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Mirror maps equal SYZ maps for toric Calabi–Yau surfaces

Siu-Cheong Lau, Naichung Conan Leung and Baosen Wu

Abstract

We prove that the mirror map is the Strominger–Yau–Zaslow map for every toric Calabi–Yau
surface. As a consequence, one obtains an enumerative meaning of the mirror map. This
involves computing genus-0 open Gromov–Witten invariants, which is done by relating them
with closed Gromov–Witten invariants via compactification and using an earlier computation by
Bryan–Leung.

1. Introduction

The mirror map has been an essential ingredient in the study of mirror symmetry for Calabi–
Yau manifolds. It gives a canonical local isomorphism between the Kähler moduli and the
mirror complex moduli near the large complex structure limit. Enumerative predictions can be
made only in the presence of a mirror map, so that one can identify Yukawa couplings among
the mirror pair.

Yet geometric meanings of the mirror map remain unclear to mathematicians. Integrality
of coefficients of certain expansion of the mirror map have been studied (see, for example,
[18, 21, 23]), and it is expected that these coefficients contain enumerative meanings. This
paper obtains such a meaning in the study of mirror symmetry for toric (non-compact) Calabi–
Yau surfaces.

Let X be a toric Calabi–Yau n-fold. Hori–Vafa [15] have written down the mirror family of X
as hypersurfaces in C2 × (C×)n−1 via physical considerations. On the other hand, Strominger–
Yau–Zaslow [22] proposed a general principle that the mirror should be constructed via
T -duality, which is, roughly speaking, taking dual torus fibrations. From this SYZ perspective
a natural question arises: can the mirror written down by Hori–Vafa be obtained by T -duality?

This question has an affirmative answer [5]: By taking dual torus bundles and Fourier
transform of open Gromov–Witten invariants of X which admits wall-crossing in the sense
of Auroux [1, 2], the mirror X̌ (as a complex manifold) was written down [5, Theorem 4.38]
explicitly in terms of Kähler parameters and open Gromov–Witten invariants of X (as a
symplectic manifold), and this result agrees with that of Hori–Vafa in the sense that X̌ appears
as a member of Hori–Vafa’s mirror family.

While the Hori–Vafa recipe gives the mirror complex moduli, this SYZ approach gives an
explicit map, which we call the SYZ map, from the Kähler moduli to the mirror complex
moduli. An immediate question is, does it agree with the mirror map, which pulls back the
mirror canonical complex coordinates to the canonical Kähler coordinates? The paper [5] has
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studied examples such as KP1 and KP2 , and the SYZ maps coincide with the mirror maps in
these examples.

This paper gives an affirmative answer to this question for n = 2. The main result is
Theorem 4.1, and for convenience we restate it here in one sentence.

Theorem 1.1 (Restatement of Theorem 4.1). For every toric Calabi–Yau surface, the
mirror map is the SYZ map.

Now since the SYZ map is written down in terms of enumerative invariants (namely, the
one-pointed genus-0 open Gromov–Witten invariants of X), we obtain a geometric meaning
of the mirror map. Moreover, in these cases the open Gromov–Witten invariants are indeed
integer-valued. As a result, one obtains the integrality of the coefficients of the mirror map.

To prove this theorem, we need to compute one-pointed genus-0 open Gromov–Witten
invariants of a Lagrangian toric fibre T ⊂ X. Our strategy is to relate the open invariants
to some closed invariants of X̄, where X̄ is a suitable toric compactification of X. Then, by
the results of Bryan–Leung [3] when they compute the Yau–Zaslow numbers for elliptic K3
surfaces, we obtain the answers for these open invariants (see Theorem 4.2). This strategy is
based on a generalization of the relation between open and closed invariants proved by Chan
[4], and this strategy has also been used in [19] for computing open invariants of certain toric
Calabi–Yau three-folds.

Since we are in the dimC = 2 situation so that every Calabi–Yau is automatically hyper-
Kähler, there is another approach to mirror symmetry via hyper-Kähler twist. We see (in
Subsection 4.3) that the SYZ mirror is consistent with this hyper-Kähler perspective.

The organization of this paper is as follows. A short review on toric manifolds (with an
emphasis on its symplectic geometry) is given in Section 2. Then in Section 3 we specialize the
SYZ mirror construction proposed in [5] to toric Calabi–Yau surfaces. Section 4 is the main
section, which computes the open Gromov–Witten invariants and proves Theorem 1.1.

Remark 1. Having computed the open invariants, we see that the mirror X̌ constructed
via the SYZ approach agrees with the one written down by Hosono, who approached the subject
from the perspective of hypergeometric series instead.

2. Toric Calabi–Yau surfaces

2.1. A quick review on toric manifolds

Let us begin with some notation and terminologies for toric manifolds. Let N ∼= Zn be a lattice,
and for simplicity we always use the notation NR := N ⊗ R for a Z-module R. From a simplicial
convex fan Σ supported in NR, we obtain a toric complete complex n-fold X = XΣ that admits
an action from the complex torus NC/N ∼= (C×)n, which accounts for its name ‘toric manifold’.
There is an open orbit in XΣ on which NC/N acts freely, and by abuse of notation we also
denote this orbit by NC/N ⊂ XΣ.

We denote by M the dual lattice of N . Every lattice point ν ∈ M gives a nowhere-0
holomorphic function exp 2πi (ν , ·) : NC/N → C which extends as a meromorphic function
on XΣ. Its zeroes and poles give a toric divisor that is linearly equivalent to 0. (A divisor D in
XΣ is toric if D is invariant under the action of NC/N on XΣ.)

If we further equip XΣ with a toric Kähler form ω, then the action of T := NR/N on XΣ

induces a moment map
μ0 : PΣ −→ MR,
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whose image is a polyhedral set P ⊂ MR defined by a system of inequalities

(vj , ·) � cj ,

where vj ∈ N , for j = 0, . . . ,m, are all primitive generators of rays of Σ, and cj ∈ R are some
suitable constants.

The polyhedral set P admits a natural stratification by its faces. Each codimension-1 face
Tj ⊂ P which is normal to vj ∈ N corresponds to an irreducible toric divisor Dj = μ−1

0 (Tj) ⊂
XΣ for j = 0, . . . , m, and all other toric divisors are generated by {Dj}m

j=0. For example, the
anti-canonical divisor K−1

X is
∑m

j=0 Dj .

2.2. Classification of toric Calabi–Yau surfaces

Definition 2.1. A toric manifold X = XΣ is Calabi–Yau if its anti-canonical divisor
K−1

X =
∑m

i=0 Di is linearly equivalent to 0 in a toric way, in the sense that there exists an
NC/N -invariant holomorphic function whose zero divisor is K−1

X .

We note that by definition a toric Calabi–Yau possesses a non-zero holomorphic function,
and hence it must be non-compact. Since every NC/N -invariant holomorphic function is of the
form exp 2πi (ν, ·) for some ν ∈ M , an alternative definition is that there exists ν ∈ M such
that (ν , vi) = 1 for all primitive generators vi ∈ N of rays of Σ.

A toric Calabi–Yau manifold possesses a holomorphic volume form, which is locally written
as dζ0 ∧ . . . ∧ dζn−1, where {ζi}n−1

i=0 are local complex coordinates corresponding to the basis
dual to {vi}n−1

i=0 . In this paper, we concentrate on toric Calabi–Yau surfaces, which are classified
by the number of rays in their fans.

Proposition 2.2. Let Σm be the convex fan supported in R2 whose rays are generated
by (i, 1) for i = 0, . . . , m. Then XΣm

is a toric Calabi–Yau surface. Conversely, if XΣ is a toric
Calabi–Yau manifold, then XΣ

∼= XΣm
as toric manifolds for some m � −1 (m = −1 means

that the fan is {0} and so XΣm
∼= (C×)2).

Proof. Taking ν = (0, 1) ∈ Z2, one has (ν , (i, 1)) = 1 for all i = 0, . . . ,m. Thus, XΣm
is a

toric Calabi–Yau surface.
Now suppose that XΣ is a toric Calabi–Yau surface whose fan Σ has rays generated by vi ∈ N

for i = 0, . . . ,m. We may take {v0, v1} as a basis of N and identify it with {(0, 1), (1, 1)} ⊂ Z2.
Then (ν , v0) = (ν , v1) = 1 implies that ν is identified with (0, 1). Moreover, since, for each
i = 0, . . . , m, (ν , vi) = 1, it follows that vi must be identified with (ki, 1) for some ki ∈ Z.
Without loss of generality, we may assume that v0, . . . , vm are labelled in the clockwise fashion,
so that {ki} is an increasing sequence. Inductively, using the fact that {vi−1, vi} is simplicial,
one can see that ki = i for all i = 0, . . . , m.

Remark 2. Every toric Calabi–Yau surface XΣm
for m � 1 is the toric resolution of

Am−1 singularity C2/Zm, whose fan is the cone R�0〈(0, 1), (m, 1)〉 ⊂ R2. (See Figure 1.)
The set of compact irreducible toric divisors is {Di}m−1

i=1 , and it generates H2(X, Z). The
Kähler moduli of XΣm

have canonical Kähler coordinates given by

qi := exp
(
−

∫
Di

ω

)
,

for i = 1, . . . ,m − 1.



258 SIU-CHEONG LAU, NAICHUNG CONAN LEUNG AND BAOSEN WU

(m,1)(0,1)
Σm

Figure 1. Toric resolution of C2/Zm.

2.3. Symplectic invariants

We would be interested in the symplectic geometry of X = XΣm
. This subsection gives a brief

review on some important symplectic invariants that we shall use later.
For a Lagrangian torus T in a symplectic manifold (X,ω), let π2(X,T ) denote the group of

homotopy classes of maps
u : (Δ, ∂Δ) −→ (X,T ),

where Δ := {z ∈ C : |z| � 1} denotes the closed unit disc in C. For β ∈ π2(X,T ), the two most
important classical symplectic invariants are its symplectic area

∫
β

ω and its Maslov index
μ(β). Moreover, we have the open Gromov–Witten invariants defined by Fukaya, Oh, Ohta
and Ono [9, 10], which are central to the study of mirror symmetry.

Definition 2.3 [9, 10]. Let X be a symplectic manifold together with a choice of
compatible almost complex structure. Given a Lagrangian torus T ⊂ X and β ∈ π2(X,T ),
the genus-0 one-pointed open GW-invariant nT

β is defined as

nT
β := ([M1(T, β)] , [pt]) .

In the above expression, M1(T, β) is the moduli space of stable maps (Σ, ∂Σ, p0) → (X,T ),
where Σ is a genus-0 Riemann surface with a connected boundary ∂Σ and p0 ∈ ∂Σ. We denote
by [M1(T, β)] ∈ Hn(T, Q) its virtual fundamental chain, so that we may take the Poincaré
pairing with the point class [pt] ∈ H0(T, Z) to give a rational number.

From now on we may write nβ = nT
β . Recall that the moduli space Mk(T, β) of stable disks

with k marked points representing β has expected dimension n + μ(β) + k − 3. In our situation
k = 1, and so the expected dimension is n + μ(β) − 2, which matches with dim T = n if and
only if μ(β) = 2. Thus, nβ 
= 0 only when μ(β) = 2. Coming back to toric manifolds, we have
the following result by Cho–Oh [8] and Fukaya, Oh, Ohta and Ono [11].

Proposition 2.4 [8, 11]. Let X be a toric manifold and T ⊂ X be a Lagrangian toric
fibre. One has nT

βi
= 1 where βi ∈ π2(X,T) are the basic disk classes that are of Maslov index 2.

Moreover, for all β ∈ π2(X,T), nβ 
= 0 only when β = βi + α for some i = 1, . . . ,m − 1 and
α ∈ H2(X) represented by some rational curves with KX · α = 0.

In the above proposition, nβ is explicitly known in unobstructed situations. When X is
non-Fano and β = βi + α for α ∈ H2(X) − {0}, M1(T, β) may be obstructed, which makes
it difficult to compute nβ . In Subsection 4.1, we overcome this problem when X is a toric
Calabi–Yau surface.
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3. The mirror of a toric Calabi–Yau surface via SYZ

Via SYZ construction, the mirror of a toric Calabi–Yau manifold X of any dimension is written
down in terms of Kähler parameters and open Gromov–Witten invariants of X (see [5]).
Restricting to dimX = 2, the result is the following theorem.

Theorem 3.1 (Surface case of Theorem 4.38 in [5]). Let X = XΣm
be a toric Calabi–Yau

surface. By SYZ construction the mirror of (X,ω) is the complex manifold

X̌ :=

⎧⎨
⎩(z, u, v) ∈ C× × C2 : uv = 1 +

m∑
i=1

⎛
⎝i−1∏

j=1

qi−j
j

⎞
⎠ (1 + δi)zi

⎫⎬
⎭ ,

where

qj := exp

(
−

∫
Dj

ω

)
for j = 1, . . . ,m − 1

are parameters recording symplectic areas of the compact irreducible toric divisors
D1, . . . , Dm−1 ⊂ X, and

δi :=
∑
α�=0

nT
βi+α exp

(
−

∫
α

ω

)
for i = 1, . . . ,m − 1

are ‘correction’ terms in which the summation is over all α ∈ H2(X, Z) − {0} represented by
rational curves, nT

βi+α are the open Gromov–Witten invariants of a Lagrangian toric fibre
T ⊂ X for the disk classes βi + α ∈ π2(X,T), and δm is 0.

Remark 3. After the open Gromov–Witten invariants nT
βi+α are computed explicitly, we

see (in Corollary 4.3) that the defining equation of X̌ is simply

uv = (1 + z)(1 + q1z)(1 + q1q2z) . . . (1 + q1 . . . qm−1z).

Thus, the mirror X̌ is a smoothing of the Am−1 singularity C2/Zm. As X degenerates to
C2/Zm, qj → 1 for all j = 1, . . . ,m − 1, and so the mirror X̌ deforms to

C2/Zm
∼= {uv = (1 + z)m}.

This class of mirror manifolds has already been investigated by Hosono [16] from the physical
point of view, and we arrive at the same conclusion from the SYZ construction.

In this section, we give a very brief description to the SYZ mirror construction specialized
to two-dimensional toric Calabi–Yau surfaces. The readers are referred to [5] for details in all
dimensions.

3.1. T-duality

The SYZ approach [22] proposed that mirror symmetry is achieved by taking dual torus
fibrations. To do this, we need a Lagrangian torus fibration over X = XΣm

, and this has been
written down by Gross [13]:

μ = ([μ0], |w − K| − K) : X −→ R2

R〈(0, 1)〉 × R ∼= R2,

where K ∈ R+, w is a holomorphic function on X locally written as ζ1ζ2 on each toric affine
coordinate patch Spec(C[ζ1, ζ2]), and μ0 : X → P ⊂ R2 is the moment map.
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Q1Q2Qm

T0

T1

Tm

P

B
T01

Figure 2. The base of µ.

λ2
λ1

Q1Qm

U

Δ2

Δ1

Figure 3. The disks Δ1 and Δ2.

The image of μ is the closed upper half-plane B = R × R�−K . The discriminant loci of μ
consist of ∂B = R × {−K} and isolated points Qi = ([Ti−1,i], 0) ∈ B for i = 1, . . . , m, where
each Ti−1,i is a vertex of P adjacent to the edges Ti−1 and Ti. (See Figure 2.)

Let

B0 = R × R>−K − {Q1, . . . , Qm}
be the complement of discriminant loci in B. The fibre of μ at r ∈ B0 is denoted by Fr. Away
from the discriminant loci one may take the dual torus bundle:

μ̌ : X̌0 := {(Fr,∇) : r ∈ B0,∇ is a flat U(1)-connection on Fr} −→ B0,

which is referred to as the semi-flat mirror [20]; X̌0 has semi-flat complex coordinates (z1, z2):
Let the coordinates of Q1 be (a, 0) and

U = B0 − {(r1, 0) ∈ B0 : r1 � a},
which is a contractible open set in B0 as shown in Figure 3, and λi ∈ π1(Fr) (i = 1, 2) are
represented by the boundaries of the two disks Δi as shown in the diagram. Then, for (Fr,∇) ∈
μ̌−1(U),

zi(Fr,∇) := exp

(
−

∫
Δi(r)

ω

)
Hol∇(λi).

The above construction of semi-flat mirror complex manifolds has been discussed numerous
publications such as [20], and it is proposed that the semi-flat complex structure has to be
corrected for compactifications [14]. The following section gives a brief review on these quantum
corrections, which have been carried out in detail for general toric Calabi–Yau surfaces in [5].
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3.2. Wall-crossing and the mirror complex coordinates

An essential ingredient of quantum corrections is the open Gromov–Witten invariant nFr

β ,
which exhibits the wall-crossing phenomenon in the sense of Auroux [1, 2] (various examples
such as C2, C3 and the Hirzebruch surface F2 have been discussed by Auroux to explain this
wall-crossing phenomenon).

Proposition 3.2 (see Section 4.5 of Chan, Lau and Leung [5] for the precise statement
and proof). Let X = XΣm

be a toric Calabi–Yau surface, and H := R × {0} ⊂ B, which is
referred to as ‘the wall’. Write B0 − H = B+ ∪ B−.

For r ∈ B+,

nFr

β = nT
β ,

for all β ∈ π2(X,Fr), where T ⊂ X is a Lagrangian toric fibre.
On the other hand, for r ∈ B−, nFr

β = 0 for all β except only one class β0, and nFr

β0
= 1.

The term ‘wall-crossing’ refers to the phenomenon that nFr

β jumps as r crosses the wall
H. As a consequence, the superpotential W , which is a function on the semi-flat mirror X̌0

defined by

W (Fr,∇) :=
∑

β∈π2(X,Fr)

nFr

β exp
(
−

∫
β

ω

)
Hol∇(∂β),

also jumps when r crosses the wall H. To remedy this, the crucial idea is to use W and z1 as the
mirror coordinate functions. (In general, Fourier transform of generating functions counting
stable disks emanating from boundary divisors should be used as the mirror coordinates.) After
some computations (see [5] for details), one sees that the mirror is of the form

X̌ := {(z, u, v) ∈ C× × C2 : uv = g(z)},
which is glued by two semi-flat pieces X̌+ = X̌− = C× × C (which contain μ̌−1(B±), respec-
tively), where the coordinate charts are given by ι+ : X̌+ → X̌,

ι+(z1, z2) = (z1, z2g(z1), z−1
2 ), (3.1)

and ι− : X̌− → X̌,
ι−(z1, z2) = (z1, z2, z

−1
2 g(z1)). (3.2)

More explicitly,

g(z) := 1 +
m∑

i=1

⎛
⎝i−1∏

j=1

qi−j
j

⎞
⎠ (1 + δi)zi

is the ‘gluing function’ in the sense of Gross and Siebert [14], where

qj := exp

(
−

∫
Dj

ω

)
for j = 1, . . . ,m − 1

and

δi :=
∑
α�=0

nT
βi+α exp

(
−

∫
α

ω

)
for i = 1, . . . , m.

With this correction the superpotential W , which takes values z2g(z1) on X̌+ and z2 on X̌−,
glues up to give the holomorphic function u on the mirror X̌.

We see that in order to write down X̌ explicitly, one needs to compute the open
Gromov–Witten invariants nT

βi+α, and this will be done in Subsection 4.1.
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4. The mirror map is SYZ map

By the SYZ construction explained in the last section, each toric Calabi–Yau surface (X,ω)
is associated with a complex surface X̌. We call this the SYZ map, which is a map from the
Kähler moduli of X to the complex moduli of X̌. Now comes a crucial question: Does the SYZ
map give the mirror map [5, Conjecture 5.1]?

The mirror map is a local isomorphism between the Kähler moduli of X and the complex
moduli of X̌ such that it pulls back canonical coordinates on the complex moduli to canonical
Kähler coordinates on the Kähler moduli. (We recall that canonical Kähler coordinates are
given by the symplectic areas of two-cycles in X, and canonical complex coordinates are given
by the periods of X̌.) In the Hori–Vafa recipe, the mirror family is

X̌C0,...,Cm
=

{
(z, u, v) ∈ C× × C2 : uv =

m∑
i=0

Ciz
i

}
,

where Ci ∈ C for i = 0, . . . ,m. Then the mirror map is a function (C0(q), . . . , Cm(q)) that
maps the Kähler cone of X to Cm+1, such that the periods of X̌C0(q),...,Cm(q) coincide with the
symplectic areas of two-cycles in X.

The aim of this section is to give an affirmative answer to this question when X is a toric
Calabi–Yau surface.

Theorem 4.1. Let X = XΣm
be a toric Calabi–Yau surface, and

X̌ :=

⎧⎨
⎩(z, u, v) ∈ C× × C2 : uv = 1 +

m∑
i=1

⎛
⎝i−1∏

j=1

qi−j
j

⎞
⎠ (1 + δi)zi

⎫⎬
⎭

be the mirror as stated in Theorem 3.1. Then the SYZ construction gives a holomorphic volume
form Ω̌ on X̌, together with a canonical isomorphism

H2(X, Z) ∼= H2(X̌, Z),

which maps the basis {θj := [Dj ]}m−1
j=1 of H2(X, Z) to a basis {Θ̌j}m−1

j=1 of H2(X̌, Z) such that

−
∫
θj

ω =
∫
Θ̌j

Ω̌, (4.1)

for all j = 1, . . . , m − 1.

Since the mirror map is the SYZ map, we have the expressions

Ci =

⎛
⎝i−1∏

j=1

qi−j
j

⎞
⎠ (1 + δi) =

⎛
⎝i−1∏

j=1

qi−j
j

⎞
⎠(∑

α

nβi+αqα

)
.

Thus, the coefficients of the mirror map, when expanded in Kähler parameters qi, are open
Gromov–Witten invariants. This gives a geometric understanding of the mirror map.

To prove this theorem, we need to compute the coefficients

δi =
∑
α�=0

nβi+α exp
(
−

∫
α

ω

)
,

which involve the open Gromov–Witten invariants. This is done in Subsection 4.1. Then in
Subsection 4.2 we prove Theorem 4.1. This includes writing down the holomorphic volume
form on X̌ via SYZ (this is already contained in [5, Section 4.6]), constructing the isomorphism
H2(X, Z) ∼= H2(X̌, Z), and computing the periods of X̌.
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4.1. Open Gromov–Witten invariants of toric CY surfaces

In this section, we would like to compute the open Gromov–Witten invariants nT
β for a toric

fibre T of a toric Calabi–Yau surface XΣm
. By Proposition 2.4 it suffices to compute nβ for

β = βl + α where l ∈ {1, . . . , m − 1} and α ∈ H2(X) − {0}. The result is the following theorem.

Theorem 4.2. Let X = XΣm
be a toric Calabi–Yau surface, let T be a Lagrangian toric

fibre, and let β = βl + α ∈ π2(X,T), where βl is a basic disc class for l ∈ {1, . . . ,m − 1} and
α ∈ H2(X). Writing

α =
m−1∑
k=1

sk[Dk],

where Dk are irreducible compact toric divisors of X and sk ∈ Z, one has that nβ equals 1
when {sk}m−1

k=1 is admissible with centre l, and 0 otherwise. A sequence {sk}m−1
k=1 of integers is

said to be admissible with centre l if

(i) sk � 0 for all k = 1, . . . ,m − 1;
(ii) si � si+1 � si + 1 when i < l;
(iii) si � si+1 � si − 1 when i � l;
(iv) s1, sm−1 � 1.

As a consequence, we obtain the following corollary.

Corollary 4.3. The defining equation of X̌ in Theorem 3.1 is

uv = (1 + z)(1 + q1z)(1 + q1q2z) . . . (1 + q1 . . . qm−1z),

where

qj := exp

(
−

∫
Dj

ω

)
for j = 1, . . . ,m − 1

are the Kähler parameters.

Proof. Let

h(z) = (1 + z)(1 + q1z)(1 + q1q2z) . . . (1 + q1 . . . qm−1z).

By direct expansion, the coefficient of zp (p = 0, . . . , m) is

∑
k1,...,kp

⎛
⎝ ∏

j=1...k1

qj

⎞
⎠ . . .

⎛
⎝ ∏

j=1...kp

qj

⎞
⎠ ,

where the sum is over all (k1, . . . , kp) ∈ Zp such that 0 � k1 < . . . < kp � m − 1. Note that
each summand can be written as (qp−1

1 . . . qp−1)qα, where

α = (Dp + . . . + Dkp
) + (Dp−1 + . . . + Dkp−1) + (D1 + . . . + Dk1).

In this form, it is clear that α ∈ H2(X) is an admissible class with centre p in the sense of
Theorem 4.2.

Conversely, let α =
∑m−1

k=1 skDk be admissible, and we would like to find kj such that α is in
the above form. If α = 0, then we simply set kp = p − 1, . . . , k1 = 0. Otherwise, let kp be the
greatest integer among {1, . . . , m − 1} such that sk 
= 0. Then, by condition (3) of admissibility,
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Figure 4. A sphere representing h ∈ H2(X̄).

sj > 0 for j = p, . . . , kp. Thus,

α = (Dp + . . . + Dkp
) +

m−1∑
k=1

s′kDk

with s′k � 0.
If s′k = 0 for all k, then we are done and set kp−1 = p − 2, . . . , k1 = 0. Otherwise, let kp−1

be the greatest integer among {1, . . . , m − 1} such that s′k 
= 0. By conditions (3) and (4) of
admissibility, s′kp

= . . . = s′m−1 = 0 and so kp−1 < kp. Condition (3) implies that s′j > 0 for
j = p, . . . , kp−1, and condition (2) implies that s′p−1 > 0. Thus, we can write

α = (Dp + . . . + Dkp
) + (Dp−1 + . . . +Dkp−1) +

m−1∑
k=1

s′′kDk.

We proceed by induction, and since s1 � 1 by condition (4), it must end with

α = (Dp + . . . + Dkp
) + (Dp−1 + . . . + Dkp−1) + (D1 + . . . + Dk1).

Now it is clear that the coefficient of zp is∑
α

(qp−1
1 . . . qp−1)qα,

where the summation is over all admissible α. By Theorem 4.2 this equals

(qp−1
1 . . . qp−1)

∑
α

nβp+αqα.

Thus, the defining equation of the mirror can be written as stated.

Now we prove Theorem 4.2.

Proof of Theorem 4.2. It was proved by Chan [4] that, for canonical line bundles X = KZ

of toric Fano manifolds Z, nβ equals some closed Gromov–Witten invariants of the fibrewise
compactification K̄Z . In [19], the arguments are modified slightly to generalize to local Calabi–
Yau manifolds X. We now apply them to the current situation where dimX = 2.

To compute nβl+α, we consider the toric compactification Y = X̄ along the vl direction: The
fan of X̄ is convex consisting of rays generated by vi = (i, 1) for i = 0, . . . ,m, (1, 0), (−1, 0)
and v∞ = −vl (the rays generated by (1, 0) and (−1, 0) are added to make X̄ smooth). Let
h ∈ H2(X̄) be the class determined by the intersection properties h · Dl = h · D∞ = 1 and
h · D = 0 for all other irreducible toric divisors D (see Figure 4). Intuitively h corresponds to
the disk class βl.
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C

D1 Dm–1
Dl

Figure 5. A chain of complex projective lines.

By comparing the Kuranishi structures on the open and closed moduli (see [19, Proposition
4.4] for the details), one has

nβl+α = GWY,h+α
0,1 ([pt]).

The right-hand side in the above formula is the genus-0 one-pointed closed Gromov–Witten
invariant of Y = X̄ for the class h + α. Thus, it remains to compute GWY,h+α

0,1 ([pt]).
Now we may apply the result by Hu [17] and Gathmann [12], which removes the point

condition by blowup:

GWY,h+α
0,1 ([pt]) = GWỸ ,π!(h+α)−e

0,0 ,

where π : Ỹ → Y is the blowup of Y at a point, e ∈ H2(Ỹ ) is the corresponding exceptional
class and π!(b) := PD(π∗PD(b)) for b ∈ H2(X̄).

Writing α =
∑m−1

k=1 sk[Dk], one has

π!(h + α) − e = [C] +
m−1∑
k=1

sk[Dk],

where C is a (−1)-curve and Dk are (−2)-curves, and their intersection configuration is as shown
in Figure 5. The Gromov–Witten invariant GWỸ ,[C]+

∑m−1
k=1 sk[Dk]

0,0 has already been computed
by Bryan–Leung [3], and the result is that the invariant is 1 when the sequence {sk}m−1

k=1 is
admissible with centre l, and 0 otherwise. The sense of admissibility for a sequence of integers
is the one written in Theorem 4.2.

4.2. Proof of Theorem 4.1

Having an explicit expression of the SYZ mirror (see Corollary 4.3), we are prepared to prove
the main theorem.

4.2.1. The holomorphic volume form. First we need to write down the holomorphic volume
form on X̌. It is known that the semi-flat mirror X̌0 has a holomorphic volume form which is
simply written as d log z1 ∧ d log z2 in terms of the local semi-flat complex coordinates (z1, z2).
In [6, 7], this (semi-flat) holomorphic volume form is written as the Fourier transform of
the symplectic form on X. Now recall that X̌ is glued by two semi-flat pieces ι± : X̌± → X̌
(equations (3.1) and (3.2)). One has

ι∗±(d log z ∧ d log u) = d log z1 ∧ d log z2,

which means that the semi-flat holomorphic volume forms on the two pieces X̌± glue up, and
it is a direct computation to see that d log z ∧ d log u extends to give a holomorphic volume
form Ω̌ on X̌. (This has already been discussed in the paper [5].)

4.2.2. H2(X) ∼= H2(X̌). Now let us turn to the construction of the natural isomorphism
H2(X) ∼= H2(X̌). Consider the basis {θi = [Di]}m−1

i=1 ⊂ H2(X). We would like to perform SYZ
transformation on each Dl to give a dual chain Ďl ⊂ X̌−. We see that ι−(Ďl) ⊂ X̌ is homologous
to a chain CK in X̌ which limits to a cycle Θ̌l as K → +∞. (Alternatively, one may consider the
dual chain in the other semi-flat piece ι+ : X̌+ → X̌ instead, which leads to the same result.)
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QlQl + 1

B

Dl

Figure 6. A toric divisor.

First we write Dl as

{x ∈ X : μ(x) ∈ [Tl] × {0}; arg(w(x) − K) = π},
where we recall that Tl is the edge of P corresponding to the toric divisor Dl, so that [Tl] × {0} is
the line segment in B connecting the two points Ql and Ql+1 ∈ B, which lie in the discriminant
loci of μ (see Figure 6). In this expression, we can see that Dl is a circle fibration over the line
segment [Tl] × {0}.

Under T -duality, it induces a dual circle fibration supported in X̌− over the same line
segment, which is written explicitly as

Ďl = {(z1, z2) ∈ X̌− : μ̌(z1, z2) ∈ [Tl] × {0}; arg z1 = π},
where we recall that μ̌ is the bundle map given in Subsection 3.1.

From Subsection 3.1, the value of |zi| (i = 1, 2) on the fibre F̌r of μ̌ at r ∈ U ⊂ B0 is
exp(− ∫

Δi(r)
ω), where each Δi(r) ∈ π2(X,Fr) is represented by a disc as shown in Figure 3.

For r = μ̌(z1, z2) ∈ [Tl] × {0}, ∏l−1
i=1 q−1

i � |z1(r)| �
∏l

i=1 q−1
i . Together with arg z1 = π, one

has

z1(Ďl) =

[
−

l∏
i=1

q−1
i ,−

l−1∏
i=1

q−1
i

]
.

The boundary of Ďl consists of two disjoint circles Cl and Cl+1 lying in the fibres F̌Ql
and

F̌Ql+1 , on which z1 takes values −∏l−1
i=1 q−1

i and −∏l
i=1 q−1

i , respectively. Let us denote by
aj the values of |z2|2 on F̌Qj

, so that the values of |z2|2 on Cl and Cl+1 are al and al+1,
respectively.

Now let us consider the chain

ι−(Ďl) ⊂ X̌ = {(u, v, z) : uv = g(z)}
(see Figure 7). By equation (3.2), (z, u, v) = ι−(z1, z2) = (z1, z2, z

−1
2 g(z1)) where, according to

Corollary 4.3,

g(z) = (1 + z)(1 + q1z)(1 + q1q2z) . . . (1 + q1 . . . qm−1z).

On the boundaries ι−(Cj) (j = l, l + 1) one has z = −q−1
1 . . . q−1

j−1, which are roots to the
equation g(z) = 0, and so

z = −
j−1∏
i=1

q−1
i ; v = 0; |u|2 = aj .
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z-plane

l_(Dl)

Θl

–(q1...ql)
–1 –(q1...ql–1)–1

Figure 7. The mirror cycles.

For each z ∈ [−∏l
i=0 q−1

i ,−∏l−1
i=0 q−1

i ], the fibre of ι−(Ďl) at z is a circle in the cylinder
{(u, v) ∈ C2 : uv = g(z)}. Let f : [−∏l

i=0 q−1
i ,−∏l−1

i=0 q−1
i ] → R be an affine linear function

that takes values al+1 and al at the endpoints −∏l
i=0 q−1

i and −∏l−1
i=0 q−1

i , respectively. Then
the fibre ι−(Ďl)|z is homotopic to the circle

{(u, v) ∈ C2 : uv = g(z); |u|2 − |v|2 = f(z)}.
Thus, ι−(Ďl) ⊂ X̌ is homologous (with boundary being fixed) to the chain{

(u, v, z) ∈ X̌ : z ∈
[
−

l∏
i=0

q−1
i ,−

l−1∏
i=0

q−1
i

]
; |u|2 − |v|2 = f(z)

}
.

Now taking the limit K → +∞, all aj tend to 0, so that f tends to 0 uniformly. Thus, the
above chain limits to

Sl =

{
(u, v, z) ∈ X̌ : |u| = |v|; z ∈

[
−

l∏
i=0

q−1
i ,−

l−1∏
i=0

q−1
i

]}
,

which is a submanifold without boundary in X̌, and we denote its class by Θ̌l ∈ H2(X̌). The
set of homology classes {Θ̌l}m−1

l=1 forms a basis of H2(X̌), and so the map θl �→ Θ̌l gives the
required isomorphism H2(X) ∼= H2(X̌).

4.2.3. The periods. It remains to compute the periods of X̌ directly:
∫
Θ̌l

Ω̌ =
∫
Sl

Ω̌ =
∫−(q1...ql−1)

−1

−(q1...ql)−1
d log z = log ql = −

∫
θl

ω.

4.3. Hyper-Kähler twist

This subsection aims to relate our SYZ approach with a hyper-Kähler twist for toric Calabi–
Yau surfaces; namely, we prove that the hyper-Kähler periods of a toric Calabi–Yau surface
and its SYZ mirror satisfy equation (4.2).

Let us begin with the general theme. Let (X, g) be an irreducible hyper-Kähler manifold, that
is, the holonomy group of the Levi-Civita connection induced by the metric g is Sp(n). Then
X has three parallel orthogonal complex structures I, J,K, and all other parallel orthogonal
complex structures are given by aI + bJ + cK with |a|2 + |b|2 + |c|2 = 1, forming an S2-family.
Moreover, we have three parallel Kähler forms ωI , ωJ , ωK induced from I, J,K, respectively.
The holomorphic symplectic form with respect to I is (with a choice of constant multiple)
ΩI = −ωK + iωJ .
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Now, fixing a basis {θi}N
i=1 of H2(X, Q), we may consider the hyper-Kähler periods

ΠI =
(∫

θ1

ωI , . . . ,

∫
θN

ωI

)
; ΠJ =

(∫
θ1

ωJ , . . . ,

∫
θN

ωJ

)
; ΠK =

(∫
θ1

ωK , . . . ,

∫
θN

ωK

)
,

which span a lightlike subspace in H2(X, R). (When X is compact, this subspace determines
the hyper-Kähler metric g.)

It is expected that, for a hyper-Kähler manifold (X,ωI , ωJ , ωK), the mirror can be obtained
by a hyper-Kähler twist. This means that X̌ is the same as X as a smooth manifold, but
with a different choice of complex structure: (X̌, ω̌I , ω̌J , ω̌K) = (X,ωK , ωJ , ωI). In terms of the
hyper-Kähler periods, it means that

Π̌I = ΠK ; Π̌J = ΠJ ; Π̌K = ΠK . (4.2)

By the identity SU(2) = Sp(1), a Calabi–Yau surface is automatically hyper-Kähler. Thus, the
above expectation about hyper-Kähler periods applies to Calabi–Yau surfaces.

Remark 4. In general, one has to incorporate B-fields in mirror symmetry. Roughly
speaking, it means that one has to complexify the Kähler cone in order to compare it with
the complex moduli of the mirror. Equation (4.2) is under the condition that we switch off
the B-field. When the B-field is present, the relation between a hyper-Kähler twist and mirror
symmetry is more subtle. We are thankful to the referee for drawing our attention to this point.

Now let us come back to our situation that X = XΣm
is a toric Calabi–Yau surface whose

toric complex structure is denoted by I. Let ωI be the toric symplectic form,† and let Ω =
−ωK + iωJ be the toric holomorphic volume form. Via SYZ the mirror X̌ is constructed (see
Theorem 3.1), which is a complex hypersurface in C2 × C×, so that the standard symplectic
form

du ∧ du + dv ∧ dv + d log z ∧ d log z

on C2 × C× restricts to give a symplectic form ω̌I on X̌. The mirror X̌ is also equipped with
a holomorphic volume form Ω̌ = −ω̌K + i ω̌J (Paragraph 4.2.1). Then, as a consequence of
Theorem 4.1, the mirror X̌ constructed via SYZ matches with the above discussion.

Corollary 4.4. Let (X = XΣm
, ωI , ωJ , ωK) and (X̌, ω̌I , ω̌J , ω̌K) be the mirror pairs as

discussed above. Then the corresponding periods (ΠI ,ΠJ ,ΠK) of X and (Π̌I , Π̌J , Π̌K) of X̌
satisfy equation (4.2).

Proof. Since Di are complex submanifolds with respect to the toric complex structure,
one has ∫

θi

Ω = −
∫
θi

ωK + i
∫
θi

ωJ = 0,

for all i. On the other hand, Sl ⊂ X̌ defined in Paragraph 4.2.2 is special Lagrangian with
respect to (ω̌I , Ω̌), that is, ω̌I |Sl

= 0 = ImΩ̌|Sl
. Thus,∫

Θ̌i

ω̌I = 0 =
∫
Θ̌i

ω̌J .

†The statement to be made here is in the homology level instead of in the chain level. In particular, we simply
use the toric Kähler metric instead of the Ricci-flat one, as we care only about its Kähler class instead of the
actual form.
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This gives ΠJ = Π̌J = 0 and ΠK = Π̌I = 0. From Theorem 4.1,∫
θj

ωI = −
∫
Θ̌j

Ω̌ =
∫
Θ̌j

ω̌K ,

which means ΠI = Π̌K .
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