p .

Then we have

‖Reu‖C0(Aε,S)
≤ ‖Re u‖C1−3/p(Aε,S)

ε1−
3
p

≤ ‖V ‖
C

1−3/p
− (Aε,S)

ε
1− 3

p

≤ C (p, λ) ‖w1‖C0(Aε,S)
ε1−

3
p

by (38). Similarly,

‖Imu‖C0
−(Aε,S+) ≤ C (p, λ) ‖w1‖C0(Aε,S)

ε
1− 3

p .
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Combining these, we get

(46) ‖u‖C0
−(Aε,S+) ≤ C (p, λ) ‖w1‖C0(Aε,S)

ε1−
3
p .

Now we are ready to derive the Schauder estimate of u. Using the equa-
tion {

ux1 + ∂+v = w1

vx1 + ∂−u = 0
with v|∂Aε = 0,

the Schauder estimate of ux1 and ∂−u can be reduced to that of v. For
the full covariant derivative ∇Σu on Σ, we observe that

[∇Σu]α;(Aε,S) ≤ [∇Σu]
z
α;(Aε,S)

+ [∇Σu]
x1

α;(Aε,S)

where [·]zα;(Aε,S) and [·]x1

α;(Aε,S)
as defined in (32) are the Schauder α-

components for the Σ and [0, ε] directions, respectively. For [∇Σu]
z
α;(Aε,S)

,

on each slice Σs := Σ × {s}, we use the elliptic estimate on compact
closed surface Σs to control ∇Σu by ∂−u,

[∇Σu]
z
α;(Σs,S)

≤ |u|C1,α(Σs,S)
≤ C

(∣∣∂−u
∣∣
Cα(Σs,S)

+ |u|C0(Σs,S)

)
,

and then take the sup for 0 ≤ s ≤ ε to get

[∇Σu]
z
α;(Aε,S)

≤ C
(∣∣∂−u

∣∣
Cα(Aε,S)

+ |u|C0(Aε,S)

)

= C
(
|vx1 |Cα(Aε,S)

+ |u|C0(Aε,S)

)
.(47)

Since the estimate for vx1 is known in (45), the only term left to estimate
is [∇Σu]

x1

α;(Aε,S)
. For this we reduce u to the zero boundary value case by

introducing

ũ = u− ρ
(x1
ε

)
u (ε, z) −

(
1− ρ

(x1
ε

))
u (0, z) ,

where ρ : [0, 1] → [0, 1] , ρ (0) = 0, ρ (1) = 1 is a smooth cut-off function
such that ‖ρ‖C2,α[0,1] ≤ C . Then ũ satisfies

ũx1x1 − ∂+∂−ũ = ∂x1w̃1 + g and ũ|∂Aε = 0,

where

w̃1 = w1 + ρ
(x1
ε

)
[(ux1 (ε, z) − ux1 (0, z)) + (w1 (0, z) − w1 (ε, z))]

and

g =
1

ε2
ρ′′
(x1
ε

)
[u (0, z) − u (ε, z)]

+
1

ε
ρ′
(x1
ε

)
[(ux1 (0, z)− ux1 (ε, z)) + (w1 (ε, z)− w1 (0, z))] .

In the above derivation of w̃1 and g, we have used the equation

∂+∂−u = ux1x1 − ∂x1w1
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from (39). By [13] section 4.4 equation (4.46), we have, on radius-ε half
ball Bε,

‖ũ‖C0
−(Bε,S)

+ ε ‖w̃1‖′Cα(Bε,S+) + ε2 |g|C0
−(Bε,S)

≥ C (α) ‖ũ‖′
C1,α

− (Bε/2,S)
.

By the definition of the norm ‖f‖′
Ck,α(Ω) in (40), this is equivalent to

‖ũ‖C0
−(Bε,S)

+ ε ‖w̃1‖C0(Bε,S+) + ε1+α [w̃1]α;(Bε,S+) + ε2 |g|C0
−(Bε,S)

≥ C (α)
[
‖ũ‖C0

−(Bε/2,S) + ε ‖∇ũ‖C0
−(Bε/2,S) + ε1+α [∇ũ]α;(Bε/2,S)

]
.

(48)

Therefore

‖ũ‖C0
−(Bε,S)

+ ε ‖w̃1‖C0(Bε,S+) + ε1+α [∇w̃1]α;(Bε,S+) + ε2 |g|C0
−(Bε,S)

≥ C (α) ε1+α [∇Σũ]α;(Bε/2,S) .

(49)

We are going to get rid of the tilde terms in the above inequality by the
following rule: The terms with tilde differ from the original terms by w1,
u, and their derivatives. If the derivative is with respect to x1 or ∂−,
then we reduce it to the previous estimates of v using (35). If it is with
respect to ∇Σ, the full derivative on Σ, then we use the elliptic estimate
on each slice of Riemann surface {t} × Σ. Notice that all ε powers are
coupled with the order of derivatives so all terms are dimensionless,
and after the enlargements the estimate of u is of correct ε power. The
following is the precise calculation: From the definition of g, w̃1, and ũ
we can easily check that
∥∥ε2g

∥∥
C0(Bε,S)

≤ C
(
‖u‖C0(Bε,S)

+ ε ‖ux1‖C0(Bε,S)
+ ε ‖w1‖C0(Bε,S)

)

|w̃1|C0(Bε,S)
≤ 3 ‖w1‖C0(Bε,S)

+ ‖ux1‖C0(Bε,S)

[w̃1]
x1

α;(Bε,S)
≤ C

(
[w1]

x1

α;(Bε,S)
+

1

εα
‖ux1‖C0(Bε,S)

+
1

εα
‖w1‖C0(Bε,S)

)

[w̃1]
z
α;(Bε,S)

≤ C
(
[w1]

z
α;(Bε,S)

+ [ux1 ]
z
α;(Bε,S)

)

‖ũ‖C0(Bε,S)
≤ 2 ‖u‖C0(Bε,S)

‖∇Σũ‖C0(Bε,S)
≤ 2 ‖∇Σu‖C0(Bε,S)

,

‖∇x1 ũ‖C0(Bε,S)
≤ C

(
‖∇x1u‖C0(Bε,S)

+
1

ε
‖u‖C0(Bε,S)

)

[∇Σu]
x1

α;(Bε/2,S)
≤ C

(
[∇Σũ]

x1

α;(Bε/2,S)
+

1

εα
‖∇Σu‖C0(Bε/2,S)

)
.

(50)

Hence, putting these back into (49) and (48), and noticing that from
(41) we can control ‖ux1‖C0(Bε,S)

and ‖∇Σu‖C0(Bε,S)
that appeared in
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the above inequalities by the following:

ε ‖ux1‖C0(Bε,S)
≤ C

(
ε
∥∥∂+v

∥∥
C0(Bε,S)

+ ε ‖w1‖C0(Bε,S)

)
(by (35) )

(by (41) ) ≤ C
[(

‖v‖C0(Aε,S)
+ ε ‖w1‖Cα(Aε,S)

)
+ ε ‖w1‖C0(Bε,S)

]

≤ C
(
‖v‖C0(Aε,S)

+ ε ‖w1‖Cα(Aε,S)

)
,(51)

and

ε ‖∇Σu‖C0(Σs,S)
≤ ε ‖∇Σu‖Cα(Σs,S)

≤ Cε
(∥∥∂−u

∥∥
Cα(Σs,S)

+ ‖u‖C0(Σs,S)

)
(by ellipticity on Σs)

(by (35)) = C
(
ε ‖vx1‖Cα(Σs,S)

+ ε ‖u‖C0(Σs,S)

)

(by (42)) ≤ C
(
ε−α ‖v‖C0(Aε,S)

+ ε1−α ‖w1‖Cα(Aε,S)
+ ε ‖u‖C0(Σs,S)

)
,

(52)

then from (49) and (50), we get the estimate for [∇Σu]
x1

α;(Bε/2,S)
:

ε1−α ‖w1‖Cα(Aε,S+) + ε ‖u‖C0
−(Aε,S)

+ ε−α ‖v‖C0
−(Aε,S)

≥ CC (α) ε1+α [∇Σu]
x1

α;(Bε/2,S)
.

Combining (47) about [∇Σu]
z
α;(Bε/2,S)

, we have the full control of

[∇Σu]α;(Bε/2,S):

ε1−α ‖w1‖Cα(Aε,S+) + ε ‖u‖C0
−(Aε,S)

+ ε−α ‖v‖C0
−(Aε,S)

≥ CC (α) ε1+α [∇Σu]α;(Bε/2,S) .

Combining with (51) and (52) about ‖∇u‖C0 , we get

ε ‖w1‖Cα(Aε,S+) + ε1+α ‖u‖C0
−(Aε,S)

+ ‖v‖C0
−(Aε,S)

≥ CC (α) ε1+2α ‖u‖C1,α
− (Bε/2,S)

.(53)

Covering Aε by radius-ε half balls Bε and radius-ε/2 full balls centered
on meridian Σ× {ε/2} and then taking supremum on Aε, we derive

ε ‖w1‖Cα(Aε,S+) + ε1+α ‖u‖C0
−(Aε,S)

+ ‖v‖C0
−(Aε,S)

≥ CC (α) ε1+2α ‖u‖
C1,α

− (Aε,S)
.(54)

Notice that here v is involved on the left side to control u, compared
to similar inequality (43) about v which needs no u. This is partly
because in second order elliptic equations (39) of u and v, the inho-
mogeneous term ∂x1w1 is “more discontinuous” than −∂−w1, for the
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(weak) derivative is taken in x1 direction along which (the extended)
w1 is discontinuous. Plugging these into (44) again, we obtain

C (α) ‖u‖C1,α
− (Aε,S)

≤ ε−2α ‖w1‖Cα(Aε,S+) + ε−α ‖u‖C0
−(Aε,S)

+ ε−(1+2α) ‖v‖C0
−(Aε,S)

≤ ε−2α ‖w1‖Cα(Aε,S+) + C (p, λ) ‖w1‖C0(Aε,S)
ε
−
(

3
p
+2α

)

.(55)

The C1,α estimates (55) and (45) also hold when Aε is equipped with
a warped product metric gAε,h with h (z) ∈ C∞ (Σ) such that 1

K ≤
h (z) ≤ K, up to the constant factor K > 0 on the right hand sides of
(55) and (45). This is because they are derived by C0 estimates (44),
(46), and local Schauder estimates (42), (53) for u, v on half balls Bε (p)
and Bε/2 (p) for p ∈ ∂Aε = {(0, z) , (ε, z) |z ∈ Σ}, while when ε→ 0, the

function h (z) |Bε(p) converges to constant function h (p) uniformly in C0

norm in Bε (p), and correspondingly the second order equations of u,
v converge to those with constant coefficients as above. This is similar
to the “frozen coefficient method” in Schauder theory of second order
elliptic equations. Finally, we estimate the right inverse bound of D in
the Schauder setting. By Theorem 13, the operator D is surjective, so
for any W = (w1, w2) we can write it as the sum of (w1, 0) and (0, w2),
whose preimages V = D−1 (w1, 0) and D−1 (0, w2) exist. Therefore we
can reduce general cases to cases (i) and (ii). Combining the C1,α es-
timates (34) in case (i) and (55) and (45) for u and v in case (ii), we
have

C (α, p, λ) ‖V ‖C1,α
− (Aε,S)

≤ ε
−
(

3
p
+2α

)

‖W‖Cα(Aε,S)
,

where C (α, p, λ) = C (α) (1 + C (p, λ))−1 is independent on ε. Hence
the result. q.e.d.

Remark 15. (About the asymmetry of case (i) and case (ii)) In case
(i), since v|∂Aε = 0, after odd reflections of v and even reflections of u
and w2, the V = (u, v) is still a C1,α function on the domain Ak(ε)ε

and w2 is of class Cα on Ak(ε)ε, so we can use the Schauder estimate
of the domain Ak(ε)ε, which has uniform ellipticity; in case (ii), since
w1|∂Aε 6= 0 in general, after odd reflections of v and w1, w1 is no longer
continuous on Ak(ε)ε , not to mention in C1,α. So we have to directly
work on the thin domain Aε (which lacks uniform ellipticity as ε → 0)
for the Schauder estimates, with ε-dependent coefficients. The steps

there are from Lp, C1− 3
p , C0 to C1,α.

We remark that when λ∂+ > 0 but λ∂− = 0 (i.e. ker ∂− 6= {0}), there
still exists a right inverse Qε : Cα (Aε,S) → C1,α

− (Aε,S) of D with the
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operator norm bound ‖Qε‖ ≤ Cε
−
(

3
p
+2α

)

. To prove this, one needs to
consider the restriction

D : L1,2
− (Aε,S) ∩ (kerD)⊥ → L2 (Aε,S)

to construct the right inverse Qε, where “⊥” is the L2 orthogonal com-
plement, and replace the constants

λD− = inf
06=V ∈L1,2

− (Aε,S)

‖DV ‖2L2(Aε,S)

‖V ‖2L2(Aε,S)

,

λ∂− = inf
06=V ∈L1,2

− (Σ,S+)

‖∂−V ‖2L2(Σ,S+)

‖V ‖2L2(Σ,S+)

in Theorem 12 by the constants

λ̃D− = inf
06=V ∈L1,2

− (Aε,S)∩(kerD)⊥

‖DV ‖2L2(Aε,S)

‖V ‖2L2(Aε,S)

,

λ̃∂− = inf
06=V ∈L1,2

− (Σ,S+)∩(ker ∂−)⊥

‖∂−V ‖2L2(Σ,S+)

‖V ‖2L2(Σ,S+)

respectively to get the L2 estimate of V ; and in the C0 estimate of u in
case (ii) of the above theorem, use the fact that

u ∈ (kerD)⊥ ⇒ u ∈
(
ker ∂−

)⊥

by integrating in the x1 direction. The details are left to readers.
From now on, we fix p > 3 sufficiently large and 0 < α < 1 sufficiently

small such that

0 <
3

p
+ 3α <

1

2
.

This will be necessary for the implicit function theorem in the next
section.

4. Proof of the main theorem

Let C0 ⊂M be a compact coassociative submanifold. Suppose that
n is a normal vector field on C0 such that its corresponding self-dual
two form

η0 = ιnΩ ∈ ∧2
+ (C0)

is harmonic with respect to the induced metric. So η0 is actually a
symplectic form on the complement of the zero set Z (η0) of η0 in C0.
Furthermore,

(56) Jn (u) :=
n

|n| × u
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defines an almost complex structure Jn on the C0\Z (η0) . Since de-
formations of coassociative submanifolds are unobstructed, we may as-
sume that there is a one parameter family of coassociative submanifolds
ϕ : [0, ε] × C0 −→M such that

∂ϕ

∂t

∣∣∣∣
t=0

= n ∈ Γ
(
C0, NC0/M

)
.

For ε small, let

C : = [0, ε] × C0, C := ϕ (C) , and Ct := ϕ ({t} ×C0) .

Then C is diffeomorphic to C, and ϕ (t, ·) is an embedding for ∀t ∈ [0, ε].
We remind the readers about the typefaces of our notations: both C and
C are 5-dimensional, while each Ct is 4-dimensional. Let

gC := dt2 ⊕ g|C0

be the product metric on C and expC be the exponential map associated
to the metric gC.

In the remaining part of this article, we assume that η0 is nowhere
vanishing on C0, which implies that (C0, η0) is a symplectic four man-
ifold, and all coassociative submanifolds Ct’s are mutually disjoint. We
are going to establish a correspondence between the regular Jn-holomorphic
curves Σ in C0 and the instantons in M with coassociative boundary
conditions.

Given such a Σ ⊂ C0, we denote

Aε := [0, ε] ×Σ and A
′
ε := ϕ (Aε) .

Then A
′
ε is close to being associative in the sense that

∣∣τ |A′ε
∣∣ ≤ Kε for

some constant K depending on the geometry of the family {Ct} and
M for small ε. This is due to the smooth dependence of τ (ϕ (t, z)) on
(t, z) ∈ [0, ε]× Σ, and the fact that

τ |TA′ε|ϕ(0,Σ)
= τ |TA′ε|Σ = 0,

since Σ is a Jn-holomorphic curve, the tangent space TΣ is closed under
Jn = n

|n|×, and TA′ε|Σ = TΣ⊕span{n}.
We want to perturb A′

ε to become an honest associative submanifold
in M . In order to apply the implicit function theorem to obtain the
desired perturbation for A

′
ε, we need the estimates for the linearized

problem to behave well as ε approaches zero. Notice that for small ε,
the induced metric on A

′
ε is close to being a warped product metric

gAε,h := h (z) dx21 + gΣ

on Aε, where h (z) = |n (z)|2 is the length squared of the normal vector
n. Namely,

(1−Kε) gAε,h ≤ ϕ∗gM ≤ (1 +Kε) gAε,h
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for some uniform constant K. This is because for any vectors X,Y ∈
T(t,z)Aε0 and t ∈ [0, ε0], the function G : [0, ε0]× TAε0 × TAε0 → R,

G (t,X, Y ) := gM (dϕ (t, z)X, dϕ (t, z)Y ) ,

is smooth with respect to (t,X, Y ), bilinear in (X,Y ), and

G
(
0, TAε0 |{0}×Σ, TAε0 |{0}×Σ

)

= gM
(
dϕ|{0}×Σ

(
TAε0 |{0}×Σ

)
, dϕ|{0}×Σ

(
TAε0 |{0}×Σ

))

= gAε0 ,h|{0}×Σ,

where in the last identity we have used that dϕ|{0}×Σ = id : TΣ → TΣ

and dϕ|{0}×Σ : ∂
∂x1

→ n.
For the warped product metric on Aε and the corresponding operator

D, the estimates for its inverse have been established in Theorem 14 in
the previous section. The above discussion indicates that the lineariza-
tion of the instanton equation on A′

ε may be compared with D. We will
first show they agree on Σ in the next subsection. Then the comparison
on A′

ε is a small perturbation from their agreement on Σ.

4.1. Geometry of Σ ⊂ C ⊂ M . We study the geometry of the Jn-
holomorphic curves Σ in a G2-manifold M . Let C = ∪0≤t≤εCt be the
family of coassociative manifolds in the previous subsection and Σ ⊂
C = C0. We remind the readers that the C is a 5-dimensional submani-
fold so its normal bundle inM has real rank 2, while C is a 4-dimensional
submanifold. We recall the following results in Lemma 3.2 of [17].

Proposition 16. 1) NΣ/C and NC/M |Σ are complex line bundles
with the almost complex structure Jn = n

|n|× on fibers.

2) NC/M |Σ ≃ ∧0,1
C

(
NΣ/C

)
as complex line bundles, where L is the

conjugate of a complex line bundle L, and ∧0,1
C

(
NΣ/C

)
= NΣ/C⊗C

∧0,1
C

(T ∗Σ).

Note that the notations ∂Y,X, νX , and µX in [17] correspond to our
Σ, C,NΣ/C , and NC/M |Σ, respectively.

In the following we will use the notation NC/M |Σ rather than NC/M |Σ,
but we emphasize that the isomorphism NC/M |Σ ≃ ∧0,1

C

(
NΣ/C

)
is com-

plex conjugate linear and should be regarded as an isomorphism between
real vector bundles. Note that we do NOT complexify NΣ/C , since it is
already a complex line bundle, and more importantly, we want to use
its complex structure Jn = n

|n|× to interplay with the G2 geometry.

In the following proposition, we will show that NΣ/C and NC/M |Σ are
Hermitian line bundles, andN := NΣ/C⊕NC/M |Σ → Σ is a Dirac bundle
(in the sense of Definition 5.2 in [23]), i.e. N is a left Clifford module over
Σ with respect to the G2 multiplication ×, together with a Riemannian
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metric 〈, 〉 and connection ∇N on N satisfying: (a) at each p ∈ Σ, for
any σ1, σ2 ∈ Np and any unit vector e ∈ TpΣ, 〈eσ1, eσ2〉 = 〈eσ1, eσ2〉;
(b) for any section ϕ of TΣ and section σ of N , ∇N (ϕ× σ) =

(
∇TΣϕ

)
×

σ + ϕ×∇Nσ.

Proposition 17. Let ∇ be the Levi-Civita connection of (M,g). For
any subbundle L → Σ0 of TM |Σ0 , let the induced connection ∇L of L
be

∇L := πL ◦ ∇,
where πL is the orthogonal projection of TM |Σ to subbundle L according
to the metric g. Then,

1) For L = NΣ/C , NC/M |Σ or TΣ, the induced connection ∇L is

Hermitian, namely ∇LJn = 0.
2) Let N = NΣ/C ⊕ NC/M |Σ. Then with respect to the G2 multipli-

cation × as the Clifford multiplication and the induced connection
∇N , N is a Dirac bundle.

Proof. For each p ∈ Σ0, the subspace TpΣ0⊕span{n(p)} ⊂ TpM is as-
sociative since Σ0 is Jn-holomorphic. By the same Cayley-Dickson con-
struction in Theorem 9, we may choose orthonormal frame {Wα}α=1,...7

in a neighborhood Bε (p) ⊂ Σ of p satisfying standard ·,× relation as
the basis of ImO, such that

TΣ0 = span {W2,W3} , W1 :=W2 ×W3,

W4 ∈ NΣ 0/C0
, Wi+4 :=Wi ×W4 for 1 ≤ i ≤ 3,

NΣ 0/C0
= span {W4,W5} , and NC/M |Σ0 = span {W6,W7} .

For i = 2, 3, we have

∇L
WiJn = ∇L

Wi (W1 × |L) = πL (∇WiW1)×|L = 〈W1,∇WiW1〉W1×|L = 0,

where the third identity is because for L = TΣ = span{W2,W3}, L =
NΣ0/C = span{W4,W5} or L = NC/M |Σ0 = span{W6,W7}, under cross
product ×, only the W1 component of ∇WiW1 can preserve L, i.e.

W1 × L ⊂ L, and (Wk × L) ∩ L = {0} for 2 ≤ k ≤ 7

from octonion multiplication relation, and the last identity is because
〈W1,∇WiW1〉 = 1

2∇Wi 〈W1,W1〉 = 0. Thus ∇L
v J = 0 for any v ∈ TΣ0.

Using the standard G2 multiplication relation of the above “good” frame
{Wα}α=1,...7, it is easy to check that N := NΣ/C ⊕ NC/M |Σ → Σ is a
Clifford module. To show N is a Dirac bundle, we first note that for
any unit vector e ∈ TpΣ, e× is an isometry on N by the property of ×;
second, for any section ϕ of TΣ and section σ of NΣ/C ⊕NC/M |Σ, with
respect to the induced connection ∇N on N we have

∇N (ϕ× σ) = πN ◦ (∇ϕ× σ + ϕ×∇σ) =
(
∇TΣϕ

)
× σ + ϕ×∇Nσ,
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where in the second identity, the first term is because for distinct i, j ∈
{4, 5, 6, 7},Wi×Wj ∈span{W1,W2,W3}, and the second term is because
span{W1,W2,W3} is closed under ×. q.e.d.

It is well known that on a compact Kähler manifold with a Hermitian
line bundle L, one can define a Dirac operator on the Dolbeault complex
Ω0,∗
C

(L) (cf. Proposition 3.67 of [6] or Proposition 1.4.25 of [31]). Taking
the Kähler manifold to be Σ and the Hermitian line bundle to be NΣ/C ,

we have the Dolbeault Dirac operator on NΣ/C ⊕ ∧0,1
C

(
NΣ/C

)
. On the

other hand, by the above lemma, NΣ/C ⊕NC/M |Σ is a Dirac bundle and
has a canonically associated Dirac operator. The following proposition
compares the two Dirac operators.

Proposition 18. The Dolbeault Dirac operator on NΣ/C⊕∧0,1
C

(
NΣ/C

)

agrees with the Dirac operator on NΣ/C ⊕ NC/M |Σ, for which the Clif-
ford multiplication is the G2 multiplication × and the connection is the
induced connection from M .

Proof. Given any p ∈ Σ, we may further assume the “good” frame
{Wα}α=1,2,...7 on Bε (p) in Proposition 17 satisfies

(57) ∇TΣ0
Wi

Wj (p) = ∇NΣ0/C

Wi
Wk (p) = ∇NC/M |Σ0

Wi
Wk+2 (p) = 0

for 2 ≤ i, j ≤ 3 and 4 ≤ k ≤ 5, where the ∇TΣ0 ,∇NΣ0/C0 , and ∇NC/M |Σ0

are orthogonal projections of the Levi-Civita connection ∇ on M to
TΣ0, NΣ 0/C0

, and NC/M |Σ0 , respectively (with respect to the metric g).

To achieve (57), we can first require ∇Σ0
Wi
Wj (p) = ∇NΣ0/C

Wi
W4 (p) = 0

for 2 ≤ i, j ≤ 3, and then useWi+4 :=Wi×W4 for 1 ≤ i ≤ 3 to show all
other covariant derivatives in (57) vanish at p. Let Z = 1√

2
(W2 − iW3) ∈

TΣ1,0
C

, Z = 1√
2
(W2 + iW3) ∈ TΣ0,1

C
, and Z

∗
=

W ∗
2 −iW ∗

3√
2

∈ T ∗Σ0,1
C

,

then
〈
Z

∗
, Z
〉

= 1. We recall that the real bundle isomorphism f :

∧0,1
C

(
NΣ/C

)
≃ NC/M |Σ from [17] (up to factor − 1√

2
) in local frame was

given by
(58)

f : ∧0,1
C

(
NΣ/C

)
=W4 ⊗C T

∗Σ0,1 −→ W4 × TΣ1,0 = NC/M |Σ,
W4 ⊗C Z

∗ 7→ − 1√
2
W4 × Z,

which is complex conjugate linear and independent on the choice of
W4 ∈ NΣ/C . So we have the map

Φ := id⊕ f : NΣ/C ⊕ ∧0,1
C

(
NΣ/C

)
→ NΣ/C ⊕NC/M |Σ
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whose action on the basis of (rank two real vector bundles) NΣ/C and

∧0,1
C

(
NΣ/C

)
is the following:

Φ : NΣ/C
id→ NΣ/C , {W4,W5} → {W4,W5} ,

Φ : ∧0,1
C

(
NΣ/C

) f→ NC/M |Σ,
{
W4 ⊗ Z

∗
,W5 ⊗ Z

∗}→ {W6,W7} .
(59)

This is because under f ,

W4 ⊗
(
W ∗

2 − iW ∗
3√

2

)
→ − 1√

2

W4 ×W2 −W4 × iW3√
2

= −−W6 − (W1 ×W4)×W3

2
=W6,

W5 ⊗
(
W ∗

2 − iW ∗
3√

2

)
= JnW4 ⊗

(
W ∗

2 − iW ∗
3√

2

)

→ −Jn (W6) = −W1 ×W6 =W7,

where the second row is from the tensor property of f and the last row
is because f : ∧0,1

C

(
NΣ/C

)
→ NC/M |Σ is complex conjugate linear. So

for the sections

U = V 4W4 + V 5W5 + V 6W4 ⊗ Z
∗
+ V 7W5

⊗ Z
∗ ∈ Γ

(
NΣ/M ⊕ ∧0,1

C

(
NΣ/C

))
,

V = V 4W4 + V 5W5 + V 6W6 + V 7W7 ∈ Γ
(
NΣ/C ⊕NC/M |Σ

)
,

we have
Φ (U) = V.

We compute the Dolbeault Dirac operator using the above frame. The
Clifford multiplication c on the Dolbeault complex NΣ/C ⊕∧0,1

C

(
NΣ/C

)

at p is (see Section 1.4.3 in [31])

c

(
W2 + iW3√

2

)
: V 4W4 + V 5W5

√
2e(Z

∗
)→
√
2
(
V 4W4 ⊗ Z

∗
+ V 5W5 ⊗ Z

∗)
,

c

(
W2 − iW3√

2

)
: V 6W4 ⊗ Z

∗
+ V 7W5 ⊗ Z

∗ −
√
2i(Z)→

√
2
(
−V 6W4 − V 7W5

)
,

where e
(
Z

∗)
is the wedge by Z

∗
and i

(
Z
)
is the contraction by Z.

Using (57) at p and complex linearity, we have

∇(

W2+iW3√
2

)

(
V 4W4 + V 5W5

)
(p)

=
1√
2

(
V 4
2 W4 + V 4

3 JnW4 + V 5
2 W5 + V 5

3 JnW5

)

=
1√
2

((
V 4
2 − V 5

3

)
W4 +

(
V 5
2 + V 4

3

)
W5

)
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and

c

(
W2 + iW3√

2

)
◦ ∇(

W2+iW3√
2

)

(
V 4W4 + V 5W5

)
(p)

=
(
V 4
2 − V 5

3

)
W4 ⊗ Z

∗
+
(
V 5
2 + V 4

3

)
W5 ⊗ Z

∗
.

Similarly, we have

∇(

W2−iW3√
2

)

(
V 6W4 ⊗ Z

∗
+ V 7W5 ⊗ Z

∗)
(p)

=
1√
2

[(
V 6
2 + V 7

3

)
W4 ⊗ Z

∗
+
(
−V 6

3 + V 7
2

)
W5 ⊗ Z

∗]

and

c

(
W2 − iW3√

2

)
◦ ∇(

W2−iW3√
2

)

(
V 6W4 ⊗ Z

∗
+ V 7W5 ⊗ Z

∗)
(p)

= −
(
V 6
2 + V 7

3

)
W4 −

(
−V 6

3 + V 7
2

)
W5.

The Dolbeault Dirac operator ∂ on NΣ/M ⊕ ∧0,1
C

(
NΣ/M

)
is defined by

∂ = c

(
W2 + iW3√

2

)
◦ ∇(

W2+iW3√
2

) + c

(
W2 − iW3√

2

)
◦ ∇(

W2−iW3√
2

),

so at p we have

∂U (p) = −
(
V 6
2 + V 7

3

)
W4 +

(
V 6
3 − V 7

2

)
W5

+
(
V 4
2 − V 5

3

)
W4 ⊗ Z∗ +

(
V 5
2 + V 4

3

)
W5 ⊗ Z∗,

and

Φ
(
∂U (p)

)
= −

(
V 6
2 + V 7

3

)
W4 +

(
V 6
3 − V 7

2

)
W5

+
(
V 4
2 − V 5

3

)
W6 +

(
V 5
2 + V 4

3

)
W7.

On the other hand, the twisted Dirac operator on N := NΣ/C ⊕NC/M |Σ
is

(60) D :=W2 ×∇N
W2

+W3 ×∇N
W3
.

Using (57) at p, we have

DV (p) =
(
W2 ×∇N

W2
+W3 ×∇N

W3

) (
V 4W4 + V 5W5 + V 6W6 + V 7W7

)

=
(
V 4
2 W2 ×W4 + V 4

3 W3 ×W4

)
+
(
V 5
2 W2 ×W5 + V 5

3 W3 ×W5

)

+
(
V 6
2 W2 ×W6 + V 6

3 W3 ×W6

)
+
(
V 7
2 W2 ×W7 + V 7

3 W3 ×W7

)

= −
(
V 6
2 + V 7

3

)
W4 +

(
V 6
3 − V 7

2

)
W5

+
(
V 4
2 − V 5

3

)
W6 +

(
V 4
3 + V 5

2

)
W7.(61)

Therefore

Φ
(
∂U (p)

)
= DV (p) .
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Note that Dirac operators are independent on the choice of orthonormal
basis at p, and our p ∈ Σ is arbitrary, so Φ

(
∂U
)
= DV on Σ. The proof

of the proposition is completed. q.e.d.

We now make the connection to Subsection 3.1. Taking L = NΣ/C in

that subsection, then, S+ = NΣ/C and S
− = ∧0,1

C

(
NΣ/C

)
. Our assump-

tion that Σ is regular implies dimH0,1

∂

(
NΣ/C

)
= 0, for H0,1

∂

(
NΣ/C

)

corresponds to the cokernel of ∂. By the Dolbeault isomorphism, we
have

dimH1
(
Σ, NΣ/C

)
= dimH0,1

∂

(
NΣ/C

)
= 0.

Since the dimension for the Seiberg-Witten moduli is 0, by the equiva-
lence to Gromov-Witten moduli we have

dimH0
(
Σ, NΣ/C

)
= dimH1

(
Σ, NΣ/C

)
= 0,

for we only count Jn-holomorphic curves Σ of index 0. Hence for

∂ : Ω0
(
NΣ/C

)
→ Ω0,1

(
NΣ/C

)

∂
∗
: Ω0,1

(
NΣ/C

)
→ Ω0

(
NΣ/C

)

in Subsection 3.1, ker ∂ and ker ∂
∗
are trivial. Moreover, by Theorem

13, the linear operator

D : L1,2
− (Aε,S) → L2 (Aε,S)

is one-to-one and onto.

4.2. Linearization of instanton equation and comparison with
the operator D. To prove the main theorem (Theorem 27), we will
construct a map

Fε : C
m,α
−

(
NA′

ε/M

)
→ Cm−1,α

(
NA′

ε/M

)

such that the solution to the equation Fε (V ) = 0 will give rise to an
associative submanifold (instanton) with boundary lying on C0 ∪ Cε.
The spaces Cm,α

(
NA′

ε/M

)
and Cm,α

−
(
NA′

ε/M

)
are defined by

Cm
(
NA′

ε/M

)
:=

{
V ∈ Γ

(
NA′

ε/M

)∣∣ ‖V ‖
Cm

(

NA′
ε/M

) < +∞
}
,

Cm
−
(
NA′

ε/M

)
:=

{
V ∈ Γ

(
NA′

ε/M

)
∣∣∣∣∣

‖V ‖
Cm

(

NA′
ε/M

) < +∞, and

V |ϕ({0}×Σ) ⊂ TC0, V |ϕ({ε}×Σ) ⊂ TCε.

}
.

We construct a three dimensional submanifold A
′
ε = ϕ (Aε) ⊂ M by

flowing Σ along with Ct. For the spinor bundle S →Aε, we will construct
an exponential-like map ẽxp : S →M , with the following properties of
the differential dẽxp|Aε on {0} × Σ:

1) on fiber directions of S, dẽxp|{0}×Σ = (id, f) : NΣ/C⊕∧0,1
C

(
NΣ/C

)
→

NΣ/C ⊕NC/M |Σ, where f : ∧0,1
C

(
NΣ/C

)
→ NC/M |Σ is the real vec-

tor bundle isomorphism in (58);
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2) on base directions of S, dẽxp|{0}×Σ = id : TΣ → TΣ and dẽxp|{0}×Σ :
∂

∂x1
→ n (z) ;

3) on the boundary {0, ε} × Σ of Aε, ẽxp|{0}×Σ (S+ ⊕ 0) ⊂ C0, and

ẽxp|{ε}×Σ (S+ ⊕ 0) ⊂ Cε.

The construction of the map ẽxp is somewhat technical. To keep the
main flow of our paper, we postpone it to the appendix.

To make the linear theory developed in the previous section applica-
ble, we compare the linearization DFε (0) with the operator D in Section
3.1 by the following diagram to get the ε-dependent bound of its right
inverse:

Cm,α
− (Aε,S)

D−→ Cm−1,α
− (Aε,S)

dẽxp ↓ ↓ dẽxp
Cm,α
−

(
NA′ε/M

) DFε(0)−→ Cm−1,α
(
NA′ε/M

)

Now we define the nonlinear map Fε with the important property that
elements in F−1

ε (0) with small norm correspond to associative subman-
ifolds inM near A′

ε for small ε. Given any C0∪Cε, we modify the metric
g near C0 and Cε to make them totally geodesic. We denote this new
smooth metric by gε, and we make gε C

1-continuously depend on ε in
our construction. Let expgε be the exponential map of gε. Then expgε

has the following properties:

1) For sections V of NA′ε/M with C0 norm smaller than a fixed con-
stant δ0 (depending on the uniform injectivity radius of the family
of metrics {gε}0≤ε≤ε0

),

expgε V : A′ε →M

is a smooth embedding.
2) For V ∈ Cm,α

−
(
NA′

ε/M

)
, let

(62) Aε (V ) := (expgε V )
(
A
′
ε

)
.

Then Aε (V ) is a submanifold ofM nearby A′ε satisfying the bound-
ary condition

(63) ∂Aε (V ) ⊂ C0 ∪ Cε.

3) For small t ≥ 0, the family of embeddings expgε (tV ) : A′ε → M
satisfies

(64)
d

dt

∣∣∣∣
t=0

expgε (tV ) = V.

Next we define Fε : C
m,α
−

(
A
′
ε, NA′ε/M

)
→ Cm−1,α

(
A
′
ε, NA′ε/M

)
,

(65) Fε (V ) = ∗A′ε ◦ ⊥A′ε ◦ (TV ◦ (expgε V )∗ τ) ,

where

1) (expgε V )∗ pulls back the differential form part of τ,
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2) TV : Texpgε
p (tV )M → TpM pulls back the vector part of τ by the

parallel transport with respect to g along the path expgεp (tV ) ,
3) ⊥A′ε : TM |A′ε → NA′ε/M is the orthogonal projection with respect

to g,
4) ∗A′ε : Ω3 (A′ε) → Ω0 (A′ε) is the quotient by the volume form dvolA′ε

induced from g.

We stress that gε is only used to construct a map expgε : NA′ε/M →M
satisfying the coassociative boundary condition (63) and derivative con-
dition (64). For our covariant derivatives, parallel transport, orthogonal
projection, and volume form, we still use the original metric g.

To better understand Fε, we let

Pε := ∗A′ε ◦ ⊥A′ε : Γ
(
TM |A′ε

)
⊗ Ω3

(
A
′
ε

)
→ Γ

(
NA′ε/M

)
,

and

(66) F gε (V ) := TV ◦ (expgε V )∗ τ.

Then

Fε (V ) = Pε ◦ F gε (V ) .

At any p ∈ A
′
ε, both ⊥A′ε and ∗A′ε are linear operators between finite

dimensional spaces, so ‖Pε‖ ≤ C, where the constant C only depends
on ϕ and is uniform for all 0 < ε ≤ ε0. We notice that Pε does not
involve V , so the essential part of Fε (V ) is F gε (V ).

By Proposition 8, if A′ε is sufficiently close to being associative, then
there exists δ > 0 such that for ‖V ‖

C1,α
−

(

A′
ε,NA′

ε/M

) < δ,

Fε (V ) = 0 ⇔ F gε (V ) = 0 ⇔ Aε (V ) associative.

We also note that ∂Aε (V ) ⊂ C0 ∪Cε for V ∈ C1,α
−
(
A′

ε, NA′
ε/M

)
.

Before we compute F gε′ (0)V , we observe the following useful fact.
The original exponential map expg : NA′ε/M → M does not satisfy the
coassociative boundary condition (63), but satisfies the same derivative
condition (64):

d

dt

∣∣∣∣
t=0

expg (tV ) = V =
d

dt

∣∣∣∣
t=0

expgε (tV ) .

For smooth maps f : A′
ε →M and a smooth form τ , the nonlinear map

Γ : f → f∗τ is differentiable with respect to f . Therefore

(67)
d

dt

∣∣∣∣
t=0

(expg (tV ))∗ τ = Γ′ (0)V =
d

dt

∣∣∣∣
t=0

(expgε (tV ))∗ τ.

Recall that the F (V ) (6) defined in our proof of McLean’s theorem is

F (V ) := TV ◦ (expg V )∗ τ,
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where the parallel transport TV is with respect to g along the geodesic
expg (tV ). F gε (V ) and F (V ) are different nonlinear maps, but (67) says
that

(68) F gε′ (0)V = F ′ (0)V .

We give an alternative proof of (68) in the following lemma. The proof
gives more information of F gε′ (0)V when there is a good frame field for
the vector-valued form τ .

Lemma 19. For any V ∈ C1,α
−
(
NA′

ε/M

)
, F gε′ (0)V = F ′ (0)V .

Proof. For any p ∈ A′
ε, we choose a frame field {Wa}1≤α≤7 in its

neighborhood B ⊂ A′
ε, and then extend V and {Wa}1≤α≤7 to M by

the parallel transport with respect to g along the curve expgεp (tV ). We
write τ = ωα ⊗Wα in the neighborhood of p in M , following Einstein’s
summation convention. Similar to (12), we compute

F gε′ (0)V = d (iV ω
α)⊗Wα + iV dω

α ⊗Wα + ωα ⊗∇VWα,

where the covariant derivative ∇ is with respect to g, and we have used
that d

dt |t=0 exp
gε (tV ) = V . By the parallel property of τ and Wα with

respect to g, we have

iV dω
α ⊗Wα = 0 = ωα ⊗∇VWα

(also see Remark 10, item 3). The first term d (iV ω
α) |A′

ε
only depends

on the restriction of V and ωα on A′
ε (Remark 10, item 1). Therefore,

F gε′ (0)V = d (iV ω
α)⊗Wα|A′

ε
= F ′ (0)V.

q.e.d.

Remark 20. To apply the implicit function theorem to Fε (V ), in
the remaining part of our paper we will only need the estimate of F ′

ε (0),
and the quadratic estimate (80) of F ′

ε (V ). Because of the above lemma,
to compute F ′

ε (0) = Pε ◦ F gε′ (0), we can replace the metric gε by g in
(66). This will simplify the exposition in many places. For our quadratic
estimate (80), the proof uses no feature of the G2 metric g and is valid
for any Riemannian metrics, including gε. The constant C in (80) is
uniform for {gε}0≤ε≤ε0

, since this is a compact family of metrics C1-
continuously depending on ε. So although we used gε in the definition
of Fε (V ) (65), from now on we will pretend gε is g in Fε (V ), and we
will simply write expg as exp.

Proposition 21. For any section V1 of S and section V2 := dẽxp ·V1
of NA′ε/M , we have
∥∥F ′ (0)V2 − (dẽxp ◦ DV1)⊗ dvolA′

ε

∥∥
Cα

(

A′
ε,NA′

ε/M

) ≤ Cε1−α ‖V1‖C1,α(Aε,S)
,
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and
∥∥F ′

ε (0)V2 − (dẽxp) ◦ DV1
∥∥
Cα

(

A′
ε,NA′

ε/M

) ≤ Cε1−α ‖V1‖C1,α(Aε,S)
,

where D is the operator on S in the linear model, and the constant C is
uniform for all ε.

Proof. For each p = ϕ (0, z) in Σ0 := ϕ ({0} × Σ) ⊂ A′
ε, we choose

“good” frame {Wα}α=1,2,...7 on Bε (z) ⊂ Σ as before. Then we extend

the frame to Uε (p) := ϕ ([0, ε] ×Bε (z)) such that

Wα (ϕ (t, z)) = Tγ ·Wα (ϕ (0, z)) for α = 1, 2, . . . 7,

where Tγ is the parallel transport along the path γ := ϕ ([0, t] × {z})
by the Levi-Civita connection on M . We further extend {Wα}α=1,2,...7

to a tubular neighborhood of Uε (p) ⊂ M by parallel transport in fiber
directions of NA′

ε/M
. Both F ′ (0)V2 and DV1 are globally defined on A′

ε

and Aε respectively. We are going to compare them in Uε (p) using the
“good” frame. We write τ = ωα ⊗ Wα in the neighborhood of p. By
the parallel property of {Wα}α=1,2,...7, the 3-forms ωα are similar to the

standard ones in ImO, in the sense that dxi is replaced by (Wi)
∗ for

i = 1, 2, . . . 7. We still have the formula (12) at q:

F ′ (0)V2 (q) = d (iV2ω
α)⊗Wα (q)

+ iV2dω
α ⊗Wα (q) + ωα ⊗∇V2Wα (q) .(69)

The first term d (iV2ω
α) ⊗ Wα (q) is the principal symbol part of the

differential operator F ′ (0). We claim that

(70) d (iV2ω
α)⊗Wα = (dẽxp · DV1)⊗ dvolA′

ε
+ E (q)V1

where E (q) is a smooth tensor on Uε (p) with ‖E‖C1(Uε(p))
≤ C3ε. To

see this, we first compute d (iV2ω
α)⊗Wα. For section V2 of NA′

ε/M
, we

write
V2 (q) = Σ7

α=4φ
α (q)Wα (q) .

Similar to our proof of McLean’s theorem, we have

(71) d (iV2ω
α)⊗Wα (q) |TqA′

ε
= DV2 (q) dvolA′

ε
+ E1 (q)V2

where

DV2 (q) = −
(
φ51 + φ62 + φ73

)
W4 +

(
φ41 + φ63 − φ72

)
W5

+
(
φ42 − φ53 + φ71

)
W6 +

(
φ43 + φ52 − φ61

)
W7,(72)

and
φki (q) := dφk (q) (Wi) .

The reason is the following: From our construction of Wα, ∇WiWj (p) =
0 for 1 ≤ i, j ≤ 7, and ωα are similar to the standard ones in ImO. Thus
when q = p,

d (iV2ω
α)⊗Wα (p) |TpA′

ε
= DV2 (p) dvolA′

ε
.
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If q is ε-close to p, then in (71) the error term E1 (q) is of order ε in
C1 norm, because ∇WiWj (q) = o (ε) in C1 and span{Wα (q)}α=1,2,3 has

ε-order deviation from TqA
′
ε in C1. We want to show

(73) DV2 (q) = dẽxp ◦
[(
h−1/2 (z) e1 ·

∂

∂x1
+ ∂̄

)
V1

]
+ E2 (q)V2,

where the error term E2 (q) is of order ε in C1 norm, and the ∂̄ is

the Dolbeault Dirac operator on NΣ/C ⊕ ∧0,1
C

(
NΣ/C

)
. Similar to our

argument for E1 (q), it is enough to show

DV2 (p) = dẽxp|{0}×Σ ◦
[(
h−1/2 (z) e1 ·

∂

∂x1
+ ∂̄

)
V1 (0, z)

]
.

We observe that

DV2 (p) = DV2 (p)− φ51W4 + φ41W5 + φ71W6 − φ61W7

from (72) and (61), whereD is the twisted Dirac operator (60) ofNΣ/C⊕
NC/M |Σ over Σ in the previous subsection. By Proposition 18, we have

dẽxp|{0}×Σ · ∂̄V1 = Φ
(
∂̄V1

)
= DV2.

So it is enough to prove, at p = ϕ (0, z), that
(74)

dẽxp◦
[
h−1/2 (z) e1 ·

∂

∂x1
V1 (0, z)

]
=
(
−φ51W4 + φ41W5 + φ71W6 − φ61W7

)
(p) .

From

V2 (q) = Σ7
α=4φ

α (q)Wα (q) = Σ7
α=4φ

α (q) · TγWα (ϕ (0, z))

we get

V1 (t, z) = Σ7
α=4φ

α (ϕ (t, z)) · (dẽxp)−1 TγWα (ϕ (0, z))

= Σ7
α=4φ

α (ϕ (t, z)) · Φ−1Wα (ϕ (0, z)) +E3 (q)V2,

where
{
Φ−1Wα (ϕ (0, z))

}7
α=4

is regarded as a frame of S →Aε that is

invariant along the t direction, and E3 (q) is of order ε in C
1 norm. The

second identity of V1 (t, z) is because the maps dẽxp and Tγ , at t = 0, are
maps Φ and the identity map respectively on span{Wα}4≤α≤7, and for

0 ≤ t ≤ ε we have the error term E3 (q) of desired order by smoothness
of ϕ, φα, and Wα. Let

ψα (x1, z) := φα (ϕ (x1, z)) , and ψ
α
1 (x1, z) =

∂

∂x1
ψα (x1, z) .

We have

e1 ·
∂

∂x1

[
Σ7
α=4ψ

α (x1, z) · Φ−1Wα (ϕ (0, z))
]

= Φ−1
[
W1 × Σ7

α=4ψ
α
1 (x1, z) ·Wα (ϕ (0, z))

]

= Φ−1
[
−ψ5

1W4 + ψ4
1W5 + ψ7

1W6 − ψ6
1W7

]
.(75)
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By the chain rule, for 4 ≤ α ≤ 7,

(76) ψα
1 (0, z) = ∇W1φ

α (ϕ (0, z)) · h (z)
1
2 = h (z)

1
2 φα1 (ϕ (0, z))

where the factor h (z)
1
2 is from

〈
W1,

d
dtϕ (t, z) |t=0

〉
= h (z)

1
2 . Comparing

(74) and (75), and noticing (76), we have

dẽxp|{0}×Σ ◦ DV1 = DV2.
Therefore, for q that is ε-close to p, claim (70) is proved. So we get

∥∥d (iV2ω
α)⊗Wα − (dẽxp ◦ DV1)⊗ dvolA′

ε

∥∥
Cα(Uε(p))

= ‖E (q)V2‖Cα(Uε(p))

≤ C1ε
1−α ‖V2‖C1,α(Uε(p))

,(77)

where the constant C1 is uniform for all ε. The remaining term

BV2 := iV2dω
α ⊗Wα + ωα ⊗∇V2Wα

is a 0-th order linear operator on V2, where B = B (q) is a smooth tensor
on A′

ε. Since ∇τ = 0, the same as in our proof in Theorem 9, we have

iW dω
α (p) = ∇WWα (p) = 0 for all W ∈ NA′

ε/M
(p) ,

so we have B (p) |NA′
ε/M

(p) = 0. Since dist(p, q) ≤ C0ε for some uniform

constant C0, and NA′
ε/M

is a smooth fiber bundle over A′
ε, we conclude

that the operator norm
∥∥∥B (q) |NA′

ε/M
(q)

∥∥∥ ≤ C2ε

for some uniform constant C2. From this it is easy to prove

(78) ‖BV2‖Cα(Uε(p))
≤ C3ε

1−α ‖V2‖C1,α
(

A′
ε,NA′

ε/M

) .

The constant C3 is uniform for all ε, by the compactness of Σ and finite
covering of A′

ε by Uε (p). Putting (78) and (77) in (69), we have
∥∥F ′ (0)V2 − (dẽxp · DV1)⊗ dvolA′

ε

∥∥
Cα(Uε(p))

≤ C4ε
1−α ‖V2‖C1,α

(

A′
ε,NA′

ε/M

)

≤ C5ε
1−α ‖V1‖C1,α(Aε,S)

where the constants C4 and C5 are uniform for all ε. Using finitely many
Uε (p) covering A

′
ε and then taking supremum, we have

(79)∥∥F ′ (0)V2 − (dẽxp · DV1)⊗ dvolA′
ε

∥∥
Cα(A′

ε)
≤ Cε1−α ‖V1‖C1,α(Aε,S)

.

Applying Pε on the left-hand side of the above inequality, and noticing
that (dẽxp) |{0}×Σ ◦ DV1 = DV2 is a section of NA′

ε/M
, we have

Pε ◦
(
(dẽxp) ◦ DV1 (t, z)⊗ dvolA′

ε

)
= (dẽxp) ◦ DV1 (t, z) + E3 (q)V1,



468 N.C. LEUNG, X. WANG & K. ZHU

where E3 (q) is of order ε in C1 norm, because at q = ϕ (t, z) the vec-
tor (dẽxp) ◦ DV1 (t, z) may have a component of order ε in C1 norm
orthogonal to NA′

ε/M
(q). So we get

∥∥F ′
ε (0)V2 − (dẽxp) ◦ DV1

∥∥
Cα

(

A′
ε,NA′

ε/M

)

≤
∥∥Pε ·

(
F ′ (0)V2 − (dẽxp) ◦ DV1 ⊗ dvolA′

ε

)∥∥
Cα

(

A′
ε,NA′

ε/M

)

+ ‖E3 (q)V1‖Cα(A′
ε)

≤ Cε1−α ‖V1‖C1,α(Aε,S)

where C is a uniform constant independent on ε. q.e.d.

Proposition 22. There exists a right inverse Q̃ε
true

of F ′
ε (0), such

that
∥∥∥Q̃ε

true
∥∥∥ ≤ Cε

−
(

3
p
+2α

)

, where the constant C is uniform for all

0 < ε ≤ ε0.

Proof. From Theorem 14, for operator D on spinor bundle S over Aε,

there is a right inverse Qε of D such that ‖Qε‖ ≤ Cε
−
(

3
p
+2α

)

. Let

D̃ = dẽxp ◦ D ◦ (dẽxp)−1 ,

Q̃ε = dẽxp ◦Qε ◦ (dẽxp)−1 ,

then
∥∥∥Q̃ε

∥∥∥ ≤ ‖dẽxp‖ · Cε−
(

3
p
+2α

)

·
∥∥∥(dẽxp)−1

∥∥∥ ≤ Cε
−
(

3
p
+2α

)

,

and

F ′
ε (0) Q̃ε − id =

(
F ′
ε (0)− D̃ + D̃

)
Q̃ε − id

=
(
F ′
ε (0)− D̃

)
Q̃ε + D̃Q̃ε − id

=
(
F ′
ε (0)− D̃

)
Q̃ε,

where the last identity is because D̃Q̃ε = dẽxp ◦ DQε ◦ (dẽxp)−1 = id.

From the previous proposition,
∥∥∥
(
F ′
ε (0)− D̃

)∥∥∥ ≤ Cε1−α. Therefore

∥∥∥F ′
ε (0) Q̃ε − id

∥∥∥ ≤
∥∥∥
(
F ′
ε (0)− D̃

)∥∥∥
∥∥∥Q̃ε

∥∥∥

≤ Cε1−α · Cε−
(

3
p
+2α

)

<
1

2

when ε is sufficiently small, by our assumption that 1−
(
3
p + 3α

)
> 0.

So Q̃ε is an approximate right inverse of F ′
ε (0). The true right inverse
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Q̃true of F ′
ε (0) is Q̃

true = Q̃ε

(
F ′
ε (0) Q̃ε

)−1
and

∥∥∥Q̃true
∥∥∥ ≤

∥∥∥Q̃ε

∥∥∥
∥∥∥∥
(
F ′
ε (0) Q̃ε

)−1
∥∥∥∥ ≤ Cε

−
(

3
p
+2α

)

· 2 ≤ Cε
−
(

3
p
+2α

)

.

q.e.d.

4.3. Quadratic estimates.

Proposition 23. There exists δ0 > 0 such that for all sections V0, V
of NA′

ε/M
that ‖V0‖C1,α

(

A′
ε,NA′

ε/M

) < δ0, we have

∥∥F ′
ε (V0)V − F ′

ε (0)V
∥∥
Cα

(

A′
ε,NA′

ε/M

)

≤ C ‖V0‖C1,α
(

A′
ε,NA′

ε/M

) ‖V ‖
C1,α

(

A′
ε,NA′

ε/M

)

,
(80)

where the constant C is independent on ε.

Proof. Because Fε (V ) = Pε ◦F (V ) and Pε is a bounded linear oper-
ator independent on V , it is enough to prove the quadratic estimate of
F (V ), namely

∥∥F ′ (V0)V − F ′ (0)V
∥∥
Cα

(

A′
ε,NA′

ε/M

)

≤ C ‖V0‖C1,α
(

A′
ε,NA′

ε/M

) ‖V ‖
C1,α

(

A′
ε,NA′

ε/M

)

.

For any p = ϕ (t, z) on A′
ε , we choose a normal frame field {Wα}α=1,2,...,7

in its neighborhood Bδ0 (p) where τ = ωα⊗Wa, with δ0 = the injectivity
radius of M . For the point q := expp V0 and if |V0| < δ0, then we can
assume this neighborhood covers q. Let the submanifold

Aε (V ) =: (expV )
(
A′

ε

)
,

which is similar to (62), except that the section V here is in NA′
ε/M

instead of S, and the exp : NA′
ε/M

→ M is the exponential map on M .
For the family of embeddings of submanifolds

ψt := exp (V0 + tV ) : Aε → Aε (V0 + tV ) ⊂M,

we have

ψ0 (Aε) = Aε (V0) ,

d

dt

∣∣∣∣
t=0

ψt (q) = (d expp V0)V (p) := V1 (q)
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for any p ∈ A′
ε = Aε (0). Arguing as in Theorem 9, from ∇τ = 0 we

have ∇Wα (q) = dωα (q) = 0. We have

F ′ (V0)V (p)

=
d

dt

∣∣∣∣
t=0

F (V0 + tV ) (p)

=
d

dt

∣∣∣∣
t=0

[
exp (V0 + tV )∗ ωα (p)⊗ TV0+tVWα

(
expp (V0 + tV )

)]

=
d

dt

∣∣∣∣
t=0

(exp (V0 + tV )∗ ωα)⊗Wα (p)

+ (expV0)
∗ ωα (p)⊗ d

dt

∣∣∣∣
t=0

TV0+tVWα

(
expp (V0 + tV )

)
,(81)

where in the last equality we have used TV0+tVWα

(
expp (V0 + tV )

)
=

Wα (p) by the parallel property of Wα. For the first term of (81), by the
property of the exponential map, namely d expq (0) = idTqM , we have

expp (V0 + tV ) = expq (tV1 + t |V | β (V0,V, t)) ◦ expp V0

where V1 =
(
d expA′

ε
V0

)
V is a vector field on Aε (V0), β (V0,V, t) and

β′ (V0,V, t) are uniformly bounded, and limt→0 β (V0,V, t) = 0. Therefore

d

dt

∣∣∣∣
t=0

exp (V0 + tV )∗ ωα (p)

=
d

dt

∣∣∣∣
t=0

(
expA′

ε
V0

)∗
expAε(V0) (tV1 + t |V | β (V0,V, t))∗ ωα

=
(
expp V0

)∗
LV1ω

α

=
(
expp V0

)∗
(d (iV1ω

α) + iV1dω
α) ,

where in the third equality we have used that limt→0 β (V0,V, t) = 0. For
the second term of (81), by the Gauss-Bonnet formula, which compares
the parallel transports along different paths by curvature integration,
we have

TV0+tVWα

(
expp (V0 + tV )

)

= TV0 ◦ TtV1+t|V |β(V0,V,t)Wα

(
expq (tV1 + t |V |β (V0,V, t))

)

+

∫

∆(V0,tV )
R (σ) dσWα (p) ,

where R (σ) is the Ricci curvature tensor, ∆ (V0,tV ) is the 2-dimensional
geodesic triangle with the vertices p, expp V0, and expp (V0 + tV ), and σ



THIN INSTANTONS AND SEIBERG-WITTEN INVARIANTS 471

is the area element. Therefore

d

dt

∣∣∣∣
t=0

TV0+tVWα

(
expp (V0 + tV )

)

= TV0 ◦
d

dt

∣∣∣∣
t=0

TtV1Wα

(
expq tV1

)
+

d

dt

∣∣∣∣
t=0

∫

∆(V0,tV )
R (σ) dσWα (p) ,

where in the first term we have dropped the higher order term
t |V | β (V0,V, t) since it is irrelevant for the derivative at 0. If we denote

B (V0, V ) :=
d

dt

∣∣∣∣
t=0

∫

∆(V0,tV )
R (σ) dσ,

by the area formula of ∆ (V0,tV ) it can be shown that

|B (V0, V )Wα (p)| ≤ C5 |V0| |V | |Wα| (p) ,

where C5 is a constant only depending on (M,g). Plugging these into
(81), we have

F ′ (V0) |Aε(0)
V (p)

= (expV0)
∗ LV1ω

α ⊗Wα (p) + (expV0)
∗ ωα ⊗ TV0∇V1Wα (q)

+B (V0, V )Wα (p)

= ((expV0)
∗ ⊗ TV0) ◦ [LV1ω

α ⊗Wα (q) + ωα (q)⊗∇V1Wα (q)]

+B (V0, V )Wα (p)

= ((expV0)
∗ ⊗ TV0) ◦ [(d (iV1ω

α) + iV1dω
α)⊗Wα (q)

+ωα (q)⊗∇V1Wα (q)]

+B (V0, V )Wα (p) .(82)

Here we have used that TV0Wα (q) = Wα (p). Equation (82) can be
rewritten as

F ′ (V0) |Aε(0)
V (p) = ((expV0)

∗ ⊗ TV0) ◦
[
F ′ (0) |Aε(V0)V1 (q)

]

+B (V0, V )Wα (p) ,

which means the derivative F ′ (V0) on Aε (0) can be expressed by the
derivative F ′ (0) on Aε (V0) via the transform (expV0)

∗⊗TV0 , up to the
curvature term B (V0, V )Wα (p). If V0 = 0, then q = p and V1 = V ,
together with

iV dω
α (p) = ∇VWα (p) = B (0, V ) = 0,

the formula (82) is simplified as

F ′ (0) |A′
ε
V (p) = d (iV ω

α)⊗Wα (p) .
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Therefore

F ′(V0)V (p)− F ′ (0)V (p)

= [(expV0)
∗ d(iV1ω

α)− d(iV ω
α)] |Aε(0)

⊗Wα(p)+

(83)

((expV0)
∗ ⊗ TV0) ◦ [iV1dω

α ⊗Wα + ωα ⊗∇V1Wα] (p) +B(V0, V )Wα(p).
(84)

For the second line (84), it is a 0-th order linear differential operator on
V ∈ C1,α

(
Γ
(
NA′

ε/M

))
, where

V1 = (d exp V0) |Aε(0)V = E (V0)V.

We notice that for the linear operator

H : C1,α
(
Γ
(
NA′

ε/M

))
→ Cα

(
Γ
(
Hom

(
TM |A′

ε
, TM |Aε(V0)

)))

that sends

V0 → ((expV0)
∗ ⊗ TV0) ◦

[
iE(V0)(·)dω

α ⊗Wα + ωα ⊗∇E(V0)(·)Wα

]

+B (V0, ·)Wα,

H is a bounded operator since the terms expV0, (exp V0)
∗, TV0 , E(V0),

andB(V0, ·) as elements in Cα are differentiable for V0 ∈ C1,α(Γ(NA′
ε/M

))
with bounded Frechet derivatives. The bound of the derivatives is uni-
form on ε, so ‖H‖ is uniformly bounded. Since H(V0) = 0 when V0 = 0,
we have

‖H (V0,V )‖Cα ≤ C8 ‖V0‖C1,α(A′
ε)
‖V ‖C1,α(A′

ε)
.

For the first line (83), [(expV0)
∗ d (iV1ω

α)− d (iV ω
α)] is a first order

linear differential operator on V
(
V1 = (d exp V0) |Aε(0)V

)
, and only in-

volves the covariant derivatives of V . In the next lemma we will show

‖(expV0)∗ d (iV1ω
α)− d (iV ω

α)‖Cα(A′
ε)
≤ C7 ‖V0‖C1,α(A′

ε)
‖V ‖C1,α(A′

ε)
.

Combining the two lines we get
∥∥F ′ (V0)V − F ′ (0)V

∥∥
Cα

(

A′
ε,NA′

ε/M

)

≤ C ‖V0‖C1,α
(

A′
ε,NA′

ε/M

) ‖V ‖
C1,α

(

A′
ε,NA′

ε/M

)

.

q.e.d.

Lemma 24. For any V0, V ∈ Γ
(
NA′

ε/M

)
with ‖V0‖C1,α(A′

ε)
≤ δ0, we

have

‖(expV0)∗ d (iV1ω
α)− d (iV ω

α)‖Cα(A′
ε)
≤ C7 ‖V0‖C1,α(A′

ε)
‖V ‖C1,α(A′

ε)
,

where the constants δ0 and C7 are independent on ε.
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Proof. Consider the 3 linear maps from TpM to TqM , where q =
expp V0 :

PalV0 : TpM → TqM, parallel transport along the geodesic
expp tV0 for 0 ≤ t ≤ 1,

d (expV0) : TpM → TqM, tangent map of the diffeomorphism
expV0 : A

′
ε → Aε (V0) ,

d
(
expp

)
(V0) : TV0 (TpM) → TqM, tangent map of the exponential map

expp : TpM →M,

where in the last one we identify TV0 (TpM) ≃ TpM . Note that for
diffeomorphism d (expV0) we need a vector field V0 on A′

ε, but for
d
(
expp

)
(V0) we only need V0 ∈ TpM , so they are essentially differ-

ent maps. But the 3 maps are very close to each other when V0 is small.
More precisely, for any V0, V ∈ Γ

(
NA′

ε/M

)
with ‖V0‖C1,α(A′

ε)
≤ δ0, we

have comparison of the maps as in the following:

d (expV0)V = PalV0V + h1 (V0)V,

d
(
expp

)
(V0)V = d (expV0)V + h2 (V0)V,

where for each i = 1, 2, the error term

hi (·) : C1,α
(
Γ
(
NA′

ε/M

))
→ Cα

(
Γ
(
Hom

(
TM |A′

ε
, TM |Aε(V0)

)))

is differentiable with respect to the variable V0, and

hi (V0) = 0 for V0 = 0.

This is because for any fixed p, PalV0(p) and d
(
expp

)
(V0) smoothly de-

pend on V0, and for the compact family p ∈ A′
ε, PalV0 and d

(
expp

)
(V0)

inherit the smooth dependence on V0 ∈ C1,α
(
Γ
(
NA′

ε/M

))
. For d (expV0),

since

d (expV0) (x) = F1 (x, V0) dx+ F2 (x, V0) dV0 (x)

where F1 (x, y) = ∂
∂x expx y and F2 (x, y) = ∂

∂y expx y are bounded on

Aε, we see d (expV0) ∈ Cα smoothly depends on V0 ∈ C1,α
(
Γ
(
NA′

ε/M

))

with bounded Frechet derivative. This especially implies that

(85) ‖hi (V0)V ‖Ca ≤ C8 ‖V0‖C1,α(A′
ε)
‖V ‖C1,α(A′

ε)

for i = 1, 2. We have

V1 = d (expV0)V + h2 (V0)V,

d (expV0)Wα (p) =Wa (q) + h1 (V0)Wα (p) ,

(expV0)
∗ ωα (q) = ωα (p) + h3 (V0)ω

α (q)

using the parallel property of Wa and τ (hence ωα). (Here h3 (V0) de-
pends on V0 ∈ C1,α

(
Γ
(
NA′

ε/M

))
smoothly by similar reason of h1 and
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h2. Since ω
α is a 3-form, h3 (V0) can have terms of cubic power order of

V0.) Therefore

(expV0)
∗ d (iV1ω

α)− d (iV ω
α)

= d
[
(expV0)

∗ (id(exp V0)V+h2(V0)V ω
α
)
− iV ω

α
]

= d
[
(expV0)

∗ id(exp V0)V ω
α + (expV0)

∗ ih2(V0)V ω
α − iV ω

α
]

= d
[
iV (expV0)

∗ ωα + (expV0)
∗ ih2(V0)V ω

α − iV ω
α
]

= d
[
iV (ωα + h3 (V0)ω

α) + (expV0)
∗ ih2(V0)V ω

α − iV ω
α
]

= d
[
iV (h3 (V0)ω

α (q)) + (expV0)
∗ ih2(V0)V ω

α (q)
]
.

Using the property (85) of hi (i = 1, 2, 3), we observe that each term
in the above last identity in Cα norm smoothly depends on V0 ∈ C1,α(
Γ
(
NA′

ε/M

))
and linearly on V ∈ C1,α

(
Γ
(
NA′

ε/M

))
. Also when V0 = 0,

we have (expV0)
∗ d (iV1ω

α)− d (iV ω
α) = 0. Therefore

‖(expV0)∗ d (iV1ω
α)− d (iV ω

α)‖Cα(A′
ε)
≤ C ‖V0‖C1,α(A′

ε)
‖V ‖C1,α(A′

ε)
.

q.e.d.

Remark 25. We also have some point estimates tied to the feature
that τ is a 3-form. It is well known that for any smooth embeddings
ϕ : Aε → M and smooth sections V0 of TM |A′

ε
with |V0| smaller than

the injectivity radius of M ,
∣∣d expϕ V0

∣∣ ≤ C6 (|dϕ|+ |∇V0|) ,
where C6 is a constant only depending on (M,g). Hence for the map
expV0 : TM |A′

ε
→M and any section V of TM |A′

ε
, at p ∈ A′

ε we have

|(d expV0) (p)V | ≤ C6 (|dϕ|+ |∇V0|) |V (p)| .
So for the first term (83), we have

|[(expV0)∗ d (iV1ω
α)− d (iV ω

α)]⊗Wα (p)|
≤ C7 (|dϕ|+ |∇V0|)3 (|∇V | |V0|+ |V | |∇V0|+ |V | |V0|) (p) ,

where the power 3 is because ωα is a 3-form. For the next row (84), it is a
0-th order linear differential operator on V , where V1 = (d exp V0) |Aε(0)V .

By the C2 smoothness of τ = ωα ⊗Wα and

iW dω
α (p) = ∇WWα (p) = 0

for any W ∈ Γ
(
NA′

ε/M

)
, at q = expp V0 we have

|iV1dω
α (q)| ≤ C4 |V0| |V | , |∇V1Wα (q)| ≤ C4 |V0| |V | .

Hence

|((expV0)∗ ⊗ TV0) ◦ [iV1dω
α ⊗Wα + ωα ⊗∇V1Wα] (p) +B (V0, V )Wα (p)|

≤ C3
6 (|dϕ|+ |∇V0|)3 · 2C4 |V0| |V | (p) + C5 |V0| |V | (p)
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where the power 3 is because ωα is a 3-form. Combining all, we have∣∣F ′ (V0)V − F ′ (0)V
∣∣ (p)

≤
[
C7 (|dϕ| + |∇V0|)3 (|V0| |V |+ |∇V0| |V |+ |V0| |∇V |) + C5 |V0| |V |

]
(p) .

Because of the cubic power terms, it is difficult to get a similar quadratic
estimate in the Lp setting, namely

∥∥F ′ (V0)V − F ′ (0)V
∥∥
Lp

(

A′
ε,NA′

ε/M

)

≤ C ‖V0‖W 1,p
(

A′
ε,NA′

ε/M

) ‖V ‖
W 1,p

(

A′
ε,NA′

ε/M

)

.

This is one of the key reasons that we choose the Schauder setting for
implicit function theorem, where the right inverse bound of F ′ (0) is
much harder to obtain than in the Lp setting. In contrast, the Cauchy-
Riemann operator of J-holomorphic curves is more linear in the Lp

setting: it has the quadratic estimate (see Proposition 3.5.3 in [30])
∥∥F ′ (V0)V − F ′ (0)V

∥∥
Lp(Σ)

≤ C ‖V0‖W 1,p(Σ) ‖V ‖W 1,p(Σ).

4.4. Perturbation argument. To find the zeros of Fε, we are going to
apply the following quantitative version of the implicit function theorem
(cf. Theorem 15.6 [9] or Proposition A3.4 in [30]).

Theorem 26. Let (X, |·|X) and (Y, |·|Y ) be Banach spaces and F :
Br (0) ⊂ X → Y a C1-map, such that

1) (DF (0))−1 is a bounded linear operator with
∥∥∥(DF (0))−1 F (0)

∥∥∥ ≤

A and
∥∥∥(DF (0))−1

∥∥∥ ≤ B;

2) ‖DF (x)−DF (0)‖ ≤ κ |x|X for all x ∈ Br (0) ;
3) 2κAB < 1 and 2A < r.

Then F has a unique zero in B2A (0) .

To apply the above theorem, we define the map

F̃ε := ε
−
(

3
p
+2α

)

Fε : C
1,α
−
(
A
′
ε, NA′

ε/M

)
−→ Cα

(
A
′
ε, NA′

ε/M

)
.

Then Proposition 22 implies that∥∥∥∥
(
DF̃ε (0)

)−1
∥∥∥∥ ≤ ε

3
p
+2α · Cε−

(

3
p
+2α

)

= C.

By Proposition 23, for ‖V0‖C1,α
−

(

A′ε,NA′
ε/M

) ≤ δ0 and any V ∈ C1,α
−

(
A
′
ε, NA′

ε/M

)
,

∥∥∥
(
DF̃ε (V0)−DF̃ε (0)

)
V
∥∥∥
Cα

(

A′ε,NA′
ε/M

)

≤ Cε
−
(

3
p
+2α

)

‖V0‖C1,α
−

(

A′ε,NA′
ε/M

) ‖V ‖
C1,α

−

(

A′ε,NA′
ε/M

) .
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For F (V ) = TV ◦ (expV )∗ τ , fixing a volume form on A
′
ε, we can

regard F (V ) as a section of TM |A′ε . We have

‖F (0)‖
Cα(A′ε,TM)

= ‖ϕ∗τ‖Cα(A′ε,TM)

= C

∥∥∥∥(ϕ
∗τ) (0, z) +

∫ x1

0

∂

∂x1
(ϕ∗τ) (s, z) ds

∥∥∥∥
Cα(A′ε,TM)

= C

∥∥∥∥
∫ x1

0

∂

∂x1
ϕ∗τ (s, z) ds

∥∥∥∥
Cα(A′ε,TM)

≤ Cε1−α,(86)

where (ϕ∗τ) (0, z) = 0 is because ϕ (0× Σ) is Jn-holomorphic and then
τ |TA′ε|ϕ(0×Σ)

= 0, and the last inequality is because for

H (x1, z) :=

∫ x1

0

∂

∂x1
ϕ∗τ (s, z) ds

where f (s, z) := ∂
∂x1

ϕ∗τ (s, z) is smooth on [0, ε]× Σ, we have

‖H‖C0(Aε)
≤
∫ ε

0
‖f‖C0(Aε)

ds = ‖f‖C0(Aε)
ε,

[H]zα;Aε ≤
∫ ε

0
[f ]zα;Aε ds = [f ]zα;Aε ε,

[H]x1
α;Aε

≤ C [H]x1
1;Aε

ε1−α ≤ ‖f‖C0(Aε)
ε1−α.

(Here [f ]zα;Aε , [f ]
x1
α;Aε

are the Schauder components of f in the z and x1
directions of Aε.) Note that (86) implies that the tangent space of A′ε is
ε1−α-close to being associative.

By our construction

Fε (V ) = ∗A′ε ◦ ⊥A′ε ◦ F (V ) ,

where ∗A′ε ◦ ⊥A′ε is a bounded linear operator and TV is a parallel trans-
port, we have

∥∥∥F̃ε (0)
∥∥∥
Cα

(

Aε,NA′
ε/M

) ≤ Cε
−
(

3
p
+2α

)

‖F (0)‖
Cα

(

Aε,NA′
ε/M

)

≤ Cε
−
(

3
p
+2α

)

ε1−α = Cε
1−

(

3
p
+3α

)

.

Then we have
∥∥∥DF̃ε (0)

−1
∥∥∥
∥∥∥F̃ε (0)

∥∥∥
Cα(Aε,S)

ε
−
(

3
p
+2α

)

≤ Cε
1− 6

p
−5α

.

Note we have chosen that 0 < 3
p + 3α < 1

2 (say α = 1/12 and p > 12)

in the beginning, so 1− 6
p − 5α > 0, then

∥∥∥DF̃ε (0)
−1
∥∥∥
∥∥∥F̃ε (0)

∥∥∥
Cα(Aε,S)

ε
−
(

3
p
+2α

)

≤ Cε
1−

(

3
p
+3α

)

ε
−
(

3
p
+2α

)

= Cε1−
6
p
−5α → 0
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as ε→ 0. Theorem 26 then implies that there is a unique Vε ∈ Γ
(
NA′

ε/M

)

with

(87) ‖Vε‖C1,α
(

A′ε,NA′
ε/M

) ≤ 2Cε
1−

(

3
p
+3α

)

that solves F̃ε (Vε) = 0, i.e. Fε (Vε) = 0. Note that (86) and (87) together

imply that the tangent space of Aε (Vε) is ε
1−

(

3
p
+3α

)

-close to being as-
sociative. By Proposition 8, for almost associative submanifolds Aε (Vε),

Fε (Vε) = 0 ⇔ F (Vε) = 0,

while the latter means that Aε (Vε) is associative.
Finally, we obtain our main result:

Theorem 27. Suppose that M is a G2-manifold and Ct is a one
parameter family of coassociative submanifolds in M . Suppose that the
self-dual two form η = dCt/dt|t=0 ∈ Ω2

+ (C) is nonvanishing, then it
defines an almost complex structure J on C0.

For any regular J-holomorphic curve Σ in C0, there is an instanton
Aε in M which is diffeomorphic to [0, ε]×Σ and ∂Aε ⊂ C0 ∪Cε, for all
sufficiently small positive ε.

Finally, we expect that any instanton A in M bounding C0 ∪Ct and
with small volume must arise in the above manner. Namely, we need to
prove a ε-regularity result for instantons.

A few remarks are in order: First, counting such small instantons is
basically a problem in four manifold theory because of Bryant’s result
[7], which says that the zero section C in Λ2

+ (C) is always a coasso-
ciative submanifold for an incomplete G2-metric on its neighborhood,
provided that the bundle Λ2

+ (C) is topologically trivial. Second, when η
has zeros, the above Theorem 27 should still hold true. However, using
the present approach to prove it would require a good understanding
of the Seiberg-Witten theory on any four manifold with a degenerated
symplectic form as in the Taubes program. But at least for regular Jη-
holomorphic curves Σ in C0 that are away from the zero locus of η,
the instantons A

′
ε in Theorem 27 still exist nearby to Σ ⊂ M , for our

gluing analysis only involves the local geometry of Σ in M . Third, if
we do not restrict to instantons of small volume, then we have to take
into account the compactification of the moduli of instantons which
has not been established yet, e.g. bubbling phenomenon as for pseudo-
holomorphic curves, and gluing of instantons of big and small volumes
similar to [32] in the Floer trajectory case. Nevertheless, one would ex-
pect that if the volume of At’s is small, then bubbling cannot occur; thus
they would converge to a Jη-holomorphic curve in C0.
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5. Appendix: The exponential-like map ẽxp

We construct the exponential-like map ẽxp : S →M satisfying the
properties 1∼3 in Subsection 4.2.

For any section V = (u, v) of the spinor bundle S →Aε, since the
bundle S → Aε is a Cartesian product of the spinor bundle SΣ → Σ
with the interval [0, ε], we may alternatively regard V (t, z) as a one
parameter family of sections of the bundle SΣ → Σ for the parameter
t ∈ [0, ε]. Our goal is to obtain the deformation of A′

ε ⊂M from V . The
idea is to deform Aε ⊂ C : = [0, ε]×C using only the u component, then
map the deformed Aε to M by ϕ, and at last deform it in M by the
v component. The coassociative boundary condition is preserved under
the map ẽxp, since we separate the u and v deformations before and
after the map ϕ, respectively. The precise description is in order.

For each fixed t ∈ [0, ε], u (t, z) and v (t, z) are sections of the spinor
bundle SΣ → Σ. Using the real vector bundle isomorphism

(id, f) : NΣ/C ⊕ ∧0,1
C

(
NΣ/C

)
≃ NΣ/C ⊕NC/M |Σ,

u (t, z) and f (v (t, z)) are sections of NΣ/C and NC/M |Σ, respectively.
For any fixed z ∈ Σ, using the u component, we have a one parameter
deformation expCz u (t, z) in C for 0 ≤ t ≤ ε, where expC is the expo-
nential map associated to the induced metric of C in M . Alternatively,
we can view the deformation in the product space C : = [0, ε] × C,
such that the line [0, ε] × {z} ⊂ C is deformed to the curve{(
t, expCz u (t, z)

)
|0 ≤ t ≤ ε

}
⊂ C. Let the curve γu in M be

γu (t, z) := ϕ
(
t, expCz u (t, z)

)
, for 0 ≤ t ≤ ε and z ∈ Σ.

It is clear that

γu (t, z) ⊂ Ct := ϕ (t, C)

since expCz u (t, z) ⊂ C.
For the v component, for each fixed t ∈ [0, ε], we have f (v (t, z)) ∈

NC/M |Σ (z). Let

Tγu(t,z) : NC/M |γu(0,z) −→ NC/M |γu(t,z)
be the parallel transport along the curve γu (s, z) for 0 ≤ s ≤ t with
respect to the connection of NC/M induced from the metric g on M . We
define the exponential-like map ẽxp as follows:

ẽxp : S = S
+ ⊕ S

− −→ M

V (t, z) = (u (t, z) , v (t, z)) expMγu(t,z)

(
Tγu(t,z)f (v (t, z))

)

where expM is the exponential map in M . It follows from our construc-
tion that for any V ∈ Cm

− (Aε,S) and x ∈ ∂Aε = {0, ε}×Σ, ẽxpV satisfies
the boundary condition ẽxpV |∂Aε ⊂ C0 ∪ Cε, because

(ẽxpV ) (x) = expMγu(x) (0) = γu (x) ⊂ ϕ ({0, ε} × C) = C0 ∪ Cε.
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By the definition of ẽxp, it is easy to see ẽxp|Aε = ϕ, because Aε is the
zero section of S. Hence on base directions of S → Aε, dẽxp|Aε = dϕ|Aε ,
especially

dẽxp|{0}×Σ = id : TΣ → TΣ and dẽxp|{0}×Σ :
∂

∂x1
→ n (z) .

On fiber directions, that dẽxp|{0}×Σ = (id, f) : NΣ/C ⊕ ∧0,1
C

(
NΣ/C

)
→

NΣ/C ⊕NC/M |Σ follows from d expM (0) = id.
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