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Abstract Given an elliptic curve �, flat Ek-bundles over � are in one-to-one
correspondence with smooth del Pezzo surfaces of degree 9 − k containing � as
an anti-canonical curve. This correspondence was generalized to Lie groups of any
type. In this article, we show that there is a similar correspondence between del Pezzo
surfaces of degree 0 with an Ad -singularity containing � as an anti-canonical curve
and Kac–Moody ˜Ek-bundles over � with k = 8 − d. In the degenerate case where
surfaces are rational elliptic surfaces, the corresponding ˜Ek-bundles over � can be
reduced to Ek-bundles.
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806 N.C. Leung et al.

0 Introduction

Let Xn be a blow-up of P
2 at n possibly infinitely near points [9]. The Picard lattice of

Xn is a rank n + 1 lattice of index (1, n) with respect to the intersection form 〈, 〉 on
Xn . Let K be the canonical class. When n ≤ 8, the restriction of 〈, 〉 to K ⊥ is negative
definite, and the sub-lattice K ⊥ is a root lattice of the exceptional Lie algebra En .

When these blown-up points are in general position, −K is ample, and Xn is a
del Pezzo surface. These are important surfaces in algebraic geometry, as well as in
physics. For instance, del Pezzo surfaces arise in M-theory [10,11] and the myste-
rious duality [13]. For such an Xn , there is a natural Lie algebra bundle of En-type
over it [17]. Furthermore, there are two fundamental representation bundles over Xn

constructed using lines and rulings on Xn .
Motivated from the duality between F-theory and string theory, given any fixed

elliptic curve �, there is a one-to-one correspondence between flat En-bundles on �
and del Pezzo surfaces of degree 9−n containing� as an anti-canonical curve [5,6,8]
(this was most likely known by Looijenga in some form in the 1970’s). Friedman–
Morgan [7] realized this identification by constructing a principal bundle over del
Pezzo surfaces X , possibly with rational double points, for a conformal form of En ,
whose restriction to the smooth anti-canonical curve� is the corresponding principal
bundle. This correspondence has been generalized from En to compact Lie groups
which are simply-laced in [17] and non-simply-laced in [18].

The motivation of this paper is in two aspects. One is the natural question: what
happens when we blow up P

2 at more than 8 points? Is there still some ‘duality’?
Another one is the so-called magic triangle in [10,11] (for the explanation of the
magic triangle, see Remark 34). We want to see how the triangle behaves in the affine
case.

In this article, we show that the correspondence between moduli spaces can be
generalized to Kac–Moody Lie groups of untwisted affine En-type. For this, we first
consider the surface X9. It turns out that on X9, there are very abundant and very
interesting structures.

In this case, we obtain a Kac–Moody root lattice of untwisted affine E8-type (which
is denoted by ˜E8), and all (−2)-classes form a real affine root system. Moreover, the
anti-canonical class −K is the null root, which generates the imaginary root system.
Over X9, we will define a natural affine Lie algebra bundle of ˜E8-type and a natural
representation bundle constructed using the set of exceptional classes.

When there is an Ad -chain of (−2)-curves (say, C1, . . . ,Cd ) in X9 (denote such a
surface by ˜Xk,d with k + d = 8, see Sect. 2.2), contracting this Ad -chain, we obtain a
singular surface Xk,d with an Ad -singularity. On a general Xk, |−K | ∼= P

d , and there-
fore there is a unique anti-canonical curve� passing through a general d-jet point p[d]
in Xk . Indeed such a pair (Xk, p[d]) corresponds to a general ˜Xk,d (Proposition 25).

On such a surface Xk,d (equivalently on ˜Xk,d ), the sub-lattice K ⊥ (respectively,
{K ,C1, . . . ,Cd}⊥) of the Picard lattice is an untwisted affine root lattice of type ˜Ek .
Here we make the following convention

˜E5 = ˜D5, ˜E4 = ˜A4, and ˜E3 = A2 × ˜A1.

123



Kac–Moody ˜Ek -bundles 807

Table 1 The split magic triangle of En -type

d = 0 d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8

k = 0 +

k = 1 R or A1 +

k = 2 R × A1 R

k = 3 A1 × A2 R × A1 or A2 A1

k = 4 A4 R × A2 R × A1 R +

k = 5 D5 A1 × A3 R × A2
1 R

2 or A2
1 R

k = 6 E6 A5 A2
2 R × A2

1 R × A1 A1

k = 7 E7 D6 A5 A1 × A3 R × A2 R × A1 or A2 R +

k = 8 E8 E7 E6 D5 A4 A1 × A2 R × A1 R or A1 +

We exclude ˜E2, ˜E1, as E1 = R and E2 = A1 × R have non-simple factors (see
Table 1). The set {α ∈ Pic(Xk,d) | α2 = −2, α · K = 0} forms a real affine root
system of ˜Ek-type. This is related to Julia’s magic triangle [10,11]. Using this, a nat-
ural Lie algebra bundle of ˜Ek-type over Xk,d (or ˜Xk,d ) can be constructed. (Thus, we
see that this triangle could be realized at the level of bundles, see Remark 34. Also
we have interesting applications.) Moreover, in all cases, the anti-canonical divisor
(which is always effective) is the null root.

In the following, we state our main results. Let X9 be the surface obtained by blow-
ing up P

2 at the 9 points x1, . . . , x9. Let {α1, . . . , αd} be an Ad -chain of (−2)-classes.
Denote �re(g) (resp. �im(g)) the real root system (resp. the imaginary root system)
of a Kac–Moody Lie algebra g.

Theorem 1 (Theorem 20 and Proposition 23)

(i) The sub-lattice K ⊥ is a root lattice of affine E8-type with the real root system
�re = {α ∈ K ⊥|α2 = −2}, the imaginary root system �im = {nK |n �= 0, n ∈
Z} and the null root −K .

(ii) The sub-lattice {α1, . . . , αd , K }⊥ of K ⊥ is a root lattice of affine Ek-type (k =
8 − d) with �re = {α ∈ {K , α1, . . . , αd}⊥|α2 = −2},�im = {nK |n �= 0, n ∈
Z} and the null root −K .

(iii) Over Xk,d , there is a canonically defined affine Lie algebra bundle ˜Ek , and the set
of exceptional classes defines a fundamental representation bundle of ˜Ek when
k = 8.

Suppose ˜Xk,d is general (Sect. 2.2). In this article, a general or strictly semi-general
˜Xk,d is also called a del Pezzo surface of degree 0 with an Ad -singularity. For instance,
a general ˜X8,0 is obtained by blowing up P

2 at 9 points in general position. The Weyl
group W (˜Ek) acts on the set of exceptional configurations simply transitively. Thus,
the restriction of such affine Lie algebra bundles to the fixed anti-canonical curve
(which is a smooth elliptic curve) determines a correspondence between two different

types of moduli spaces M˜Ek
� and S�,k , where M˜Ek

� is the moduli space (Sect. 3)
of holomorphic Lie(˜Ek)-bundles over � (see Definition 26) and S�,k is the moduli
space (Sect. 4) of general ˜Xk,d with ˜Ek-configuration containing an anti-canonical
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808 N.C. Leung et al.

curve isomorphic to �. By Proposition 28,

M˜Ek
�

∼= Hom(�(˜Ek),�)/({±1} × W (˜Ek)),

where � denotes the root lattice. By restriction of the Lie(˜Ek)-bundle over Xk,d to

its anti-canonical curve �, we have a map � : S�,k → M˜Ek
� .

Theorem 2 (Theorem 31)

(i) The restriction map � induces an embedding of S�,k into

Hom(�(˜Ek),�)/W (˜Ek).

(ii) Moreover, this embedding can be extended to an identification from the natural
compactification S�,k of S�,k onto Hom(�(˜Ek),�)/W (˜Ek).

(iii) There is a covering map of degree two: S�,k � M˜Ek
� .

These spaces are in fact analytic spaces, and fine moduli spaces, following a general
argument (for example, see Looijenga’s paper [21]). We will deal with such problems
in future. In this article, we just concentrate on the correspondence and the lattice
analysis, and use freely the phrase ‘moduli space’.

It is natural to study how the correspondence� extends to S�,k\S�,k . For this, let
Ek be the corresponding finite type Lie group of ˜Ek , and

MEk
�

∼= Hom(�(Ek),�)/W (Ek)

be the moduli space of flat Ek-bundles over �. Let δ be the null root −K (see
Theorem 1). By Proposition 36,

MEk
�

∼= Hom0(�(˜Ek),�)/W (˜Ek),

where Hom0(�(˜Ek),�) is the subgroup of Hom(�(˜Ek),�) consisting of those f ’s
such that f (δ) = 0.

Denote S ′
�,k the moduli space of strictly semi-general surfaces ˜Xk,d with an

˜Ek-configuration and containing an anti-canonical curve isomorphic to � (Sect. 5).
The natural compactification of S ′

�,k in the following theorem is one of the largest

irreducible components in S�,k\S�,k . By restriction of the Lie(˜Ek)-bundle over Xk,d

to its anti-canonical curve �, we have a map � : S ′
�,k → M˜Ek

� . Then we have

Theorem 3 (Theorem 38) The restriction map � induces an open dense embedding
from S ′

�,k into MEk
� . Moreover the embedding can be extended to an isomorphism

from the natural compactification S ′
�,k onto MEk

� .

This article is arranged as follows. In Sect. 1, we study the lattice structure on a
blow-up S of P

2 at 9 points. In Sect. 2, we construct the affine Lie algebra bundle
and its representation bundle (associated to the set of exceptional classes) over S.
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Kac–Moody ˜Ek -bundles 809

In Sect. 3, we study some elementary properties of Lie(˜Ek)-bundles over elliptic

curves. In Sect. 4, we study the relation between S�,k and M˜Ek
� by restriction of such

bundles to a fixed elliptic curve� ∈ | − KS|. In Sect. 5, we study the correspondence
in the special degenerate case where the surfaces are strictly semi-general. A short
review of untwisted affine Lie algebras is presented as an appendix.

1 Rational surfaces

1.1 Root lattices on smooth rational surfaces

Let Xn be the blow-up of CP
2 (usually abbreviated to P

2) at n points x1, . . . , xn .
The Picard group Pic(Xn) ∼= H2(Xn,Z) of Xn is a lattice of rank n + 1 with gener-
ators h, l1, . . . , ln , where h is the class of lines in P

2, and li is the exceptional class
determined by the blow-up at xi . So h2 = 1 = −l2

i , and h · li = 0 = li · l j , i �= j .
The canonical class is Kn = −3h + l1 + · · · + ln , which is also denoted as K when
there is no confusion. Let K ⊥

n be the sublattice of Pic(Xn) perpendicular to Kn .
Denote

Pn = {α ∈ H2(Xn,Z) | α · Kn = 0},
Rn = {α ∈ H2(Xn,Z) | α · Kn = 0, α2 = −2} ⊂ Pn,

In = {e ∈ H2(Xn,Z) | e2 = −1 = e · Kn},
Cn = {ζn = (e1, . . . , en) | ei ∈ In, ei · e j = 0, i �= j}, and

W (Rn) = the group generated by the reflections sα, where α ∈ Rn .

The reflection sα is defined by sα(x) := x + (x · α)α, for any x ∈ H2(Xn,Z).
An element ζn = (e1, . . . , en) ∈ Cn is called an exceptional system (of length n);
when Xn is considered as a successive blow-up of P

2 at n points such that e1, . . . , en

are the associated exceptional classes, ζn = (e1, . . . , en) ∈ Cn is called an exceptional
configuration; when each ei is a smooth irreducible curve, ζn is called a configuration
of exceptional curves.

It is well-known that Rn is a root system of type En for n ≤ 8. In the following we
study the case where n = 9.

Lemma 4 [4] Let α = a0h − ∑n
i=1 ai li ∈ Pic(Xn) (for any n).

(i) If α is effective, then a0 = α · h ≥ 0. Conversely, if a0 ≥ −2 and α2 ≥ α · K ,
then α is effective.

(ii) For any divisor α ∈ K ⊥, α2 is even.

Proof (i). By definition of the blow-ups, if α is effective, then a0 must be non-neg-
ative.
By Riemann–Roch,

χ(O(α)) := h0(O(α))− h1(O(α))+ h2(O(α)) = 1 + 1/2(α2 − αK ).
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810 N.C. Leung et al.

By Serre’s duality, h2(O(α)) = h0(O(K −α)). But K −α = (−3−a0)h+∑

(1+
ai )li .a0 ≥ −2 implies −3 − a0 ≤ −1. So if a0 ≥ −2, then h0(O(K − α)) = 0,
and if additionally α2 ≥ α · K , then χ(O(α)) ≥ 1. Therefore h0(O(α)) ≥ 1.
Hence α is effective.

(ii) For any divisorα ∈ K ⊥, letα = a0h−∑

ai li . ThenαK = 0 implies 3a0 = ∑

ai .
So α2 = a2

0 − ∑

a2
i = 2

∑

i< j ai a j − 8a2
0 is even.

�
Lemma 5 Let x = ah − (a1l1 + · · · + a9l9) ∈ I9. Then

(i) a ≥ 0, and a = 0 if and only if x = li , for some i;
(ii) ai ≥ −1, and ai = −1 if and only if x = li ;

(iii) x is effective.

Proof First, we prove that a ≥ 0. Since x ∈ I9, we have x2 = x · K9 = −1. Thus we
obtain two equations:

3a −
(
∑

ai

)

= 1, (1)

a2 −
(
∑

a2
i

)

= −1. (2)

From (1) and (2), we have

(3a − 1)2 =
(
∑

ai

)2 ≤ 9
(
∑

a2
i

)

= 9(a2 + 1).

Thus, a ≥ − 8
6 . Then a ≥ −1, since a is an integer. Next we show that a �= −1.

Otherwise, if a = −1, then by (2), there exist two integers i, j with 1 ≤ i < j ≤ 9,
such that ai = ±1, a j = ±1 and ak = 0 for all k �= i, j . Considering (1), we obtain
a contradiction. Hence we have a ≥ 0. The proof of the other part of (i) is easy.

Assume a9 ≤ −1. Then a2
1 + · · · + a2

8 = a2 + 1 − a2
9 ≤ a2, a1 + · · · + a8 =

3a − 1 − a9 ≥ 3a. So 9a2 ≤ (a1 + · · · + a8)
2 ≤ 8(a2

1 + · · · + a2
8) ≤ 8a2, since a ≥ 0

by (i). Then a = 0 = ai (i = 1, . . . , 8) and a9 = −1. Therefore by Lemma 4, x is
effective. Thus (ii) and (iii) are proved. �
Lemma 6 α ∈ R9 implies α + mK9 ∈ R9 for m ∈ Z.

Proof Let α ∈ R9. Then α2 = −2, α · K9 = 0. So (α+ mK9)
2 = α2 + 2α · (mK9)+

(mK9)
2 = −2 and (α + mK9) · K9 = 0, since α · K9 = K 2

9 = 0. �
Proposition 7 Consider P8 as the sublattice of P9 perpendicular to l9. Then

R9 = {α + mK9|α ∈ R8,m ∈ Z}.

Proof Let β = ah − (a1l1 + · · · + a9l9) ∈ R9. Then β − a9 K9 ∈ R9 by Lemma 6.
But β − a9 K9 contains no l9 terms. Thus α = β − a9 K9 ∈ R8, since α2 = −2
and α · K8 = α · K9 = 0. Then β = α + a9 K9, where α ∈ R8. The inclusion
{α + mK9|α ∈ R8,m ∈ Z} ⊆ R9 is obvious. �
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Kac–Moody ˜Ek -bundles 811

Proposition 8 (i) The restriction 〈, 〉|P9 of the intersection form to P9 = K ⊥
9 is

non-positive definite and degenerate. The radical of 〈, 〉|P9 is {nK9|n ∈ Z}.
(ii) All the sets I9, R9 and W (R9) are infinite sets.

(iii) The isotropic subgroup of l9 in W (R9) is W (R8).
(iv) W (R9) acts transitively on I9; W (R9) acts transitively on R9.
(v) W (R9) acts simply transitively on C9.

Proof (i) Let α = a0h − ∑

ai li ∈ K ⊥
9 . Then α · K9 = −3a0 + ∑

ai = 0, and thus

3a0 = ∑

ai . Thus α2 = a2
0 − ∑

a2
i = 1/9

(∑

ai
)2 − ∑

a2
i ≤ (n/9 − 1)

∑

a2
i . So

if n ≤ 9, α2 ≤ 0. If n < 9 and α �= 0, then α2 < 0. When n = 9, K 2
9 = 0 implies

K9 ∈ K ⊥
9 . So K9 is an element in the radical. Since P8 = l⊥9 ∈ P9 and the form 〈, 〉|P8

is negative definite, the radical of 〈, 〉|P9 is of rank 1. For (ii)–(v), see [4]. �
Given three distinct points x1, x2, x3 on P

2, we have the well-known quadratic
Cremona transformation centered at x1, x2, x3. Under this (birational) transforma-
tion, we obtain three new points y1, y2, y3 on another P

2. For accurate construction,
see the classical text book [9]. A Cremona transformation is defined as the product of
a finite number of quadratic Cremona transformations.

The following definition is taken from [23] (see also [9], page 409).

Definition 9 Let x1, . . . , xn be n distinct points on P
2. These n points are said to be

non-special with respect to Cremona transformations if for any Cremona transforma-
tion T with centers within xi ’s, the points y1, . . . , yn corresponding to xi ’s under T
are distinct points such that no three points among y1, . . . , yn are collinear.

Definition 10 We say that the nine points x1, . . . , x9 are in general position, if they
satisfy the following three conditions:

(i) they are distinct points on P
2;

(ii) they are non-special with respect to Cremona transformations;
(iii) there is a unique cubic curve passing through all of them.

If they satisfy only (i) and (ii), but not (iii), we say that they are in strictly semi-
general position.

Note that the above definition is slightly different from that in [9]. And the con-
ditions (i) and (ii) imply that any 8 of these 9 points are in general position (see
Proposition 9 of [23]). That is, no lines pass through three of them, no conics pass
through six of them, and no cubic curves pass through eight of them with one of the
eight points being a double point [4]. In fact, eight points are in general position if and
only if they satisfy the conditions (i) and (ii).

Proposition 11 Let X = X9 be the blow-up of P
2 at 9 points x1, . . . , x9 in general

position. Then there is a unique irreducible anti-canonical curve (denoted by �).
Assume � is smooth. Then on X we have

(i) For any effective divisor D, one has D� ≥ 0.
(ii) There are no irreducible curves C with C2 ≤ −2. If C is an irreducible curve

with C2 = −1, then C K = −1 and C is exceptional.
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812 N.C. Leung et al.

(iii) For any irreducible curve C with C� = 0, one has C2 = 0, and therefore
C = �.

(iv) For any α ∈ R9, α is not effective.

Proof Since the 9 points x1, . . . , x9 ∈ P
2 are in general position, by the condition

(iii) in Definition 10, there is an irreducible cubic curve �′ ⊂ P
2 passing through all

of these points. By the condition (ii) in Definition 10, �′ is of multiplicity 1 at each
of these points. Thus, the strict transform of �′ under the blow-up map X → P

2 is
linearly equivalent to the anti-canonical divisor −K9. Hence −K9 is represented by
an irreducible curve �, and the uniqueness of �′ determines the uniqueness of �.

(i) Let D = ∑

ai Di with Di irreducible and ai ≥ 0, for any i . Then Di� ≥ 0
unless Di = �. If Di = �, then Di� = K 2 = 0. In all cases, we have Di� ≥ 0.

(ii) This is just Proposition 12 in [23].
(iii) Since 0 ≤ g(C) = 1+1/2(C2 +C K ), we have 0 ≥ C2 ≥ −2. So by Lemma 4,

C2 = −2 or C2 = 0. By (ii), C2 = 0. Then C is an element in the radical.
So C = −mK . We show that C = −K = � if C is irreducible. From the short
exact sequence

0 → O(−mK ) → O(−(m + 1)K ) → O�(−(m + 1)K ) → 0

we have an exact sequence

0 → H0(X,O(−mK )) → H0(X,O(−(m + 1)K ))

→ H0(�,O�(−(m + 1)K )).

When m ≥ 0, H0(�,O�(−(m + 1)K )) = 0, since x1, . . . , x9 are in general
position. So

h0(X,O(−mK )) = h0(X,O(−(m + 1)K )) = h0(X,O) = 1.

Thus, the linear system | − mK | contains a unique element, for any m ≥ 1.
Hence if C ∈ | − mK | is irreducible, then m=1.

(iv) Suppose α ∈ R9 is effective. Let α = ∑

Di with Di irreducible. Then
0 = αK = ∑

Di K . By (i), for each i, Di K ≤ 0. So for each i, Di� = 0.
Then by (iii), Di = �, contradicting to the hypothesis that α ∈ R9.

�
Corollary 12 Let X = X9 be the blow-up of P

2 at 9 points in general position with a
smooth anti-canonical curve. Then any exceptional divisor D on X is represented by
an irreducible exceptional curve.

Proof According to Lemma 5, D ∈ I9 is effective. Assume D = ∑

Di ∈ I9 with
Di irreducible. Then

∑

Di K = −1 and Di K ≤ 0 by Proposition 11, (i). We can
assume D1 K = −1 and Di K = 0 for i > 1. Then Di = −K , by Proposition 11,
(iii). Thus D1 = D + mK ,m ≥ 0 and D2

1 = (D + mK )2 = −1 − 2m ≤ −1. Since
by Proposition 11, (ii), there is no irreducible curve C with C2 ≤ −2, D2

1 = −1 and
m = 0. Hence D = D1 is an irreducible exceptional curve. �
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Kac–Moody ˜Ek -bundles 813

Remark 13 Corollary 12 is also a corollary of general results in [23]. Here we give a
simple proof in our case. In the rational elliptic fibration case, the same result holds
when the blown up points are in strictly semi-general position [12].

Remark 14 [4,22] For n ≤ 8, the following three conditions are equivalent to each
other:

(i) x1, . . . , xn are in general position;
(ii) on Xn each exceptional divisor is effective and irreducible;

(iii) the anti-canonical class is ample.

Theorem 15 P9 is a lattice with generators �9 = {α1 = h − l1 − l2 − l3, αk =
lk−1 − lk, k = 1, · · · , 9}.R8 is a root system of type E8, which has R9 (respectively,
the Dynkin diagram of�9) as its affine real root system (resp., affine Dynkin diagram).
The highest root of R8 is −α0 = −K9 − (l8 − l9). So the imaginary roots are the set
{mδ|m �= 0,m ∈ Z}, where δ = −α0 + (l8 − l9) = −K9 is the null root.

Proof For the proof that R8 is a root system of type E8 with given simple roots,
see [22]. H2(X9,Z) is a lattice with Z-basis h, l1, . . . , l9. Obviously, {e0 = l1, e1 =
α1, . . . , e9 = α9} forms another Z-basis. Take any x ∈ P9 ⊂ H2(Xn,Z). Let x =
∑

ai · ei . Then x · K9 = 0 implies a0 = 0. So, as a lattice, P9 has generators �9.
R9 is the affine root system of R8 according to the analysis of root systems of

Kac–Moody algebras in [14], or see the appendix. �
Corollary 16 The set R9 ∪ {m(−K9) | m �= 0,m ∈ Z} forms a root system of
(untwisted) affine E8-type (that is, ˜E8-type) with �re = R9 = {α ∈ K ⊥

9 |α2 = −2}
and �im = {m(−K9) | m �= 0,m ∈ Z}.

1.2 Root lattices on rational surfaces with singularities of type A

Assume γ1, . . . , γd ∈ Rn form an Ad -chain, 0 ≤ d ≤ 8, which means that the
intersection matrix of the γi , i = 1, . . . , d, is a Cartan matrix of Ad -type.

Lemma 17 Suppose γ1, . . . , γd ∈ R8 form an Ad-chain. Let k = 8 − d. Then the
sub-lattice {γ1, . . . , γd}⊥ forms a root lattice of Ek-type.

Proof This is just the last row of the so-called split magic triangle [10,11]. Let e1 =
−K − γ1, e2 = −K − γ1 − γ2, . . . , ed = −K − γ1 − · · · − γd . Then it is easy to
check that e1, . . . , ed are all exceptional classes, and they are disjoint with each other.
Therefore we can assume that {e1, . . . , ed} = {l8, . . . , lk+1}. Moreover

{γ1, . . . , γd}⊥ = {e1, . . . , ed}⊥ ∩ R8.

But the right-hand side is just a root system of Ek . �
Proposition 18 [10] Consider the surface obtained by blowing up P

2 at 8 points. Let
(e1, . . . , ed) be an exceptional system of length d (that is, ei e j = −δi j , ei K = −1,
for any i, j), and (β1, . . . , βl) be an Al-chain of (−2)-classes, such that ei · β j = 0
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for any i, j . Then there exist an Ad-chain (e′
1, . . . , e′

d) of (−2)-classes and an excep-
tional system (β ′

1, . . . , β
′
l ) with e′

i · β ′
j = 0, such that

{e1, . . . , ed , β1, . . . , βl}⊥ = {e′
1, . . . , e′

d , β
′
1, . . . , β

′
l }⊥.

Lemma 19 Let α ∈ R9, then there is a unique n ∈ Z, such that α − nK9 ∈ {l9}⊥.
In this case α0 := α − nK9 ∈ R8.

Proof Let α = a0h − ∑9
i=1 ai li . Then α · l9 = a9 and K9 · l9 = −1, so n = a9

is unique such that α0 ∈ {l9}⊥. Moreover α2
0 = (α − nK9)

2 = −2, and α0 · K8 =
(α − nK9)(K9 − l9) = 0. So α0 ∈ R8. �
Theorem 20 Let 0 ≤ d ≤ 5. Assume thatγ1, . . . , γd form an Ad-chain in R9. Then the
sub-lattice �(˜Ek) := {γ1, . . . , γd , K }⊥ ⊂ P9 is a root lattice of ˜Ek-type (k = 8 − d)
with the real root system�re(˜Ek) = {α ∈ �(˜Ek)|α2 = −2} and the null root δ = −K .

Proof Let α, β ∈ R9 and α = α0 + uK9, β = β0 + vK9, where α0, β0 ∈ R8, by
the above lemma. Since β · α = β0 · α0, we can assume γi ∈ R8 for i = 1, . . . , d.
By the same reason, for any γ = γ0 + wK9 ∈ R9 with γ0 ∈ R8, γ ⊥ γi if and only
if γ0 ⊥ γi . Therefore {γ1, . . . , γd}⊥ = {ζ + mK9 | ζ ∈ R8, ζ ⊥ γi , i = 1, . . . , d}.
By Lemma 17, the set {ζ ∈ R8 | ζ ⊥ γi , i = 1, . . . , d} is a root system of Ek-type.
Therefore {γ1, . . . , γd}⊥ = {ζ + mK9 | ζ ∈ R(Ek)}, where R(Ek) means the root
system of Ek-type. Hence {γ1, . . . , γd}⊥ is a real root system of ˜Ek-type.

It remains to check that there exists a root basis�(˜Ek)which is a basis of the lattice
�(˜Ek). We fix a root basis of ˜E8 as�(˜E8) = {α1 = h−l1 −l2 −l3, αi = li−1 −li (i =
2, . . . , 9)} (Notice that α9 +αh = −K where αh is the highest root of E8). For d ≤ 5,
since W (E8) acts on the set of Ad -chains transitively by [1], we can assume our
Ad -chain is {α9−d , . . . , α8}. Furthermore, we can assume our Ad -chain is {α10−d , . . . ,

α9}, by an action of W (˜E8). Then �(˜E8−d) = {α1, . . . , α8−d ,−K − αh(E8−d)} is a
basis of the lattice �(˜E8−d) where αh(E8−d) is the highest root of E8−d .

−K is the null root since −K is the generator for the radical of the intersection
form and −K − αh(E8−d) is the root associated to the extended node where αh is the
highest root of ˜E8−d . �
Remark 21 There is always an effective anti-canonical divisor � ∈ | − K9|. When
the blown up points x1, . . . , x9 are in general or strictly semi-general position, � can
be taken as a smooth elliptic curve. Therefore the imaginary root system is generated
by the class of an elliptic curve �.

2 The affine Lie algebra bundles over rational surfaces

2.1 Lie( ˜E8)-bundles and a natural representation bundle

Since we have a root system of ˜E8-type in the Picard lattice on X9, we can construct
a Lie(˜E8)-bundle over X9. Let E8 be the pull-back of the E8-bundle [17] over X8
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(the blow-up at x1, . . . , x8) via the blow-up map π9 : X9 → X8.

˜E8 = (O⊕8 ⊕ O)⊕
⊕

α∈�re

O(α)
⊕

β∈�im

O(β)⊕8

∼= E8 ⊗
(

⊕

n∈Z

O(nK9)

)

⊕ O. (3)

We define a fiberwise Lie algebra structure on ˜E8 as follows. Let U be a trivialization
open set (such a trivialization must exist), such that ˜E8|U = E8|U ⊗ (U × (⊕nCnK ))⊕
(U × C). Take a local basis eU

i , i = 1, . . . , rankE8 of E8|U , eU
nK of CnK , ec of C,

compatible with the tensor product, for example, eU
nK ⊗ eU

mK = eU
(m+n)K . Then define

[

eU
i eU

nK + λec, eU
j eU

mK + μec

]

=
[

eU
i , eU

j

]

0
eU
(n+m)K + nδn+m,0(e

U
i , eU

j )ec. (4)

Here [, ]0 is the Lie bracket on E8, and (, ) is the Killing form on E8.

Remark 22 Exceptional Ek-bundles Ek over del Pezzo surfaces of degree 9 − k were
defined in [17,18].

Proposition 23 (i) The formula (2) defines a fiberwise affine Lie algebra structure
which is compatible with any trivialization.

(ii) The isomorphism in the formula (1) is independent of the pull-back.

Proof (i) Let V be another trivialization of ˜E8, and f U V
i , f U V

nK be respectively the
transition functions, that is eV

i = f U V
i eU

i , eV
nK = f U V

nK eU
nK . Then on U

⋂

V
we should have

[eV
i eV

nK + λec, eV
j eV

mK + μec] = [eV
i , eV

j ]0eV
nK eV

mK + nδn+m,0(e
V
i , eV

j )ec.

The left hand side is (note that f U V
mK = ( f U V

K )m)
[

eV
i eV

nK + λec, eV
j eV

mK + μec

]

=
[

f U V
i eU

i f U V
nK eU

nK + λec, f U V
j eU

j f U V
mK eU

nK + μec

]

= f U V
i f U V

j

(

f U V
K

)m+n [

eU
i , eU

j

]

0
eU
(m + n)K +nδn+m,0

(

f U V
i f U V

nK eU
i , f U V

j f U V
mK eU

j

)

ec

= f U V
i f U V

j

(

f U V
K

)m+n [

eU
i , eU

j

]

0
eU
(n+m) + nδn+m,0 f U V

i f U V
j f U V

(n+m)K

(

eU
i , eU

j

)

ec.

One can see that this is exactly equal to the right hand side, since f U V
(n+m)K = 1

when n + m = 0.
(ii) Let W (˜E8) = W (R9) be the affine Weyl group. Then the group {±1}×W (˜E8)

acts on root bases in R9 simply transitively (Lemma 27). Fiberwise our defi-
nition is exactly the same as the definition of untwisted affine Lie algebras.
By Proposition 8, (v), two different pull-backs differ by an action of
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Fig. 1 The dual graph of the
canonical resolution of an
Ad -singularity

a unique element of the affine Weyl group. The action of the Weyl
group induces automorphisms of the Lie algebra. That is, let gα :=
exp(ad eα) exp(ad e−α) exp(ad eα). Then gα(eβ) = esα(β) and gα([X,Y ]) =
[gα(X), gα(Y )]. So the definition is independent of the pull-back. �

Proposition 24 The exceptional classes define a natural irreducible integrable
representation bundle over X9:

W =
⊕

ξ∈I9

O(ξ).

Proof The action is defined as: eU
α (e

U
ξ ) = eU

α+ξ if α+ ξ ∈ I9; eU
α (e

U
ξ ) = 0 otherwise.

And define hα(eU
ξ ) = (α · ξ)eU

ξ . Here hα, eU
α , eU

ξ are respectively local bases of

(O⊕8 ⊕ O),O(α) and O(ξ) on a trivialization open subset U . One can easily check
that this action is independent of choices of trivialization open subsets. And l9 is the
highest weight vector with the highest weight λ := −〈·, l9〉 associated to the root basis
{−α1, . . . ,−α8}, where α1 = h − l1 − l2 − l3, αi = li−1 − li , i = 2, . . . , 8. �

2.2 Lie( ˜Ek)-bundles over rational surfaces with an Ad -singularity

Rational double points in surfaces are classified according to their dual graphs defined
as follows. Given a rational double point singularity, its canonical resolution consists
of a tree of (−2)-curves (i.e. rational curves of self-intersection number −2). The
dual graph is defined as the dual graph of this tree with respect to the intersection
form. Such graphs are always the Dynkin diagrams of ADE-type. For example, the
canonical resolution of an Ad -singularity is a chain of (−2)-curves of length d, we
simply call it an Ad -chain of (−2)-curves. Its dual graph is illustrated in Fig. 1.

On the other hand, contracting an Ad -chain of (−2)-curves always gives an
Ad -singularity. Denote ˜Xk,d (k = 8 − d) the blow-up of P

2 at 9 (possibly infinitely
near) points with an Ad -chain of (−2)-curves. Then we can contract this Ad -chain to an
Ad -singularity. Let Xk,d (k = 8−d) be the resulting surface. Then ˜Xk,d is the canonical
resolution of Xk,d . On Xk,d , the set�re(˜Ek) := {α ∈ Pic(Xk,d) |α·K = 0, α2 = −2}
is a real root system of ˜Ek-type, and �im(˜Ek) := {mK |m ∈ Z\{0}} is the imaginary
root system with the null root −K , according to Theorem 20.

Thus similar to the d = 0 case, we can construct an affine Lie algebra bundle of
˜Ek-type over Xk,d (or ˜Xk,d , equivalently) as follows:

˜Ek = (O⊕k ⊕ O)⊕
⊕

α∈�re(˜Ek )

O(α)
⊕

β∈�im (˜Ek )

O(β)⊕k .

123



Kac–Moody ˜Ek -bundles 817

For a generic ˜Xk,d , if it has an exceptional configuration (l1, . . . , l9) such that
(lk+1 − lk+2), . . . , (l8 − l9) form the unique Ad -chain of (−2)-curves, and the lin-
ear system | − K

˜Xk,d
| consists of a unique element, we call such an ˜Xk,d general.

In this article, a general ˜Xk,d is also called a del Pezzo surface of degree 0 with an
Ad -singularity. Such a configuration is called an ˜Ek-configuration. When d = 0, a
general ˜X8,0 with smooth anti-canonical curve is just a blow-up of P

2 at 9 points in
general position, and each exceptional configuration is an ˜E8-configuration.

In the following, we show that such surfaces are related to d-jets.
Let X be a surface. Let Jd → Xk be the fiber bundle of d-jets of germs of param-

eterized curves in X , that is, the set of equivalence classes of holomorphic maps
f : (C, 0) → (X, p), with the equivalence relation f ∼ g given by all derivatives
f ( j)(0) = g( j)(0) coinciding for 0 ≤ j ≤ d, when computed in some local coordinate
systems of C near 0. The projection map Jd → X is simply f �→ f (0).

Let p[d] be a d-jet at p ∈ X , namely an element in the fiber of Jd over p. Then
p[d] is defined by the equivalence class of a holomorphic map f . Thus we have d + 1
derivatives f ( j)(0), j = 0, . . . , d. We define the blow-up of X at a d-jet p[d] as the
surface ˜X := X (d+1) obtained by the following procedure. We first blow up X at the
point p to obtain X (1) with the exceptional curve E (1). Note that f (1)(0) corresponds
to a unique point p(1) ∈ E (1). Then we blow up X (1) at p(1) to obtain X (2) with
the exceptional curve E (2). And f (2)(0) corresponds to a unique point p(2) ∈ E (2).
Thus inductively we obtain a unique surface X (d+1). Note that the construction of the
blow-up at a jet is independent of the choice of the function f .

Therefore, blowing up X at p[d], we obtain an ˜X with an exceptional configuration
(e1, . . . , ed+1) determined by p[d], such that e1 −e2, . . . , ed −ed+1 form an Ad -chain
of (−2)-classes.

For a d-jet p[d] on a del Pezzo surface Xk , if there is a unique anti-canonical curve
passing through p[d] and in the blow-up of Xk at p[d] every irreducible curve which is
not contained in the above Ad -chain has a self-intersection number at least −1, then
we call such a p[d] general.

We say that two pairs (Xk, p[d]) and (X ′
k, p′[d]) are equivalent to each other if there

is an isomorphism φ : ˜Xk → ˜X ′
k , where ˜Xk (respectively ˜X ′

k) is the blow-up of Xk

(resp. X ′
k) at p[d] (resp. p′[d]), such that the exceptional configuration determined by

the d-jet on ˜Xk corresponds to that on ˜X ′
k under φ.

Proposition 25 The isomorphism classes of general ˜Xk,d with ˜Ek-configuration are
in one-to-one correspondence with the equivalence classes of the pair (Xk, p[d]) with
p[d] general.

Proof First we consider the case d = 0. In this case, a general ˜X8,0 is obtained by
blowing up P

2 at 9 points x1, . . . , x9 in general position. Blowing up any eight points
xi1 , . . . , xi8 we obtain a del Pezzo surface X8. Then take p[0] = p = xi9 . Then we
obtain a pair (X8, p[0]) with p[0] general. On the other hand, for a pair (X8, p[0]),
blowing up X8 at p, we obtain a general ˜X8,0.

For any d, the surface ˜Xk,d is obtained by blowing up P
2 at 9 points x1, . . . , x9

where x1, . . . , xk+1 are in general position and xk+2, . . . , x9 are infinitely near to xk+1.
Then (xk+1, . . . , x9) determines a d-jet p[d] on Xk where p = xk+1, and Xk is the
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blow-up of P
2 at x1, . . . , xk . ˜Xk,d is general implies that p[d] is general. Conversely,

given a pair (Xk, p[d]), where Xk is a del Pezzo surface of degree d + 1 obtained by
blowing up P

2 at x1, . . . , xk . The condition that p[d] is general implies that the blow-
up of Xk at p[d] is obtained by blowing up Xk at the same point p ∈ C(d + 1) times,
where C is the unique anti-canonical curve passing through p[d]. Thus we obtain a
unique Ad -chain of (−2)-curves which are lk+1 − lk+2, . . . , l8 − l9 for an exceptional
configuration (l1, . . . , l9). Then we obtain a general ˜Xk,d . �

3 Lie( ˜Ek)-bundles over elliptic curves

Let� be a smooth anti-canonical curve in ˜Xk,d . The restriction ˜Ek |� is an infinite direct
sum of holomorphic line bundles of degree 0 on �, which we call a Lie(˜Ek)-bundle
over �. More precisely,

Definition 26 For k ≤ 8, a vector bundle V of infinite rank over � is called a holo-
morphic Lie(˜Ek)-bundle, if it satisfies the following two conditions:

(1) It is completely split into a direct sum of line bundles of degree zero.
(2) It has a fiberwise affine Ek Lie algebra structure, and this structure is compatible

with any trivialization.

Two holomorphic Lie(˜Ek)-bundles V and V ′ are said to be isomorphic to each
other, if they are isomorphic as vector bundles, and this isomorphism preserves the
fiberwise Lie algebra structure.

By definition, once we choose a root basis, we can write a holomorphic Lie(˜Ek)-
bundle V uniquely up to isomorphisms as

V := O⊕k ⊕ O ⊕
⊕

α∈�re

Lα ⊕
⊕

β∈�im

L⊕k
β ,

where the fiberwise Lie bracket is defined as usual.

Let M˜Ek
� be the moduli space of holomorphic Lie(˜Ek)-bundles over � up to iso-

morphism defined as above. Let �(˜Ek) be the root lattice of ˜Ek .

Lemma 27 [14] The group {±1}× W (˜Ek) acts on the set of all root bases of the root
lattice �(˜Ek) simply transitively.

Proposition 28 Fix 0 ∈ �. Then M˜Ek
�

∼= Hom(�(˜Ek),�)/({±1} × W (˜Ek)).

Proof A holomorphic Lie(˜Ek)-bundle over � is uniquely determined by its direct
summands Lαi and Lδ , where αi , i = 1, . . . , k are the simple roots and δ is the null
root. We have a map �(˜Ek) → Jac(�) ∼= � defined by α �→ Lα . This is obviously
an abelian group homomorphism. And two different root bases differ by an action of
a unique element of {±1} × W (˜Ek), according to Lemma 27. Thus the result follows.

�
Let T (˜Ek) be a maximal torus of ˜Ek .
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Lemma 29

Hom(π1(�), T (˜Ek)) ∼= Hom(�(˜Ek),�).

Proof Given a root lattice �, we denote the coroot lattice of � by �c. Then
Hom(π1(�), T (˜Ek)) = Hom(π1(�),U (1) ⊗ �c(˜Ek)) ∼= Hom(π1(�),U (1)) ⊗
�c(˜Ek) and Hom(π1(�),U (1)) ∼= Jac(�) ∼= �. �
Remark 30 The moduli space of flat G-bundles over � is isomorphic to

Hom(π1(�),G)/ad(G).

In the finite dimensional case, Hom(π1(�),G)/ad(G) ∼= Hom(π1(�), T )/W , since
a commuting pair of elements of G can be diagonalized simultaneously [3]. But it is
not true when G is of infinite dimension. By Lemma 29

Hom(π1(�), T (˜Ek))/({±1} × W (˜Ek)) ∼= Hom(�(˜Ek),�)/({±1} × W (˜Ek)).

Thus the Lie(˜Ek)-bundles considered by us are in fact those flat bundles such that the
image of π1(�) can be diagonalized.

4 The correspondence between moduli spaces

In this section, we establish the correspondence between del Pezzo surfaces of
degree 0 with Ad -singularity containing an anti-canonical curve isomorphic to� and
Kac–Moody Lie(˜Ek)-bundles over �.

Let S be a smooth rational surface. An ˜Ek-configuration on S is an exceptional
system (e1, . . . , e9) such that we can consider S as a blow-up of P

2 at 9 points in turn
with corresponding exceptional classes e1, . . . , e9, and ek+1 −ek+2, . . . , e8 −e9 form
an Ad -chain (d + k = 8 and 0 ≤ d ≤ 5) of irreducible (−2)-curves.

Let � be a fixed smooth anti-canonical curve in S, and S�,k be the moduli space
of equivalence classes of general rational surfaces ˜Xk,d with ˜Ek-configuration con-
taining � as an anti-canonical curve. Here two surfaces ˜Xk,d and ˜X ′

k,d are said to be

equivalent to each other, if there is an isomorphism F : ˜Xk,d
∼−→ ˜X ′

k,d , such that

ι′ = F ◦ ι, where ι (resp. ι′) is the embedding of � into ˜Xk,d (resp. ˜X ′
k,d ). Fix the

identity 0 ∈ � to be an inflection point with respect to the embedding � ↪→ P
2

induced by a blow-up.
By restriction of the affine Lie algebra bundle ˜Ek over �, we obtain a holomorphic

Lie(˜Ek)-bundle over� ⊂ S which is an infinite direct sum of line bundles of degree 0
over�. The restriction gives us a map� : S�,k → Hom(�(˜Ek),�)/W (˜Ek). Fixing
a cyclic level subgroup of order 3(d + 1) of �, then we have

Theorem 31 (i) There is a natural embedding

� : S�,k ↪→ Hom(�(˜Ek),�)/W (˜Ek),

given by the restriction of ˜Ek from ˜Xk,d to �.
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(ii) � extends to an identification � : S�,k ∼= Hom(�(˜Ek),�)/W (˜Ek), where
S�,k is a natural compactification, by adjoining equivalence classes of all
rational surfaces S with ˜Ek-configuration such that � ∈ | − KS|.

(iii) Each curve in a surface corresponding to a point on S�,k\S�,k has a
self-intersection number at least −2.

Proof (i) Let Xk,d ∈ S�,k . Then Xk,d is a blow-up of P
2 at 9 points x1, . . . , x9 with cor-

responding exceptional classes l1, . . . , l9 such that β1 = lk+1 − lk+2, . . . , βd = ł8 − l9
are irreducible (−2)-curves which form an Ad -chain. Then {K , β1, . . . , βd}⊥ ⊂ P9
is a root lattice of affine Ek-type with simple roots α1 = l1 − l2, . . . , αk = lk−1 − lk
and the null root δ = −K .

Thus we can define a map fS : �(˜Ek) → � as follows. First we have a map
f ′
S : �(˜Ek) → Jac(�). Let f ′

S(x) = O(x)|� . Since � ∈ | − KS|, deg(O(x)|�) =
x ·� = 0. Then O(x)|� ∈ Jac(�). As we have fixed 0 ∈ �, we have an isomorphism
ψ : Jac(�) ∼= �. Let fS = ψ ◦ f ′

S : �(˜Ek) → �. This map is a homomorphism
of abelian groups: fS(x + y) = ψ(O(x + y)|�) = ψ(O(x)|�) + ψ(O(y)|�) =
fS(x) + fS(y). By Lemma 33, given any two ˜Ek-configurations ζ, ζ ′, there is a
unique element ρ of W (˜Ek), such that ζ = ρ(ζ ′). Hence we have a well-defined
map � : S�,k → Hom(�(˜Ek),�)/W (˜Ek) defined by S �→ fS . Next we prove the
map � is injective. � is defined by a system of linear equations on �:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

−x1 − x2 − x3 = fS(α1),

x1 − x2 = fS(α2),

. . .

xk−1 − xk = fS(αk),

xk+1 = · · · = x9,

−x1 − · · · − x9 = fS(δ).

This system of linear equations has a unique solution, since its determinant is
of absolute value 3(d + 1), and the identity of � is taken as a inflection point on
� ∈ | − KS|. Thus � is injective, by Lemma 33.
(ii) Given f ∈ Hom(�(˜Ek),�), we embed � into P

2 as an anti-canonical curve
such that 0 is an inflection point. The above system of linear equations has a solution
x1, . . . , xk, xk+1 = · · · = x9 ∈ � ∈ | − KP2 |. Note that xk+1 = · · · = x9 ∈ �

determines a d-jet p[d] with p = xk+1 and d = 8 − k. Blowing up x1, . . . , xk, p[d],
we obtain a rational surface S with ˜Ek-configuration such that f = fS .
(iii) Let S ∈ S�,k . Then � ∈ | − KS|. For any irreducible curve C in S, by the genus
formula, g(C) = 1 + 1/2(C2 + C K ). Then C2 ≥ −2 + C� ≥ −2 since C� ≥ 0.

�
Since M˜Ek

�
∼= Hom(�(˜Ek),�)/({±1} × W (˜Ek)) by Proposition 28, we have the

following immediate corollary.

Corollary 32 There is a covering map of degree 2 from S�,k onto M˜Ek
� .

It remains to prove the following lemma which is needed in the above proof.
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Lemma 33 Fix a general ˜Xk,d . The Weyl group W (˜Ek) acts on the set of
˜Ek-configurations simply transitively.

Proof Denote �(˜Ek) = {α0, . . . , αk} the extended root basis of ˜Ek with α0 the
extended root.

For k = 8, see Corollary 12 and Proposition 8.
For k = 7, let ζ = (l1, . . . , l9) be an ˜E7-configuration. Then �(˜E7) = {h − l1 −

l8 − l9, li − li+1(i = 1, . . . , 6), h − l1 − l2 − l3}. We first verify that for any generator
sα ∈ W (˜E7), sα(ζ ) is still an ˜E7-configuration. W (˜E7) is generated by sα where α can
be taken as li −li+1, i = 1, . . . , 6 and h−l1−l2−l3, h−l1−l8−l9. It suffices to verify it
for α0 = h − l1 − l8 − l9. Then sα(ζ ) = (h − l8 − l9, l2, . . . , l7, h − l1 − l9, h − l1 − l8).
It is easy to see that this is an ˜E7-configuration. Thus the simplicity follows since
W (˜E7) is a subgroup of W (˜E8). For any two ˜E7-configurations ζ = (l1, . . . , l9) and
ζ ′ = (l ′1, . . . , l ′9), we have a unique ρ ∈ W (˜E8) such that ζ ′ = ρ(ζ ). We must have
ρ ∈ W (˜E7) since W (˜E7) is the subgroup of W (˜E8) fixing the (−2)-curve l8 − l9
(ρ maps a root basis of ˜E7 to another root basis of ˜E7 and fixes δ).

For other k, we only need to verify that for the root α0 associated to the extended
node, sα0(ζ ) is still an ˜Ek-configuration if so is ζ , since the remaining arguments are
the same.

For k = 6, let ζ = (l1, . . . , l9) be an ˜E6-configuration. Then �(˜E6) = {h −
l7 − l8 − l9, li − li+1(i = 1, . . . , 5), h − l1 − l2 − l3}. Let α0 = h − l7 − l8 − l9.
Then sα0(ζ ) = (l1, . . . , l6, h − l8 − l9, h − l7 − l9, h − l7 − l8). This is again an
˜E6-configuration since h − l7 − l8 is an irreducible (−1)-curve.

For k = 5, let ζ = (l1, . . . , l9) be an ˜E5-configuration. Then �(˜E5) = {2h − l1 −
l2 − l6 − l7 − l8 − l9, li − li+1(i = 1, . . . , 4), h − l1 − l2 − l3}. Let α0 = 2h − l1 − l2 −
l6 − l7 − l8 − l9. Then sα0(ζ ) = (e1, . . . , e9)with e1 = 2h − l2 − l6 − l7 − l8 − l9, e2 =
2h−l1−l6−l7−l8−l9, e3 = l3, e4 = l4, e5 = l5, e6 = 2h−l1−l2−l7−l8−l9, e7 =
2h−l1 −l2 −l6 −l8 −l9, e8 = 2h−l1 −l2 −l6 −l7 −l9, e9 = 2h−l1 −l2 −l6 −l7 −l8.
This is again an ˜E5 = ˜D5-configuration.

For k = 4, let ζ = (l1, . . . , l9) be an ˜E4-configuration. Then �(˜E4) = {2h − l1 −
l5 − l6 − l7 − l8 − l9, li − li+1(i = 1, . . . , 3), h − l1 − l2 − l3}. Let α0 = 2h − l1 − l5 −
l6 − l7 − l8 − l9. Then sα0(ζ ) = (e1, . . . , e9)with e1 = 2h − l5 − l6 − l7 − l8 − l9, e2 =
l2, e3 = l3, e4 = l4, e5 = 2h−l1−l6−l7−l8−l9, e6 = 2h−l1−l5−l7−l8−l9, e7 =
2h−l1 −l5 −l6 −l8 −l9, e8 = 2h−l1 −l5 −l6 −l7 −l9, e9 = 2h−l1 −l5 −l6 −l7 −l8.
This is again an ˜E4 = ˜A4-configuration.

For k = 3, let ζ = (l1, . . . , l9) be an ˜E3-configuration. Then �(˜E3) = {2h − l4 −
l5−l6−l7−l8−l9, l1−l2, l2−l3, h−l1−l2−l3}. Letα0 = 2h−l4−l5−l6−l7−l8−l9.

Then sα0(ζ ) = (e1, . . . , e9) with e1 = l1, e2 = l2, e3 = l3, e j = 2h + l j −
9
∑

i=4
li , j =

4, . . . , 9. This is still an ˜E3 = ˜A1 × A2-configuration. �
Remark 34 Let k, d be arbitrary integers between 0 and 8 without requiring that k +
d = 8. Let S = Sk,d be a rational surface with degree K 2

S = 9 − k and an Ad -chain of
(−2)-curves. Then we have a gk,d -Lie algebra bundle over S, where gk,d is defined as
follows: for k = 9, gk,d = Lie(˜E8−d), which is of affine type; for k ≤ 8, gk,d is the Lie
algebra of the group appearing at the corresponding position in Julia’s magic triangle
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(see [10,11]), which is of finite type. If we fix a smooth elliptic curve� ∈ |− KS|, by
restriction, we obtain a holomorphic gk,d bundle over�. The following table (Table 1)
is the magic triangle, which has a symmetry across the diagonal. Starting from E8,
the rows are obtained by contracting Ad -chains of (−2)-curves, and the columns are
obtained by blowing down (−1)-curves successively.

5 The correspondence in the strictly semi-general case and comparing
with the moduli space of flat Ek-bundles

In this section, we study how the correspondence� extends to S�,k\S�,k . We find in
the strictly semi-general case (denote by S ′

�,k the corresponding moduli space), the
correspondence � extends to a one-to-one correspondence from S ′

�,k to flat Ek-bun-
dles over �. In fact, this case is related to rational elliptic surfaces.

The surface corresponding to a point on S ′
�,k admits an elliptic fibration struc-

ture. This happens precisely when X9 is the blow-up of P
2 at 9 points which are the

intersection points of two cubic curves in P
2. In this case, below we will show that

˜Ek |� ∼= Ek |� ⊗ C[t, t−1] ⊕ O� . This suggests that the restriction should produce an
identification between the moduli space of such surfaces with an anti-canonical curve
�, and the moduli space of flat Ek-bundles over �.

Let 0 ≤ d ≤ 5 and k = 8 − d. Recall we denote ˜Xk,d the blow-up of P
2 at 9

(possibly infinitely near) points x1, . . . , x9 with an Ad -chain of (−2)-curves. We say
that ˜Xk,d is strictly semi-general if it has an exceptional configuration (l1, . . . , l9)
such that (lk+1 − lk+2), . . . , (l8 − l9) form the unique Ad -chain of (−2)-curves, and
the linear system | − K

˜Xk,d
| defines a rational elliptic fibration. Such a surface is

also called a del Pezzo surface. Such an exceptional configuration is still called an
˜Ek-configuration as before. Note that when d = 0, a strictly semi-general ˜X8,0 is just
a rational elliptic fibration which is a blow-up of P

2 at 9 points in strictly semi-general
position (Definition 10). Fix any smooth fiber and denote it by �. Fix an inflection
point on � as the origin.

Lemma 35 For a strictly semi-general ˜Xk,d , the Weyl group W (˜Ek) acts on the set
of ˜Ek-configurations simply transitively.

Proof The proof is the same as that of Lemma 33. �
Let Hom0(�(˜Ek),�) be the subgroup of Hom(�(˜Ek),�) consisting of the homo-

morphisms which map the null root δ to 0 ∈ �. Recall that ˜Ek is the Lie(˜Ek)-algebra
bundle over ˜Xk,d .

Proposition 36 (i) The restriction of O(KS) on� ∈ |−KS| is trivial and
∑

xi =
0 on �.

(ii) Let ⊕ZO� be the infinite direct sum of the same bundle O� where the sum-
mands are indexed by Z. Then

˜Ek |� ∼= Ek |� ⊗ (⊕ZO�)⊕ O�
∼= Ek |� ⊗ C[t, t−1] ⊕ O�,

where C[t, t−1] is the Laurent polynomial ring.
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(iii) Hom0(�(˜Ek),�)/W (˜Ek) ∼= Hom(�(Ek),�)/W (Ek).

Proof (i) This is trivial since we choose an inflection point as the origin of �.
(ii) It follows from (i).

(iii) Firstly, we show that the subgroup Hom0(�(˜Ek),�) is stable under the action
of W (˜Ek). Take any generator sα+nδ ∈ W (˜Ek). For any f ∈ Hom0(�(˜Ek),�),

sα+nδ( f )(δ) = f (sα+nδ(δ)) = f (δ) = 0. Secondly, note that �(˜Ek) =
Z〈α1, . . . , αk, δ〉 and �(Ek) = Z〈α1, . . . , αk〉. For f ∈ Hom0(�(˜Ek),�), f
is uniquely determined by the f (αi ) and f (δ) = 0. Thus we obtain a φ( f ) ∈
Hom(�(Ek),�) defined by φ( f )(αi ) := f (αi ). Obviously, φ defines an
isomorphism

φ : Hom0(�(˜Ek),�) ∼= Hom(�(Ek),�).

Lastly, we show that for any two f, g ∈ Hom0(�(˜Ek),�), there is ρ ∈ W (˜Ek)

such that f = ρ(g) if and only if there exists a ρ′ ∈ W (Ek) such that
φ( f ) = ρ′(φ(g)). Suppose f = ρ(g). Without loss of generality, we
assume ρ = sα+nδ where α is a root of Ek . Then we take ρ′ = sα .
Thus ρ′(φ(g))(x) = φ(g)(ρ′(x)) = φ(g)(x + (α, x)α) = φ(g)(x) +
(x, α)φ(g)(α) = g(x)+(x, α)g(α). On the other hand, f = ρ(g) implies that
φ( f )(x) = φ(ρ(g))(x) = ρ(g)(x) = g(ρ(x)) = g(x+(x, α+nδ)(α+nδ)) =
g(x)+ (x, α)g(α) since g(δ) = 0 and (x, δ) = 0 (because δ = −K9). Hence
there exists a ρ′ ∈ W (Ek) such that φ( f ) = ρ′(φ(g)). The other direction is
obvious, since W (Ek) is a subgroup of W (˜Ek). So φ induces a bijection

φ : Hom0(�(˜Ek),�)/W (˜Ek) ∼= Hom(�(Ek),�)/W (Ek).

�
Lemma 37 Hom0(�(˜Ek),�)/({±1} × W (˜Ek)) = Hom0(�(˜Ek),�)/W (˜Ek).

Proof �(˜Ek) = Z〈α1, . . . , αk, δ〉. Since {α1, . . . , αk} is a root basis of finite
type Ek , there is a ρ ∈ W (Ek) such that ρ(αi ) = −αi , i = 1, . . . , k.
Then ρ acts on Hom0(�(˜Ek),�) as −1. We verify this statement. For any
f ∈ Hom0(�(˜Ek),�), ρ( f )(αi ) = f (ρ−1(αi )) = f (−αi ) = − f (αi ). And
ρ( f )(δ) = f (ρ−1(δ)) = f (δ) = 0 = − f (δ). Thus ρ( f ) = − f . �

LetS ′
�,k be the moduli space of strictly semi-general surfaces ˜Xk,d with ˜Ek-configu-

ration containing an anti-canonical curve isomorphic to�. Note that S ′
�,k is contained

in S�,k\S�,k . As usual, let MEk
� be the moduli space of flat Ek bundles over �. Fix

a cyclic level (9 − k) subgroup of �. It is known that [17]

MEk
�

∼= Hom(�(Ek),�)/W (Ek).

The restriction of the Lie(˜Ek)-bundle over ˜Xk,d to � ⊂ ˜Xk,d induces a map � :
S ′
�,k → MEk

� .
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Theorem 38 (i) The restriction map � induces an open dense embedding from
S ′
�,k into MEk

� .

(ii) Moreover the embedding can be extended to a bijection � from the natural
compactification S ′

�,k onto MEk
� .

(iii) Each irreducible curve in a surface corresponding to a point on S ′
�,k has a

self-intersection number at least −2.

Proof (i) Given an element in S ′
�,k . We have a rational elliptic fibration S which

is a blow-up of P
2 at 9 points x1, . . . , x9 ∈ � where � ∈ | − KP2 | and

x1 + · · · + x9 = 0, such that l1, . . . , l9 are the corresponding exceptional clas-
ses. The restriction determines a map f ′

S : �(˜Ek) → Jac(�), which is defined
as L �→ O(L)|� . Since deg(O(L)|�) = L · � = L · (−K ) = 0, we have
O(L)|� ∈ Jac(�) when L ∈ K ⊥. It is a homomorphism of abelian groups.
And f ′

S(δ) = O�(−K ) = O� . As we have fixed 0 ∈ �, we have an isomor-
phism J : Jac(�) ∼= �. Define fS = J ◦ f ′

S . Then fS ∈ Hom0(�(˜Ek),�)

since fS(δ) = J (O�) = 0. Two exceptional configurations on S differ by an
element of the Weyl group W (˜Ek), by Lemma 35. So we obtain a well-defined
map � : S ′

�,k → Hom0(�(˜Ek),�)/W (˜Ek) defined by S �→ fS .
The map � is injective. It is defined by a system of linear equations:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

−x1 − x2 − x3 = fS(α1),

x1 − x2 = fS(α2),

· · ·
xk−1 − xk = fS(αk),

xk+1 = · · · = x9,

x1 + · · · + x9 = fS(δ) = 0.

The determinant is ±3(1 + d). Since the determinant is non-zero, the system
of linear equations has a unique solution. This implies (i).

(ii) Given f ∈ Hom0(�(˜Ek),�), we embed� into P
2 as an anti-canonical curve

such that 0 is an inflection point. The above system of linear equations has a
solution x1, . . . , xk, xk+1 = · · · = x9 ∈ � ∈ |− KP2 |. Note that xk+1 = · · · =
x9 ∈ � determines a d-jet p[d] with p = xk+1 and d = 8 − k. Blowing up
x1, . . . , xk, p[d], we obtain a rational surface S with elliptic fibration structure
and with ˜Ek-configuration such that f = fS .

(iii) The last statement follows from the genus formula. For any S ∈ S ′
�,k , we

know that | − KS| contains a smooth curve �. Then for any irreducible curve
C in S, 0 ≤ g(C) = 1 + 1/2(C2 + C K ) implies that C2 ≥ −2 − C K =
−2 + C� ≥ −2, since C� ≥ 0.

�
Remark 39 In case k = 8, when these 9 points are in strictly semi-general position,
each fiber in this fibration is irreducible. The boundary S ′

�,8\S0
�,8 consists of fibra-

tions which have reducible singular fibers of affine ADE-type, by Kodaira’s classifi-
cation [2] (see also [15,16] for Kodaira’s original work).
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Appendix: A short review of Kac–Moody Lie algebras

In this appendix, we recall some results on Kac–Moody Lie algebras [14,24].
A matrix An×n ∈ Mat (n,Z) is called decomposable, if, after reordering the indices
(i.e. a permutation of its rows and the same permutation of the columns), A decom-
poses into a nontrivial direct sum, that is, a block diagonal matrix diag(A1, A2).

A is called symmetrizable, if there is a rational positive definite diagonal matrix
D = diag(d1, . . . , dn), such that B := D A is a symmetric matrix; furthermore,
if B is positive (semi-)definite, A is called positive (semi-)definite.

Definition 40 A matrix A ∈ Mat (n,Z) is called a Cartan matrix if it satisfies the
following conditions:

(i) aii = 2, i = 1, . . . , n;
(ii) ai j ≤ 0, and ai j = 0 if and only if a ji = 0, for i �= j;

(iii) A is indecomposable and positive definite.

A is called a generalized Cartan matrix if it satisfies the conditions (i) and (ii).
A is called of affine type if it is a generalized Cartan matrix and it satisfies the following
extra condition:

(i i i ′) A is indecomposable and positive semi-definite of rank n − 1 (or equivalently,
of corank 1).

Once we are given a (generalized) Cartan matrix A, we can construct a Lie algebra
g(A) using generators and generating relations (Serre’s relations).

Let A = (ai j )
n
i, j=1 be a (generalized) Cartan matrix. Let h be a complex vector

space of dimension n with basis hi , i = 1, . . . , n. Let ei , fi , i = 1, . . . , n be 2n ele-
ments. Then the Kac–Moody Lie algebra g(A) associated to A is defined by the 3n
generators hi , ei , fi , i = 1, . . . , n and Serre’s defining relations:

(i) [h, h′] = 0, h, h′ ∈ h;
(ii) [ei , f j ] = δi j hi , i, j = 1, . . . , n;

(iii) [hi , e j ] = ai j e j , [hi , f j ] = −ai j f j ;
(iv) (adei )

1−ai j e j = 0, (ad fi )
1−ai j f j = 0 if i �= j .

When A is a Cartan matrix, the algebra defined as above is a simple Lie algebra
(of finite dimension). In general we will obtain an infinite dimensional Lie algebra.
When A is of affine type, we will obtain a Lie algebra of affine type. Simple Lie alge-
bras are classified completely by the Dynkin diagrams (or equivalently, by the root
systems). And Kac–Moody Lie algebras of affine type are also classified completely
by their Dynkin diagrams (or their root systems). There are three types in the case of
affine type: affine-1 type (untwisted type), affine-2 and affine-3 types (twisted type).
In our case, only algebras of affine-1 (untwisted) type (more precisely, their derived
algebras) are considered. Lie algebras of affine-1 type are isomorphic to 1-toroidal
Lie algebras, which are the central extensions of loop algebras. This isomorphism
provides a concrete realization for all untwisted affine Lie algebras.
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Definition 41 Let ġ be a complex simple Lie algebra. The loop algebra L(ġ) associ-
ated to ġ is defined as

L(ġ) := C[t, t−1] ⊗ ġ,

where C[t, t−1] is the Laurent polynomial ring in t . The Lie bracket [ , ]0 is defined
by

[P ⊗ x, Q ⊗ y]0 = P Q[x, y] (P, Q ∈ C[t, t−1]; x, y ∈ ġ).

And the 1-toroidal algebra T (ġ) associated to ġ is defined to be a one-dimensional
central extension of L(ġ).

Note that a one-dimensional central extension of L(ġ) is uniquely determined by a
2-cocycle on L(ġ), that is, by definition, a bilinear C-valued functionψ which satisfies
the following two conditions:

(Co i) ψ(a, b) = −ψ(b, a), a, b ∈ L(ġ),
(Co ii) ψ([a, b], c)+ ψ([b, c], a)+ ψ([c, a], b) = 0, a, b, c ∈ L(ġ).

In our case, we take the 1-toroidal Lie algebra to be

T (ġ) := L(ġ)⊕ C〈c〉,

where the bracket is defined by

[a + λc, b + μc] := [a, b]0 + ψ(a, b)c.

Here we take the 2-cocycle ψ(a, b) = (da, b)0, d = t d
dt and (tm x, tn y)0 =

δm+n,0(x, y), where (x, y) is the Killing form on ġ. That is

ψ(utm x, vtn y) = mδm+n,0uv(x, y),

where u, v ∈ C,m, n ∈ Z, and x, y ∈ ġ.

Proposition 42 Every untwisted affine Lie algebra is isomorphic to a 1-toroidal Lie
algebra defined as above.

Before establishing the isomorphism, we first recall the structure of the untwisted
affine Lie algebra g(A), where A ∈ Mat (n + 1,Z) is a generalized Cartan matrix of
affine type.

In this case, the Dynkin diagram of g(A) is the affine Dynkin diagram of a sim-
ple Lie algebra ġ. Denote by �̇ the root system of ġ with simple roots α1, . . . , αn

and the highest root −α0, such that 〈αi , α j 〉 = ai j , 1 ≤ i, j ≤ n and 〈α0, α j 〉 =
−an+1, j , 〈αi , α0〉 = −ai,n+1. Let ḣ be the Cartan subalgebra of ġ. Let αn+1 be linearly
independent of α1, . . . , αn , such that 〈αn+1, α j 〉 = 〈α0, α j 〉, 〈αi , αn+1〉 = 〈αi , α0〉
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and 〈αn+1, αn+1〉 = 〈α0, α0〉. Let δ = αn+1 − α0 be the null root, which is an eigen-
vector with zero eigenvalue of A. Then the root system of g is

� = {α + nδ|α ∈ �̇, n ∈ Z} ∪ {nδ|n �= 0, n ∈ Z}.

Here �re := {α + nδ|α ∈ �̇, n ∈ Z} is called the real root system, and �im :=
{nδ|n �= 0, n ∈ Z} is called the imaginary root system. The Weyl group W (g) is
the group generated by the reflections sαi , i = 1, . . . , n + 1. And there is a natural
gradation, similar to the triangular decomposition in the finite case, of g:

g = h ⊕ ⊕α∈�gα,

where gα is of dimension 1 for α ∈ �re and of dimension n for α ∈ �im , and
h = ḣ ⊕ C〈c〉 is the Cartan subalgebra of g.

The isomorphism between the untwisted affine Lie algebra g and the 1-toroidal Lie
algebra T (ġ) is the following:

{

gα+ jδ → t j ⊗ ġα,

g jδ → t j ⊗ ḣ.
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