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Abstract

We give quantum Pieri rules for quantum cohomology of Grassmannians of classical types, expressing
the quantum product of Chern classes of the tautological subbundles with general cohomology classes.
We derive them by showing the relevant genus zero, three-pointed Gromov–Witten invariants coincide with
certain classical intersection numbers.
© 2013 Elsevier Inc. All rights reserved.
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1. Introduction

The complex Grassmannian Gr(k, n + 1) parameterizes k-dimensional complex vector sub-
spaces of Cn+1. It can be written as X = G/P with G being a complex Lie group of type A,
i.e. G = SL(n + 1,C), and P being a maximal parabolic subgroup of G. We will continue to
call such X’s as Grassmannians even when G is not of type A. Indeed when G is a classical
Lie group of type B,C or D, such a Grassmannian parameterizes subspaces in a vector space
which are isotropic with respect to a non-degenerate skew-symmetric or symmetric bilinear form.
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Therefore it is usually called an isotropic Grassmannian. Recall that the tautological subbundle
S over any point [V ] ∈ Gr(k, n + 1) is just the k-dimensional vector subspace V itself. And it
restricts to the tautological subbundle S of any isotropic Grassmannian.

The cohomology ring H ∗(X,Z) of an isotropic Grassmannian X = G/P , or more generally
a generalized flag variety, has a natural basis consisting of Schubert cohomology classes σu, la-
beled by a subset of the Weyl group W of G. The (small) quantum cohomology ring QH∗(X)

of X, as a vector space, is isomorphic to H ∗(X)⊗Q[t]. The quantum ring structure is a deforma-
tion of the ring structure on H ∗(X) by incorporating three-pointed, genus zero Gromov–Witten
invariants of X. Since H2(X,Z) ∼= Z, the homology class of a holomorphic curve in X is labeled
by its degree d . In the case of X = IG(k,2n) being a Grassmannian of type Cn, the Schubert
cohomology classes σu = σ a can also be labeled by shapes a, which are certain pairs of parti-
tions. Every nonzero Chern class cp(S∗) = (−1)pcp(S) = σp (up to a scale factor of 2) is then
a special Schubert class given by a special shape p, and they generate the quantum cohomology
ring QH∗(IG(k,2n)). One of the main results of the present paper is the following formula.

Quantum Pieri rule for tautological subbundles of IG(k,2n). (See Theorem 4.4.) For any
shape a and every special shape p, in QH∗(IG(k,2n)), we have

σp � σ a =
∑

2e(a,b)σ b + t
∑

2e(ã,c̃)σ c.

Here ã and c̃ are shapes associated to a and c respectively; e(a,b) and e(ã, c̃) are cardinalities
of certain combinatorial sets, determined by the classical Pieri rules of Pragacz and Ratajski [27].
We have also obtained similar formulas for Grassmannians of type B and D, details of which are
given in Section 4.

The aforementioned quantum Pieri rule is a quantum version of the classical Pieri rule for
isotropic Grassmannians. The famous classical Pieri rules are known firstly for complex Grass-
mannians (see e.g. [15]). For X = Gr(k, n + 1), they describe the cup product of a general
Schubert class in H ∗(X) with cp(S∗) or cp(Q), where Q is the tautological quotient bundle
over X given by the exact sequence 0 → S → Cn+1 → Q → 0. It was generalized for other
partial flag varieties of type A, firstly given by Lascoux and Schützenberger [22], and was also
generalized for Grassmannians X of type B,C or D. Note that there is also a tautological quo-
tient bundle Q over X. When X parameterizes maximal isotropic subspaces (roughly speaking)
there is no difference between the Chern classes of S∗ and Q, and the classical Pieri rules has
been given by Hiller and Boe [16]. When X parameterizes non-maximal isotropic subspaces,
the classical Pieri rules with respect to cp(S∗) have been given by Pragacz and Ratajski [27,28],
while the classical Pieri rules with respect to cp(Q) are just covered in the recent work of Buch,
Kresch and Tamvakis [5] on quantum Pieri rules. In contrast to complex Grassmannians, know-
ing either of them cannot deduce the other one. There is also a previous work of Sertöz [29]
as well as a generalized classical Pieri rule given by Bergeron and Sottile [1], which gives the
formula for multiplying a Schubert class on a complete flag variety of type B or C by a special
Schubert class pulled back from the Grassmannian of maximal isotropic subspaces.

The story of quantum Pieri rules are almost parallel to the story of the classical Pieri rules. The
quantum Pieri rules are also known firstly for complex Grassmannians, which were firstly given
by Bertram [2]. They were generalized by Ciocan-Fontanine [11] for other partial flag varieties
of type A, and by Kresch and Tamvakis [19,20] for those X that parameterize maximal isotropic
subspaces. Recently in [5], Buch, Kresch and Tamvakis have given us the quantum Pieri rules
with respect to cp(Q) for those X that parameterize non-maximal isotropic subspaces. In contrast
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to complex Grassmannians, (in general) the quantum Pieri rules with respect to cp(Q) do not
imply the quantum Pieri rules with respect to cp(S∗) and vice versa.

Our quantum Pieri rules are consequences of the following main technical result.

Main Theorem. Let X = G/P be a Grassmannian of type B,C or D, and S denote the tau-
tological subbundle over X. Let σu,σ v be Schubert classes in QH∗(X) with σu = (−1)pcp(S)

(possibly up to a scale factor of 1
2 , see Section 3.1 for more details) for any p. In the quantum

product

σu � σv = σu ∪ σv +
∑
d�1

Nw,d
u,v tdσw,

all the degree d Gromov–Witten invariants N
w,d
u,v coincide with certain classical intersection

numbers. More precisely, we have

(1) If d = 1, then there exist u1, v1,w1 ∈ W such that N
w,1
u,v = N

w1,0
u1,v1 .

(2) If d = 2, then there exist u2, v2,w2 ∈ W such that N
w,2
u,v = N

w2,0
u2,v2 .

(3) If d � 3, then N
w,d
u,v = 0.

Here N
wi,0
ui ,vi

’s are classical intersection numbers of the corresponding Schubert varieties in the
complete flag variety G/B , where B ⊂ P is a Borel subgroup of G. The elements ui, vi,wi can
be explicitly written down in terms of u,v,w as given in Theorem 3.13 and Theorem 3.21. In
fact N

w,2
u,v also vanishes for some cases.

The above theorem is an application of the main results of [24], where the authors studied the
“quantum to classical” principle for flag varieties of general type. Roughly speaking, the “quan-
tum to classical” principle says that certain three-pointed genus zero Gromov–Witten invariants
are classical intersection numbers. Such phenomenon, probably for the first time, occurred in
the proof of quantum Pieri rule for partial flag varieties of type A by Ciocan-Fontanine [11],
and later occurred in the elementary proof of quantum Pieri rule for complex Grassmannians by
Buch [3] and the work [19,20] of Kresch and Tamvakis on Lagrangian and orthogonal Grass-
mannians. This principle has been studied mainly for Grassmannians in the works (especially)
by Buch, Kresch, and Tamvakis [4,5], by Chaput, Manivel, and Perrin [9,10] and by Buch and
Mihalcea [7,8]. There are relevant studies for some other cases by Coskun [12] and by Li and
Mihalcea [25].

The proofs of our quantum Pieri rules are combinatorial in nature. The ideas of all these proofs
are the same, namely we obtain all the theorems by showing that the relevant Gromov–Witten
invariants of degree d vanish unless d is small enough (for instance d � 2), and for such a small
d they coincide with certain classical intersection numbers. Moreover, all these relevant classical
intersection numbers are exactly or can be calculated from certain structure constants in classical
Pieri rules of same type. We should note that in [23], the authors established natural filtered
algebra structures on QH∗(G/B). Using structures of these filtrations, we obtained relationships
among three-pointed genus zero Gromov–Witten invariants for G/B in [24], which enable us to
carry out the above ideas in real proofs. Finally, we should also note that our quantum Pieri rules
for type B,D are not quite satisfying, as signs are involved in some cases.

This paper is organized as follows. In Section 2, we fix the notations and review the main
results of [24]. In Section 3, we reduce all the relevant Gromov–Witten invariants to certain
classical intersection numbers, for the quantum Pieri rules for Grassmannians of type B,C or
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D with respect to cp(S∗). In Section 4, we obtain the quantum Pieri rules by computing those
classical intersection numbers in Section 3 combinatorially. Finally in Appendix A, we reprove
the well-known quantum Pieri rules for Grassmannians of type A (i.e. complex Grassmanni-
ans).

2. Preliminary results

2.1. Notations

We recall notations in [24] which we will use here as well. Readers can refer to Section 2.1 of
[24] and references therein for more details.

Let G be a simply-connected complex simple Lie group of rank n, B ⊂ G be a Borel subgroup
and h be the corresponding Cartan subalgebra. Let � = {α1, . . . , αn} ⊂ h∗ be the simple roots
with the associated Dynkin diagram Dyn(�) being the same as in Section 11.4 of [17]. Let
{α∨

1 , . . . , α∨
n } ⊂ h be the simple coroots, {χ1, . . . , χn} be the fundamental weights and R+ be

the set of positive roots in the root system R. Denote Q∨ = ⊕n
i=1 Zα∨

i and ρ = ∑n
i=1 χi . The

Weyl group W is generated by the simple reflections si ’s on h∗ defined by si(β) = sαi
(β) :=

β −〈β,α∨
i 〉αi for each i, where 〈·,·〉 : h∗ ×h → C is the natural pairing. Each parabolic subgroup

P ⊃ B is in one-to-one correspondence with a subset �P ⊂ �. Let 	 : W → Z�0 be the length
function, WP denote the Weyl subgroup generated by {sα | α ∈ �P } and WP denote the minimal
length representatives of the cosets W/WP . Let ωP denote the (unique) longest element in WP .

The (co)homology of a (generalized) flag variety X = G/P is torsion free and it has an
additive basis of Schubert (co)homology classes σu’s (resp. σu’s) indexed by WP . Note that
σu ∈ H 2	(u)(X,Z) and that H2(X,Z) = ⊕

αi∈�\�P
Zσsi can be canonically identified with

Q∨/Q∨
P , where Q∨

P := ⊕
α∈�P

Zα∨. For each αj ∈ � \ �P , we introduce a formal variable

qα∨
j +Q∨

P
. For λP = ∑

αj ∈�\�P
ajα

∨
j + Q∨

P ∈ H2(X,Z), we denote qλP
= ∏

αj ∈�\�P
q

aj

α∨
j +Q∨

P

.

The (small) quantum cohomology QH∗(X) = (H ∗(X) ⊗Q[q], �) of X (see e.g. [13] for more
details) is a commutative ring and has a Q[q]-basis of Schubert classes σu = σu ⊗ 1. The struc-
ture coefficients N

w,λP
u,v for the quantum product

σu � σv =
∑

w∈WP ,λP ∈Q∨/Q∨
P

Nw,λP
u,v qλP

σw

are three-pointed genus zero Gromov–Witten invariants and they are all nonnegative.
When P = B , we have �P = ∅,Q∨

P = 0, WP = {1} and WP = W . In this case, we simply

denote λ = λP and qj = qα∨
j

. It is well known that N
w,λ
u,v = 0 unless both of the following hold:

(1) 	(w) + 〈2ρ,λ〉 = 	(u) + 	(v) (which comes from the dimension constraint);
(2) λ is effective, i.e. λ = ∑n

j=1 ajα
∨
j with aj ∈ Z�0 for all j .

2.2. Preliminaries

In this subsection, we collect some known propositions. As we will see in the next section,
we give the quantum Pieri rules for Grassmannians of classical types, based on the main result
of [24] (see Proposition 2.1), the Peterson–Woodward comparison formula (see Proposition 2.4)
and the quantum Chevalley formula (see Proposition 2.5).
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As in [24], given any simple root α ∈ �, we define a map sgnα as follows:

sgnα : W → {0,1}; sgnα(w) =
{

1, if 	(w) − 	(wsα) > 0,

0, if 	(w) − 	(wsα) � 0.

It is well known that (see e.g. [18]) sgnα(w) = 0 if and only if w(α) ∈ R+.
The following proposition relates numbers of rational curves representing “different” homol-

ogy classes of G/B .

Proposition 2.1. (See Theorem 2.2 of [24].) For any u,v,w ∈ W and λ ∈ Q∨, we have

(1) N
w,λ
u,v = 0 unless sgnα(w) + 〈α,λ〉� sgnα(u) + sgnα(v) for all α ∈ �.

(2) Suppose sgnα(w) + 〈α,λ〉 = sgnα(u) + sgnα(v) = 2 for some α ∈ �, then

Nw,λ
u,v = Nw,λ−α∨

usα,vsα
, whenever sgnα(w) = 0 or 1; (2.1)

Nw,λ
u,v = Nwsα,λ−α∨

u,vsα
, if sgnα(w) = 0; (2.2)

Nw,λ
u,v = Nwsα,λ

u,vsα
, if sgnα(w) = 1. (2.3)

As a consequence, we obtain the next vanishing criterion for the Gromov–Witten invari-
ants1 N

w,λ
u,v .

Corollary 2.2. For any u,v,w ∈ W and λ ∈ Q∨, we have N
w,λ
u,v = 0 whenever there exists α ∈ �

such that one of the following holds.

(1) 〈α,λ〉 = 2 and N
wsα,λ−α∨
u,vsα = 0;

(2) 〈α,λ〉 = 1, sgnα(u) = 0 and N
wsα,λ−α∨
u,vsα = 0;

(3) 〈α,λ〉 = 0, sgnα(u) = sgnα(v) = 0 and N
wsα,λ
u,vsα = 0.

Proof. Note that sgnα is a map frow W to {0,1}. Thus if any one of the above three assumptions
holds, we have sgnα(w) + 〈α,λ〉 � sgnα(u) + sgnα(v).

When the inequality “>” holds, we are already done by using Proposition 2.1 (1). Now
we assume the equality “=” holds. As a consequence, if assumption (2) holds, then we have
sgnα(w) = 0 and sgnα(v) = 1. Applying Proposition 2.1 (2) for u′ = v, v′ = usα and w′ = wsα ,

we deduce that N
w,λ
u,v = N

w,λ
v,u = N

w′sα,λ
u′,v′sα = N

w′,λ−α∨
u′sα,v′sα = N

wsα,λ−α∨
vsα,u = 0. Similarly, we can show

N
w,λ
u,v = 0 whenever either assumption (1) or assumption (3) holds. �
We will use Proposition 2.1 and Corollary 2.2 very frequently in Section 3. Whenever neces-

sary, we will point out what we are applying explicitly, by using the words “Applying (reference)
to (u′, v′,w′, λ′, α′)”.

The next identity for certain classical intersection numbers is also a direct consequence of
Proposition 2.1.

1 By “Gromov–Witten invariants”, we always mean “three-pointed genus zero Gromov–Witten invariants” in this pa-
per.
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Corollary 2.3. Let u,v,w ∈ W and α ∈ �. Suppose sgnα(w) = sgnα(u) + 1 = 1, then N
w,0
u,v is

equal to N
wsα,0
u,vsα if sgnα(v) = 1, or 0 otherwise.

Proof. If sgnα(v) = 0, then N
w,0
u,v = 0 follows directly from Proposition 2.1 (1). If sgnα(v) = 1,

then we have N
wsα,α∨
v,usα = N

wsα,0
vsα,u = N

w,0
v,u , by Proposition 2.1 (2). �

The next comparison formula tells us that every Gromov–Witten invariant (Nw,λP
u,v ) for G/P

equals a certain Gromov–Witten invariant (N
wωP ωP ′ ,λB
u,v ) for G/B .

Proposition 2.4 (Peterson–Woodward comparison formula). (See [31]; see also [26,21].)

(1) Let λP ∈ Q∨/Q∨
P . Then there is a unique λB ∈ Q∨ such that λP = λB + Q∨

P and 〈γ,λB〉 ∈
{0,−1} for all γ ∈ R+

P (= R+ ∩ ⊕
β∈�P

Zβ).

(2) Denote �P ′ := {β ∈ �P | 〈β,λB〉 = 0}. For every u,v,w ∈ WP , we have

Nw,λP
u,v = N

wωP ωP ′ ,λB
u,v .

Here ωP (resp. ωP ′ ) is the longest element in the Weyl subgroup WP (resp. WP ′ ).

Thanks to the above comparison formula, we obtain an injection of vector spaces

ψ�,�P
: QH∗(G/P ) → QH∗(G/B) defined by qλP

σw �→ qλB
σwωP ωP ′ .

We denote by Pα the parabolic subgroup (containing B) that corresponds to the special case of a
singleton subset {α} ⊂ �, and simply denote ψα = ψ�,{α}. Note that R+

Pα
= {α} and Q∨

Pα
= Zα∨.

In addition, we have the natural fibration Pα/B → G/B → G/Pα with Pα/B ∼= P1.
The (Peterson’s) quantum Chevalley formula, proved in [14], describes the quantum product

of two Schubert classes when one of them is given by a simple reflection.

Proposition 2.5 (Quantum Chevalley formula for G/B). For u ∈ W , 1 � i � n,

σu � σ si =
∑〈

χi, γ
∨〉

σusγ +
∑〈

χi, γ
∨〉

qγ ∨σusγ ,

where the first sum is over positive roots γ for which 	(usγ ) = 	(u) + 1, and the second sum is
over positive roots γ for which 	(usγ ) = 	(u) + 1 − 〈2ρ,γ ∨〉.

When � is of A-type, the above formula is also called the quantum Monk formula.
In addition, we will need the next two lemmas.

Lemma 2.6. (See Lemma 3.9 of [23].) Let v ∈ W and γ ∈ R+ satisfy 	(vsγ ) = 	(v) + 1 −
〈2ρ,γ ∨〉. Then for any αj ∈ � with 〈αj , γ

∨〉 > 0, we have 	(vsγ sj ) = 	(vsγ ) + 1.

Lemma 2.7. For v ∈ WP and α ∈ �P , we have sgnα(v) = 0.

Proof. It is a well-known fact that v ∈ WP and α ∈ �P imply v(α) ∈ R+. Thus, 	(vsα) > 	(v),
and then the statement follows. �
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3. Quantum Pieri rules for Grassmannians of classical types: classical aspects

In this section, we study the quantum Pieri rules for Grassmannians of classical types, which
describe the quantum product of general Schubert classes with the Chern classes of the dual of
the tautological subbundles. We will only deal with Grassmannians of type B,C,D here, and
will reprove the well-known quantum Pieri rules for Grassmannians of type A (i.e. complex
Grassmannians) [2] in the appendix. Furthermore, we will only reduce all the relevant Gromov–
Witten invariants in the quantum Pieri rules to certain classical intersection numbers. As we will
see in next section, further reductions can be taken so that these rules can be reformulated in a
traditional way.

3.1. Grassmannians of type B,C,D

In this subsection, we review some facts on Grassmannians of type C,B,D, i.e. the quotients
of Lie groups G of the aforementioned types by their maximal parabolic subgroups P . More
details on these facts can be found for example in [30] and [5]. We also illustrate the idea of our
proof of quantum Pieri rules.

Every such Grassmannian X parameterizes isotropic subspaces in a vector space E = CN

equipped with a standard non-degenerated bilinear form (·,·) which is skew-symmetric in the C

case and symmetric in the B or D cases. Thus it is usually called an isotropic Grassmannian and
it can be described explicitly as follows. The maximal parabolic subgroup P corresponds to a
subset �P = � \ {αk} (we use the convention of labeling the base as in Humphreys’ book [17])
and the space X is given by

(i) IG(k,2n) = {V �C2n | dimC V = k, (V,V ) = 0} for type Cn;
(ii) OG(k,2n + 1) = {V �C2n+1 | dimC V = k, (V,V ) = 0} for type Bn;

(iii) OG(k,2n + 2) = {V � C2n+2 | dimC V = k, (V,V ) = 0}, if G is of type Dn+1 and 1 �
k � n − 1;

(iv) a connected component OGo(n+ 1,2n+ 2) of OG(n+ 1,2n+ 2), if G is of type Dn+1 and
k ∈ {n,n + 1}.

In the first three cases, we have N = 2n, 2n + 1 and 2n + 2 respectively. For convenience,
we have assumed G to be of type Dn+1, rather than Dn, in cases (iii) and (iv). Furthermore
when this holds, we can always assume k � n − 1, since case (iv) can be reduced to case (ii)
(see Remark 3.1). Customarily, IG(n,2n) (resp. OG(n,2n + 1), OGo(n + 1,2n + 2)) is called a
Lagrangian (resp. odd orthogonal, even orthogonal) Grassmannian.

There are tautological bundles over the isotropic Grassmannian G/P :

0 → S → E → Q→ 0.

The Chern classes of the dual of the tautological subbundle S are given by the Schubert classes
cp(S∗) = σu (where 1 � p � k) with

u := sk−p+1 · · · sk−1sk,

possibly up to a scale factor of 2. Precisely, for cases (i), (ii) and (iii), we always have
cp(S∗) = σu, except for the special case of k = n for case (ii). Furthermore for this excep-
tional case, we have cp(S∗) = 2σu (see e.g. [27,28]). Note that case (iv) has been reduced to the
exceptional case. In the next two subsections, we will show the classical aspects of the quantum
Pieri rules with respect to cp(S∗) (or equivalently cp(S) = (−1)pcp(S∗)). That is, we give a for-
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mula for the quantum product σu � σv of a general Schubert class σv in QH∗(G/P ) with such
a special Schubert class σu, in which we reduce all the Gromov–Witten invariants to classical
intersection numbers.

Note that the quantum Pieri rules with respect to cp(Q) have been given by Buch, Kresch
and Tamvakis [5]. In contrast to complex Grassmannians, (quantum) Pieri rules with respect to
cp(Q) do not imply (quantum) Pieri rules with respect to cp(S∗), whenever 1 < k < n (see the
next remark and note that c1(S∗) = c1(Q)).

Remark 3.1. (See e.g. [30] and [5].)

(1) OG(n+1,2n+2) has two isomorphic connected components, either of which is projectively
isomorphic to OG(n,2n + 1).

(2) OG(n,2n + 2) is a flag variety G/P̄ of Dn+1-type with �P̄ = � \ {αn,αn+1}.
(3) For any Lagrangian or orthogonal Grassmannian (i.e. for k = n), we have cp(S∗) = cp(Q)

whenever p � rank(S).

The idea of our proof of such a formula is as follows. For the isotropic Grassmannian G/P ,
we have H2(G/P,Z) = Q∨/Q∨

P
∼= Z and consequently QH∗(G/P ) contains only one quantum

variable t := qα∨
k +Q∨

P
. Thus we can write

σu � σv = σu ∪ σv +
∑

w∈WP ,d�1

Nw,d
u,v σwtd .

Here we have N
w,d
u,v = N

w,λP
u,v where λP := dα∨

k + Q∨
P , compared with the previous notations.

In addition, we have N
w,λP
u,v = N

w̃,λB
u,v , where w̃ = wωP ωP ′ and λB are given by the Peterson–

Woodward comparison formula. We can show

(1) N
w,d
u,v = 0 unless d is small enough (for instance d � 2).

(2) For a small d , N
w̃,λB
u,v is equal to a certain classical intersection number N

w′,0
u′,v′ for which the

classical Pieri rules (or other known formulas) can be applied.

The dimension constraint may also be helpful. That is, we have N
w,d
u,v = 0 unless 	(u)+	(v) =

	(w) + d · deg t . Here we have deg t = 2n + 1 − k (resp. 2n − k, 2n + 1 − k) for case (i) (resp.
(ii), (iii)) if k < n, and deg t = n + 1 (resp. 2n) for case (i) (resp. (ii) or (iv)) if k = n.

In fact, the above method can also been used to recover the well-known quantum Pieri rules
for complex Grassmannians. Details will be given in Appendix A.

Note that whenever referring to N
w̃,λB
u,v (resp. N

w,λP
u,v or N

w,d
u,v ), we are discussing the quantum

product σu �B σv in QH∗(G/B) (resp. σu �P σv in QH∗(G/P )).
Due to the above assumptions on �, the Dynkin diagram of {α1, . . . , αn−1} is of type An−1 in

the standard way. As a consequence, we have the following fact on certain products in the Weyl
subgroup generated by {s1, . . . , sn−1}.
Lemma 3.2. (See Lemma 3.3 of [23].) For 1 � i � j � m < n and 1 � r �m, we have

(sisi+1 · · · sj )(sr sr+1 · · · sm) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(sr sr+1 · · · sm)(sisi+1 · · · sj ), if r � j + 2

sisi+1 · · · sm, if r = j + 1

(sr+1sr+2 · · · sm)(sisi+1 · · · sj−1), if i � r � j

(s s · · · s )(s s · · · s ), if r < i.
r r+1 m i−1 i j−1
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3.2. Classical aspects of quantum Pieri rules for Grassmannians of type C

Throughout this subsection, we consider a Grassmannian of type Cn. Precisely, we consider
the isotropic Grassmannian G/P = IG(k,2n). Thus the base � is of type Cn. Unless otherwise
stated, we will always use the following definition of u in the rest of this section.

Definition 3.3. Fix 1 � p � k, we define

u := sk−p+1 · · · sk−1sk.

To show Theorem 3.13, the main result of this subsection, we need to compute all the
Gromov–Witten invariants N

w,d
u,v for the quantum product σu � σv . Recall that for a given d ,

we have N
w,d
u,v = N

w,λP
u,v = N

w̃,λB
u,v , where λP = dα∨

k + Q∨
P , and w̃ = wωP ωP ′ , λB are both de-

fined in Proposition 2.4. For each j , we simply denote sgnj := sgnαj
.

Lemma 3.4. Write d = mk + r where m,r ∈ Z with 1 � r � k. Then we have λB = λ′ with
λ′ := m

∑k−1
j=1 jα∨

j + ∑r−1
j=1 jα∨

k−r+j + d
∑n

j=k α∨
j .

Proof. It is easy to check that 〈αi, λ
′〉 = −1 if i = k − r , or 0 otherwise. Hence, 〈γ,λ′〉 ∈ {0,−1}

for all γ ∈ R+
P . Thus the statement follows from the uniqueness of λB (see Proposition 2.4). �

Lemma 3.5. With the same notations as in Lemma 3.4, we have 〈αk,λB〉 = m + 1 if k < n, or
2(m + 1) if k = n.

Proof. If k = n, we have 〈αk,λB〉 = 〈αn,m(n − 1)α∨
n−1 + (r − 1)α∨

n−1 + (mn + r)α∨
n 〉 =

2(m + 1), by noting 〈αn,α
∨
j 〉 = 0 for all j < n − 1. If k < n, we have 〈αk,λB〉 = 〈αk,

m(k − 1)α∨
k−1 + (r − 1)α∨

k−1 + (mk + r)α∨
k + (mk + r)α∨

k+1〉 = m + 1. �
Lemma 3.6. Suppose d � k + 1, then we have N

w,d
u,v = 0 for any w ∈ WP .

Proof. Since d � k + 1, we have d = mk + r with 1 � r � k and m� 1.
When k = n, we have 〈αk,λB〉 = 2(m + 1) > 2 by Lemma 3.5. Thus we have N

w,d
u,v =

N
w̃,λB
u,v = 0 by Proposition 2.1 (1).
When k < n, we have 〈αk,λB〉 = m + 1 � 2, by Lemma 3.5 again. If “>” holds, then we are

already done by using Proposition 2.1 (1) again. Note v ∈ WP and αk+1 ∈ �P . By Lemma 2.7,
we have sgnk+1(v) = 0. If 〈αk,λB〉 = 2, then we have sgnk+1(usk) + sgnk+1(v) = 0 < 1 �
sgnk+1(w̃sk) + 〈αk+1, λB − α∨

k 〉. Thus we have N
w̃sk,λB−α∨

k
usk,v = 0 by Proposition 2.1 (1). Conse-

quently, we still have N
w,d
u,v = N

w̃,λB
u,v = 0 by Corollary 2.2 (1). �

Remark 3.7. The above lemma also follows directly from the dimension count.

Lemma 3.8. Let u′, v′,w′ ∈ W and λ ∈ Q∨. For the quantum product σu′
� σv′

in QH∗(G/B),

the structure constant N
w′,λ
u′,v′ vanishes, if both (a) and (b) hold:

(a) 〈αn,λ〉 = 2, 〈αn−1, λ〉 = 0; (b) sgnn

(
u′snsn−1

) = 0, sgnn−1

(
v′) = 0.
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Proof. Note that sgnn(u
′snsn−1) + sgnn(v

′) = 0 + sgnn(v
′) � 1 < 2 = 〈αn,λ〉 = 〈αn,λ − α∨

n −
α∨

n−1〉. By Proposition 2.1 (1), we have N
w′snsn−1,λ−α∨

n −α∨
n−1

u′snsn−1,v
′ = 0. Since sgnn−1(v

′) = 0 and

〈αn−1, λ−α∨
n 〉 = −〈αn−1, α

∨
n 〉 = 1, we have N

w′sn,λ−α∨
n

u′sn,v′ = 0 by Corollary 2.2 (2). Consequently,

we have N
w′,λ
u′,v′ = 0 by Corollary 2.2 (1). �

The next proposition shows us that t is the largest power td appearing in the quantum product
σu � σv in QH∗(G/P ).

Proposition 3.9. Suppose d � 2, then we have N
w,d
u,v = 0 for any w ∈ WP .

Proof. We can assume 2 � d � k due to Lemma 3.6. It suffices to show N
w̃,λB
u,v = 0, where we

note λB = ∑d−1
j=1 jα∨

k−d+j + d
∑n

j=k α∨
j . Consequently, 〈αk−1, λB〉 = 0.

Suppose k = n, then 〈αn,λB〉 = 2. Clearly, we have sgnn(usnsn−1) = 0 and sgnn−1(v) = 0.
Thus we are done by Lemma 3.8.

Now we assume k < n. Since sgnk+1(u) = sgnk+1(v) = 0 and 〈αk+1, λB〉 = 0, it suffices to

show N
w̃sk+1,λB
usk+1,v = 0, due to Corollary 2.2 (3). Note sgnk(usk+1) = 0 and 〈αk,λB〉 = 1. Then

it suffices to show N
w̃sk+1sk,λB−α∨

k
usk+1,vsk = 0, due to Corollary 2.2 (2). For any 1 � i � m � n, we

denote v
(m)
i := smsm−1 · · · sm−i+1. By induction on i, we reduce the above statement to the

following one. To show N
w̃sk+1sk,λB−α∨

k
usk+1,vsk = N

w̃sk+1v
(k)
1 ,λB−∑1

j=1 α∨
k−j+1

usk+1,vv
(k)
1

= 0, it suffices to show

N
w̃sk+1v

(k)
d ,λB−∑d

j=1 α∨
k−j+1

usk+1,vv
(k)
d

= 0. Furthermore by induction on m, it suffices to show N
w′,λ′

B

u′,v′ = 0,

in which u′ = usk+1 · · · sn−1sn, v′ = vv
(k)
d · · ·v(n−1)

d , w′ = w̃sk+1 · · · sn−1snv
(k)
d · · ·v(n−1)

d and

λ′
B = λB − ∑d

j=1 α∨
k−j+1 − · · · − ∑d

j=1 α∨
n−1−j+1 = ∑d

j=1 jα∨
n−d+j . (Here we always use

Corollary 2.2 (2), (3) for the inductions.)
Note that 〈αn,λ

′
B〉 = 2, 〈αn−1, λ

′
B〉 = 0 and sgnn(u

′snsn−1) = 0. In addition, we note that

d � 2, so that v
(j)
d (αj ) = αj−1 for each k � j � n − 1. Thus we have v′(αn−1) = v(αk−1) ∈ R+

and consequently sgnn−1(v
′) = 0. Hence, we do have N

w′,λ′
B

u′,v′ = 0, by using Lemma 3.8. �
Remark 3.10. Proposition 3.9 (resp. Proposition 3.20) can also be proved by using Theo-
rem 1.3 (d) (resp. Theorem 2.3 (d) and Theorem 3.3 (d)) of [5].

The next lemma also works with exactly the same arguments, for either of the cases: (1) � is
of type Bn; (2) � is of type Dn+1 and k < n.

Lemma 3.11. Let u′ = sj−i+1 · · · sj−1sj where 1 � i � j < k, and λ be effective with

〈χj ,λ〉 = 0. If λ �= 0, then we have N
w′,λ
u′,v′ = 0 for any v′,w′ ∈ W .

Proof. Note that the product (σ sj )i := σ sj � · · · � σ sj of i copies of σ sj is the summation of
σu′

and other nonnegative terms. Hence, (σ sj )i � σ v′ = σu′
� σv′ + (other nonnegative terms) =

N
w′,λ
′ ′ qλσ

w′ + (other nonnegative terms). On the other hand, we have

u ,v
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(
σ sj

)i
� σ v′ =

∑
γi

· · ·
∑
γ1

N
v′sγ1 ,μ1

sj ,v′ N
v′sγ1 sγ2 ,μ2

sj ,v′sγ1
· · ·Nv′sγ1 ···sγi

,μi

sj ,v′sγ1 ···sγi−1
qμ1+···+μi

σ v′sγ1 ···sγi

=
∑
γi

· · ·
∑
γ1

i∏
h=1

〈
χj , γ

∨
h

〉
qμ1+···+μi

σ v′sγ1 ···sγi ,

by the quantum Chevalley formula. Here for 1 � h � i, γh ∈ R+, μh ∈ {0, γ ∨
h }, and they satisfy

	(v′sγ1 · · · sγh
) = 	(v′sγ1 · · · sγh−1)+1−〈2ρ,μh〉. If N

w′,λ
u′,v′ �= 0 for some v′,w′, then there exists a

sequence (γ1, . . . , γi) such that λ = ∑i
h=1 μh and

∏i
h=1〈χj , γ

∨
h 〉 �= 0. Since λ �= 0, there exists

1 � h′ � i such that μh′ �= 0 and 0 = 〈χj ,λ〉 = 〈χj ,
∑i

h=1 μh〉 � 〈χj ,μh′ 〉 = 〈χj , γ
∨
h′ 〉 > 0.

Contradiction. �
The next well-known fact, characterizing ωP ωP ′ , works for � of any type.

Lemma 3.12. (See e.g. Lemma 3.5 of [23].) An element w̄ ∈ WP is equal to ωP ωP ′ , if both of
the following hold: (i) 	(w̄) = 	(ωP ωP ′); (ii) w̄(α) ∈ R+ for all α ∈ �P ′ .

In the rest of this subsection, we fix the positive root γ := αn + 2
∑n−1

j=k αj . Note that γ ∨ =
α∨

k + α∨
k+1 + · · · + α∨

n and 〈2ρ,γ ∨〉 = 2n − 2k + 2.

Theorem 3.13 (Classical aspects of quantum Pieri rules for Grassmannians of type Cn). Let
σu,σ v be Schubert classes in the quantum cohomology of the isotropic Grassmannian G/P =
IG(k,2n). Recall u = sk−p+1 · · · sk−1sk , where 1 � p � k. We have

σu � σv = σu ∪ σv +
{

t
∑

w∈WP N
ws1···sk−1,0
usk,vsγ σw, if 	(vsγ ) = 	(v) − 2n + 2k − 1

0, otherwise.

Proof. Due to Proposition 3.9, we have σu � σv = σu ∪ σv + t
∑

w∈WP N
w,1
u,v σw . Thus by

the Peterson–Woodward comparison formula, it suffices to compute the Gromov–Witten in-

variants N
w,1
u,v = N

wωP ωP ′ ,λB
u,v with respect to λP = α∨

k + Q∨
P . By Lemma 3.4, we have λB =∑n

j=k α∨
j = γ ∨, so that �P ′ = �P \{αk−1}. Consequently, we have 	(ωP ωP ′) = |R+

P |−|R+
P ′ | =

k − 1. Hence, we conclude ωP ωP ′ = s1s2 · · · sk−1 by (easily) checking the assumptions in

Lemma 3.12. Therefore, it is sufficient to compute N
ws1···sk−1,γ

∨
u,v qγ ∨σws1···sk−1 in the product

σu �B σv in QH∗(G/B). By abuse of notations, we simply denote “�B” as “�” here. We claim

(1) the contribution N
ws1···sk−1,γ

∨
u,v for qγ ∨σws1···sk−1 from σu �σv is the same as the contribution

N
ws1···sk−1,γ

∨
usk,sk,v for qγ ∨σws1···sk−1 from σusk � σ sk � σ v ;

(2) N
w′,γ ∨
usk,sk,v = N

vsγ ,γ ∨
sk,v · Nw′,0

usk,vsγ , for any w′ ∈ W .

Assuming these claims, if 	(vsγ ) �= 	(v) + 1 − 〈2ρ,γ ∨〉, then N
vsγ ,γ ∨
sk,v = 0. As a consequence,

N
w,1
u,v = N

ws1···sk−1,γ
∨

u,v = 0 · Nws1···sk−1,0
usk,vs∨

γ
= 0 for any w ∈ WP . Hence, σu �P σv = σu ∪ σv . If

	(vsγ ) = 	(v)+ 1 −〈2ρ,γ ∨〉, then we have N
vsγ ,γ ∨
sk,v = 〈χk, γ

∨〉 = 1, by the quantum Chevalley

formula. Thus N
ws1···sk−1,γ

∨
u,v = N

ws1···sk−1,0
usk,vsγ . In addition, we note 	(v) + 1 − 〈2ρ,γ ∨〉 = 	(v) −

2n + 2k − 1. Hence, we are done.
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It remains to show claims (1) and (2). If 	(u) = 1, then usk = 1 and we are done. Thus
we assume 	(u) > 1 in the rest, and show claim (1) first. Note that u = sk−p+1 · · · sk−1sk is of
length p. By the quantum Chevalley formula, we have σusk � σ sk = σu + σ skusk . It suffices to
show σ skusk � σ v makes no contribution for qγ ∨σws1···sk−1 . Indeed, we have sgnj (skusk) = 0
whenever j � k, by noting skusk(αj ) = sksk−p+1 · · · sk−2sk−1(αj ) ∈ R+. Since 〈αk, γ

∨〉 = 1,

N
ws1···sk−1,γ

∨
skusk,v = 0 follows if N

ws1···sk−1sk,γ
∨−α∨

k
skusk,vsk = 0, by Corollary 2.2 (2). Repeating this reduc-

tion, it suffices to show N
ws1···sn−1,α

∨
n

skusk,vsk ···sn−1 = 0, which does follow by using Proposition 2.1 (1) with
respect to sgnn. Thus claim (1) follows.

The contribution N
w′,γ ∨
usk,sk,v for qγ ∨σw′

from σusk � σ sk � σ v = (σ sk � σ v) � σusk is given by

N
w′,γ ∨
usk,sk,v = ∑

w′′∈W,λ∈Q∨ N
w′′,λ
sk,v N

w′,γ ∨−λ

w′′,usk
(which contains only finitely many nonzero terms).

Hence, claim (2) becomes a direct consequence of the quantum Chevalley formula and
Lemma 3.11. �
Remark 3.14. Using Proposition 2.1, we can also show N

ws1···sk−1,γ
∨

u,v = N
w′,0
u′,v′ where u′ =

sk−p+1 · · · sn, v′ = vsk · · · sn and w′ = ws1 · · · sk−1sk+1 · · · snsk · · · sn. As a consequence, we can

apply a generalized classical Pieri rule given by Bergeron and Sottile [1] to express N
w′,0
u′,v′ more

explicitly.

Example 3.15. For X = IG(2,8), we take u = s1s2, v = s3s4s3s1s2 and w = id. Then vsγ =
vs2s3s4s3s2 = s1s2, so that 	(v) = 2 �= 0 = 	(v) − 2 · 4 + 2 · 2 − 1. Thus N

w,1
u,v = 0. (In terms of

notations in Example 1.3 of [5], we have σu = σ1,1, σ
v = σ4,1 and N

w,1
u,v = 〈σ1,1, σ4,1, σ6,5〉1.)

Denote by P̃ ⊃ B the parabolic subgroup corresponding to the subset � \ {αk−1}. That is,
G/P̃ = IG(k − 1,2n). (When k = 1, we mean P̃ = G, i.e. WP̃ = {id}.) Recall that γ ∨ =∑n

j=k α∨
j so that 	(v) + 1 − 〈2ρ,γ ∨〉 = 	(v) − 2n + 2k − 1.

Lemma 3.16. For any v ∈ WP , the following are equivalent:

(a) 	(vsγ ) = 	(v) + 1 − 〈
2ρ,γ ∨〉; (b) vsγ (αk) ∈ R+; (c) vsγ ∈ WP̃ .

Proof. Note that γ ∨ = ∑n
j=k α∨

j = sksk+1 · · · sn−1(α
∨
n ). We conclude that sγ = sksk+1 · · · sn · · ·

sk+1sk and 	(sγ ) = 〈2ρ,γ ∨〉 − 1 = 2n − 2k + 1.
Suppose assumption (a) holds first. Note that 〈αk, γ

∨〉 > 0. By Lemma 2.6, we have
	(vsγ sk) = 	(vsγ ) + 1. Hence, vsγ (αk) ∈ R+. That is, assumption (b) holds.

Assume (b) holds now. Note that 〈αi, γ
∨〉 = 0 for any αi ∈ � \ {αk−1, αk}, so that vsγ (αi) =

v(αi) ∈ R+. Hence, (c) follows.
Assume (c) holds, equivalently, vsγ (αi) ∈ R+ for all αi ∈ �\{αk−1}. Then we have v �= 1, be-

cause otherwise vsγ (αk) = αk − 〈αk, γ
∨〉γ /∈ R+. As a consequence, we have v(αk) ∈ −R+ (as

v ∈ WP ). Rewrite (αk, . . . , αn, . . . , αk) as (β1, . . . , β2n−2k+1). To show (a), it suffices to show
	(vsγ sβ1 · · · sβj−1sβj

) = 	(vsγ sβ1 · · · sβj−1) + 1 (or equivalently to show vsγ sβ1 · · · sβj−1(βj ) ∈
R+) for all 1 � j � 2n − 2k + 1. Since αk = β1, this holds when j = 1. When 2 � j � 2n − 2k,
we note that sβ1 · · · sβj−1(βj ) = αk + β for a positive root β in the root subsystem with re-
spect to the subbase {αk+1, . . . , αn}. Thus vsγ sβ · · · sβ (βj ) = vsγ (αk)+ vsγ (β) = vsγ (αk)+
1 j−1
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v(β) ∈ R+. When j = 2n − 2k + 1, we have vsγ sβ1 · · · sβj−1(βj ) = vsγ sγ sβ2n−2k+1(β2n−2k+1) =
−v(β2n−2k+1) = −v(αk) ∈ R+. Thus we are done. �

Thanks to the above lemma, the assumption “	(vsγ ) = 	(v) − 2n + 2k − 1” in Theorem 3.13

is equivalent to the assumption “vsγ ∈ WP̃ ”. This indicates us that N
w,1
u,v = N

ws1···sk−1,0
usk,vsγ is a

classical intersection number involved in the cup product σ sk−p+1···sk−1 ∪ σvsγ in H ∗(IG(k − 1,

2n)). As a consequence, the classical Pieri rule in [27] can still be applied. In particular, we can
reformulate Theorem 3.13 in a more traditional way, which will be described in Theorem 4.4.

3.3. Classical aspects of quantum Pieri rules for Grassmannians of type B,D

Throughout this subsection, we consider a Grassmannian of type Bn or Dn+1. Precisely, we
consider the isotropic Grassmannian G/P = OG(k,2n + 1) (resp. OG(k,2n + 2)) for � of type
Bn (resp. Dn+1). Note that the even orthogonal Grassmannian OGo(n+ 1,2n+ 2) is isomorphic
to the odd orthogonal Grassmannian OG(n,2n + 1). It suffices to deal with either of them only.
Hence, when � is of Dn+1-type, we can always assume k � n − 1. In other words, whenever
referring to “k = n”, we are dealing with � of Bn-type, unless otherwise stated. As before, we
need to compute the Gromov–Witten invariants N

w,d
u,v = N

w,λP
u,v = N

w̃,λB
u,v (where λP = dα∨

k +
Q∨

P ) for the quantum product σu � σv in QH∗(G/P ).
Let [x] denote the integer satisfying 0 � x − [x] < 1. In order to state the results uniformly,

we denote

ᾱ∨
n := α∨

n

(
resp. α∨

n + α∨
n+1

)
and sᾱn := sn (resp. snsn+1)

when � is of type Bn (resp. Dn+1). Furthermore, we denote D = d (resp. 2d) if k < n (resp.
k = n).

With the same arguments as for Lemma 3.4, we have

Lemma 3.17. Write D = mk + r where m,r ∈ Z with 1 � r � k. Then we have

λB = m

k−1∑
j=1

jα∨
j +

r−1∑
j=1

jα∨
k−r+j + dα∨

k +
{

2[ d
2 ]∑n−1

j=k+1 α∨
j + [ d

2 ]ᾱ∨
n , if k < n

0, if k = n.

Consequently, we have 〈αk,λB〉 = m + 1 + D − 2[D
2 ]; for k + 1 � n, 〈αk+1, λB〉 = −d + 2[ d

2 ];
for 1 � i � k − 1, 〈αi, λB〉 = −1 if i = k − r , or 0 otherwise.

Recall u = sk−p+1 · · · sk−1sk where 1 � p � k.

Lemma 3.18. If D � k + 1, then we have N
w,d
u,v = 0 for any w ∈ WP .

Proof. Use the same notations as in Lemma 3.17. If D > 2k, then we have 〈αk,λB〉� m+1 > 2
and consequently N

w,d
u,v = 0 by Proposition 2.1. Now we assume k + 1 � D � 2k, so that m = 1.

Suppose k < n, that is, D = d . Note that 〈αk,λB〉 = 1 + 1 + d − 2[ d
2 ] = 3 (resp. 2)

if d is odd (resp. even). Thus when d is odd, we are already done. When d is even, we
note that sgnk+1(usk) + sgnk+1(v) = 0 < 1 � sgnk+1(w̃sk) + 〈αk+1, λB − α∨

k 〉. Thus we have

N
w̃sk,λB−α∨

k
usk,v = 0 by using Proposition 2.1 (1). As a consequence, we have N

w̃,λB
u,v = 0, by using

Corollary 2.2 (1). That is, N
w,d
u,v = 0.
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Suppose k = n, that is, D = 2d . Note that 〈αn,λB〉 = 2, 〈αn−1, λB〉 = 0 and consequently
〈αn−1, λB − α∨

n 〉 = 2. Since sgnn−1(usn) + sgnn−1(v) � 1 + 0 < 2 = 〈αn−1, λB − α∨
n 〉, we have

N
w̃sn,λB−α∨

n
usn,v = 0 by Proposition 2.1 (1). Thus we have N

w̃,λB
u,v = 0 by Corollary 2.2 (1). �

Lemma 3.19. Let u′, v′,w′ ∈ W and λ ∈ Q∨. For the quantum product σu′
� σv′

in QH∗(G/B),

the structure constant N
w′,λ
u′,v′ vanishes, if both (a) and (b) hold:

(a) 〈αn−1, λ〉 = 〈αn−2, λ〉 = 0; 〈αj ,λ〉 = 1, whenever j � n.
(b) sgni (u

′) = sgni (v
′) = 0 for i ∈ {n − 2, n − 1}; sgnj (u

′sn−1) = 0, if j � n.

Proof. Since sgnn−2(v
′) = 0, we have v′sᾱn(αn−2) = v′(αn−2) ∈ R+. Thus sgnn−2(v

′sᾱn) = 0.
Consequently, we have sgnn−2(u

′)+sgnn−2(v
′sᾱn) = 0 < 1 = 〈αn−2,−α∨

n−1〉 = 〈αn−2, λ−ᾱ∨
n −

α∨
n−1〉. By Proposition 2.1 (1), we have N

w′sn−1sᾱn sn−1,λ−ᾱ∨
n −α∨

n−1
u′,v′sᾱn

= 0. Since 〈αn−1, λ − ᾱ∨
n 〉 =

−〈αn−1, ᾱ
∨
n 〉 = 2, we have N

w′sn−1sᾱn ,λ−ᾱ∨
n

u′sn−1,v
′sᾱn

= 0 by Corollary 2.2 (1). Note that sgnj (u
′sn−1) = 0

and 〈αj ,λ− ᾱ∨
n +α∨

j 〉 = 1 +〈αj ,−ᾱ∨
n +α∨

j 〉 = 1, whenever j � n. Using Corollary 2.2 (2), we

deduce N
w′sn−1,λ

u′sn−1,v
′ = 0. Then we have N

w′,λ
u′,v′ = 0 by Corollary 2.2 (3). �

Proposition 3.20. If D � 3, then we have N
w,d
u,v = 0 for any w ∈ WP .

Proof. We can assume 3 � D � k, due to Lemma 3.18.
Suppose k = n. Then D = 2d and λB = ∑2d−1

j=1 jα∨
n−2d+j + dα∨

n . It is easy to check that all
the assumptions in Lemma 3.19 hold for u,v,λB . Thus we are done.

Suppose k < n now. Then D = d . Recall that u = sk−p+1 · · · sk with 	(u) = p.
Assume d is odd. Then λB = ∑d−1

j=1 jα∨
k−d+j + dα∨

k + (d − 1)
∑n−1

j=k+1 α∨
j + d−1

2 ᾱ∨
n .

Consequently, we have 〈αk,λB〉 = 2 and 〈αj ,λB〉 = 0 for each k − d + 1 � j � k − 1.

Denote d̄ := min{p,d}, u′ := usksk−1 · · · sk−d̄+1 and λ := λB − ∑d̄
j=1 α∨

k−d̄+j
. We claim

N
w̃sksk−1···sk−d̄+1,λ

u′,v = 0. (Indeed, if p � d , then u′ = 1 and therefore the claim follows, by not-

ing λ �= 0. Note that p � k. If p > d , then d̄ = d , u′ = sk−p+1sk−p+2 · · · sk−d and we note that
〈χk−d , λ〉 = 0. Thus the claim still follows by Lemma 3.11.) Note that sgnk−d̄+1(v) = 0 and
〈αk−d̄+1, λ + α∨

k−d̄+1
〉 = 1. Applying Corollary 2.2 (2) to (v,u′sk−d̄+1, w̃sksk−1 · · · sk−d̄+2, λ +

α∨
k−d̄+1

, αk−d̄+1), we obtain N
w̃sksk−1···sk−d̄+2,λ+∑h

j=1 α∨
k−d̄+j

u′sk−d̄+1,v
= 0 for h = 1. By induction, we

conclude N
w̃sksk−1···sk−d̄+h+1,λ+∑h

j=1 α∨
k−d̄+j

u′sk−d̄+1···sk−d̄+h,v
= 0 for each 1 � h � d̄ − 1. In particular, we have

N
w̃sk,λB−α∨

k
usk,v = 0 when h = d̄ − 1. Since 〈αk,λB〉 = 2, we have N

w̃,λB
u,v = 0 by Corollary 2.2 (1).

Assume d is even. Then λB = ∑d−1
j=1 jα∨

k−d+j + d
∑n−1

j=k α∨
j + d

2 ᾱ∨
n . Consequently, we have

〈αk,λB〉 = 1 and 〈αj ,λB〉 = 0 for any j /∈ {k, k − d}. Using exactly the same arguments as
in the third paragraph of the proof of Proposition 3.9, we conclude that it suffices to show

N
w′,λ′

B

u′,v′ = 0, in order to show N
w̃,λB
u,v = 0. Here u′ = usk+1 · · · sn−1sᾱn , v′ = vv

(k)
d · · ·v(n−1)

d , w′ =
w̃sk+1 · · · sn−1sᾱnv

(k)
d · · ·v(n−1)

d and λ′
B = ∑d−1

j=1 jα∨
n−d+j + d

2 ᾱ∨
n , where v

(i)
d := sisi−1 · · · si−d+1

for any k � i � n − 1. Hence, we are done, by using Lemma 3.19 with respect to u′, v′, λ′ .
B



N.C. Leung, C. Li / Advances in Mathematics 248 (2013) 279–307 293
(Indeed, we have v
(i)
d (αi) = αi−1 and v

(i)
d (αi−1) = αi−2 for each k � i � n − 1, by not-

ing d � 3. Thus we have v′(αn−1) = v(αk−1) ∈ R+, v′(αn−2) = v(αk−2) ∈ R+ and conse-
quently sgnn−1(v

′) = sgnn−2(v
′) = 0. It is easy to check that all the remaining assumptions

in Lemma 3.19 hold for u′, v′, λ′
B .) �

Theorem 3.21 (Classical aspects of quantum Pieri rules for Grassmannians of type Bn,Dn+1).
Let σu,σ v be Schubert classes in the quantum cohomology of the isotropic Grassmannian
G/P = OG(k,N), where N = 2n + 1 (resp. 2n + 2) for � of type Bn (resp. Dn+1). Recall
u = sk−p+1 · · · sk−1sk , where 1 � p � k. (Note that cp(S∗) = σu, possibly up to a scale factor of
2, where S denotes the tautological subbundle over OG(k,N).) Then in the quantum product

σu � σv = σu ∪ σv +
∑

w∈WP ,d�1

Nw,d
u,v tdσw,

all the Gromov–Witten invariants N
w,d
u,v coincide with certain classical intersection numbers.

More precisely, we have

(1) If d = 1, then we have

Nw,1
u,v = Nw1,0

u1,v1

with the elements u1, v1,w1 ∈ W given by

(u1, v1,w1) =
{

(usk, vsksk+1 · · · sn−1sᾱnsn−1 · · · sk+1,ws1 · · · sk−1), if k < n

(u, vsnsn−1,ws2 · · · sn−1s1 · · · sn−2sn−1sn), if k = n,

provided that 	(u) + 	(v) = 	(w) + deg t , and zero otherwise.
(2) If d = 2, then we have

Nw,2
u,v = Nw2,0

u,v2

with v2 = vsk · · · sn−1sᾱnsn−1 · · · s1 and w2 = ws1 · · · sn−1sᾱnsn−1 · · · sk , provided that k < n

and 	(u) + 	(v) = 	(w) + 2 deg t , and zero otherwise.
(3) If d � 3, then we have N

w,d
u,v = 0.

Proof. Recall that we have N
w,d
u,v = N

wωP ωP ′ ,λB
u,v , where ωP ωP ′ , λB are elements associated to

λP = dα∨
k + Q∨

P , defined by the Peterson–Woodward comparison formula. Furthermore, we

have N
w,d
u,v = 0 unless 	(u) + 	(v) = 	(w) + d · deg t , because of the dimension constraint. By

Proposition 3.20, we have N
w,d
u,v = 0, for either of the cases: (1) d � 3 and k < n; (2) d � 2 and

k = n. For the remaining cases, we assume d = 1 first.
When k < n, we have λB = α∨

k (by Lemma 3.17) and consequently �P ′ = �P \{αk−1, αk+1}.
Denote v′ := sk+1 · · · sn−1sᾱnsn−1 · · · sk+1. By direct calculations, we conclude that 	(ωP ωP ′) =
|R+

P | − |R+
P ′ | = 	(s1 · · · sk−1v

′) and s1 · · · sk−1v
′(α) ∈ R+ for all α ∈ �P ′ . Thus we have

ωP ωP ′ = s1 · · · sk−1v
′ by Lemma 3.12. Furthermore by Proposition 2.1 (2), we have N

w,1
u,v =

N
wωP ωP ′ ,α∨

k
u,v = N

wωP ωP ′ ,0
usk,vsk . Note that v′ = (v′)−1 and sgnj (usk) = 0 for all j > k. It follows

directly from Corollary 2.3 that N
wωP ωP ′ ,0
usk,vsk = N

ws1···sk−1,0
usk,vskv

′ if 	(vskv
′) = 	(vsk) − 	(v′), or 0 oth-

erwise. In the latter case, we have N
ws1···sk−1,0
usk,vskv

′ = 0 from the dimension constraint (by noting
	(usk) + 	(vsk) = 	(w) + deg t − 2 = 	(wωP ωP ′) = 	(ws1 · · · sk−1) + 	(v′)). Thus (1) follows
in this case.
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When k = n (in this case � is of Bn-type by our assumption), we have λB = α∨
n−1 + α∨

n ,
so that �P ′ = �P \ {αn−2}. Using Lemma 3.2, we obtain ωP ωP ′ = s2 · · · sn−1s1 · · · sn−2.

Consequently, we have N
w,1
u,v = N

wωP ωP ′ ,λB
u,v = N

w1snsn−1,λB
u,v =: a1. Furthermore, we note that

	(ωP ωP ′) + 〈2ρ,λB〉 = 2n = deg t = 	(u) + 	(v) − 	(w) � n + 	(v). Thus 	(v) � 2 and con-

sequently sgnn(v) = sgnn−1(vsn) = 1. Denote a2 := N
w1sn,λB
usn−1,v , a3 := N

w1,λB−α∨
n

usn−1,vsn and a4 :=
N

w1,λB−α∨
n −α∨

n−1
u,vsnsn−1 . We can show the following identities.

i) a1 = a2. Indeed, if a2 = 0, then we have a1 = 0, by noting sgnn−1(u) = sgnn−1(v) =
〈αn−1, λB〉 = 0 and using Corollary 2.2 (3). If a2 �= 0, then we have sgnn−1(w1sn) =
sgnn−1(usn−1) + sgnn−1(v) − 〈αn−1, λB〉 = sgnn−1(usn−1) = 1. Thus sgnn−1(w1snsn−1) =
0. Note 〈αn−1, α

∨
n−1 + λB〉 = 2, sgnn−1(usn−1) = 1 and sgnn−1(vsn−1) = 1. Applying

“(u, v,w,λ,α)” in Eqs. (2.1) and (2.2) of Proposition 2.1 (2) to (usn−1, vsn−1,w1snsn−1,

α∨
n−1 + λB,αn−1), we have N

w1snsn−1,α
∨
n−1+λB

usn−1,vsn−1 = N
w1snsn−1,λB
usn−1sn−1,vsn−1sn−1 = N

w1snsn−1,λB
u,v and

N
w1snsn−1,α

∨
n−1+λB

usn−1,vsn−1 = N
w1snsn−1sn−1,(α

∨
n−1+λB)−α∨

n−1
usn−1,vsn−1sn−1 = N

w1sn,λB
usn−1,v . Hence, N

w1snsn−1,λB
u,v =

N
w1sn,λB
usn−1,v . That is, a1 = a2.

ii) a2 = a3. Indeed, if a3 = 0, then we have a2 = 0 by Corollary 2.2 (2). If a3 �= 0, then we
have 	(w1) + 2 = 	(usn−1) + 	(vsn) = 	(u) + 	(v) = 	(w) + 2n = 	(wωP ωP ′) + 4 =
	(w1snsn−1)+4. Hence, 	(w1snsn−1) = 	(w1)−2 and consequently we have sgnn(w1) = 1.
Note that sgnn(usn−1) = sgnn(vsn) = 0 and 〈αn,α

∨
n−1〉 = −1. Then we have a2 = a3 by

Proposition 2.1 (2).
iii) a3 = a4. If sgnn−1(w1) = 0, then we are done by Proposition 2.1 (2). If sgnn−1(w1) = 1,

then we have a3 = 0 and a4 = 0 by Proposition 2.1 (1), so that we are also done.

Hence, we have a1 = a4. That is, N
w,1
u,v = N

w1,0
u1,v1 .

It remains to deal with the case when d = 2 and k < n. In this case, we have λB = α∨
k−1 +

2
∑n−1

j=k α∨
j + ᾱ∨

n , which satisfies 〈α,λB〉 = 0 for all α ∈ �P \ {αk−2}. By Lemma 3.12 again,
we conclude ωP ωP ′ = s2 · · · sk−1s1 · · · sk−2 (by which we mean the unit 1 if k − 2 � 0). Note
〈αk+1, α

∨
k+1 + λB〉 = 2, sgnk+1(wωP ωP ′) = 0, sgnk+1(usk+1) = 1 and sgnk+1(vsk+1) = 1. Ap-

plying “(u, v,w,λ,α)” in Eqs. (2.1) and (2.2) of Proposition 2.1 (2) to (usk+1, vsk+1,wωP ωP ′ ,

α∨
k+1 + λB,αk+1), we have N

wωP ωP ′ ,α∨
k+1+λB

usk+1,vsk+1 = N
wωP ωP ′ ,α∨

k+1+λB−α∨
k+1

usk+1sk+1,vsk+1sk+1 = N
wωP ωP ′ ,λB
u,v and

N
wωP ωP ′ ,α∨

k+1+λB

usk+1,vsk+1 = N
wωP ωP ′ sk+1,α

∨
k+1+λB−α∨

k+1
usk+1,vsk+1sk+1 = N

wωP ωP ′ sk+1,λB
usk+1,v . Hence, we have N

wωP ωP ′ ,λB
u,v

= N
wωP ωP ′ sk+1,λB
usk+1,v . Then by using induction and the same arguments above, we conclude

Nw,2
u,v = N

wωP ωP ′ ,λB
u,v = N

wωP ωP ′ sk+1···sn−1sᾱn ,λB
usk+1···sn−1sᾱn ,v .

Denote (β1, . . . , β2n−2k) := (αk, . . . , αn−1, αk−1, . . . , αn−2) and set

u′′ := usk+1 · · · sn−1sᾱn , v′′ := vsβ1 · · · sβ2n−2k
,

w′′ := wωP ωP ′sk+1 · · · sn−1sᾱnsβ1 · · · sβ2n−2k
, λ′′

B := λB −
2n−2k∑
i=1

β∨
i .

Since v′′(αn−1) = v(αk−1) ∈ R+, we have sgnn−1(v
′′) = 0. Note that λ′′

B = α∨
n−1 + ᾱ∨

n . Apply-
ing “(u, v,w,λ,α)” in Eqs. (2.1) and (2.2) of Proposition 2.1 (2) to (u′′sn−1, v

′′sn−1,w
′′, α∨

n−1 +
λ′′ , αn+1), we conclude N

w′′,λ′′
B′′ ′′ = N

w′′sn−1,λ
′′
B′′ ′′ Applying “(u, v,w,λ,α)” in Eqs. (2.3) and (2.1)
B u ,v u sn−1,v
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of Proposition 2.1 (2) to (v′′, u′′sn−1sᾱn ,w
′′sn−1sᾱn , λ

′′
B, ᾱn) (where we use these inductions for

twice, i.e., for αn and αn+1 respectively, in the case of type Dn+1), we conclude N
w′′sn−1,λ

′′
B

u′′sn−1,v
′′ =

N
w′′sn−1sᾱn ,λ′′

B−ᾱ∨
n

u′′sn−1,v
′′sᾱn

. Applying Eq. (2.1) of Proposition 2.1 (2), we conclude N
w′′sn−1sᾱn ,λ′′

B−ᾱ∨
n

u′′sn−1,v
′′sᾱn

=
N

w′′sn−1sᾱn ,0
u′′,v′′sᾱn sn−1

. (In order to apply equations in Proposition 2.1 (2) above, we have assumed the
grading equality “sgnα(u) + sgnα(v) = sgnα(w) + 〈α,λ〉” holds for all the following four struc-
ture constants. If it does not hold for any one of the structure constants, it is easy to show all of
them are equal to 0, so that we always have the following equalities as expected.) That is, we
have

N
w′′,λ′′

B

u′′,v′′ = N
w′′sn−1,λ

′′
B

u′′sn−1,v
′′ = N

w′′sn−1sᾱn ,λ′′
B−ᾱ∨

n

u′′sn−1,v
′′sᾱn

= N
w′′sn−1sᾱn ,0
u′′,v′′sᾱn sn−1

.

Hence, (2) follows directly from Lemma 3.22 and the next claim:

N
wωP ωP ′ sk+1···sn−1sᾱn ,λB
usk+1···sn−1sᾱn ,v = N

w′′,λ′′
B

u′′,v′′ . (�)

(Indeed if N
w′′,λ′′

B

u′′,v′′ = 0, then we can show N
w′′sβ2n−2k

···sβ2n−2k−h+1 ,λ′′
B+∑h

i=1 β∨
2n−2k−i+1

u′′,v′′sβ2n−2k
···sβ2n−2k−h+1

= 0 for

1 � h � 2n − 2k, by using Corollary 2.2 (2) and induction on h. In particular for h =
2n − 2k, we have N

w′′sβ2n−2k
···sβ1 ,λB

u′′,v′′sβ2n−2k
···sβ1

= 0, hence (�). Since 	(u) + 	(v) = 	(w) + 2 deg t ,

we have 	(u′′) + (v) = 	(wωP ωP ′sk+1 · · · sn−1sᾱn) + 〈2ρ,λB〉. Thus if N
w′′,λ′′

B

u′′,v′′ �= 0, then
we have 	(u′′) + 	(v′′) = 	(w′′) + 〈2ρ,λ′′

B〉 and consequently 	(u′′) + 	(v′′sβ2n−2k
· · · sβh

) =
	(w′′sβ2n−2k

· · · sβh
) + 〈2ρ,

∑2n−2k
i=h β∨

i 〉 for all 1 � h � 2n − 2k. Hence, we have 〈βh,λB −∑h−1
i=1 β∨

i 〉 = 1, sgnβh
(wωP ωP ′sk+1 · · · sn−1sᾱnsβ1 · · · sβh−1) = 0, sgnβh

(u′′) = 0 and sgnβh
(vsβ1

· · · sβh−1) = 1. By using Proposition 2.1 (2) and induction on h, we still conclude that (�)
holds.) �
Lemma 3.22. Using the same assumptions and notations as in Theorem 3.21 (and in the proof
of it), we have

N
w′′sn−1sᾱn ,0
u′′,v′′sᾱn sn−1

= Nw2,0
u,v2

.

Furthermore if N
w2,0
u,v2 �= 0, then we have v2 ∈ WP and 	(v2) = 	(v) − 	(v−1v2).

Proof. By Lemma 3.2, we have v′′sᾱnsn−1sn−2 · · · s1 = v2 · (sksk+1 · · · sn−1) and w′′sn−1sᾱn =
ws1 · · · sk−1sk+1 · · · sn−1sk · · · sn−2sᾱnsn−1sᾱns1 · · · sn−2. Denote w3 := w′′sn−1sᾱnsn−2 · · · s1 =
ws1 · · · sk−1sk+1 · · · sn−1sk · · · sn−2sᾱnsn−1sᾱn .

Assume N
w′′sn−1sᾱn ,0
u′′,v′′sᾱn sn−1

�= 0 first, then 	(u′′) + 	(v′′sᾱnsn−1) = 	(w′′sn−1sᾱn). Observe that

	(u′′) = 	(u)+	(u−1u′′) and 	(w−1w′′sn−1sᾱn)+	(v−1v′′sᾱnsn−1) = 2 deg t +	(u−1u′′). Com-
bining the assumption 	(u) + 	(v) = 	(w) + 2 deg t , we conclude that both 	(w′′sn−1sᾱn) =
	(w) + 	(w−1w′′sn−1sᾱn) and 	(v′′sᾱnsn−1) = 	(v) − 	(v−1v′′sᾱnsn−1) hold. Furthermore by
Corollary 2.3, we have

N
w′′sn−1sᾱn ,0
u′′,v′′sᾱn sn−1

= N
w′′sn−1sᾱn ·sn−2···s1,0
u′′,v′′sᾱn sn−1sn−2···s1

= N
w3,0
u′′,v2sksk+1···sn−1

(∗)

and

	
(
v′′sᾱnsn−1sn−2 · · · s1

) = 	
(
v′′sᾱnsn−1

) − 	(sn−2 · · · s1). (∗′)
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Note 	(v) − 	(v−1v2sksk+1 · · · sn−1) � 	(v2sksk+1 · · · sn−1) = 	(v′′sᾱnsn−1sn−2 · · · s1) = 	(v) −
	(v−1v′′sᾱnsn−1) − 	(sn−2 · · · s1) = 	(v) − 	(v−1v2sksk+1 · · · sn−1). Hence, the equality holds
and consequently 	(v2sksk+1 · · · sn−1) = 	(v2)−	(sksk+1 · · · sn−1). Then by Corollary 2.3 again,
we have

N
w3,0
u′′,v2sksk+1···sn−1

= N
w3sn−1···sk+1sk,0
u′′,v2

. (∗∗)

Note that sᾱnsn−1sᾱnsn−1 = sn−1sᾱnsn−1sᾱn . We have w3sn−1 · · · sk+1sk = w2sk+1 · · · sn−1sᾱn

with 	(w2sk+1 · · · sn−1sᾱn) = 	(w2) + 	(sk+1 · · · sn−1sᾱn). Since v ∈ WP , we have v2(αj ) ∈ R+
for all j > k. Thus by Corollary 2.3, we have

N
w3sn−1···sk+1sk,0
u′′,v2

= N
w2sk+1···sn−1sᾱn ,0
usk+1···sn−1sᾱn ,v2 = Nw2,0

u,v2
. (∗∗∗)

In particular, we have N
w2,0
u,v2 = N

w′′sn−1sᾱn ,0
u′′,v′′sᾱn sn−1

�= 0.

Now we assume N
w2,0
u,v2 �= 0, which implies 	(u) + 	(v2) = 	(w2). Note that (w−1w2)

−1 =
v−1v2 and 	(v−1v2) = deg t . Since 	(u) + 	(v) = 	(w) + 2 deg t , we have 	(w2) = 	(w) +
	(w−1w2) and 	(v2) = 	(v) − 	(v−1v2). Thus we have 	(v2s1) = 	(v2) + 1 and consequently
v2(α1) ∈ R+. Note v ∈ WP . It is easy to check that v2(α) ∈ R+ for all α ∈ �P \ {α1}. Hence,
v2 ∈ WP and consequently w2 ∈ WP . Thus (∗∗∗) follows directly from Corollary 2.3. Then (∗∗)
also follows from Corollary 2.3, by noting 	(w3sn−1 · · · sk+1sk) = 	(w3)+	(sn−1 · · · sk+1sk) and
N

w3sn−1···sk+1sk,0
u′′,v2

�= 0. Furthermore, we conclude that (∗) holds, by noting (∗′) and using Corol-

lary 2.3. In particular, we have N
w′′sn−1sᾱn ,0
u′′,v′′sᾱn sn−1

= N
w2,0
u,v2 �= 0.

If none of the above two assumptions holds, we still have N
w′′sn−1sᾱn ,0
u′′,v′′sᾱn sn−1

= N
w2,0
u,v2 , both of

which vanish. �
Remark 3.23. Recall that the odd orthogonal Grassmannian OG(n,2n + 1) is isomorphic to the
even orthogonal Grassmannian OGo(n + 1,2n + 2). It suffices to deal with either of them. The
former case has been covered in the above theorem. The later case has been dealt with earlier by
Kresch and Tamvakis in [20].

As indicated by Lemma 3.22, we can use the classical Pieri rules given by Pragacz and Rata-
jski to interpret the classical intersection numbers N

w2,0
u,v2 explicitly. For N

w1,0
u1,v1 , when k = n we

can make use of the generalized classical Pieri rules given by Bergeron and Sottile (see Theo-
rem D of [1]); when k < n, we can use the classical Chevalley formula for k ∈ {1,2}. However,
a classical Pieri formula analogous with the one given by Bergeron and Sottile [1] is still lacking
in general. It will be desirable to derive such a formula.

Remark 3.24. In our proof of Theorem 3.21, we make use of Proposition 2.1 to reduce N
w,1
u,v to

a classical intersection number for the two step flag variety OF(k − 1, k + 1;N) first. For this
step, there is another approach using the well-known fact that the parameter space of lines on the
Grassmannian OG(k,N) is OF(k − 1, k + 1;N), as pointed out explicitly by Buch, Kresch and
Tamvakis in [5].
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4. Quantum Pieri rules for Grassmannians of classical types: reformulations in
traditional ways

Historically, the Schubert classes for complex Grassmannians are labeled by partitions, and
the (quantum) Pieri rule therein expresses the (quantum) product of a special partition and a
general partition. There are similar notions for isotropic Grassmannians. In this section, we derive
our quantum Pieri rules for Grassmannians of type Cn and Bn, by reformulating Theorem 3.13
and Theorem 3.21 in a traditional way (i.e. in terms of “partitions”). In addition, we use the same
notations as in Section 3.1 and always assume k < n. The remaining cases will be discussed in
Section 4.3.

4.1. Quantum Pieri rules for Grassmannians of type Cn

We first review some parameterizations of the minimal length representatives WP for the
isotropic Grassmannian G/P = IG(k,2n), following [27] (see also [30] and [5]). Each ele-
ment x in the permutation group Sn is represented by its image (x(1), . . . , x(n)), or simply
(x1, . . . , xn). The Weyl group W of type Cn is isomorphic to the hyperoctahedral group Sn �Zn

2
of barred permutations, which is an extension of the permutation group Sn = 〈ṡ1, . . . , ṡn−1〉
by an element ṡn acting on the right by (x1, . . . , xn)ṡn = (x1, . . . , xn−1, x̄n). Here ṡi denote
the transposition (i, i + 1) for each 1 � i � n − 1. Each element w in WP can be identified
with a sequence of the form (y1, . . . , yk−m, z̄m, . . . , z̄1, v1, . . . , vn−k), where y1 < · · · < yk−m,
zm > · · · > z1 and v1 < · · · < vn−k , as follows. Let εi := −ei ∈ {−1,1}e1 ⊕· · ·⊕{−1,1}en = Zn

2
for each 1 � i � n. Write w = u1snu2sn · · ·uj snuj+1 where uj ’s are all in Sn. Denote ai :=
(ui+1ui+2 · · ·uj+1)

−1(n) for each 1 � i � j . Then w ∈ W is identified with the barred permu-
tation (u1u2 · · ·uj+1, εa1εa2 · · · εaj

) ∈ Sn � Zn
2 . The inequalities among entries in the identified

sequence automatically hold as a consequence of the property w ∈ WP . The element w in WP

can also be identified with an element μ = (μt//μb) in the set Pk of shapes. That is, μt and
μb are strict partitions inside (n − k) by n rectangle and k by n rectangle respectively, and they
satisfy the inequality μt

n−k � 	(μb) + 1. Here μt = (μt
1, . . . ,μ

t
n−k) and m := 	(μb) denotes

the length of the partition μb . Precisely, we have μb
j = n + 1 − zj for each 1 � j � m, and

μt
r = n + 1 − vr + �{i | zi < vr, i = 1, . . . ,m} for each 1 � r � n − k. For such a shape μ

in Pk , we have |μ| := |μt | + |μb| − (
n−k+1

2

)
. There is a particular reduced expression of the

corresponding w = wμ ∈ WP with 	(wμ) = |μ|, given by

wμ = (sn−μb
m+1 · sn−μb

m+2 · · · · · sn−1 · sn) · · · ·
· (sn−μb

1+1 · sn−μb
1+2 · · · · · sn−1 · sn) · (sn−μt

n−k+1 · · · · · sn−2 · sn−1)

· (sn−μt
n−k−1+1 · · · · · sn−3 · sn−2) · · · · · (sn−μt

1+1 · · · · · sk−1 · sk). (�)

In particular, for the special class cp(S∗) = σu, u = sk−p+1 · · · sk = uμ corresponds to the special
shape μ = ((n − k + p,n − k − 1, . . . ,1)//∅). Usually, such a special μ is simply denoted as
p ∈ Pk . We note that the quantum Pieri rules with respect to the Chern classes ci(Q) (where
1 � i � 2n − k) have been given by Buch, Kresch and Tamvakis [5].

Remark 4.1. In terms of notations in [30], ci(Q) = σu′
(up to a scale factor of 2) with u′ corre-

sponding to the special shape (1min(i,n−k)|max(i − n + k,0)). In general, the notation of shapes
(a|b) in [30] is slightly different from the notation (μt//μb) in [27]. For the same w ∈ WP ,
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we have b = μb and a = (a1, . . . , an−k) with ar = μt
r + r − n + k − 1 for each 1 � r � n − k. In

addition, w can also be identified with the (n − k)-strict partition a′ + b introduced in [5], where
a′ is the transpose of a.

Let P̃ denote the standard parabolic subgroup that corresponds to the subset � \ {αk−1}.
The minimal length representatives WP̃ are identified with shapes in Pk−1. (Note G/P̃ =
IG(k − 1,2n) in this subsection.) To reformulate Theorem 3.13 and Theorem 3.21 in terms of
shapes, we need the following lemma, which tells us about the explicit identifications.

Lemma 4.2.

(1) sk−p+1 · · · sk−1 corresponds to the special shape p − 1 ∈ Pk−1.

(2) Let v ∈ WP correspond to a = (at //ab) ∈ Pk . Denote m := 	(ab), γ := αn + 2
∑n−1

j=k αj ,
v1 := vsγ sk and v2 := vsk · · · sn−1snsn−1 · · · s1.
(a) 	(vsγ ) = 	(v) − 2n + 2k − 1 if and only if ab

1 � at
1. Furthermore when this holds,

vsγ ∈ WP̃ corresponds to the shape

ã = ((
ab

1 , at
1 − 1, at

2 − 1, . . . , at
n−k − 1

)
//

(
ab

2 , ab
3 , . . . , ab

m

)) ∈ Pk−1.

(b) 	(v1) = 	(v) − 2n + 2k if and only if ab
1 � at

2. Furthermore if this holds and 	(vsγ ) =
	(v1) + 1, then at

1 > ab
1 and v1 ∈ WP̃ corresponds to

ā = ((
at

1, a
b
1 , at

2 − 1, . . . , at
n−k − 1

)
//

(
ab

2 , ab
3 , . . . , ab

m

)) ∈ Pk−1.

(c) If v2 ∈ WP and 	(v2) = 	(v) − 	(v−1v2), then ab
1 = n and v2 corresponds to the shape

â = ((
at

1 − 1, at
2 − 1, . . . , at

n−k − 1
)
//

(
ab

2 , ab
3 , . . . , ab

m

)) ∈Pk.

(3) Let w ∈ WP correspond to c = (ct //cb) ∈Pk . Denote w1 := ws1 · · · sk−1.

(a) w1 ∈ WP̃ if and only if ct
1 < n. Furthermore when this holds, w1 corresponds to the

shape

c̃ = ((
n, ct

1, c
t
2, . . . , c

t
n−k

)
//cb

) ∈ Pk−1.

(b) If w1sk ∈ WP̃ if and only if ct
1 = n, ct

2 � n − 2. Furthermore when this holds, w1sk
corresponds to

c̄ = ((
n,n − 1, ct

2, . . . , c
t
n−k

)
//cb

) ∈Pk−1.

(4) Let w′ ∈ WP correspond to d = (dt //db) ∈ Pk . Denote m′ := 	(db) and w2 := w′s1 · · ·
sn−1snsn−1 · · · sk . If w2 ∈ WP and 	(w2) = 	(w′) + 	(s1 · · · sn−1snsn−1 · · · sk), then db

1 < n

and w2 corresponds to the shape

d̂ = ((
dt

1 + 1, dt
2 + 1, . . . , dt

n−k + 1
)
//

(
n,db

1 , db
2 , . . . , db

m′
)) ∈ Pk.

Proof. Clearly, statement (1) follows.
Note that for every case in Lemma 3.2, the expression on the right-hand side of the equality is

reduced. Furthermore, we note that 	(sγ ) = 2n − 2k + 1 and vsγ = vsksk+1 · · · sn−1snsn−1 · · ·
sk+1sk = v1sk . Hence, 	(vsγ ) = 	(v) − 	(sγ ) holds if and only if both 	(vsksk+1 · · · sn) =
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	(v) − 	(sksk+1 · · · sn) and 	(vsγ ) = 	(vsksk+1 · · · sn) − 	(sn−1 · · · sk+1sk) hold. Using (�) and
Lemma 3.2, we have

vsγ = (vsksk+1 · · · sn) · (sn−1 · · · sk+1sk)

= (
(sn−ab

m+1 · · · sn−1sn) · · · (sn−ab
2+1 · · · sn−1sn)(sn−ab

1+1 · · · sn−2sn−1)

· (sn−at
n−k+1 · · · sn−3sn−2) · · · (sn−at

1+1 · · · sk−2sk−1)
) · (sn−1 · · · sk+1sk)

= (sn−ab
m+1 · · · sn−1sn) · · · (sn−ab

2+1 · · · sn−1sn) · (sn−at
n−k+2 · · · sn−2sn−1)

· (sn−at
n−k−1+2 · · · sn−3sn−2) · · · (sn−at

1+2 · · · sk−1sk) · (sn−ab
1+1 · · · sk−2sk−1),

the right-hand side of the last equality in which gives a reduced expression of vsγ . In other words,
we have n − ab

1 + 1 � min{n − at
n−k + 1, . . . , n − at

2 + 1, n − at
1 + 1, n} = n − at

1 + 1. That is,
ab

1 � at
1. Since a ∈ Pk , we have ã = ((ab

1 , at
1 − 1, at

2 − 1, . . . , at
n−k − 1)//(ab

2 , ab
3 , . . . , ab

m)) ∈
Pk−1, corresponding to vsγ . Thus statement (2a) holds.

The remaining parts are also consequences of the formula (�) and Lemma 3.2. The arguments
for them are also similar. �

For any shapes μ,ν ∈ Pk , we denote by ek(μ, ν) the cardinality of the set of components
that are not extremal, not related and have no (ν − μ)-boxes over them. The relevant notions,
together with the notion of “ν compatible with μ”, can be found on page 152 and page 153
of [27]. We always skip the subscription part of ek(μ, ν), whenever e(μ, ν) is well understood.
In addition, we denote the Schubert cohomology class σwμ as σμ. The following classical Pieri
rule was given by Pragacz and Ratajski.

Proposition 4.3. (See Theorem 2.2 of [27].) For every a ∈ Pk and p � k, we have

σp � σ a =
∑

2e(a,b)σ b,

where the sum is over all shapes b ∈Pk compatible with a such that |b| = |a| + p.

Combining the above proposition and (statements (1), (2a), (3a) of) Lemma 4.2, we can re-
formulate Theorem 3.13 directly as follows.

Theorem 4.4 (Quantum Pieri rule for IG(k,2n)). Let a ∈ Pk and p � k. Using the same nota-
tions as in Lemma 4.2, we have

σp � σ a =
∑

2e(a,b)σ b + t
∑

2e(ã,c̃)σ c,

where the first summation is over all shapes b ∈ Pk with |b| = |a| + p such that b is compatible
with a, and the second summation is over all shapes c ∈Pk with |c| = |a| + p − 2n + k − 1 such
that c̃ ∈ Pk−1 is compatible with ã ∈Pk−1. (Here we denote the second sum as 0 if ã /∈Pk−1.)

4.2. Quantum Pieri rules for Grassmannians of type Bn

The Weyl group W of type Bn is also isomorphic to the hyperoctahedral group Sn � Zn
2

of barred permutations. The minimal length representatives WP for the isotropic Grassmannian
G/P = OG(k,2n+1) can also be identified with shapes in Pk as well as other parameterizations
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described for IG(k,2n) in the same way as in Section 4.1. Therefore we can use all the same
notations as in Section 4.1 but replace IG(k,2n) by OG(k,2n + 1).

In this subsection, we obtain our quantum Pieri rule for OG(k,2n + 1) (which may involve
signs in some cases), by reformulating part of Theorem 3.21. For any shapes μ,ν ∈ Pk , we
denote by e′(μ, ν) the cardinality of the set of components that are not related and have no
(ν − μ)-boxes over them. The following classical Pieri rule for OG(k,2n + 1) was also given by
Pragacz and Ratajski.

Proposition 4.5. (See Theorem 10.1 of [27].) For every a ∈ Pk and p � k, we have

σp � σ a =
∑

2e′(a,b)σ b,

where the sum is over all shapes b ∈Pk compatible with a such that |b| = |a| + p.

Remark 4.6. The rational cohomology of the complete flag varieties of type Bn and Cn are iso-
morphic to each other. As a consequence, there is a relationship between the classical intersection
numbers for these two flag varieties, which was explicitly described in Section 3 of [1] (see also
Section 2.2 of [5]). This provides one way to obtain the information on classical intersection
numbers for OG(k,2n + 1) from that for IG(k,2n).

Recall that the minimal length representatives WP̃ are identified with shapes in Pk−1. (Note
G/P̃ = OG(k − 1,2n + 1) in this subsection.)

Definition 4.7. Let {e1, . . . , en} denote the canonical basis of Zn and �μ ∈ Zn denote the
canonical vector associated to a given μ = (μt//μb) ∈ Pk−1; that is, �μ = ∑n−k+1

i=1 μt
iei +∑m

j=1 μb
j en−k+1+j where m := 	(μb). We define the sets S(μ),Γ1(μ) and Γ2(μ) associated

to μ as follows:

S(μ) := {ν ∈ Pk−1 | �ν = �μ − ej for some 2 � j � n − k + 1 + m}

∪
{

ν ∈ Pk−1

∣∣∣ { �ν = �μ − (f + 1)en−k+1+j + f ei

μt
i = μb

j + j − f − 1

for some

{
f > 0, 1 � j � m

1 � i � n − k + 1

}
;

Γ2(μ) :=
{

ν ∈Pk−1

∣∣∣ ∃1 � j � m such that

{ �ν = �μ − en−k+1+j

μi
t �= μt

j + j − 1, ∀2 � i � n − k + 1

}

∪
{

ν ∈Pk−1

∣∣∣ { �ν = �μ − (f + 1)en−k+1+j + f e1

μt
1 = μb

j + j − f − 1

for some f > 0, 1 � j � m

}
.

In addition, we note Γ2(μ) ⊂ S(μ) and denote Γ1(μ) := S(μ) \ Γ2(μ).

Lemma 4.8. Suppose v′,w′ ∈ WP̃ correspond to the shapes ν,μ ∈ Pk−1 respectively; then

N
w′,0

′ �= 0 if and only if ν ∈ S(μ). Furthermore, N
w′,0

′ = 1 if ν ∈ Γ1(μ), or 2 if ν ∈ Γ2(μ).

sk,v sk,v
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Proof. By the classical Chevalley formula (i.e. the classical part of Proposition 2.5), we have
N

w′,0
sk,v

′ �= 0 only if w′ = v′sγ ′ for some positive root γ ′ satisfying 	(v′sγ ′) = 	(v′) + 1, and

when this holds, we have N
w′,0
sk,v

′ = 〈χk, (γ
′)∨〉. Thus v′ is obtained by deleting a unique sim-

ple reflection from the reduced expression of w′ that is given by (�) (with respect to k − 1).
Furthermore, such an induced expression of v′ is reduced. Using Lemma 3.2 (together with
the definition of μ as a shape in Pk−1), we can derive another reduced expression of v′ in
the form of (�), from the induced reduced expression of v′. In particular, we conclude that
ν ∈ S(μ)∪{((μt

1 − 1,μt
2, . . . ,μ

t
n−k+1)//μ

b)} (details for which are similar to the proof of state-
ment a) of Proposition 3.4 of [23]).

Note that if v′ is obtained by deleting a simple reflection sj from the 	th position, then we
have γ ′ = x−1(α∨

j ) where x is the product of simple reflections from the (	 + 1)th position to
the end of the reduced expression of w′. Assume ν ∈ Γ2(μ). If �ν = �μ − en−k+1+j for some
1 � j � m, then v′ is obtained by deleting the simple reflection sn−μb

j +1.

(1) If n−μb
j + 1 = n, then μb

j = 1. Consequently, we have j = m and (γ ′)∨ = (w′)−1sn(α
∨
n ) =

α∨
n + 2

∑n−1
i=k−1 α∨

i . Thus 〈χk, (γ
′)∨〉 = 2.

(2) If n − μb
j + 1 �= n, then it is less than n and (γ ′)∨ = x−1(α∨

n ) = γ ∨
1 , where for each 1 � i �

n − k + 1 we denote by γ ∨
i the following coroot

(si+k−2 · · · sn−μt
i+1) · · ·

(sn−1 · · · sn−μt
n−k+1+1)

(
α∨

n + 2
n−1∑

h=n−j+1

α∨
h +

n−j∑
h=n−μb

j +2−j

α∨
h

)
.

Denote μt
n−k+2 := 1 and γ ∨

n−k+2 := α∨
n + 2

∑n−1
h=n−j+1 α∨

h + ∑n−j

h=n−μb
j +2−j

α∨
h . Note that

μt is a strict partition. Since ν ∈ Γ2(μ), n−μt
i +1 �= n−μb

j +2−j for all 2 � i � n−k+1;

consequently, there exists a unique 2 � r � n−k+2 such that (n−μt
i +1)−(n−μb

j +2−j)

is positive if i � r , or negative if 2 � i < r . Note that k + i − j − 1 � k + i − m − 1 �
k + i − μt

n−k+1 = n − (μt
n−k+1 + n − k + 1 − i) + 1 � n − μt

i + 1 > n − μb
j + 2 − j ,

for each n − k + 1 � i � r . By induction on i (descendingly), we conclude γ ∨
i = α∨

n +
2
∑n−1

h=k+i−j−1 α∨
h +∑k+i−j−2

h=n−μb
j +2−j

α∨
h for all n−k+2 � i � r . In particular, we obtain γ ∨

r .

Furthermore, for each r � i � 2, we have n − μb
j + 1 + (i − r) > n − μt

r−1 + 1 + (i − r) =
n− (μt

r−1 + r − i)+1 � n−μt
i−1 +1. Thus, by induction on i (descendingly), we conclude

γ ∨
i = α∨

n + 2
∑n−1

h=k+i−j−1 α∨
h + ∑k+i−j−2

h=n−μb
j +2−j+i−r

α∨
h for all r � i � 2. In particular, we

obtain γ ∨
2 , for which we note k + 2 − j − 1 � k. Thus

〈
χk,

(
γ ′)∨〉 = 〈

χk, sk−1sk−2 · · · sn−μt
1+1

(
γ ∨

2

)〉 = 〈
χk, γ

∨
2

〉 = 2.

Otherwise, we have �ν = �μ − (f + 1)en−k+1+j + f e1 for some f > 0 In this case, v′ is obtained
by deleting sn−μb

j +f +1, and we have (γ ′)∨ = (γ ′
1)

∨ with (γ ′
n−k+2)

∨ = α∨
n + 2

∑n−1
h=n−j+1 α∨

h +∑n−j

h=n−μb+2−j+f
α∨

h and (γ ′
i )

∨ = (si+k−2si+k−3 · · · sn−μt
i+1)((γ

′
i+1)

∨) for each n − k + 1 �

j
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i � 1. Note that k + i − j − 1 � n − μt
i + 1 > n − μt

1 + 1 = n − μb
j + 2 − j + f for each

n − k + 1 � i � 2. Using the same arguments as for case (2), we can show 〈χk, (γ
′)∨〉 =

〈χk, sk−1sk−2 · · · sn−μt
1+1(γ

′∨
2 )〉 = 〈χk, γ

′∨
2 〉 = 2.

Hence, if ν ∈ Γ2(μ), then we have N
w′,0
sk,v

′ = 〈χk, (γ
′)∨〉 = 2. Similarly, we can show

〈χk, (γ
′)∨〉 = 1 if ν ∈ Γ1(μ), or 0 if ν = ((μt

1 − 1,μt
2, . . . ,μ

t
n−k+1)//μ

b).
Hence, the statement follows. �

Theorem 4.9 (Quantum Pieri rule for OG(k,2n + 1)). Let a ∈ Pk and p � k. Using the same
notations as in Lemma 4.2, we have

σp � σ a =
∑

2e′(a,b)σ b + t
∑

Nc,1
p,aσ

c + t2
∑

2e′(â,d̂)σ d.

Here the first summation is over all shapes b ∈ Pk with |b| = |a| + p such that b is compatible
with a; the third summation occurs only if â ∈Pk , and when this holds, the summation is over all
shapes d ∈ Pk with |d| = |a| + p − 4n + 2k such that d̂ ∈ Pk is compatible with â; the second
summation is over all shapes c ∈ Pk with |c| = |a| + p − 2n + k. Furthermore, we have

Nc,1
p,a =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2e′(ā,c̃), if at
1 > ab

1 � at
2

2e′(ã,c̄), if ab
1 � at

1, ct
1 = n and ct

2 � n − 2

M, if ab
1 � at

1 and ct
1 < n

0, otherwise.

with

M =
∑
μ

2e′(ã,μ) +
∑
μ

21+e′(ã,μ) −
∑
ν

2e′(ν,c̃) −
∑
ν

21+e′(ν,c̃)

where the first sum is over {μ | μ ∈ Γ1(c̃)}, the second sum is over {μ | μ ∈ Γ2(c̃)}, the third sum
is over {ν | ã ∈ Γ1(ν)}, and the last sum is over {ν | ã ∈ Γ2(ν)}.

Proof. The first summation is provided from the classical Pieri rule. Note deg t = 2n − k for
OG(k,2n + 1). The third summation follows directly from Theorem 3.21, Lemma 3.22, (state-
ments (2c), (4) of) Lemma 4.2 and Proposition 4.5.

Because of the dimension constraint, N c,1
p,a = N

w,1
u,v = N

w1,0
usk,v1 is nonzero only if 	(v1) = 	(v)−

2n + 2k (see Lemma 4.2 for the notations). When this holds, we have ab
1 � at

2. Note at
1 > at

2.

Assume at
1 > ab

1 ; then v1 ∈ WP̃ , so that N
w1,0
usk,v1 �= 0 only if w1 ∈ WP̃ . Thus in this case, we

have N
c,1
p,a = 2e′(ā,c̃) by using statements (2b) and (3a) of Lemma 4.2 together with the classical

Pieri rule for OG(k − 1,2n + 1).
Assume ab

1 � at
1; then v1 = vsγ sk with vsγ ∈ WP̃ , so that sgnk(v1) = 1.

(1) Suppose w1 /∈ WP̃ ; then by Corollary 2.3, we conclude that Nw1,0
usk,v1 �= 0 only if sgnk(w1) = 1,

and N
w1,0
usk,v1 = N

w1sk,0
usk,vsγ when this holds. In particular, we have w1sk ∈ WP̃ . Thus if ct

1 = n

and ct
2 � n − 2, then we have N

c,1
p,a = 2e′(ã,c̄), by using Lemma 4.2 and Proposition 4.5.

(2) Suppose w1 ∈ WP̃ ; that is, ct
1 < n. Using Corollary 2.3 again, we conclude σ sk ∪ σvsγ =

σvsγ sk + ∑
′ P̃ N

v′,0
s ,vs σ v′

. Hence, N
w1,0
us ,v = N

w1,0
us ,vs s = ∑

′ P̃ N
w1,0′N

w′,0
us ,vs −
v ∈W k γ k 1 k γ k w ∈W sk,w k γ
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∑
v′∈WP̃ N

v′,0
sk,vsγ N

w1,0
usk,v

′ . Thus in this case, the statement follows from Lemma 4.8, Lemma 4.2
and Proposition 4.5. �

Remark 4.10. One might want to use the method of Buch, Kresch, and Tamvakis on page 372 of
[5] to compute N

c,1
p,a, but replace OF(m,m+1;2n+1) (resp. OG(m+1,2n+1)) by OF(m−1,

m;2n + 1) (resp. OG(m − 1,2n + 1)). However, such a method does not work here, since the
identity ϕ2∗π∗

2 π2∗ϕ∗
2ϕ∗

1τμ = π∗π∗ϕ∗
1τμ used in their proof does not hold any more in our case.

4.3. Remarks

As in the previous two subsections, we have derived the quantum Pieri rules for Grass-
mannians of type Cn and Bn for k < n. The remaining cases for these two types are about
the Lagrangian Grassmannian IG(n,2n) and the odd orthogonal Grassmannian OG(n,2n + 1).
Theorem 3.13 also works for IG(n,2n), therefore we can also reformulate it in the way of Theo-
rem 4.4, by writing down the explicit identifications as needed and using the classical Pieri rule
of Hiller and Boe [16]. For OG(n,2n + 1), we can also reformulate Theorem 3.21 in a nice way
like Theorem 4.4, by using generalized classical Pieri rules (Theorem D) given by Bergeron and
Sottile [1]. The former case has been done by Kresch and Tamvakis in [19], and the latter case
has also been done by them in an equivalent way in [20]. Hence, we skip the details here.

When � is of type Dn+1, the minimal length representatives WP for the isotropic Grassman-
nian OG(k,2n + 2) can also be identified with “shapes”, which consist in two types. There are
parallel propositions to Lemma 4.2, Lemma 4.8 and Theorem 4.9 with similar arguments. Since
the notations are more involved and the theorem as expected may also involve signs in some
cases, we skip the details.

Assuming the classical Pieri rules with respect to the Chern classes cp(Q) of the tautological
quotient bundle Q over the isotropic Grassmannians, we can also reprove the quantum Pieri rule
of Buch, Kresch, and Tamvakis for type Bn and Dn+1. For instance for G/P = OG(k,2n) where
k < n, the Chern classes of the tautological quotient bundle Q are given by σu (up to a scale
factor of 2) for u of the following form (see Section 6 of [6])

sk, sk+1sk, . . . , snsn−1 · · · sk, sn−1snsn−1 · · · sk, . . . , s1 · · · sn−1snsn−1 · · · sk.
Taking any one of the above u and any v ∈ WP , we can show the following quantum Pieri rule
given by Buch, Kresch and Tamvakis.

Proposition 4.11. (See Theorem 2.4 of [5].)

σu � σv = σu ∪ σv +
∑

w∈WP

	(u)+	(v)=	(w)+2n−k

Nw1,0
usk,v1

σwt +
∑

w∈WP

	(u)+	(v)=	(w)+4n−2k

Nw2,0
u,v2

σwt2,

in which we have v1 = vsksk−1 · · · s1, w1 = wsk+1 · · · sn−1snsn−1 · · · sk+1, v2 = vsk · · ·
sn−1sᾱnsn−1 · · · s1 and w2 = ws1 · · · sn−1sᾱnsn−1 · · · sk .

We sketch an alternative proof of the above proposition as follows:

(1) Using similar arguments for Proposition 3.20, we can show that N
w,d
u,v = 0 if d � 3.

(2) Using Proposition 2.1, we can show N
w,1
u,v = N

w1,0
usk,v1 and N

w,2
u,v = N

w2,0
u,v2 . (The arguments

here become much simpler than the proof of Theorem 3.21.)
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Furthermore for each i ∈ {1,2}, it follows directly from the dimension constraint that N
wi,0
u,vi

�= 0
only if 	(vi) = 	(v) − 	(v−1vi). When this holds, we have:

(3) v1 ∈ WP̃ where G/P̃ = OG(k + 1,2n + 1). Furthermore, let λ denote the (n − k)-strict
partition corresponding to v; then v1 exactly corresponds the (n − k − 1)-strict partition λ̄

defined on page 372 of [5].
(4) Statements (2c) and (4) of Lemma 4.2, which give identifications between WP and shapes

(and therefore other parameterizations), can be applied directly for v2 and w2 respectively.

For IG(k,2n) (i.e. Grassmannians of type Cn), we can also show that there are most degree
0 and 1 Gromov–Witten invariants occurring in the quantum Pieri rule; furthermore, we can
reduce the degree 1 Gromov–Witten invariants to certain classical intersection numbers, for 1 �
p � n − k + 1.

We can also use Proposition 2.1 to compute N
w,d
u,v for certain u,v,w,d , in which none of

u,v ∈ WP is special.

Example 4.12. For X = IG(3,10), we take w = s2, u = s2s1s4s3s2s5s4s3 and v =
s1s5s4s3s2s4s5s4s3. By using Proposition 2.1 directly, we can show N

w,2
u,v = N

w′,0
u,v′ where

v′ = s1s3 and w′ = s3s2s1s5s4s3s2s5s4s3. We can easily compute the classical intersection
number N

w′,0
u,v′ , for instance by using the Chevalley formula with the observation that σ s1s3 =

σ s1 ∪ σ s3 . As a consequence, we have N
w,2
u,v = N

w′,0
u,v′ = 1. (Note that in terms of the notations in

Example 1.5 of [5], we have σu = σ4,2,2, σv = σ5,3,1 and σw = σ1.)
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Appendix A

In this appendix, we reprove the well-known quantum Pieri rules for Grassmannians of type A

(i.e. complex Grassmannians) with the same method used in the present paper.
Recall that Gr(k, n + 1) = SL(n + 1,C)/P with P being the (standard) maximal parabolic

subgroup corresponding �P = � \ {αk}. The Weyl group W is canonically isomorphic to the
permutation group Sn+1, by mapping sj to the transposition (j, j + 1) for each 1 � j � n.
Customarily, Schubert classes in H ∗(Gr(k, n + 1)) are labeled by the set

Pk = {
a = (a1, . . . , ak)

∣∣ n + 1 − k � a1 � a2 � · · ·� ak � 0
}

of partitions inside the k by (n + 1 − k) rectangle. Precisely, for each u ∈ WP , we can rewrite
the Schubert cohomology class σu as σ a(u) with
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a(u) = (
u(k) − k,u(k − 1) − (k − 1), . . . , u(2) − 2, u(1) − 1

)
via the canonical identification between WP and Pk (see e.g. [14]). For the tautological bun-
dles, 0 → S → Cn+1 → Q → 0, the ith Chern class ci(Q) (resp. ci(S∗)) coincides with the
Schubert cohomology class σ a(u) = σu where u = sk+i−1sk+i−2 · · · sk+1sk and consequently
a(u) = (i,0, . . . ,0) =: i for each 1 � i � n + 1 − k (resp. u = sk−i+1sk−i+2 · · · sk−1sk and con-
sequently a(u) = (1i ) for each 1 � i � k) (see e.g. [3]). The following quantum Pieri rule with
respect to cp(Q) was first proved by Bertram [2].

Proposition A.1 (Quantum Pieri rule). For any p, a ∈ Pk , we have

σp � σ a =
∑

σ b + t
∑

σ c,

where the first is summation over all b ∈ Pk satisfying |b| = |a| + p and n + 1 − k � b1 �
a1 � b2 � a2 � · · · � bk � ak , and the second summation is over all c ∈ P satisfying |c| =
|a| + p − (n + 1) and a1 − 1 � c1 � a2 − 1 � c2 � · · ·� ak − 1 � ck .

We will reprove the above proposition, rather than a quantum Pieri rule with respect to cp(S∗),
for the following two reasons.

(1) The tautological quotient bundle over Gr(k, n + 1) = Gr(k,Cn+1) is isomorphic to the dual
of the tautological subbundle over the dual Grassmannian Gr(n+ 1 − k, (Cn+1)∗) ∼= Gr(n+
1 − k,n+ 1). Hence, it is sufficient to know quantum Pieri rules with respect to either cp(Q)

or cp(S∗) for all complex Grassmannians.
(2) From our alternative proof, we can see that one point of our method relies on the combina-

torial property of u, rather than the geometric property (of being a Chern class of Q or S∗)
for σu. In particular, our method could have more general applications (see e.g. Theorem 1.2
of [24]).

We will use the classical Pieri rule (as given by the first summation in the above formula) and
the next two lemmas, which are easily deduced from Proposition 2.1. In addition, we use all the
same notations as in Section 3.1 but set u = sk+p−1sk+p−2 · · · sk (where 1 � p � n + 1 − k)
and v ∈ WP with a = a(v). We need to compute the Gromov–Witten invariants N

w,d
u,v for the

quantum product σu � σv .

Lemma A.2. If d � 2, then we have N
w,d
u,v = 0 for any w ∈ WP .

Proof. Recall that N
w,d
u,v = N

w,λP
u,v = N

wωP ωP ′ ,λB
u,v where λP = dα∨

k + Q∨
P . Furthermore, we de-

note d = m1k + r1 = m2(n − k + 1) + r2 where 1 � r1 � k and 1 � r2 � n − k + 1. Then we
conclude λB = m1

∑k−1
j=1 jα∨

j +∑r1−1
j=1 jα∨

k−r1+j +dα∨
k +m2

∑n−k
j=1 jα∨

n+1−j +∑r2−1
j=1 jα∨

k+r2−j

(by noting 〈αi, λB〉 = −1 if i ∈ {k − r1, k + r2}, or 0 otherwise). When k = 1 (resp. n),
then 〈αk,λB〉 = d + m2 + 1 (resp. d + m1 + 1) is larger than 2 and thus we are done by
Proposition 2.1 (1). When 2 � k � n − 1, we have 〈αk,λB〉 = m1 + m2 + 2. We still have
N

w,d
u,v = 0 unless m1 = m2 = 0 and sgnk(wωP ωP ′) = 0. When both conditions hold, we have

N
wωP ωP ′ ,λB
u,v = N

wωP ωP ′ sk,λB−α∨
k

usk,v by Proposition 2.1 (2). Furthermore, we have sgnk−1(usk) =
sgnk−1(v) = 0 < 1 = 〈αk−1, λB − α∨

k 〉. Hence, we have N
wωP ωP ′ sk,λB−α∨

k
usk,v = 0 by using Proposi-

tion 2.1 (1) again. �
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Note that 	(u) = p and the degree of the quantum variable is deg t = n + 1.

Lemma A.3. For any w ∈ WP with 	(w) = 	(v) + p − (n + 1), we have

Nw,1
u,v = N

wsnsn−1···sk+1,0
usk,vsksk−1···s2s1 .

Proof. Note that for λP = α∨
k + Q∨

P , we have λB = α∨
k and consequently �P ′ = �P \

{αk−1, αk+1}. Then conclude ωP ωP ′ = snsn−1 · · · sk+1s1s2 · · · sk−1 by checking the assumptions

in Lemma 3.12 directly. Thus we have N
w,1
u,v = N

wωP ωP ′ ,α∨
k

u,v = N
wωP ωP ′ ,0
usk,vsk , by using Proposi-

tion 2.1 (2).
Note that sgnk−1(usk) = 0 and sgnk−1(wωP ωP ′) = 1. By Corollary 2.3, we have N

wωP ωP ′ ,0
usk,vsk =

N
wωP ωP ′ sk−1,0
usk,vsksk−1 if 	(vsksk−1) = 	(vsk) − 1, or 0 otherwise. By induction and using Corollary 2.3

repeatedly, we conclude N
wωP ωP ′ ,0
usk,vsk = N

wωP ωP ′ sk−1···s1,0
usk,vsksk−1···s1 if 	(vsksk−1 · · · s1) = 	(vsk) − (k − 1),

or 0 otherwise. Furthermore, we note 	(usk) + 	(vsk) = 	(wωP ωP ′) = 	(wωP ωP ′sk−1 · · · s1) +
(k − 1). Thus if 	(vsksk−1 · · · s1) �= 	(vsk)− (k − 1), then we have N

wωP ωP ′ sk−1···s1,0
usk,vsksk−1···s1 = 0, due to

the dimension constraint. Hence, the statement follows. �
It remains to apply the classical Pieri rule and reformulate the product σu � σv in terms of

σp � σ a (labeled by partitions).

Proof of Proposition A.1. Denote c = c(w) ∈ Pk . It follows directly from Proposition 2.1 (1)
and the dimension constraint that N

wsnsn−1···sk+1,0
usk,vsksk−1···s2s1 = 0 unless ã = ã(vsksk−1 · · · s2s1) and c̃ =

c̃(wsnsn−1 · · · sk+1) are both partitions in Pk+1 for Gr(k + 1, n + 1). As a consequence, we have
that ãi = vsksk−1 · · · s2s1(k+2− i)−(k+2− i) = v(k+1− i)−(k+1− i)−1 = ai −1 for each
1 � i � k, and that c̃j = wsnsn−1 · · · sk+1(k+2−j)−(k+2−j) = w(k+2−j)−(k+2−j) =
cj−1 for each 2 � j � k + 1. Note that |c̃| = 	(wsnsn−1 · · · sk+1) = 	(w) + n − k = |c| + n − k.
We have c̃1 = n − k. For |ã| = 	(vsksk−1 · · · s1) = 	(v) − k = |a| − k, we conclude ãk+1 = 0. In
addition, we note that usk corresponds to the special partition p−1 in Pk+1 for Gr(k +1, n+1).
Hence, the non-classical part of the quantum product σp � σ a is exactly the second half as in the
statement, by using the classical Pieri rule for σp−1 ∪ σ ã in H ∗(Gr(k + 1, n + 1)). �
Remark A.4. This is the same approach as taken in the elementary proof of the quantum Pieri
rule by Buch [3], where he uses a different method to obtain Lemma A.2 and Lemma A.3.
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