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1 Mirror symmetry

In physics, the string theory on a space X can be loosely regarded as the quan-
tum mechanics on the space of loops in X. This is because a closed string
is simply a loop in X. There are two di¤erent sectors of string theory, called
the A-model and B-model. Mathematically, A- and B-models correspond to
symplectic and complex geometries respectively. Mirror symmetry asserts that
these two seemingly very di¤erent geometries are equivalent to each other, but
on di¤erent manifolds. This is very surprising from the mathematical point of
view because, apparently, symplectic geometry is quite linear in nature while
complex geometry is rather nonlinear. It turns out that mirror symmetry works
only after we include quantum corrections to the A-model to make it more
nonlinear.
In the beginning, mirror symmetry is only studied for Calabi-Yau manifolds.

Recall that a 2n-dimensional Riemannian manifold (X; g) is called a Calabi-
Yau manifold if its holonomy group is a subgroup of SU (n). This is equivalent
to X being a Kähler manifold with zero Ricci curvature, at least when X is
compact and simply connected. Recall that a Hermitian complex structure J
on a Riemannian manifold X is Kähler if the two form ! de�ned by ! (u; v) =
g (Ju; v) is closed d! = 0. In particular, (X;!) is a symplectic manifold. The
celebrated result of Yau [32, 33] says that when X is a compact Kähler manifold,
then X admits a Calabi-Yau structure if and only if its �rst Chern class c1 (X)
is zero. Yau proved this by solving a complex Monge-Ampère equation which
corresponds to �nding a Kähler metric so that the holomorphic volume form

 2 
n;0 (X) has constant length at every point. For example, 
 = dz1 ^ dz2 ^
� � � ^ dzn on X = Cn is a holomorphic volume form with constant length. We
remark that the complex structure on X is determined completely by 
.
The mirror symmetry conjecture roughly says that there are pairs of Calabi-

Yau manifolds X and Y of the same dimension such that

(i) the symplectic geometry of (X;!X) is equivalent to the complex geometry
of (Y;
Y ), and

(ii) the complex geometry of (X;
X) is equivalent to the symplectic geometry
of (Y; !Y ).
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The �rst successful application of mirror symmetry is the prediction by
Candelas-de la Ossa-Green-Parkes [4] of the number of rational curves on the
quintic Calabi-Yau hypersurface

X =
�
z50 + z

5
1 + z

5
2 + z

5
3 + z

5
4 + tz0z1z2z3z4 = 0

	
� P4:

In this case its mirror manifold Y , called the mirror quintic, can be constructed
as (the resolution of singularities of) the quotient of X by a �nite Abelian group
(Z5)3. It was observed that the Hodge diamonds of X and Y are mirror to each
other, that is

h1;1 (X) = 1 = h2;1 (Y ) ;

h2;1 (X) = 101 = h1;1 (Y ) :

Here hp;q (X) = dimHp;q (X) and Hk (X;C) =
L

p+q=k

Hp;q (X) is the Hodge

decomposition.
Recall that [!X ] 2 H1;1 (X) and [
X ] 2 H3;0 (X) ' C. Since H1;0 (X) =

H2;0 (X) = 0 by the Kodaira vanishing theorem, we have H1;1 (X) = H2 (X;C)
which parametrizes the �rst order deformations of the (complexi�ed) symplectic
structure !X on X. On the other hand, small deformations of complex struc-
tures on X are determined by variations of H3;0 (X) inside H3 (X;C). Thus
H2;1 (X) parametrizes the �rst order deformations of the complex structure 
X
on X, by Gri¢ ths transversality. The same applies to Y .
The cup product on X de�nes a cubic form YA;clX on H1;1 (X): for any

�i 2 H1;1 (X) (i = 1; 2; 3),

YA;clX (�1; �2; �3) :=

Z
X

�1 [ �2 [ �3:

This classical structure needs to be modi�ed to the A-Yukawa coupling

YAX :
3N
H1;1 (X)! C

by including quantum corrections, i.e. genus zero three pointed Gromov-Witten
invariants GWX

0;3;� (�1; �2; �3) which roughly speaking counts the number of
holomorphic spheres representing a homology class � 2 H2 (X;Z) in X which
meet the cycles PD [�1] ; PD [�2] ; PD [�3], where PD [�] stands for the Poincarè
dual of �. Indeed, the moduli spaceMsympl (X) of symplectic structures on X
is locally modeled on H2 (X), which is too linear in nature, and it becomes more
nonlinear by incorporating quantum corrections to the cubic form.
On the mirror quintic Calabi-Yau threefold Y , the moduli space Mcpx (Y )

of complex structures on Y can be described by periods and this problem can
be solved via Picard-Fuchs equations. It determines the B-Yukawa coupling

YBY :
3N
H2;1 (Y )! C:

2



The most degenerating complex structure, called the large complex structure
limit (LCSL), which can be characterized in term of maximally unipotent mon-
odromy for the periods, is given by z0z1z2z3z4 = 0. Furthermore, using mon-
odromy of periods, one obtains canonical �at coordinates near the LCSL limit.
By matching this �at coordinate structure onMcpx (Y ) with the linear structure
on Msympl (X) given by H2 (X), one obtain a mirror map fmirror identifying
these spaces. From the duality prediction in physics, this should identify YAX
with YBY , and in particular the Gromov-Witten invariants (or number of ratio-
nal curves) of X can be obtained by certain classical computations involving
the complex geometry of its mirror Y .
These invariants are important in algebraic geometry, especially in enumera-

tive problems, and they are usually very di¢ cult to determine. That is why such
a prediction coming from mirror symmetry has excited many mathematicians.
This prediction has �nally been proven mathematically using localization meth-
ods by Givental [15] and Lian-Liu-Yau [28]. This is called the mirror theorem.
When the mirror map is expanded around the LCSL point, Lian-Yau [29]

show that its coe¢ cients have integrality property! It has been suspected that
this mysterious integrality should count something. As we will explain soon,
for toric Calabi-Yau threefolds, like KP2 , they count holomorphic disks with
Lagrangian boundary conditions.

Symplectic Geometry (A-model) Complex Geometry (B-model)
Linear + quantum corrections Nonlinear
A-Yukawa coupling on H1;1 B-Yukawa coupling on H2;1

A-cycles: B-cycles:
(special) Lagrangian submanifolds complex submanifolds
+ �at bundles + (Yang-Mills) holomorphic bundles
Fukaya category of Lagrangian derived category of coherent sheaves
submanifolds

Kontsevich [22] formulates mirror symmetry as an equivalence between cat-
egories. More precisely, Kontsevich�s homological mirror symmetry (HMS) con-
jecture says that the (derived) Fukaya category of Lagrangians inX is equivalent
to the derived category of coherent sheaves on Y , and vice versa.
The important question remains as to why such an amazing duality exists. Is

there an explicit transformation that interchanges these two kinds of geometries?

2 SYZ transformations

In 1996, Strominger-Yau-Zaslow (SYZ) [31] has a ground breaking proposal
which says that mirror symmetry is a form of Fourier transformation, called
T-duality. Namely, when X and Y are mirror Calabi-Yau manifolds, then

(i) X should admit a special Lagrangian Tn-�bration and Y is the dual torus
�bration, and
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(ii) there is a �berwise Fourier transformation which interchanges the symplec-
tic geometry (resp. complex geometry) of X with the complex geometry
(resp. symplectic geometry) of Y .

Let us give a heuristic reasoning for the SYZ proposal: The complex manifold
Y is trivially the moduli space of certain B-cycles in Y , namely points in Y . As
mirror symmetry should identify B-cycles in Y with A-cycles in X, at least in
the LCSL, Y is also the moduli space of certain special Lagrangian submanifolds
S in X coupled with �at U (1)-bundles. As these B-cycles, namely points, swipe
over Y exactly once, we expect the same is true for the corresponding A-cycles
in X, thus giving a special Lagrangian Tn-�bration on X. Di¤erent A-cycles
with the same underlying special Lagrangian Tn-�ber T in X corresponds to
di¤erent �at U (1)-bundles over T and they form the dual torus T � to T . Hence,
the corresponding B-cycles in Y , which are points in Y , form a submanifold T �

in Y . By varying the Tn-�bers in X, we obtain a dual torus �bration on Y .
Next, the total space Y is another obvious B-cycle in Y , which meets every

point B-cycle in Y exactly once. Thus, the corresponding A-cycle in X will be
a special Lagrangian section to the above Tn-�bration and this section should
be considered as the zero section for the torus �bration. Similarly, the mirror to
a holomorphic line bundle over Y is a general special Lagrangian section in X.
We call this the SYZ transformation. In the holomorphic setting, the analog is
the Fourier-Mukai transformation.
This SYZ transformation is much easier to study when there are no singu-

lar �bers, say in the semi-�at case. However, we shall emphasize that there is
no way one could avoid singular Lagrangian �bers for any compact Calabi-Yau
manifolds. In fact, the investigation of the e¤ect of these singular �bers is prob-
ably the most important part of this subject. In the toric Calabi-Yau manifolds
case, we will explain below how they are related to the SYZ construction of
mirror Calabi-Yau manifolds.
The SYZ proposal has been tested successfully [26] in the semi-�at setting

where the Calabi-Yau metric is �at along �bers. In this setting, the SYZ trans-
formation can be constructed very explicitly as quantum corrections are absent.
Let us illustrate this in the following example: Recall that the base space B for
any Lagrangian Tn-�bration has a natural a¢ ne structure. For simplicity, let
us assume that B is an open subset in Rn with coordinates x1; � � � ; xn. Then
the symplectic manifold X is given as X = T �B=��; where � is a �berwise
lattice in the tangent bundle TB, with coordinates x1; � � � ; xn; y1; � � � ; yn and
canonical symplectic form !X =

P
j dx

j ^ dyj . The complex manifold Y is
given by Y = TB=� with coordinates x1; � � � ; xn; y1; � � � ; yn and the canonical
complex structure on Y has complex coordinate z1; � � � ; zn with zj = xj + iyj .
Recall that a complex structure is also determined by its holomorphic volume
form, which is 
Y =

Q
j

�
dxj + idyj

�
in this case.
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By direct computations, we have


Y =

Z
T�
e!X � ei

P
j dy

j^dyj ,

e!X =

Z
T


Y � e�i
P

j dy
j^dyj .

This can be naturally interpreted as a Fourier-Mukai transformation as ei
P

j dy
j^dyj

is the Chern character form for a universal connection on the �berwise Poincare
bundle P on X �B Y , that is formally, 
Y = F (e!X ) and e!X = F (
Y ) where
F (�) = �2� (��1 (�)
 P), where �j is the projection of the jth-factor.
Let us look at the Fourier(-Mukai) transformation on a single torus T =

V=� more closely. The above F : 
0 (T ) ! 
n (T �) is given by F (�) =R
T
�
�
y1; � � � ; yn

�
ei
P

j dy
j^dyj , while the usual Fourier transformation gives a

function �̂ : �� ! C on the dual lattice �� by

�̂ (m1; :::;mn) =

Z
T

�
�
y1; � � � ; yn

�
ei
P

j mjy
j

dy1 ^ � � � ^ dyn:

It is natural to combine both the Fourier-Mukai transformation and Fourier
transformation to de�ne F which transforms di¤erential forms on T�� to those
on T ����. Notice that T�� is the space of geodesic (or a¢ ne) loops in T inside
the loop space of T , i.e. T � � = LminT � LT , and the loop space certainly
plays important roles in string theory. We are going to describe how such a
transformation FSY Z , called SYZ transformation, interchanges symplectic and
complex geometries, with quantum corrections included, in the toric case.

3 Fano toric varieties

Let X� be a Fano toric variety. Mirror symmetry has an extension to non-
Calabi-Yau manifolds like X� and the mirror is given by Y = (C�)n together
with a function W : (C�)n ! C called the superpotential. For instance, when
X� = Pn, we have W = z1 + : : :+ zn +

q
z1:::zn

.
To study the mirror symmetry for X� from the SYZ viewpoint, we consider

the open dense subset X ' (C�)n of X� which is the union of Lagrangian torus
�bers of the moment map. See Figure 1 below for a visualization of the moment
map for X� = P2. Symplectically, we write X = T �B=�� and we denote by
~X = X � �� � LX� the space of �berwise geodesics/a¢ ne loops in X�. On
~X, we consider ~!X = !X + 	, where 	 is a generating function which counts
holomorphic disks with boundaries lying on �ber Lagrangians (see Cho-Oh [10]
for details). In [8], we show that

1. The SYZ transformation carries the corrected symplectic structure on ~X
to the holomorphic volume form of the pair (Y;W ):

FSY Z
�
e!X+	

�
= eW
:
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2. FSY Z : QH� (X�) ! Jac (W ) gives an isomorphism between the quan-
tum cohomology of X� with the Jacobian ring of the superpotential W .

Figure 1: The moment map for P2.

This is proven by describing holomorphic spheres as suitable gluing of holo-
morphic disks. More precisely, we pass to the tropical limit (for an introduction
to tropical geometry, see for example Mikhalkin [30]) and observe that a trop-
ical curve can be seen as a gluing of tropical disks. For instance, a line P1 in
P2 is obtained as a gluing of three disks tropically (see Figure 2 below). This
observation was later generalized and used by Gross [19] in his study of mirror
symmetry for the big quantum cohomology of P2 via tropical geometry.
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Figure 2: A tropical curve as a gluing of tropical disks.

In fact, the �rst part of the above result can be generalized to any compact
toric manifold by appropriately de�ning the function 	 as a virtual counting
of holomorphic disks (see Fukaya-Oh-Ohta-Ono [12] for details). The second
part has been generalized to toric manifolds with c1 � 0 and dimX� < 3 by
Chan-Lau [6]; while the general case follows from a recent result of Fukaya-Oh-
Ohta-Ono [14].

4 Toric Calabi-Yau

Next we look at toric Calabi-Yau manifolds. These manifolds are necessarily
noncompact and a typical example is the total space of the canonical line bundle
over a projective space, i.e. X� = KPn�1 . Instead of the toric �bration, we
consider another Lagrangian �bration on X� which is constructed by Gross
[18] and Goldstein [16] independently. The a¢ ne structure on the base B is the
upper half space but there are interior singular points lying on a hyperplane
called the wall. Figure 3 depicts the �bration when X = KP1 .
As a point moves across the wall, the (virtual) number of holomophic disks

bounded by the corresponding Lagrangian �ber jumps. This is called the wall-
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Figure 3: The Lagrangian �bration on KP1 constructed by Gross and Goldstein.
The discriminant locus consists of the boundary R � f�K2g and two interior
points f(r1; 0); (r2; 0)g. The wall is the x-axis R� f0g.

crossing phenomenon, as have been studied by Auroux [1, 2]. An instance of
wall-crossing when X = KP1 is drawn in Figure 4.

Figure 4: Wall-crossing phenomenon for X = KP1 . Below the wall a Lagrangian
�ber bounds essentially only one holomorphic disk. As the image of the La-
grangian �ber moves upward across the wall, another family of holomorphic
disks comes up.

Because of the presence of the wall in B, one needs to apply SYZ dual
�bration construction on each connected component in the complement of the
wall, with quantum corrections included. Then the wall-crossing formula let us
glue the resulting pieces together to obtain a complex manifold Y (see Chan-
Lau-Leung [7] for details). For instance, in the case of X = KP2 , we have

Y =
n
(z; w; u; v) 2

�
C�
�2 � C2 : uv = h (q) + z + w + q

zw

o
;

which belongs to the mirror family as constructed by Hori-Iqbal-Vafa [21] from
physical considerations. Furthermore, this SYZ mirror construction is more pre-
cise in the sense that it tells us exactly what complex structure on Y is corre-
sponding to any given symplectic structure on X. This is because the coe¢ cient
h(q) is expressed entirely and explicitly in terms of the Kähler parameters and
counting of holomorphic disks in X.
On the other hand, the SYZ construction naturally gives us a map from

the symplectic moduli space of X to the complex moduli space of Y . We call
this the SYZ map fSYZ . In [7], we show that the SYZ map coincides with the
mirror map fmirror for certain toric Calabi-Yau threefolds of the form KZ . This
explains the mysterious integrality property of the mirror map: its coe¢ cients
come from the counting of holomorphic disks with Lagrangian �bers boundary
conditions.
The main step in proving these results is to compute certain open Gromov-

Witten invariants in an obstructed situation. For instance, in the KP2 case, we
need to compute the number n�+kl of such holomorphic disks in KP2 represent-
ing the relative homology class � + kl, where l 2 H2

�
CP2;Z

�
is the hyperplane

class, k 2 N and � 2 �2 (KP2 ; F ) is the class of an irreducible holomorphic disk
with Maslov index two which has non-trivial intersection with the zero section
P2 � KP2 . Our computation show that they are given by

n�+kl = 1;�2; 5;�32; 286;�3038; : : :
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for k = 0; 1; 2; 3; 4; 5; ::: respectively. From this, we have

h(q) = 1� 2q + 5q2 � 32q3 + 286q4 � 3038q5 + : : :

and conclude that the SYZ map coincides with the mirror map. Our method
also works for some other toric Calabi-Yau threefolds such as KP1�P1 . This also
explains why the mirror map for the resolved conifold OP1 (�1;�1) is trivial.
We remark that the relevance of the work of Graber-Zaslow [17] to the

relationship between the series of h (q) and canonical coordinates was �rst men-
tioned in Remark 5.1 of the paper [20] by Gross and Siebert. They were also the
�rst to observe that the coe¢ cients of the above series have geometric mean-
ings; namely, they show that these coe¢ cients can be obtained by imposing the
"normalization" condition for slabs, which is a condition necessary to run their
program and construct toric degenerations of Calabi-Yau manifolds.
In dimension two, Lau-Leung-Wu [25] show that this method works for all

toric Calabi-Yau surfaces. In particular, the SYZ map fSYZ coincides with the
mirror map fmirror , which is also compatible with the mirror construction by
twistor rotations. Again the main ingredient is to compute open Gromov-Witten
invariants in a certain obstructed situation.
We remark that in our earlier study of SYZ transformations for semi-�at

Calabi-Yau manifolds, singular Lagrangian �bers and hence quantum correc-
tions are absent. Then in the toric Calabi-Yau case, there are singular La-
grangian �bers, so we need to include quantum corrections and study the wall-
crossing phenomenon. For general Calabi-Yau manifolds, one will in addition
need to consider scattering phenomenon (as studied by Kontsevich-Soibelman
[23] and Gross-Siebert [20]) in the study of SYZ transformations.

5 Computing open Gromov-Witten invariants

We now discuss our approach to compute open Gromov-Witten invariants.
These invariants count the number of 1-marked Maslov index two holomorphic
disks in a toric variety X� with boundaries lying on a toric Lagrangian �ber.
The corresponding generating function is the superpotential W for the mirror.
The expected dimension of the moduli space of such disks is always zero.
When X� is Fano, i.e. c1 (X�) > 0, Cho-Oh [10] show that there is exactly

one such disk corresponding to each toric divisor. For instance, when X� = P1
with north and south poles being the two toric divisors and the equator being
the Lagrangian �ber, the upper and lower hemispheres are the two holomorphic
disks.
When X� is not Fano, the moduli space of these disks could have positive

dimension, thus we are in an obstructed situation. For the Hirzebruch surface
F2, the superpotential W is computed by Fukaya-Oh-Ohta-Ono in [13] using
their big machinery [11] and by Auroux [2] using wall-crossing and degeneration
techniques (which works for F3 as well). In this case, beside those standard
disks given by Cho-Oh, there is an extra bubbling disk whose bubble is the
(�2)-curve in F2 (see Figure 5).

8



Figure 5: The bubbling disk in F2, which is a union of a holomorphic disk
together with the holomorphic sphere D4 .

Chan-Lau [6] compute W for all toric surfaces with c1 � 0. For these sur-
faces, every toric divisor has self-intersection number at least �2. Holomorphic
disks with bubbles can only occur along a chain of (�2)-curves. By a result of
Chan [5] (and its generalization by Lau-Leung-Wu [24]), we can identify this
open Gromov-Witten invariant with a certain 1-pointed closed Gromov-Witten
invariant where the irreducible disk component is being completed to a holo-
morphic sphere. These (obstructed) closed Gromov-Witten invariants have been
previously computed by Bryan-Leung [3] and hence we obtain W . As a corol-
lary, we get an explicit presentation for the quantum cohomology of any toric
surface with c1 � 0.
For instance, let X be the toric surface de�ned by the following fan and

polytope (see Figure 6 below).

Figure 6: The fan � and the polytope P de�ning X. The numbers beside the
divisors indicate their self-intersection numbers.

Then the superpotential W is given by

W =(1 + q1)z1 + z2 +
q1q2q

2
3q
3
4

z1z2
+ (1 + q2 + q2q3)

q1q3q
2
4

z2

+ (1 + q3 + q2q3)
q1q4z1
z2

+
q1z

2
1

z2
;

where ql = exp(�tl), l = 1; : : : ; 4, are the Kähler parameters on X.
Next we want to compute W for KP2 . Again there are unobstructed holo-

morphic disks as given by Cho-Oh. The obstructed case is the computation of
the invariant n�+kl for k > 0. Using the result of Chan [5] again, we can identify
it with a closed Gromov-Witten invariant:

n�+kl = GW0;1;f+kl (X1) ;

where X1 = PP2 (KP2 �OP2) and f is the �ber class of the P1-bundle X1 ! P2.
By blowing up X1 at a vertex in the in�nity section of X1 to obtain X2, we can
get rid of the marked point condition, i.e. we have

GW0;1;f+kl (X1) = GW0;0;l2+kl (X2) ;

where l2 is the strict transform of the �ber in X1 passing through the blown-up
point.
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Notice that l2 is a (�1;�1)-curve and we can �op it to obtain another
space X3. Now, by the result of Li-Ruan [27], we can express the invariant
GW0;0;l2+kl (X2) in terms of Gromov-Witten invariants for X3. More precisely,
when we perform the �op, we have blown up P2 at a point to give F1 and the �op
of l2 becomes the (�1)-curve l3 inside this F1. Indeed, X3 = PF1 (KF1 �OF1)
and we are computing GW0;0;kl�e (X3), where e is the exceptional curve com-
ing from the blow-up F1 ! P2. This is the same as a local invariant for the
local Calabi-Yau threefold KF1 which has been computed previously by Chiang-
Klemm-Yau-Zaslow [9] using localization methods.
Hence, we can determine W for KP2 completely and verify that the SYZ

map coincides with the mirror map in this and other similar cases. The whole
strategy is illustrated by Figure 7 below.

Figure 7: The procedures to compute the open Gromov-Witten invariants of
KP2 .
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