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We show that various genus zero Gromov–Witten invariants for flag varieties represent-

ing different homology classes are indeed the same. In particular, many of them are

classical intersection numbers of Schubert cycles.

1 Introduction

A generalized flag variety G/P is the quotient of a simply connected complex simple

Lie group G by a parabolic subgroup P of G. The (small) quantum cohomology ring

QH∗(G/P ) of G/P is a deformation of the ring structure on H∗(G/P ) by incorporating

three-pointed, genus zero Gromov–Witten invariants of G/P . The presentation of the

ring structure on QH∗(G/P ) in special cases have been studied by many mathematicians

(see, e.g., [4, 7, 8, 13, 19, 23, 26, 27] and references, and also an unpublished preprint of D.

Peterson). From the viewpoint of enumerative geometry, it is desirable to have (positive)

combinatorial formulas for these Gromov–Witten invariants. Owing to the Peterson–

Woodward comparison formula [28], all these Gromov–Witten invariants for G/P can

be recovered from the Gromov–Witten invariants for the special case of a complete flag

variety G/B, where B is a Borel subgroup.
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Classical Aspects of Quantum Cohomology of Flag Varieties 3707

In [25], with the help of the Peterson–Woodward comparison formula, we

established a natural filtered algebra structure on QH∗(G/B). In this article, we use

the structures of this filtration to obtain relationships among three-pointed genus zero

Gromov–Witten invariants Nw,λ
u,v for G/B. The Gromov–Witten invariants Nw,λ

u,v are the

structure coefficients of the quantum product

σu � σ v =
∑

λ∈H2(G/B,Z),w

Nw,λ
u,v qλσw

of the Schubert cocycles σu and σv in the quantum cohomology QH∗(G/B). The evalua-

tion of q at the origin gives us the classical intersection product

σu ∪ σv =
∑
w

Nw,0
u,v σ

w.

Let Δ= {α1, . . . , αn} be a base of simple roots of G and {α∨
1 , . . . , α

∨
n } be the simple coroots

(see Section 2.1 and references therein for more details of the notation). The Weyl group

W is a Coxeter group generated by simple reflections {sα | α ∈Δ}. For each α ∈Δ, we

introduce a map sgnα : W → {0,1} defined by sgnα(w) := 1 if �(w)− �(wsα) > 0, and 0 oth-

erwise. Here � : W → Z≥0 denotes the length function. Let h be the dual of the vector

space h∗ := ⊕α∈ΔCα and 〈·, ·〉 : h∗ × h → C be the natural pairing. Note that H2(G/B,Z) can

be canonically identified with the coroot lattice Q∨ := ⊕
α∈Δ Zα∨ ⊂ h. We prove the fol-

lowing theorem.

Theorem 1.1. For any u, v, w ∈ W and for any λ ∈ Q∨, we have the following

(1) Nw,λ
u,v = 0 unless sgnα(w)+ 〈α, λ〉 ≤ sgnα(u)+ sgnα(v) for all α ∈Δ;

(2) suppose sgnα(w)+ 〈α, λ〉 = sgnα(u)+ sgnα(v)= 2 for some α ∈Δ, then

Nw,λ
u,v = Nw,λ−α∨

usα,vsα =
⎧⎨
⎩

Nwsα,λ−α∨
u,vsα , if sgnα(w)= 0,

Nwsα,λ
u,vsα , if sgnα(w)= 1.

�

We obtain nice applications of the above theorem that demonstrate the so-called

“quantum to classical” principle.

The “quantum to classical” principle says that certain three-pointed genus zero

Gromov–Witten invariants for a given homogeneous space are classical intersection

numbers for a typically different homogeneous space. This phenomenon, probably for

the first time, occurred in the proof of the quantum Pieri rule for partial flag varieties of
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3708 N. C. Leung and C. Li

type A by Ciocan-Fontanine [8], and later occurred in the elementary proof of the

quantum Pieri rule for complex Grassmannians by Buch [2] as well as the works [21, 22]

of Kresch and Tamvakis on Lagrangian and orthogonal Grassmannians. The phrase

“quantum to classical principle” was introduced by Chaput and Perrin [7] for the work

[3] of Buch, Kresch, and Tamvakis on complex Grassmannians, Lagrangian Grassman-

nians, and orthogonal Grassmannians, which says that any three-pointed genus zero

Gromov–Witten invariant on a Grassmannian of aforementioned types is equal to a clas-

sical intersection number on a partial flag variety of the same Lie type. Recently, this

principle has been developed by Buch et al. [4] for isotropic Grassmannians of classi-

cal types. For Grassmannians of certain exceptional types, this principle has also been

studied by Chaput, Manivel, and Perrin [6, 7]. For flag varieties of type A, there are rele-

vant studies by Coskun [10]. For the special case of computing the number of lines in a

general complete variety G/B, this principle has also been studied earlier by the second

author and Mihalcea [25]. In addition, we note that this principle for certain K-theoretic

Gromov–Witten invariants has been studied by Buch and Mihalcea [5].

Using Theorem 1.1, we not only recover most of the above results on the “quan-

tum to classical” principle, but also get new and interesting results. For instance in a

forthcoming paper we can see the applications of Theorem 1.1 in seeking quantum Pieri

rules with respect to Chern classes of the dual of the tautological subbundles for Grass-

mannians of classical types, which are not covered in [4] in general. In a joint work in

progress with H. Duan and X. Zhao, we could also apply Theorem 1.1 to get a presenta-

tion of the quantum cohomology ring of a Grassmannian of type F4.

For the type An case, we note that the Weyl group W is canonically isomor-

phic to the permutation group Sn+1 and G/B = F �n+1 = {V1 ≤ · · · ≤ Vn ≤ Cn+1 | dimC Vj =
j, j = 1, . . . ,n}. An element u∈ W = Sn+1 is called a Grassmannian permutation if there

exists 1 ≤ k≤ nsuch that σu ∈ H∗(F �n+1) comes from the pull-back π∗ : H∗(Gr(k,n+ 1))→
H∗(F �n+1) induced from the natural projection map π : F �n+1 → {Vk ≤ Cn+1 | dim Vk = k} =
Gr(k,n+ 1). Equivalently, a Grassmannian permutation u∈ W is an element such that

all the reduced expressions u= si1si2 · · · sim , where m = �(u), end with the same simple

reflection sk. When written in “one-line” notation, Grassmannian permutations are pre-

cisely the permutations with a single descent (see Remark 2.16 for more details). As an

application of Theorem 1.1, we have the following theorem.

Theorem 1.2. Let u, v, w ∈ Sn+1 and λ ∈ Q∨. If u is of Grassmannian type, then there exist

v′, w′ ∈ Sn+1 such that

Nw,λ
u,v = Nw′,0

u,v′ . �
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Classical Aspects of Quantum Cohomology of Flag Varieties 3709

It is also interesting to investigate the above theorem from the point of view of

symmetries on QH∗(F �n+1), analogous with the cyclic symmetries shown by Postnikov

[26]. In addition, the proof of Theorem 1.2 will also describe how to find v′ and w′ (easily).

Special cases of Theorem 1.2 enable us to recover the quantum Pieri rule for partial

flag varieties of type A as in [8] and the “quantum to classical” principle for complex

Grassmannians as in [3].

Geometrically, the Gromov–Witten invariants Nw,λ
u,v count the number of stable

holomorphic maps from the projective line P1, or more generally a rational curve, to

G/B. In particular, they are all nonnegative. There have been closed formulas/algorithms

on the classical intersection product by Kostant and Kumar [20] and Duan [11] and on

the quantum product by the authors [24]. Yet sign cancelations are involved in all these

formulas/algorithms. For a complete flag variety (of general type), the problem of find-

ing a positive formula on either side remains open. The quantum to classical principle,

in many situations, helps us to reduce the quantum Schubert calculus to the classical

Schubert calculus. When G = SL(n+ 1,C), we note that positive formulas on the classical

intersection numbers have been given by Coskun [9].

The proof of Theorem 1.1 uses functorial relationships established by the

authors in [25] and it is combinatorial in nature. However, for a special case (of λ= α∨)

of Theorem 1.1, both a geometric proof of it and a combinatorial proof of its equivariant

extension can be found in a joint work in progress of the second author and Mihalcea.

We also wish to see a geometric proof of this theorem in the future.

2 Proofs of Theorems

In this section, we first fix the notation in Section 2.1. Then we prove our first main

theorem in Section 2.2. Finally, in Section 2.3 we obtain our second main theorem, as an

application of the first main theorem.

2.1 Notations

More details on Lie theory can be found, for example, in [16, 17].

Let G be a simply connected complex simple Lie group of rank n and B ⊂ G be

a Borel subgroup. Let Δ= {α1, . . . , αn} ⊂ h∗ be the simple roots and {α∨
1 , . . . , α

∨
n } ⊂ h be

the simple coroots, where h is the corresponding Cartan subalgebra of (G, B). Let Q∨ =⊕n
i=1 Zα∨

i and ρ = ∑n
i=1 χi ∈ h∗. Here χi’s are the fundamental weights, which, for any

i, j, satisfy 〈χi, α
∨
j 〉 = δi, j with respect to the natural pairing 〈·, ·〉 : h∗ × h → C. The Weyl

group W is generated by {s1, . . . , sn}, where each si = sαi is a simple reflection on h∗ defined
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3710 N. C. Leung and C. Li

by si(β)= β − 〈β, α∨
i 〉αi. The root system is given by R= W ·Δ= R+ � (−R+), where R+ =

R ∩ ⊕n
i=1 Z≥0αi is the set of positive roots. Each parabolic subgroup P ⊃ B is in one-to-

one correspondence with a subset ΔP ⊂Δ. In fact, ΔP is the set of simple roots of a Levi

subgroup of P . Let � : W → Z≥0 be the length function, WP denote the Weyl subgroup

generated by {sα | α ∈ΔP }, and WP denote the subset {w ∈ W|�(w)≤ �(v), ∀v ∈wWP }. Each

coset in W/WP has a unique minimal length representative in WP .

The (co)homology of a (generalized) flag variety X = G/P has an additive basis

of Schubert (co)homology classes indexed by WP : H∗(X,Z)=
⊕

v∈WP Zσv, H∗(X,Z)=⊕
u∈WP Zσu with 〈σu, σv〉 = δu,v for any u, v ∈ WP [1]. Note that each σu (resp. σu) is a class in

the 2�(u)th-(co)homology. In particular, H2(X,Z)=
⊕

αi∈Δ\ΔP
Zσsi can be canonically iden-

tified with Q∨/Q∨
P , where Q∨

P := ⊕
αi∈ΔP

Zα∨
i . For each α j ∈Δ \ΔP we introduce a formal

variable qα∨
j +Q∨

P
. For λP = ∑

α j∈Δ\ΔP
ajα

∨
j + Q∨

P ∈ H2(X,Z) we define qλP = ∏
α j∈Δ\ΔP

q
aj

α∨
j +Q∨

P
.

The (small) quantum cohomology QH∗(X)= (H∗(X)⊗ Q[q], �) of X is a commutative ring

and has a Q[q]-basis of Schubert classes σu = σu ⊗ 1. The quantum Schubert structure

constants Nw,λP
u,v for the quantum product

σu � σ v =
∑

w∈WP ,λP ∈Q∨/Q∨
P

Nw,λP
u,v qλP σ

w

are three-pointed, genus zero Gromov–Witten invariants given by Nw,λP
u,v =

∫
M̄0,3(X,λP )

ev∗
1(σ

u) ∪ ev∗
2(σ

v) ∪ ev∗
3((σ

w)
). Here M̄0,3(X, λP ) is the moduli space of

stable maps of degree λP ∈ H2(X,Z) of three-pointed genus zero curves into X,

evi : M̄0,3(X, λP )→ X is the ith canonical evaluation map, and {(σw)
 | w ∈ WP } are the

elements in H∗(X) satisfying
∫

X(σ
w′
)
 ∪ σw′′ = δw′,w′′ for any w′, w′′ ∈ WP [14]. Note that

Nw,λP
u,v = 0 unless qλP ∈ Q[q]. It is a well-known fact that these Gromov–Witten invariants

Nw,λP
u,v of the flag variety X are enumerative, counting the number of certain holomorphic

maps from P1 to X. In particular, they are all nonnegative integers. (Thus, for the

special case of a flag variety X, we can also define QH∗(X) over Z whenever we wish.)

In analog with the classical cohomology, there is a natural Z-grading on the

quantum cohomolgy QH∗(X), making it a Z-graded ring:

QH∗(X)=
⊕
n∈Z

⎛
⎝ ⊕

deg(qλP σ
w)=n

QqλP σ
w

⎞
⎠ . (*)

Here the degree of qλP σ
w, where λP = ∑

α j∈Δ\ΔP
ajα

∨
j + Q∨

P ∈ H2(X,Z), is given by

deg(qλP σ
w)= �(w)+

∑
α j∈Δ\ΔP

aj〈σsj , c1(X)〉,
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Classical Aspects of Quantum Cohomology of Flag Varieties 3711

in which 〈·, ·〉 is the natural pairing between homology and cohomology classes, and an

explicit description of the first Chern class c1(X) can be found, for example, in [15]. When

P = B, we have ΔP = ∅, Q∨
P = 0, WP = {1}, and WP = W. In this case, we simply define λ=

λP and qj = qα∨
j
. As a direct consequence of the Z-graded ring structure (∗) of QH∗(G/B),

for any u, v, w ∈ W and for any λ ∈ Q∨, we have

Nw,λ
u,v = 0 unless �(w)+ 〈2ρ, λ〉 = �(u)+ �(v).

2.2 Proof of Theorem 1.1

This subsection is devoted to the proof of Theorem 1.1. The main arguments are given

in Section 2.2.3, based on the results in [25], which will be reviewed in Section 2.2.2.

We introduce the Peterson–Woodward comparison formula first in Section 2.2.1. This

comparison formula not only plays an important role in obtaining the results in [25],

but also shows us that it suffices to know all quantum Schubert structure constants

Nw,λ
u,v for G/B in order to know all quantum Schubert structure constants for all G/P ’s.

2.2.1 Peterson–Woodward comparison formula

We use �P to distinguish the quantum products for different flag varieties G/P ’s (when

needed). For any u, v ∈ WP we have σu �P σ
v = ∑

w∈WP ,λP ∈Q∨/Q∨
P

Nw,λP
u,v qλP σ

w. Note WP ⊂ W.

The classes σu and σv in QH∗(G/P ) can both be treated as classes in QH∗(G/B) natu-

rally. Whenever referring to Nw,λ
u,v where λ ∈ Q∨, we are considering the quantum product

in QH∗(G/B): σu �B σ
v = ∑

w∈W,λ∈Q∨ Nw,λ
u,v qλσw.

Proposition 2.1 (Peterson–Woodward comparison formula [28]; see also [23]).

(1) Let λP ∈ Q∨/Q∨
P . Then there is a unique λB ∈ Q∨ such that λP = λB + Q∨

P and

〈γ, λB〉 ∈ {0,−1} for all γ ∈ R+
P (= R+ ∩ ⊕

β∈ΔP
Zβ).

(2) For every u, v, w ∈ WP , we have

Nw,λP
u,v = NwωPωP ′ ,λB

u,v .

Here ωP (resp. ωP ′ ) is the longest element in the Weyl group WP of P (resp.

WP ′ of P ′ where ΔP ′ = {β ∈ΔP | 〈β, λB〉 = 0}). �
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3712 N. C. Leung and C. Li

Owing to the above proposition, we obtain an injection of vector spaces

ψΔ,ΔP : QH∗(G/P )−→ QH∗(G/B) defined by qλP σ
w �→ qλBσ

wωPωP ′ .

For the special case of a singleton subset {α} ⊂Δ, we define Pα = P and simply define

ψα =ψΔ,{α}. In this case, we note that R+
Pα = {α}, Q∨

Pα = Zα∨, and we have the natural fibra-

tion Pα/B → G/B → G/Pα with Pα/B ∼= P1.

Example 2.2. Let λPα = β∨ + Q∨
Pα where β ∈Δ \ {α}. Then we have 〈α, β∨〉 ∈

{0,−1,−2,−3}. Furthermore, we have

ψα(qλPα
)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

qβ∨ , if 〈α, β∨〉 = 0,

sαqβ∨ , if 〈α, β∨〉 = −1,

qα∨qβ∨ , if 〈α, β∨〉 = −2,

sαqα∨qβ∨ , if 〈α, β∨〉 = −3.

More generally, we consider λPα = λ′ + Q∨
Pα ∈ Q∨/Q∨

Pα , where λ′ = ∑
β∈Δ\{α} cββ∨ ∈ Q∨.

Setting m = 〈α, λ′〉, we have

ψα(qλPα
σw)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

q
λ′−

m

2
α∨
σw, if m is even,

q
λ′−

m + 1

2
α∨
σwsα , if m is odd. �

2.2.2 Z2-filtrations on QH∗(G/B)

As shown in [25], given any parabolic subgroup P of G containing B, we can construct

a Z|ΔP |+1-filtration on QH∗(G/B). In this subsection, we review the main results in [25]

for the special case of a parabolic subgroup that corresponds to a singleton subset {α}.
Using them, we prove Theorem 1.1 in the next subsection.

Recall that a natural basis of QH∗(G/B)[q−1
1 , . . . ,q−1

n ] is given by qλσw’s labeled

by (w, λ) ∈ W × Q∨. Note that qλσw ∈ QH∗(G/B) if and only if qλ ∈ Q[q] is a polynomial.

In order to obtain a filtration on QH∗(G/B), we just need to define (nice) gradings for a

given basis of it. Furthermore, as in the introduction, we have defined a map sgnα with
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Classical Aspects of Quantum Cohomology of Flag Varieties 3713

respect to any given simple root α ∈Δ as follows:

sgnα : W → {0,1}; sgnα(w)=
⎧⎨
⎩

1, if �(w)− �(wsα) > 0,

0, if �(w)− �(wsα)≤ 0.

Note that �(w)− �(wsα)= ±1 and that �(w)− �(wsα)= 1 if and only if w(α) ∈ −R+, which

holds if and only if w= usα for a unique u∈ WPα (see, e.g., [18]). We can define a grading

map grα with respect to a given simple root α ∈Δ as follows.

grα : W × Q∨ −→ Z2;

grα(qλσ
w)= (sgnα(w)+ 〈α, λ〉, �(w)+ 〈2ρ, λ〉 − sgnα(w)− 〈α, λ〉).

Here we are using lexicographical order on Z2; that is, a = (a1,a2) < b = (b1,b2) if and

only if either (a1 = b1 and a2 < b2) or a1 < b1 holds. The above Z2-grading of qλσw can

recover the degree grading of it as in Section 2.1. Precisely, if we write grα(qλσ
w)= (i, j),

then deg(qλσw)= i + j.

Remark 2.3. Following from Corollary 3.13 of [25], our grading map grα coincides with

the grading map in [25, Definition 2.8] by using the Peterson–Woodward lifting map

ψα =ψΔ,{α}. �

As a consequence, we obtain a family F = {Fa}a∈Z2 of vector subspaces of

QH∗(G/B), where Fa := ⊕
grα(qλσw)≤a Qqλσw ⊂ QH∗(G/B), and the associated graded vec-

tor space GrF (QH∗(G/B))= ⊕
a∈Z2 GrFa with respect to F , where GrFa := Fa/ ∪b<a Fb.

Proposition 2.4 ([25, Theorem 1.2]). QH∗(G/B) is a Z2-filtered algebra with respect to

F ; that is, we have Fa � Fb ⊂ Fa+b for any a,b ∈ Z2. �

Define GrFvert(QH∗(G/B)) := ⊕
i∈Z GrF(i,0) and GrFhor(QH∗(G/B)) := ⊕

j∈Z GrF(0, j). We

take the canonical isomorphism QH∗(P1)∼= Q[x,t]
〈x2−t〉 for the fiber of the fibration P1 →

G/B → G/Pα.

Proposition 2.5 ([25, Theorem 1.4]). The following maps Ψ α
vert and Ψ α

hor are well defined

and they are algebra isomorphisms : (In terms of the notations in [25], Ψ α
vert =Ψ1
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and Ψ α
hor =Ψ2.)

Ψ α
vert : QH∗(P1)−→ GrFvert(QH∗(G/B)); x �→ sα, t �→ qα∨ ,

Ψ α
hor : QH∗(G/Pα)−→ GrFhor(QH∗(G/B)); qλPα

σw �→ψα(qλPα
σw). �

Here we note that sα ∈ GrF(1,0) ⊂ GrFvert(QH∗(G/B)) denotes the graded component

of σ sα + ∪b<(1,0)Fb. Similar notations are taken whenever “( )” is used. In addition, we

have the following proposition.

Proposition 2.6 (Proposition 3.23 of [25]). For any u∈ WPα we have σu � σ sα = σusα +∑
w,λ bw,λqλσw with grα(qλσ

w) < grα(σusα ) whenever bw,λ �= 0. �

The next lemma follows directly from the definition of the grading map grα.

Lemma 2.7. Let u, v, w ∈ W and λ ∈ Q∨. Then grα(σ
u)+ grα(σ

v)= grα(qλσ
w) if and only if

both �(w)+ 〈2ρ, λ〉 = �(u)+ �(v) and sgnα(w)+ 〈α, λ〉 = sgnα(u)+ sgnα(v) hold. �

2.2.3 Proof of Theorem 1.1

The first half of Theorem 1.1 is a direct consequence of Proposition 2.4. Indeed, if

sgnβ(w)+ 〈β, λ〉> sgnβ(u)+ sgnβ(v) for some β ∈Δ, then grβ(qλσ
w) > grβ(σ

u)+ grβ(σ
v).

Since σu � σ v ∈ Fgrβ (σu) � Fgrβ (σ v) ⊂ Fgrβ (σu)+grβ (σ v) , we conclude Nw,λ
u,v = 0.

It remains to show the second half of Theorem 1.1. Note that sgnα is a map from

W to {0,1}. Since sgnα(u)+ sgnα(v)= 2, we have sgnα(u)= sgnα(v)= 1. Consequently, u′ :=
usα and v′ := vsα are both elements in WPα . In the rest, we can assume �(w)+ 〈2ρ, λ〉 =
�(u)+ �(v). (Otherwise, both Nw,λ

u,v and Nw,λ−α∨
u′,v′ would vanish, directly following from the

standard Z-graded ring structure (∗) of QH∗(G/B).)

By Proposition 2.6 we have

σu′
� σ sα = σu ∈ GrFgrα(σu) and σv

′
� σ sα = σv ∈ GrFgrα(σ v).

Note that QH∗(G/B) is an associative and commutative Z2-filtered algebra with respect

to F . As a consequence, GrF (QH∗(G/B)) is an associative and commutative Z2-graded

algebra. Thus we have

LHS := σu′
� σ sα � σ v

′
� σ sα = σu � σ v =: RHS
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in GrFgrα(σu)+grα(σ v). By Lemma 2.7 we have

RHS = σu � σ v =
∑

Nw̃,λ̃
u,v qλ̃σ

w̃ =
∑

Nw̃,λ̃
u,v qλ̃σ

w̃,

where the summation is over those (w̃, λ̃) ∈ W × Q∨ satisfying �(w̃)+ 〈2ρ, λ̃〉 = �(u)+ �(v)

and sgnα(w̃)+ 〈α, λ̃〉 = 2. Let �α denote the quantum product for QH∗(G/Pα). By Proposi-

tion 2.5 we have

LHS = (σu′
� σ v

′
) � (σ sα � σ sα )=Ψ α

hor(σ
u′
�α σ

v′
) � qα∨ =

∑
Nw′,λPα

u′,v′ ψα(σw
′qλPα

)qα∨ ,

the summation over those (w′, λPα ) ∈ WP × Q∨/Q∨
Pα (with λPα being effective). Then we

conclude Nw,λ
u,v = Nw,λ−α∨

usα,vsα by comparing coefficients of both sides. Indeed, for λPα := λ+
Q∨

Pα , we have λB = λ− α∨ via the Peterson–Woodward comparison formula (by noting

〈α, λ− α∨〉 = −sgnα(w) ∈ {0,−1}). Setw′ :=w if sgnα(w)= 0, orwsα if sgnα(w)= 1. Note that

ψα(σ
w′

qλPα
)qα∨ = σwqλ. We conclude

Nw,λ
u,v = Nw′,λPα

u′,v′ = Nw,λ−α∨
u′,v′ .

Note that, for any ŵ ∈ W, we have

σ ŵ � σ sα =
⎧⎨
⎩
σ ŵsα , if sgnα(ŵ)= 0,

σ ŵsα � σ sα � σ sα = σ ŵsαqα∨ , if sgnα(ŵ)= 1.

Hence, we have

σu � σ v = σu � σ v
′
� σ sα = σu � σ v

′
� σ sα

=
∑

Nŵ,λ̂
u,v′ qλ̂σ

ŵ � σ sα

=
∑

Nŵ,λ̂
u,v′ qλ̂σ

ŵsα +
∑

Nŵ,λ̂
u,v′ qλ̂+α∨σ ŵsα ,

the former (resp. latter) summation over those (ŵ, λ̂) ∈ W × Q∨ satisfying �(ŵ)+ 〈2ρ, λ̂〉 =
�(u)+ �(v′), sgnα(ŵ)+ 〈α, λ̂〉 = 1 and sgnα(ŵ)= 0 (resp. 1); hence, if sgnα(w)= 0 (resp. 1),

then we have Nw,λ
u,v qλσw = Nŵ,λ̂

u,v′ qλ̂+α∨σ
ŵsα (resp. Nŵ,λ̂

u,v′ qλ̂σ
ŵsα ) for a unique (ŵ, λ̂) in the latter

(resp. former) summation. Thus we conclude that Nw,λ
u,v equals Nwsα,λ−α∨

u,vsα if sgnα(w)= 0, or

Nwsα,λ
u,vsα if sgnα(w)= 1.
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2.3 Applications

In this subsection, we give applications of Theorem 1.1 for Δ of type A case. (See the

introduction for possible further applications for other cases.) For convenience, we

assume the Dynkin diagram of Δ is given by ◦−−−◦ · · · ◦−−−◦
α1 α2 αn

. The flag variety of type

An, corresponding to a subset Δ \ {αa1 , . . . , αak}, parameterizes flags of linear subspaces

{Va1 ≤ · · · ≤ Var ≤ Cn+1 | dimC Vaj = aj, j = 1, . . . , r} where [a1, . . . ,ar] is a subsequence of

[1, . . . ,n]. We fix an αk once and for all. Let P ⊃ B denote the parabolic subgroup that

corresponds to ΔP =Δ \ {αk}. Note that the complete flag variety F �n+1 = G/B and the

complex Grassmannian Gr(k,n+ 1)= G/P correspond to the subsequences [1,2, . . . ,n]

and [k], respectively, where G = SL(n+ 1,C). The natural projection π : G/B → G/P is

just the forgetting map, sending a flag V1 ≤ · · · ≤ Vn ≤ Cn+1 in F �n+1 to the point Vk ≤ Cn+1

in Gr(k,n+ 1). Furthermore, the induced map π∗ : H∗(G/P )→ H∗(G/B) sends a Schubert

class σwP ∈ H∗(G/P ) (where w ∈ WP ) to the Schubert class π∗(σwP )= σwB ∈ H∗(G/B). Such a

class σw in H∗(G/B) (with w ∈ WP ) is called a Grassmannian class. By the abuse of nota-

tion, we skip the subscript “B” and “P ”. Using Theorem 1.1, we can show Theorem 1.2

stated in the introduction, a reformulation of which is given as follows.

Theorem 1.2. For any u∈ WP , v,w ∈ W, and λ ∈ Q∨, there exist v′, w′ ∈ W such that

Nw,λ
u,v = Nw′,0

u,v′ .
�

To prove the above theorem, we need the following two lemmas.

Lemma 2.8. Given any nonzero λ= ∑n
j=1 ajα

∨
j ∈ Q∨ with aj ≥ 0 for all j, there exists m ∈

{1, . . . ,n} such that 〈αm, λ〉> 0 and am > 0. �

Proof. Assume 〈αm, λ〉 ≤ 0 for all m. Then λ is a nonpositive sum of fundamental

coweights. As a consequence, λ is a nonpositive sum of simple coroots α∨
j ’s (by Table 1

in Section 13.2 of [17]). Thus λ= 0, which contradicts the assumptions.

Hence, there exists m such that 〈αm, λ〉> 0. Consequently, we have am > 0, by

noting that 〈αm, α
∨
j 〉 is positive if j = m, or nonpositive otherwise. �

Remark 2.9. Lemma 2.8 works for Δ of all types with the same proof. �

Lemma 2.10. Let λ= ∑n
j=1 ajα

∨
j ∈ Q∨ with aj ≥ 0 for all j. If 〈αm, λ〉> 0 for a unique m,

then we have 〈αm, λ〉 ≥ 2. �
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Proof. Let Dyn(Δ̃) denote the Dynkin diagram associated to a subbase Δ̃⊂Δ.

Define Δ′ := {α j | aj > 0}. Clearly, αm ∈Δ′. We first conclude that Dyn(Δ′) is con-

nected. (Otherwise, we can write Δ′ =Δ1 �Δ2 with Dyn(Δ1) being a connected compo-

nent of Dyn(Δ′). Then λ= λ1 + λ2 with λ1 (resp. λ2) belonging to the coroot sublattice of

Δ1 (resp. Δ2). Note that Δ1 and Δ2 are orthogonal to each other. For each j ∈ {1,2} there

exists αmj ∈Δ j such that 〈αmj , λ j〉> 0 by Lemma 2.8. This contradicts the uniqueness of

αm.) Thus Δ′ = {αi, αi+1, . . . , αp} for some 1 ≤ i ≤ m ≤ p≤ n.

When i = p, the statements holds, by noting that 〈αm, α
∨
m〉 = 2 and λ= amα

∨
m

in this case. When i < p, we can assume i <m without loss of generality. Since 0 ≥
〈αi, λ〉 = 2ai − ai+1, we have ai+1 ≥ 2ai > ai > 0. Since 0 ≥ 〈αi+1, λ〉 = −ai + 2ai+1 − ai+2, we

have ai+2 ≥ ai+1 + (ai+1 − ai) > ai+1 > 0. By induction we conclude am > am−1 > 0. If m = p,

then we have 〈αm, λ〉 = 2am − am−1 ≥ 2(am−1 + 1)− am−1 > 2. If m< p, then we can show

am > am+1 with the same arguments. As a consequence, we have 〈αm, λ〉 = −am−1 + 2am −
am+1 ≥ −am−1 + (am−1 + 1 + am+1 + 1)− am+1 ≥ 2. �

Proof of Theorem 1.2. Clearly, the statement holds if Nw,λ
u,v vanishes or λ= 0.

Given nonzero λ= ∑n
j=1 ajα

∨
j ∈ Q∨, we can assume aj ≥ 0 for all j, that is, λ is

effective, because otherwise Nw,λ
u,v vanishes. Since λ �= 0, there exists m such that 〈αm, λ〉>

0 by Lemma 2.8. We simply define sgnm := sgnαm
, which is a map from W to {0,1} defined

in the introduction (see also Section 2.2.2).

If such an m is not unique, then we can take any one such m that is not equal to

k. Since u∈ WP where ΔP =Δ \ {αk}, we have sgnm(u)= 0. If sgnm(v) < sgnm(w)+ 〈αm, λ〉,
then we have Nw,λ

u,v = 0 by Theorem 1.1(1); and hence we are done. Otherwise, we have

sgnm(v)= sgnm(w)+ 〈αm, λ〉 = 1 and sgnm(w)= 0. By Theorem 1.1(2) we have Nwsm,λ
usm,v

=
N
wsm,λ−α∨

m
u,vsm = Nw,λ

u,v .

If such an m is unique, then we have 〈αm, λ〉 ≥ 2 by Lemma 2.10. Thus either

sgnm(u)+ sgnm(v) < sgnm(w)+ 〈αm, λ〉 or sgnm(u)+ sgnm(v)= sgnm(w)+ 〈αm, λ〉 holds.

For the former case, Nw,λ
u,v vanishes and then it is done. For the latter case, we con-

clude m = k, sgnk(v)= 1, sgnk(w)= 0, and 〈αk, λ〉 = 2, by noting that sgn j(u)= 1 if j = k,

or 0 otherwise. Thus we have Nw,λ
u,v = N

w,λ−α∨
k

usk,vsk = N
wsk,λ−α∨

k
u,vsk , by using Theorem 1.1(2)

again.

Hence, either of the following must hold: (i) Nw,λ
u,v = 0 (and then it is done); (ii)

Nw,λ
u,v = Nwsm,λ

′
u,vsm

with λ′ = λ− α∨
m = ∑

j a′
jα

∨
j , in which |λ′| = |λ| − 1 with a′

j = aj − 1 ≥ 0 if

j = m, or aj otherwise. Here |λ| := ∑n
j=1 aj. Therefore, the statement holds, by using

induction on |λ|. �
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Besides Theorem 1.2, we can also find other applications of Theorem 1.1.

Example 2.11. Let G/B = F �4. Take u= v = s2s1s2, w= s2s3, and λ= α∨
1 + α∨

2 . (Note that

neither of the Schubert classes σu, σ v are Grassmannian classes.) We have

Nw,λ
u,v = N

ws3,λ+α∨
3

u,vs3 = N
s2,α

∨
1 +α∨

2 +α∨
3

s2s1s2,s2s1s2s3 ,

in which we increase the degree qλ first. Then we have

Nw,λ
u,v = N

1,α∨
1 +α∨

2 +α∨
3

s2s1,s2s1s2s3 = N
s3,α

∨
1 +α∨

2
s2s1,s2s1s2 = N

s3s2,α
∨
1

s2s1,s2s1 = Ns3s2,0
s2,s2

= 1. �

In fact, we already know that all the nonzero three-pointed, genus zero Gromov–

Witten invariants for F �4 are equal to 1, by the multiplication table in [12]. Using

Theorem 1.1, we can find their corresponding classical intersection numbers, the most

complicated case of which has been given in the above example.

The proof of Theorem 1.2 has also shown us how to find v′ and w′. Combining

Theorem 1.2 and the Peterson–Woodward comparison formula (Proposition 2.1), we can

obtain many nice applications, including alternative proofs of both the quantum Pieri

rule for all flag varieties of type A given by Ciocan-Fontanine in [8] and the result that

any three-pointed genus zero Gromov–Witten invariant on a complex Grassmannian is

a classical intersection number on a two-step flag variety of the same type, which is

the central theme of [3] for the type A case by Buch, Kresch, and Tamvakis. In order to

illustrate this clearly, we will show how to recover the “quantum to classical” principle

for complex Grassmannians in the rest.

For the complex Grassmannian X = G/P = Gr(k,n+ 1), we note H2(X,Z)∼=
Q∨/Q∨

P
∼= Z, so that we simply denote Nw,d

u,v := Nw,λP
u,v where u, v, w ∈ WP and λP =

dα∨
k + Q∨

P . Write d= m1k + r1 = m2(n− k + 1)+ r2, where 1 ≤ r1 ≤ k and 1 ≤ r2 ≤ n− k + 1.

Then for λ := m1
∑k−1

j=1 jα∨
j + ∑r1−1

j=1 jα∨
k−r1+ j + dα∨

k + m2
∑n−k+1

j=1 jα∨
n+1− j + ∑r2−1

j=1 jα∨
k+r2− j,

we have 〈αi, λ〉 = −1 if i ∈ {k − r1,k + r2}, or 0 otherwise. Thus it follows directly from the

uniqueness of λB that λB = λ. Furthermore, by Proposition 2.1, we have Nw,d
u,v = Nw̃,λB

u,v with

w̃=wωPωP ′ =wu(k−1)
k−r1

u(k−2)
k−r1

· · · u(k−r1)
k−r1

v
(n−r2+1)
n+1−k−r2

v
(n−r2+2)
n+1−k−r2

· · · v(n)n+1−k−r2

(see, e.g., Lemma 3.6 of [25] for the way of obtaining ωPωP ′ ). Here, for any 1 ≤ i ≤ m,

we define u(m)i := sm−i+1 · · · sm−1sm and v
(m)
i = (u(m)i )−1 = smsm−1 · · · sm−i+1; in addition, we

define u(m)0 = v
(m)
0 = id.
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In particular, if 1 ≤ d≤ min{k,n+ 1 − k}, then we have d= r1 = r2 and

ΔP ′ =ΔP \ {αk−d, αk+d}. Furthermore in this case, we go through the proof of

Theorem 1.2 for the above special λB , by reducing it to the zero coroot

according to the ordering ((α∨
k , α

∨
k−1, . . . , α

∨
k−d+1), (α

∨
k+1, α

∨
k+2, . . . , α

∨
k+d−1), (α

∨
k , . . . , α

∨
k−d+2),

(α∨
k+1, . . . , α

∨
k+d−2), . . . , (α

∨
k , α

∨
k−1), (α

∨
k+1), α

∨
k ). Correspondingly, we denote

x := v
(k)
d uk+d−1

d−1 v
(k)
d−1u(k+d−2)

d−2 · · · v(k)2 u(k+1)
1 sk.

(Note �(x)= d2.) As a direct consequence, we have the following corollary

Corollary 2.12. For any u, v, w ∈ WP and d∈ Z with 1 ≤ d≤ min{k,n+ 1 − k}, we have

Nw,d
u,v = Nw̃x,0

u,vx , provided that �(vx)= �(v)− �(x) and �(w̃x)= �(w̃)+ �(x), and zero other-

wise. �

Let P̄ ⊃ B denote the parabolic subgroup that corresponds to the subset Δ \
{αk−d, αk+d}; that is, G/ P̄ = F �k−d,k+d;n+1 = {V ≤ V ′ ≤ Cn+1 | dim V = k − d,dim V ′ = k + d} is

a two-step flag variety. We can reprove the next result of Buch, Kresch, and Tamvakis.

Proposition 2.13 ([3, Corollary 1]). For any Schubert classes σu, σ v, σw in H∗(Gr(k,n+
1),Z) and any d≥ 1, the Gromov–Witten invariant Nw,d

u,v coincides with the

classical intersection number Nw̃,0
ux,vx for σux ∪ σvx in H∗(F �k−d,k+d;n+1,Z), provided that

d≤ min{k,n+ 1 − k}, �(ux)= �(u)− �(x), �(vx)= �(v)− �(x), and w̃ ∈ WP̄ , and vanishes

otherwise. �

To show the above proposition, we need the next two lemmas.

Lemma 2.14. For any Schubert classes σu, σ v, σw in H∗(Gr(k,n+ 1),Z), the Gromov–

Witten invariant Nw,d
u,v vanishes unless 0 ≤ d≤ min{k,n+ 1 − k}. �

Proof. Note Nw,d
u,v = Nw̃,λB

u,v . If k= 1 (resp. n), then 〈αk, λB〉 = d+ m2 + 1 (resp. d+ m1 + 1)

is larger than 2, whenever d> 1 = min{k,n+ 1 − k}. Thus we have Nw̃,λB
u,v = 0 by

Theorem 1.1(1). If 2 ≤ k≤ n− 1, then we have 〈αk, λB〉 = m1 + m2 + 2. By Theorem 1.1(1)

again, we have Nw̃,λB
u,v = 0 unless m1 = m2 = 0, in which case we still have d= r1 = r2 ≤

min{k,n+ 1 − k}. �

Lemma 2.15. For any v ∈ WP we have vx ∈ WP̄ if �(vx)= �(v)− �(x). �
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Proof. Since �(vx)= �(v)− �(x), we have �(vx)= �(vxsk)− 1, so that vx(αk) ∈ R+.

For any j ∈ {1, . . . ,k − d− 1,k + d+ 1, . . . ,n} we have vx(α j)= v(α j) ∈ R+. For

j ∈ {k − d+ 1, . . . ,k − 1} we have vx(α j)= vv
(k)
d uk+d−1

d−1 · · · v(k)k− j+1u(2k− j)
k− j v

(k)
k− j(α j) =

vv
(k)
d uk+d−1

d−1 · · · v(k)k− j+2u(2k− j+1)
k− j+1 (αk+1)= v(αk+d) ∈ R+. Similarly, for j ∈ {k + 1, . . . ,k + d− 1}

we have vx(α j)= v(α j−d) ∈ R+. Hence, we have vx ∈ WP̄ . �

Remark 2.16. The Weyl group W for G = SL(n+ 1,C) is canonically isomorphic to the

permutation group Sn+1 by mapping each simple reflection si ∈ W to the transposition

(i, i + 1) ∈ Sn+1. In “one-line” notation, each permutation t ∈ W = Sn+1 is written as

(t(1), . . . , t(n+ 1)). In particular, Grassmannian permutations t ∈ WP for G/P = Gr(k,n+
1) are precisely the permutations with (at most) a single descent occurring at the kth

position (i.e., t(k) > t(k + 1)). Permutations t ∈ WP̄ for G/ P̄ = F �k−d,k+d;n+1 are precisely

the permutations with (at most) two descents occurring at the (k − d)th and (k + d)th

positions. With this characterization, vx ∈ WP̄ is the element obtained from v ∈ WP

by sorting the values {v(k − d+ 1), . . . , v(k + d)} to be in increasing order, which coin-

cides with the descriptions in Section 2.2 of [3]. (Indeed, we note that sj(i)= i for

any j ∈ {k − d+ 1, . . . ,k + d− 1} and any i ∈ {1, . . . ,k − d,k + d+ 1, . . . ,n+ 1}. Thus we

have vx(i)= v(i) for any such i and, consequently, the set {v(k − d+ 1), . . . , v(k + d)}
coincides with the set {vx(k − d+ 1), . . . , vx(k + d)}.) Similarly, we can show that w̃ is

the permutation (w(d+ 1), . . . , w(k), w̃(k − d+ 1), . . . , w̃(k + d), w(k + 1), . . . , w(n− d+ 1))

, in which (w̃(k − d+ 1), . . . , w̃(k + d)) is obtained from w ∈ WP by sorting the values

{w(1), . . . , w(d), w(n− d+ 2), . . . , w(n+ 1)} to be in the increasing order. �

Proof of Proposition 2.13. It follows from Lemma 2.14 and Corollary 2.12 that Nw̃,d
u,v =

Nw̃x,0
u,vx if 1 ≤ d≤ min{k,n+ 1 − k}, �(vx)= �(v)− �(x) and �(w̃x)= �(w̃)+ �(x), or 0 other-

wise. When all of these hold, we have vx ∈ WP̄ by Lemma 2.15 and note that x is in

the Weyl subgroup generated by {sk−d+1, . . . , sk+d−1}. In particular, for any j ∈ {k − d+
1, . . . ,k + d− 1}, we have sgn j(vx)= 0. Thus, by Theorem 1.1, we have Nw̃x,0

u,vx = Nw̃, 0
ux−1,vx,

provided that �(ux−1)= �(u)− �(x−1), and zero otherwise. This assumption implies that

ux ∈ WP̄ , because of the observation that x = x−1. As a consequence, Nw̃, 0
ux,vx = 0 unless

w̃ ∈ WP̄ , for which the assumption “�(w̃x)= �(w̃)+ �(x)” holds automatically. �
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