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1 Introduction

Many naturally arising Riemannian manifolds admit rich geometric structures.
Projective manifolds in complex algebraic geometry are Kähler manifolds. Namely
they are Riemannian manifolds with compatible parallel complex structures. Kähler
manifolds are also the target spaces for two dimensional σ-models with N = 2 su-
persymmetry (SUSY) in physics.

Using the metric g, every orthogonal complex structure J determines a sym-
plectic structure ω via

ω (u, v) = g (Ju, v) .

Symplectic structures are the natural structures on the phase spaces in classi-
cal mechanics. Complex geometry studies objects like complex submanifolds and
(stable) holomorphic vector bundles and symplectic geometry studies objects likes
(special) Lagrangian submanifolds and unitary flat bundles over them. The mod-
ern symplectic geometry incorporates holomorphic curves to quantum correct the
classical symplectic geometry.

The mirror symmetry conjecture says roughly that the complex geometry and
the quantum symplectic geometry can be transformed to each other between any
mirror pair of Calabi-Yau manifolds. Calabi-Yau manifolds are Kähler manifolds
with C-orientations. Yau proved that every compact Kähler manifold with van-
ishing first Chern class admits a Calabi-Yau structure. Calabi-Yau manifolds with
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real dimension six arise in string theory as internal spaces when compactifying ten
dimensional spacetimes to our usual spacetime R3,1, i.e., writing ten dimensional
spacetimes as products of Calabi-Yau manifolds with R3,1. Similarly, Riemannian
manifolds with real dimension 7 (resp. 8) with holonomy G2 (resp. Spin (7)) arise
in M-theory (resp. F-theory) as internal spaces.

G2-manifolds or Spin (7)-manifolds are O-manifolds with or without O-orienta-
tions. Recall that the octonion O is the largest normed division algebra. These two
exceptional geometries can also be interpreted as the geometries of 2-fold or 3-fold
vector cross product (VCP). Note that 1-fold VCPs are simply orthogonal complex
structures. Namely, Kähler manifolds are Riemannian manifolds with parallel 1-
fold VCPs. Lagrangian submanifolds and holomorphic curves in Kähler manifolds
are branes and instantons on VCP-manifolds. Thus we obtain a unified descrip-
tion of various geometries of calibrated submanifolds, including (co-)associative
submanifolds and Cayley submanifolds.

Kähler manifolds with C-VCPs are either Calabi-Yau manifolds or hyperkähler
manifolds. For C-VCPs, instantons depend on a phase angle and there are also two
types of branes: D-branes and N-branes, corresponding to Dirichlet and Neumann
boundary conditions. Again this gives a unified description of the geometries of
special Lagrangian submanifolds, complex hypersurfaces and complex Lagrangian
submanifolds.

The space of a certain type of geometric structures modulo symmetries is
called a moduli space. For manifolds (resp. bundles), the symmetries are diffeo-
morphisms (resp. gauge transformations). A typical example is the moduli space
of complex structures.

Some important moduli spacesM have several complex structures and they
are hyperkähler manifolds. Studies of moduli spaces had proven to be a very useful
approach to understand the underlying geometries. For instance, moduli spaces
play essential roles in Donaldson/Seiberg-Witten theory, Gromov-Witten theory
and mirror symmetry.

Note that hyperkähler manifolds are H-oriented H-manifolds. Describing var-
ious geometries in terms of normed division algebras A gives us yet another beau-
tiful way to unify many special geometric structures. For instance, when A = C,
H and O, (i) A-bundles are holomorphic bundles, B-bundles and Donaldson-
Thomas Spin (7)-bundles and (ii) special A-bundles are Hermitian Yang-Mills bun-
dles, hyperholomorphic bundles and Donaldson-Thomas G2-bundles. Similarly,
(i) A/2-Lagrangian submanifolds are Lagrangian submanifolds, hyperlagrangian
submanifolds and Cayley submanifolds and (ii) special A/2-Lagrangian submani-
folds are special Lagrangian submanifolds, complex Lagrangian submanifolds and
(co-)associative submanifolds. Through these unified descriptions, we have estab-
lished new links among different kinds of geometries and uncovered new results
from known facts in other geometries.

As a matter of fact, there are not too many other geometric structures on
Riemannian manifolds. Accordingly to the Berger’s classification of reduced irre-
ducible Riemannian holonomy groups, they must be one of the following: SO (n),
U (n), SU (n), Sp (n)Sp (1), Sp (n), Spin (7) or G2, unless M is a locally symmet-
ric space.
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As we will discuss in this survey, these seven possible holonomy groups and
their corresponding geometries can be nicely described in terms of normed division
algebras (or A-VCPs). Furthermore, using two normed division algebras A and B,
we could also interpret compact Riemannian symmetric spaces as Grassmannians
of complex/Lagrangian subspaces in (A⊗ B)n.

In this article, we will first explain the topology and geometry of Riemannian
manifolds. Then we explain the complex geometry and the symplectic geometry of
Kähler manifolds and their mirror symmetry on Calabi-Yau manifolds. After that,
we study the geometry of Calabi-Yau threefolds, G2-manifolds and their dualities.
After we have familiarized ourselves with these geometries, we give two unified
approaches to describe them, namely geometry over normed division algebras and
VCP-geometry. In the last section, we explain how Riemannian symmetric spaces
can also be understood in a similar fashion by using two normed division algebras.

This unification of all geometries of special holonomy will enhance our un-
derstanding of each individual geometry and uncover hidden links among them,
as well as among different physical theories. There are several excellent sources
on the subject of special holonomy, including [13] [23][24][39][59][71][95][114]. Of
course, this is a huge subject and the author must apologize that many impor-
tant topics are inevitably missed in this article. The choices of topics are due to
the personal taste and the limited knowledge of the author. The readers should
be warned that the list of references is unfortunately not incomplete as it is not
practical to provide explicit references to all the results mentioned in the paper.

2 Topology of manifolds

2.1 Cohomology and geometry of differential forms

Singular and deRham cohomology groups
Inside any given manifold1 M of dimension n, the most basic cycles are

submanifolds C. In order to allow C to be singular and to have multiplicities, we
sometimes use the parametrized version, for example singular cycles. k dimensional
singular cycles modulo homologous equivalences form a finitely generated Abelian
group Hk (M,Z), the singular homology.

A dual version of this is the singular cohomology Hk (M,Z). Modulo torsions,
Hk (M,Z) equals Hom (Hk (M,Z) ,Z). There is a cup product

∪ : Hk (M,Z)⊗H l (M,Z)→ Hk+l (M,Z) ,

giving a ring structure on H∗ (M,Z). Since M is orientable, we have Hn (M,Z) ∼=
Z and Poincaré duality says that ∪ is a perfect pairing when k + l = n.

The DeRham theorem says that Hk (M,R) can be described using differential
forms: Let Ωk (M) be the space of differential forms of degree k, i.e., Ωk (M) =
Γ
(
M,ΛkT ∗

M

)
. We consider the deRham complex

0→ Ω0 (M) d→ Ω1 (M) d→ · · · d→ Ωn (M)→ 0 with d2 = 0,
1All manifolds are connected compact oriented smooth manifolds unless specified otherwise.
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then

Hk (M,R) ∼=
Ker (d)
Im (d)

∣
∣
∣
∣
Ωk(M)

.

Moreover the cup product is simply the wedge product of differential forms
and the isomorphism Hn (M,R) �→ R is given by the integration of the top degree
forms.

Volume geometry and symplectic geometry
The existence of a nowhere vanishing n-form vM on M , called the volume form, is
equivalent to the orientability ofM . Note that the existence of a nowhere vanishing
1-form on M is equivalent to the vanishing of the Euler characteristic, χ (M) = 0.
For 2-forms ω, the nowhere vanishing should be replaced by the nondegeneracy,
i.e., the map v → ιvω = ω (v, ·) gives an isomorphism between TM and T ∗

M . This
forces M to be of even dimension n = 2m and in this case nondegeneracy is
equivalent to the nonvanishing of ωm/m!, i.e., ωm/m! is a volume form on M . A
nondegenerate two form ω is called a symplectic form on M if it is also a closed
form. Symplectic geometry originated from classical mechanics and now it has
become an indispensable part of modern mathematics and physics. For higher
degree forms, the natural generalizations of nondegeneracy are either stable forms,
as studied by Hitchin [65] or vector cross product forms (Section 9).

Moser’s lemma says that if two volume forms vM and v′M have the same
volume, i.e.,

∫
M
vM =

∫
M
v′M , then they are the same up to diffeomorphisms.

Namely, there exists a diffeomorphism f ∈ Diff0 (M) satisfying v′M = f∗vM .
Thus the moduli space of volume forms on an oriented manifold M is R\ {0}. If
we require the volume forms to be compatible with a fixed orientation on M , then
the moduli space becomes R+.

Similarly, if two symplectic forms ωM and ω′
M can be connected through

symplectic forms representing the same cohomology class inH2 (M,R), then ω′
M =

f∗ωM for some f ∈ Diff0 (M). Thus the moduli space of symplectic forms on M
is locally given by H2 (M,R).

The standard volume form (resp. symplectic form) on Rn is dx1 ∧ dx2 ∧
· · · ∧ dxn (resp. dx1 ∧ dx2 + dx3 ∧ dx4 + · · ·+ dxn−1 ∧ dxn). In fact every volume
(resp. symplectic) form on a manifold M is locally standard, the so-called Darboux
lemma.

We will denote the group of diffeomorphisms of M preserving a tensor t as
Diff (M, t) and its Lie algebra of vector fields as V ect (M, t), i.e., X ∈ V ect (M, t)
if and only if LXt = 0. Examples of such t’s include volume forms v, symplectic
forms ω and metric tensors g.

Contracting vector fields with a volume form vM induces an isomorphism
between V ect (M) and Ωn−1 (M). By the Cartan formula of the Lie derivative on
Ω∗ (M), LX = d ◦ ιX + ιX ◦ d, we have

LXvM = 0 if and only if d (ιXvM ) = 0.

Hence
V ect (M, vM ) ∼= Ωn−1 (M) ∩Ker (d) .
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Similarly, for a symplectic form ωM , we have

V ect (M,ωM ) ∼= Ω1 (M) ∩Ker (d) .

Given any m-dimensional manifold S, the total space of the line bundle
ΛmT ∗

S has a canonical volume form vcan. In terms of any local coordinate system(
x1, . . . , xm, ydx1 ∧ · · · ∧ dxm

)
, we have

vcan = dx1 ∧ · · · ∧ dxm ∧ dy.

Similarly, the total space of the cotangent bundle T ∗
S has a canonical symplectic

form ωcan. Actually there is a canonical one form α with ωcan = −dα.Concretely,
given any point p = (x, y) ∈ T ∗M with y ∈ T ∗

xM and any tangent vector v at p we
have α (v) = y (π∗v) where π : T ∗M → M is the canonical projection (x, y)→ x.
In terms of local coordinates

(
x1, . . . , xm, y1dx

1, . . . , ymdx
m
)
, we have

α = y1dx
1 + · · ·+ ymdx

m and

ωcan = dx1 ∧ dy1 + · · ·+ dxm ∧ dym.

The natural class of submanifolds S in a symplectic manifold (M,ωM ) con-
sists of Lagrangian submanifolds which are defined as

dimS =
1
2

dimM and ωM |S = 0.

By an extension of the Darboux lemma, the neighborhood of any Lagrangian sub-
manifold S ⊂ (M,ωM ) is symplectomorphic to a neighborhood of S ⊂ (T ∗

S , ωcan).
Furthermore, nearby Lagrangian submanifolds are given by graphs of closed one
forms on S.

To rigidify a symplectic manifold (M,ω), we choose a compatible metric g,
i.e., if we define J : TM → TM via

g (Ju, v) = ω (u, v) ,

then J is an orthogonal complex structure on each tangent space. J-holomorphic
curves C in M are important tools in modern symplectic geometry. For instance,
they play important roles in the Gromov-Witten theory (Section 5.4) and mir-
ror symmetry (Section 6.3). Suppose ∂C 
= φ, then the natural free boundary
condition is to require ∂C ⊂ L for a fixed Lagrangian submanifold L ⊂M .

Corresponding notions and results for any volume manifold (M, vM ) also hold
true and are easier, where Lagrangian submanifolds and J-holomorphic curves are
replaced by hypersurfaces and domains. Indeed they are parts of the theory of the
geometry of vector cross products, including G2-geometry.

Given any smooth manifold Σ, we consider the evaluation map

ev : Σ×Map (Σ,M)→M

(x, f)→ f (x) .
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Suppose vM is a volume form on M . By integrating ev∗ (vM ) over Σ, we obtain a
differential form ωKΣ(M) on Map (Σ,M) which descends to the space of knots

KΣ (M) = Mapemb (Σ,M) /Diff (Σ) .

When Σ has codimension two in M , ωKΣ(M) is a symplectic form on KΣ (M). We
can relate the volume geometry on M with the symplectic geometry on KΣ (M).
Such an interpretation is particularly fruitful when we study the geometry of other
vector cross products.

2.2 Hodge theorem

A Riemannian metric g on M is a smooth family of positive definite inner products
gx on tangent spaces TxM . When M is compact and oriented, the Hodge theorem
says that we can find a canonical representative for each cohomology class in
Hk (M,R), namely the form with the smallest norm. Equivalently, Hk (M,R) can
be identified with the orthogonal complement to Im (d) inside Ker (d). That is

Hk (M,R) = Ker (d) ∩Ker (d∗)
= Ker (dd∗ + d∗d) ,

where d∗ is the adjoint to d and ∆ = dd∗+d∗d is a second order elliptic differential
operator, called the Laplacian. Hodge theory says that every deRham cohomology
class has a unique representative φ satisfying ∆φ = 0, called a harmonic form. To
better understand the Hodge theorem, we need to introduce a few notions.

Riemannian volume forms
Suppose M is oriented, then there is a consistent way to choose the sign of the
square root

√
det gij and define a volume form

dvg =
√

det gijdx
1 ∧ dx2 ∧ · · · ∧ dxn.

We call it the Riemannian volume form of (M, g). Having a volume form allows
us to integrate functions on M . In particular vol (M) =

∫
M dvg is an important

invariant of (M, g). It also allows us to define an inner product on the space of
differential forms and other tensors on M as

‖φ‖2 =
∫

M

|φ (x)|2g dvg.

and the Hodge star operator, ∗ : Ωk (M)→ Ωn−k (M) with the defining equation

φ ∧ ∗η = g (φ, η) dvg .

It satisfies ∗2 = (−1)k(n−k).
Let d∗ be the formal adjoint to d with respect to the above L2-inner product

‖·‖, that is ∫

M

〈dφ, η〉Λk+1T∗ =
∫

M

〈φ, d∗η〉ΛkT∗
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for any φ ∈ Ωk (M) and η ∈ Ωk+1 (M). We have suppressed the volume form dvg

and we will continue to do this. Using ‖·‖ on Ker (d) ⊂ Ωk (M), one expects to
be able to split the exact sequence

0→ Im (d)→ Ker (d)→ Hk (M)→ 0

and get

Hk (M) ∼= Ker (d) ∩ (Im d)⊥

= Ker (d) ∩Ker (d∗) ⊂ Ωk (M) .

By direct computations, we have

d∗ = (−1)nk+1 ∗ d∗ : Ωk+1 (M)→ Ωk (M) .

We define the second order self-adjoint differential operator Laplacian as follows,

∆ = (d+ d∗)2 = dd∗ + d∗d : Ωk (M)→ Ωk (M) .

This operator is elliptic, i.e., its symbol is an invertible algebraic operator. Ellip-
ticity is an important notion, for instance its eigenspaces are of finite dimension
and the eigenspace decomposition holds on a suititable Hilbert space completion.

For instance, ∆ = −
∑

j

(
∂

∂xj

)2
on Rn and for functions on a general manifold,

we have

∆f =
−1
√
g

∂

∂xi

(
√
ggij ∂f

∂xj

)
,

where g = det gij .

It is clear that
∫

M

〈∆φ, φ〉 =
∫

M

|dφ|2 +
∫

M

|d∗φ|2 .

This implies that ∆ is a self-adjoint (i.e. ∆ = ∆∗) non-negative operator and

Ker (∆) = Ker (d) ∩Ker (d∗) .

The harmonic equation ∆φ = 0 is also the Euler-Lagrange equation for minimizing∫
|φ|2 for closed forms representing a fixed cohomology class.

When M = S1 = R/2πZ, we have ∆ = − d2

dθ2 . The Fourier series expresses
any smooth function f (θ) = f (θ + 2π) on S1 as

f (θ) =
∑

ν∈Z

f̂ (ν) eiνθ.

Note that eiνθ is an eigenfunction of ∆ with eigenvalue ν2. The Hodge theorem is
a generalization of the Fourier series on S1 to any compact oriented Riemannian
manifold.
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The Hodge theorem says that ∆ has an eigenvalue decomposition similar to
a symmetric matrix. More precisely (i) each eigenspace

Ωk
λ (M) :=

{
φ ∈ Ωk (M) : ∆φ = λφ

}

is finite dimensional; (ii) If we denote Spec (M) =
{
λ ∈ R : Ωk

λ (M) 
= 0
}

=
{
λ0 <

λ1 < · · ·
}
⊂ R≥0, the spectrum of ∆, then Spec (M) is a unbounded set and

without any accumulation point; (iii) Every φ ∈ Ωk (M) can be expressed as

φ =
∞∑

i=0

φi with φi ∈ Ωk
λi

uniquely as a convergent power series in L2
1-norm. That is

Ωk (M)L2
1

=
∞⊕

i=1

Ωk
λi

(M).

The Hodge theorem immediately implies that the dimension of Hk (M) is
finite. Since ∗ : Ωk (M)→ Ωn−k (M) preserves harmonicity, ∗ induces an isomor-
phism betweenHk (M) withHn−k (M). This gives the Poincaré duality. However,
the wedge product of harmonic forms is usually not harmonic (unless one of them
is parallel).

Existence of harmonic representatives for cohomology classes has many im-
portant applications. For instance, using the Bochner-Weitzenbock formula, one
shows that harmonic one forms on manifolds with positive Ricci curvature must
vanish and therefore H1 (M) = 0 by the Hodge theorem.

The Hodge theorem applies equally well to any elliptic complexes besides
the deRham complex. These include the deRham complex coupled with a flat
unitary connection; the Dolbeault complex of ∂̄-operator for any complex manifold
which can also be coupled with a holomorphic vector bundle and similar elliptic
complexes for manifolds with other special geometric structures.

The eigenvalue decomposition of ∆ on Ωk (M) is compatible with the deRham
complex in the sense that d

(
Ωk

λ

)
⊂ Ωk+1

λ . Hence, for any λ, we have a finite
dimensional complex,

0→ Ω0
λ (M) d→ Ω1

λ (M) d→ · · · d→ Ωn
λ (M)→ 0,

When λ = 0 this complex is trivial, i.e., d = 0, and otherwise it is an exact
complex, i.e.,

(Ker (d) / Im (d)) |Ω∗
λ

= 0 for λ 
= 0.

In particular,

Hk (M) ∼=
Ker (d)
Im (d)

∣
∣
∣
∣
Ωk(M)

∼= Ωk
0 (M) ∼= Ker (∆) |Ωk(M).
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The exactness of (Ω∗
λ, d) implies that

∑
k (−1)k dim Ωk

λ = 0 when λ 
= 0. Thus

χ (M) :=
∑

k

(−1)k dimHk (M) =
∑

k

(−1)k
⎛

⎝
∑

λ≥0

e−tλ dim Ωk
λ (M)

⎞

⎠

=
∑

λ≥0

e−tλ

(
∑

k

(−1)k dim Ωk
λ (M)

)

.

Note that the factors e−tλ’s are inserted in order to ensure the convergence of
the RHS for t > 0 when we interchange the order of summations. By formally
letting t go to zero, the Euler characteristic χ (M) can be naturally interpreted as∑

k (−1)k dim Ωk (M), the super-dimension of the space of differential forms.
It is interesting to note that for any given k, dim Ωk

λ (M) is the multiplicity
of the eigenvalue e−tλ for the heat operator e−t∆ on Ωk (M). Hence,

χ (M) =
∑

k

(−1)k
⎛

⎝
∑

λ≥0

e−tλ dim Ωk
λ (M)

⎞

⎠

=
∑

k

(−1)k TrΩke−t∆.

The heat operator e−t∆ has a nice asymptotic expansion as t → 0+. Applying
some clever tricks, which are motivated from supersymmetry in physics, we can
express χ (M) in terms of the curvature of M , or characteristic classes. The above
arguments are particularly useful in studying the index problem for first order
elliptic complexes and give a short proof [5] for the Atiyah-Singer index theorem
[6].

2.3 Witten-Morse theory

Suppose f : M → R is a smooth function such that its Hessian ∇2f is non-
degenerate at every critical point. Such an f is called a Morse function. Witten
[131] studied a twisted version of the deRham complex dt := e−tfdetf using f for
any t ∈ R,

0→ Ω0 (M) dt→ Ω1 (M) dt→ · · · dt→ Ωn (M)→ 0 with d2
t = 0.

One can regard this as a non-unitary gauge transformation of the trivial connection
on M × C and hence it defines the same cohomology group, i.e.,

Hk (M) ∼=
Ker (dt)
Im (dt)

∣
∣∣
∣
Ωk(M)

.

Notice that the adjoint of dt is d∗t = etfd∗e−tf and

∆t = (dt + d∗t )
2

= ∆ + t2 |df |2 + t∇2f ·
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Here the action of the Hessian ∇2f on differential forms is given by a combination
of interior and exterior multiplications

(
∇2f
)
ij
gik
(

∂
∂xk �
) (
dxj∧
)
.

As t becomes large, the quadratic term in t plays the dominant role. Through
semi-classical analysis, one shows that (i) small eigenvalues of ∆t are in one-to-one
correspondence with critical points of f and (ii) all other eigenvalues go to infinity.

Recall that the cohomology groups can be computed by a truncated finite
dimensional complex

(
Ω∗

≤C =
⊕

λ≤C Ω∗
λ, dt

)
for any positive cutoff C for eigen-

values. As t becomes large, one show that

Ωk
≤C
∼=
⊕

df(p)=0
index(p)=k

R 〈p〉 and dt 〈p〉 =
∑

df(q)=0
index(q)=k+1

n (p, q) 〈q〉

where n (p, q) is the (algebraic) number of gradient flow lines of f joining p to q.
Thus H∗ (M) can be computed by counting gradient flow lines between critical
points. Therefore Morse theory is just Hodge theory twisted by f !

We remark that the Witten-Morse theory is particularly important in study-
ing the middle dimensional topology of various infinite dimensional function spaces.
In these cases, the index of any critical point is infinite but their differences are
finite. Examples include the Floer theory for the Chern-Simons functional on the
space of connections over three manifolds (Section 2.4); the Floer theory for the
symplectic area functional on the loop spaces of symplectic manifolds (Section 5.4)
and so on. These structures are parts of topological field theories when we include
appropriate boundary theories.

2.4 Vector bundles and gauge theory

A rank r vector bundle over M is a smooth family of r dimensional vector spaces
Ex parametrized by x ∈M . We write

R
r → E

π→M ,

with Ex = π−1 (x). The tangent bundle TM is such an example. We can also
consider complex vector bundles when each Ex is a complex vector space. By
gluing local trivializations of E using a partition of unity, E can always be em-
bedded as a subbundle of a trivial bundle M × CN . The quotient bundle of the
injective homomorphism E → M × CN could be regarded as the negative of E.
The construction of integers from natural numbers can be generalized here to give
virtual bundle [E1 − E2] and they generate an Abelian group called the topological
K-theory K (M) of M .

Given any complex vector bundle E, one can construct cohomology classes
which are functorial topological invariants of E. Examples includes Chern classes
c (E) and the Chern characters ch (E). Furthermore,

ch : K (M)→
⊕

k=0

H2k (M,Q)

is a ring homomorphism. Modulo torsions, it is an isomorphism. These charac-
teristic classes (modulo torsions) can be described using differential forms via the
Chern-Weil theory as described below.
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Connections, curvature and Chern classes
First we need to define connections or covariant derivatives, which are first order
differential operators DA on E-valued differential forms,

DA : Ω0 (M,E)→ Ω1 (M,E) ,

satisfying
DA (fs) = df ⊗ s+ f ·DAs,

where f (resp. s) is any function on M (resp. section of E). We can extend DA

to Ωk (M,E) by coupling it with d. A section s is called parallel, or a covariant
constant, if DAs = 0. Locally, E is a trivial bundle and DA = d + A for some
A ∈ Ω1 (M,End (E)). There are plenty of connections and the difference of any
two is an element in Ω1 (M,End (E)). Since d2 = 0,

(DA)2 : Ω0 (M,E)→ Ω2 (M,E)

can be shown to be a zeroth order operator. Namely there exists FA ∈ Ω2 (M,End (E)),
called the curvature tensor satisfying

(DA)2 s = FAs

for any section s. Bianchi identity says that

DAFA = 0 ∈ Ω3 (M,End (E)) .

This implies that
1
k!
Tr

(
i

2π
FA

)k

∈ Ω2k (M,R)

is a closed differential form for any k. The cohomology class it represents can be
shown to be the kth Chern character chk (E) ∈ H2k (M,Q). To put them together,
we write

ch (E) = r +
n∑

k=1

chk (E)

=
[
exp
(
i

2π
FA

)]

where r is the rank of E. Similarly the Chern class of E can be defined as

c (E)
R

= 1 + c1 (E)
R

+ · · ·+ cr (E)
R

=
[
det
(
IE +

i

2π
FA

)]
∈
⊕

k=0

H2k (M,R) .

In particular c1 (E) = ch1 (E) =
[

i
2πFA

]
.

Geometrically, a connection DA identifies any two fibers Ex, Ex′ along any
path γ (t) joining x and x′ inM . This is done by extending any base s1 (x) , . . . , sr (x)
of Ex to the whole path by solving the ODE Dγ̇(t)sj (γ (t)) = 0. This identification
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is called the parallel transport along γ. If we choose a polar coordinates around
a given point x0 ∈ M and use parallel transports along radial paths to identify
Ex with Ex0 for every x in a small neighborhood U of x0, then we obtain a local
trivialization

E|U ∼= U × C
r.

With respect to this trivialization, DA coincides with the trivial connection on
U × Cr up to first order at x0, that is

DA = d+O
(
|x|2
)

.

Indeed the coefficients of the second order terms are precisely the curvature tensor
of DA at the point x0.

Holonomy and flat connections
The parallel transport along any closed loop based at x0 ∈M defines an element
in GL (Ex0), called the holonomy holDA (γ) of DA around γ. This gives a map on
the based loop space of M ,

holDA : Ωx0 (M)→ GL (Ex0) .

The image of holDA in GL (r,C) is independent of x0 ∈ M , up to conjugations,
called the holonomy group of DA. Roughly speaking, curvature is the holonomy
for infinitesimal loops. In particular, when the curvature is zero, holDA (γ) equals
the identity for any contractible loop. That is holDA (γ) depends only on the
homotopy class of γ, thus we obtain a homomorphism

holDA : π1 (M,x0)→ GL (Ex0) .

Up to conjugacy, this map is independent of the base point x0 ∈ M . Moreover,
if we conjugate DA by an automorphism g ∈ Aut (E) = GE , also called a gauge
transformation, g ·DA = g−1 ◦DA ◦ g, we have

Fg·A = g−1FAg = 0.

Moreover, DA and g ·DA give the same holonomy map up to conjugation. Thus
we have a natural identification

{DA|FA = 0} /G hol→ Hom (π1 (M) , GL (r,C)) /Ad (GL (r,C)) .

Indeed the universal covering

π1 (M)→ M̃ →M

is the universal flat connection is the sense that given any flat connection DA over
M with

ρ : π1 (M)→ GL (r,C)

the corresponding holonomy map, then the trivial connection d on M̃ × Cr over
M̃ descends to the Cr-bundle M̃ ×ρ Cr over M and becomes DA, up to gauge
symmetries.
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The curvature of DA being zero is equivalent to the following sequence

0→ Ω0 (M,E) DA→ Ω1 (M,E) DA→ · · · DA→ Ωn (M,E)→ 0

being a complex, that is (DA)2 = 0. Its cohomology group

Hk
DA

(M,E) =
Ker (DA)
Im (DA)

∣∣
∣
∣
Ωk(M,E)

generalizes the deRham cohomology group.
Cohomology groups of low degrees have important geometric significances.

If we denote the symmetry group of DA as

Aut (E,DA) = {g ∈ Aut (E) : g ·DA = DA} ,

then its Lie algebra equals H0
DA

(M,End (E))’s. Moreover, the tangent space of a
smooth point DA in the moduli spaceMflat (M) of flat connections on E equals
H1

DA
(M,End (E)). This is because if DA + tB is a flat connection for all B, the

flatness (DA + tB)2 = 0 is equivalent to

DAB + t [B,B] = 0.

Modulo t, we haveDAB = 0, i.e., [B] ∈ H1
DA

(M,End (E)). By similar reasonings,
we have the obstructions of smoothness ofMflat (M) lie insideH2

DA
(M,End (E)).

In order to use the Hodge theorem to represent elements in Hk (M,E) by
harmonic forms, we need to choose a metric g on M and also a Hermitian metric
h on E in such a way that DAh = 0. As in the manifold case, we have

Hk
DA

(M,E) = Ker (DAD
∗
A +D∗

ADA) |Ωk(M,E)

where D∗
A is the formal adjoint of DA.

Geometrically, DAh = 0 means that parallel transports by DA preserve the
inner product h (s1 (x) , s2 (x)). Similarly, if we treat our complex vector bundle E
as a real vector bundle equipped with a real endomorphism J : E → E satisfying
J2 = −IE , then DA being a connection of the complex bundle is equivalent to one
on a real bundle which satisfies DAJ = 0. We could also consider other fiberwise
structures on E and connections that preserve them in a similar fashion. Their
curvatures will then preserve these structures infinitesimally. For example, for a
complex (resp. Hermitian) connection, its curvature lies inside Ω2 (M, glC (E))
(resp. Ω2 (M,u (E))). In general we write FA ∈ Ω2 (M,ad (E)).

When E is a real vector bundle with a metric g, for instance the tangent
bundle of a Riemannian manifold, then the curvature of any orthogonal connection
lies inside

FA ∈ Ω2 (M,ad (E)) ∼= Ω2
(
M,Λ2E∗)

because so (r) � Λ2Rr∗.
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Yang-Mills connections
When M is an oriented Riemannian manifold, we can measure the length |FA| and
define the Yang-Mills energy functional,

YM : A (E, h) /GE → R

YM (DA) =
1
2

∫

M

|FA|2 dvg.

One looks for connections which minimize YM . The Euler-Lagrange equation
for critical points of the Yang-Mills functional is given by the following Yang-Mills
equation

D∗
AFA = 0 ∈ Ω1 (M,ad (E)) .

This second order system of differential equations in DA is elliptic modulo
gauge symmetries. We can usually reduce it to an easier first order equation when
M admits special geometric structures. We will see many such examples in this
article.

Certainly flat connections are absolute minima for the Yang-Mills functional.
But this is usually an over-determined system of equations unless dimR M ≤ 3.
When dimR M = 3, Casson found a way to count the number of flat SU (2)-
connections on any homology three spheres and defined the Casson invariant. In
this dimension, flat connections are critical points of the Chern-Simons functional :
For any connection DA = d+A on a topologically trivial bundle,

CS (DA) =
∫

M

Tr

(
A ∧ dA+

2
3
A ∧A ∧A

)
.

This is invariant under gauge transformations in the identity component of GE .
Thus CS is only a multi-valued function on A (E) /GE . A more intrinsic way to
define CS is to write M as the boundary M = ∂Z of a four manifold Z and extend
DA over Z, then

CS (DA) =
∫

Z

Tr (FA)2 .

Floer [42] and others developed the infinite dimensional Witten-Morse theory
for CS on A (E) /GE and defined the Floer cohomology HFCS (M) for three man-
ifolds M whose Euler characteristic is the Casson invariant. Roughly speaking,
HFCS (M) ∼= H∞/2 (A (E) /GE) and it measures the middle dimensional topology
of A (E) /GE [3].

WhenM is the boundary of a four dimensional manifold Z1, then the Donald-
son polynomial invariants (see Section 4.1) for differentiable structures on closed
four manifolds has a natural generalization for Z1 which takes values in HFCS (M)
and are called the relative Donaldson invariants. Various gluing formulas allow
us to compute the Donaldson invariants for a closed four manifold Z in terms of
relative Donaldson invariants for (Zi,M)’s under connected sum decomposition
Z = Z1#MZ2. This defines a three dimensional topological field theory (TFT ).

We can further decompose the three manifold M = M1#ΣM2 into a con-
nected sum along a Riemann surface Σ of genus g. It is called a handlebody
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decomposition if M is a (rational) homology 3-sphere and dimH1 (Mi) = g, i.e.
half of H1 (Σ) vanish on M1 and the other half vanish on M2. The moduli space
Mflat

Σ of flat SU (2)-connections on Σ is a symplectic manifold of dimension 6g−6
and eachMflat

Mi
is a Lagrangian submanifold inMflat

Σ . The Lagrangian intersection
Mflat

M1
∩Mflat

M2
is precisely the discrete set of flat connections on the closed three

manifold M . Thus Atiyah [3] conjectured that HFCS (M) can be identified with

another Floer cohomology HFMflat
Σ

Lagr

(
Mflat

M1
,Mflat

M2

)
for the Lagrangian intersection

theory (Section 5.4).
Witten [133] considered the path integral of Chern-Simons functional over

A (E, h) /GE to give a geometric interpretation of the Jones polynomial of knots
and also defined new invariants for three manifolds.

A complexified version of this Chern-Simons theory for Calabi-Yau threefolds,
and also for G2-manifolds, plays an important role in mirror symmetry [40][91].

Second fundamental forms
We remark that if E = E1 ⊕ E2 is a direct sum of vector bundles and we write
any connection D on E accordingly

D =
(
D1 B21

B12 D2

)
,

then Di is a connection on Ei and we called B21 ∈ Ω1 (M,Hom (E2, E1)) and
B12 ∈ Ω1 (M,Hom (E1, E2)) the second fundamental forms of D.

If D is an orthogonal connection with respect to some inner product h on E,
then any subbundle E1 in E determine such a decomposition with E2 being the
orthogonal complement to E1 and B21 = −B12

∗.

3 Riemannian geometry

3.1 Torsion and Levi-Civita connections

Suppose M is a submanifold in RN , the restriction of the Euclidean metric is a
Riemannian metric g on M . Moreover the usual differential is a trivial connection
d on RN and it restricts to an orthogonal connection on (M, g).

Given any metric g on M , such an isometric embedding always exists by the
celebrated theorem of Nash. There could be many isometric embeddings of a given
(M, g) into Euclidean spaces, but the induced orthogonal connections are always
the same. It can be characterized intrinsically as the unique connection ∇ on TM

satisfying ∇g = 0 and Tor (∇) = 0, called the Levi-Civita connection of (M, g).
Let us briefly explain the torsion tensor Tor (∇) for any connection on the

tangent bundle TM . Connections on TM are called affine connections. Each ∇
induces a dual connection on T ∗

M ,

∇ : Ω0 (M,T ∗
M )→ Ω1 (M,T ∗

M ) .

Note that (i) Ω0 (M,T ∗
M ) ∼= Ω1 (M) and (ii) Ω1 (M,T ∗

M ) ∧→ Ω2 (M). The difference
of ∧ ◦ ∇ : Ω1 (M) → Ω2 (M) and the exterior derivative d is given by a tensor,
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called the torsion tensor of ∇. Explicitly Tor (∇) ∈ Ω2 (M,TM ) is given by

Tor (∇) (X,Y ) = ∇XY −∇YX − [X,Y ] .

Geometrically, if ∇ is any connection on T ∗
M , then using parallel transports

along radial paths from x0 ∈M , we obtain a local trivialization U × Rn �→ T ∗
UM

given by (x; a1, . . . , an) �→ a1s
1 (x) + · · ·+ ans

n (x) satisfying

∇ = d+O
(
|x|2
)

.

Here x =
(
x1, ..., xn

)
are local coordinates on M and

(
s1 (x) , ..., sn (x)

)
are bases

on fibers of T ∗M . It is natural to require the compatibility that

s1 (x) = dx1, . . . , sn (x) = dxn.

This can be achieved precisely when Tor (∇) = 0.
In such a coordinate system, g =

∑
i,j gij (x) dxi ⊗ dxj has the following

property

gij = g

(
∂

∂xi
,
∂

∂xj

)
= δij +O

(
|x|2
)

,

for small |x|. Namely gij (0) = δij and dgij (0) = 0. This is called a normal
coordinate system and it comes handy when we perform tensor calculus on M .

3.2 Classification of Riemannian holonomy groups

The holonomy group of the Levi-Civita connection of a Riemannian manifold is
called the Riemannian holonomy group, or simply the holonomy group and we
denote it as Hol (M, g). Up to conjugacy, it is a closed subgroup of O (n). We will
only consider the connected component of Hol (M, g). In this article we simply
write Hol (M, g) for the identity component, sometimes called the reduced holon-
omy group. Every simply connected Riemannian manifold is a Riemannian prod-
uct of those with irreducible holonomy groups and they are classified by Berger [11]
as follows: Unless (M, g) is a Riemannian symmetric space, Hol (M, g) must be
either GA (n) or HA (n) for a normed division algebra A, as given in the following
table,

A R C H O

GA (n) O (n) U (n) Sp (n)Sp (1) Spin (7)

HA (n) SO (n) SU (n) Sp (n) G2

The corresponding geometries are given as follows:

Riemannian Kähler Quaternionic-Kähler Spin (7)

Volume Calabi-Yau Hyperkähler G2
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The geometry of manifolds with holonomy groupGA (n) or HA (n) can be naturally
interpreted as the geometry over the normed division algebra A and one with an
A-orientation respectively [93] (see section 10).

In section 9, we will also give another unified description of all these geome-
tries in terms of real and complex vector cross products. Both approaches are
closely related to each other and each has its own advantages.

Riemannian symmetric spaces are classified by Cartan in terms of Lie theory
and the list is a bit longer. We will see in section 10 that they can be interpreted
as Grassmannians of subspaces in a linear space defined over A⊗B for two normed
division algebras A and B.

3.3 Riemannian curvature tensors

The curvature tensor Rm of the Levi-Civita connection ∇ of (M, g) enjoys many
nice properties. The condition ∇g = 0 implies that Rm ∈ Ω2

(
M,Λ2T ∗

M

)
and we

can view it as a linear operator

Rm : Λ2TM → Λ2TM

called the curvature operator. This is a symmetric operator because of the torsion
freeness of ∇. Thus we can write Rm ∈ Γ

(
M,Sym2

(
Λ2T ∗

M

))
.

Explicitly in term of local coordinate xi’s, if we write gij = g
(

∂
∂xι ,

∂
∂xj

)
, then

the Levi-Civita connection ∇ = d+ Γi
jkdx

j ⊗ dxk ⊗ ∂
∂xi is given by the formula

Γk
ij =

1
2
gkl

(
∂glj

∂xi
+
∂gil

∂xj
− ∂gij

∂xl

)
.

Here Γk
ij ’s are called the Christoffel symbols. The Riemannian curvature tensor is

given by the formula

−Rmi
qkl =

∂Γi
ql

∂xk
−
∂Γi

qk

∂xl
+ Γi

pkΓp
ql − Γi

plΓ
p
qk,

where Rm
(

∂
∂xk ,

∂
∂xl

)
∂

∂xq = Rmi
qkl

∂
∂xi and we also write Rmpqkl = gpiRm

i
qkl.

It has the following properties,

0 = Rmijkl +Rmijlk

0 = Rmijkl −Rmklij

0 = Rmi
jkl +Rmi

klj +Rmi
ljk

0 = Rmijkl,p +Rmijlp,k +Rmijpk,l.

If Rm is identically zero, then the universal cover of M is the Euclidean
space Rn with the standard flat metric. More generally, suppose Rm = λI as
an operator on Λ2TM , then the universal cover of M must be the sphere or the
hyperbolic space according to λ being a positive or negative constant respectively.
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Such M ’s are called space forms. These are model spaces in geometry and they
are examples of symmetric spaces,

Sn =
O (n+ 1)
O (n)

and H
n =

O+ (n, 1)
O (n)

.

If we take the partial trace of Rm : Λ2TM → Λ2TM by contracting one of the
TM -factor, then we obtain the Ricci tensor,

Rc : TM → TM

That is Rcij = Rcij = Rmk
ikj . The metric is called an Einstein metric if the Ricci

curvature is constant. We can take the trace again to obtain the scalar curvature
R ∈ C∞ (M), i.e., R = gijRcij .

There are a lot of studies on the interplay between curvature and topology
of M . For instance, the Bochner formula

∆φ = ∇∗∇φ+Rc (φ)

for one forms φ onM implies that ifM has positive Ricci curvature, then there is no
nontrivial harmonic one form. Using the Hodge theorem, this implies H1 (M,R) =
0.

3.4 Flat tori

(Enhanced) moduli of flat tori
A flat torus T n is a quotient of the Euclidean space R

n by a lattice Γ. For instance
Rn/Zn is the standard flat torus. The natural metric on T n has zero Riemannian
curvature and every Einstein metric on T n is flat. The moduli space of flat metrics
on T n is

GL (n,Z) \GL (n,R) /O (n) .

This is because the space of lattices in Rn is GL (n,Z) \GL (n,R) and changing a
lattice by an orthogonal transformation will only change T n by an isometry. If we
fix an isomorphism between H1 (T n,Z) with Zn, called a marking, then the space
of marked flat tori is GL (n,R) /O (n) , which can also be identified as the space
of positive definite inner products on Rn.

Motivated from physics, we couple a flat metric with a B-field B ∈ H2 (T n, U (1)),
then the corresponding moduli space is the quotient of

GL (n,R)
O (n)

×H2 (T n,R) � SO+ (n, n)
SO (n)× SO (n)

by the discrete subgroup GL (n,Z)×H2 (T n,Z). The above isomorphism is given
by

(Λ, B)→
(

(Λt)−1 0
0 Λ

)(
I −B
0 I

)
.

We can further enhance these moduli spaces to the symmetric spaces for the split
exceptional Lie groups of type En+1 provided n+ 1 ≤ 8,
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Esplit
6

Sp (4)
,
Esplit

7

SU (8)
and

Esplit
8

SO (16)
.

Bundles over tori
The cohomology groups of T n = Rn/Γ have natural isomorphisms,

Hk (T n,Z) �
∧kΓ∗,

where Γ∗ is the dual lattice to Γ. Moreover the Chern character map is an iso-
morphism over Z, i.e.,

ch : K (T n) �→ Heven (T n,Z) .

Every harmonic form on a flat torus is parallel. Indeed dxi1 ∧ dxi2 ∧ · · · ∧ dxik ’s
form a base of the space of harmonic forms on T n = Rn/Γ.

Flat G-bundles over T n are particularly easy to describe since π1 (T n) ∼= Zn,
at least when G = U (r) or n ≤ 2. Recall that the moduli spaceMG−flat (T n) of
flat G-bundles on any space can be identified with

MG-flat (T n) ∼= Hom (π1 (T n) , G) /Ad (G) .

We assume that G is a compact Lie group. When n = 1, i.e., T n is a circle, then
MG-flat

(
S1
)

= G/Ad (G) = TG/W , where TG is a maximal torus in G. This is
because every element in G can be conjugated to an element in TG, unique up to
the action of the Weyl group W . When G = U (r), this says that every unitary
matrix can be diagonalized uniquely up to permutations of eigenvalues. In this
case, the Weyl group is the permutation group Sr of r elements.

Since π1 (T n) = Γ ∼= Zn is a free Abelian group, Hom (π1 (T n) , G) is the set
of commuting n-tuples in G. When G = U (r), any such n-tuple of elements in
U (r) can be simultaneously diagonalized and therefore

MU(r)-flat (T n) ∼= (
∏n

TG) /Sr � SymrT n∗

is the rth-symmetric power of T n∗.
However, for other G, (

∏nTG) /W is only the largest connected component
ofMG−flat (T n). For n = 2, a result of Borel says that

MG-flat
(
T 2
) ∼=

TG × TG

W
.

Suppose T 2 is given a complex structure, i.e., an elliptic curve T 2
τ , Looijenga

showed that these spaces are always complex weighted projective spaces. This
result plays an important role in physics for the duality between heterotic string
theory and F-theory.

When G is the compact exceptional Lie group of type En, Friedman-Morgan-
Witten and Donagi showed thatMEn−flat

(
T 2

τ

)
can be identified with the moduli

space of degree 9 − n del Pezzo surfaces with T 2
τ its anti-canonical curve. This
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result was generalized by Leung-Zhang [102][103] to compact Lie groups of any
type.

T-duality
Let us come back to the case of flat U (1)-bundles over T n. Their moduli space is
canonically the dual torus T n∗ � Rn∗/Γ∗. Certainly (T n∗)∗ = T n. In fact, this
duality between T n and its dual torus T n∗ can be applied to other structures on the
tori, called the T-duality. The key observation lies in the existence of a universal
U (1)-bundle P over the universal moduli space T n×MU(1)−flat (T n) � T n×T n∗,
called the Poincaré bundle. It has a universal connection D in the sense that the
restriction of D to any slice T n × [DA] is the flat U (1)-connection DA itself. On
the level of differential forms, we define the Fourier-Mukai transformation F as
follows,

F : Ωk (T n)→ Ωn−k (T n∗)

F (φ) =
∫

T n

φ ∧ e i
2π F

where F is the curvature two form of D. We can rewrite this as

F (φ) = π2∗
(
π∗

1φ ∧ e
i

2π F
)

where πi is the projection to the ith-factor in T n × T n∗. F descends to give an
isomorphism between cohomology groups of T n and T n∗. Similar construction
also give an isomorphism between their K-groups.

However, this is not an isomorphism on the level of differential forms. One
can achieve this by incorporating the most basic duality transformation, namely
the Fourier series, i.e., every periodic function f (θ) on R with period 2π is a linear
combination of einθ’s,

f (θ) =
∑

ν∈Z

f̂ (ν) eiνθ.

This can be viewed as a transformation from the function f on S1 � R/Z to the
function f̂ on Z. This transformation is an isometry between L2

(
S1
)

and l2 (Z).
It can be easily generalized to give an isometry

F : L2 (T n)→ l2 (Γ∗) .

One can combine the Fourier-Mukai transformation with the Fourier series to give
an isomorphism on the level of differential forms between T n and T n∗ [31].

Notice that the Fourier-Mukai transformation of a flat U (r)-bundle over T n

is r points in T n∗ as MU(r)-flat (T n) ∼= SymrT n∗. In dimension four, there is
another natural class of Yang-Mills connections, namely ASD connections (see
section 4). In this case, the Fourier-Mukai transformation of an ASD connection
(without flat factor) over T 4 is an ASD connection over T 4∗ [38]. By applying this
transformation again, we get back the original connection.
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3.5 Einstein metrics

The Einstein functional for any Riemannian metric g on M with volume one is
given by its total scalar curvature,

∫

M

R dvg.

In dimension two, this is a topological quantity, namely the Euler characteristic
of the Riemann surface by the Gauss-Bonnet formula. In higher dimension, the
Euler-Lagrange equation is the Einstein equation

Rcij =
R

2
gij .

and its solutions have constant Ricci curvature, i.e. Einstein metrics, which play
very important roles in both geometry and general relativity.

In dimension two, Riemannian curvature tensor, Ricci curvature and scalar
curvature are all the same. By rescaling a metric at each point, namely a con-
formal change, we can make its curvature constant. This is the uniformization
theorem which identifies conformal structures (or equivalently complex structures)
and Einstein metrics in this dimension.

In dimension three, every Einstein metric has constant sectional curvature.
The search for them is an important avenue into understanding the Poincaré con-
jecture and Thurston geometrization conjecture for three dimensional topology
and we have the recent breakthrough by Perelman toward solving them.

In dimension four, there are several topological obstructions to the existence
of Einstein metrics. This situation is also similar to the Kähler case. In dimension
five or higher, there are very few examples of Einstein manifolds. However, we do
not have any topological constraint for them either.

3.6 Minimal submanifolds

Given any submanifold C in M , its tangent bundle is a subbundle of the restriction
of TM to C and the quotient bundle is called the normal bundle NC/M , that is

0→ TC → TM |C → NC/M → 0.

Using a metric on M , we obtain an orthogonal decomposition

TM |C = TC ⊕NC/M ,

and therefore an induced metric and an induced connection on C. This induced
connection on C is again torsion free, namely it is the Levi-Civita connection on
C with respect to the induced metric. We denote the second fundamental form as

A ∈ Ω1
(
C, T ∗

C ⊗NC/M

)
= Γ
(
C, T ∗

C ⊗ T ∗
C ⊗NC/M

)
.

The torsion freeness of ∇ implies that A =
∑
Aα

ijdx
i ⊗ dxj ⊗ eα is a symmetric

tensor,
A ∈ Γ

(
C, Sym2T ∗

C ⊗NC/M

)
,
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that is Aα
ij = Aα

ji for any i, j, α, where eα’s is an orthogonal frame for the normal
bundle. The mean curvature vector is the normal vector field obtained by taking
trace of A with respect to g, that is

−→
H = Trg (A) =

∑
gijAα

ijeα ∈ Γ
(
C,NC/M

)
.

The most natural class of oriented submanifolds C in a Riemannian manifold
(M, g) consists of those with minimal volumes. Critical points for the volume func-
tional are called minimal submanifolds and they are characterized by the vanishing
of the mean curvature vector −→

H = 0.

This second order quasi-linear system of elliptic differential equations has been
extensively studied, especially when C is either of codimension one or of dimension
at most two.

When C is an oriented hypersurface in M , there is a unique oriented normal
vector field of unit length, denoted as n̂. The mean curvature vector becomes a
scalar function H on C, that is �H = Hn̂, and the minimal hypersurface equation
is a scalar equation which is much easier to handle than the general case.

Calibrations
In the higher codimension cases, not much is known in general. However in the
presence of the additional geometric structures, for example Kähler, Calabi-Yau,
G2 or Spin (7) structure, that certain special classes of minimal submanifolds can
be characterized by systems of first order equations. Moreover, their solutions
are not just critical points for the volume functional, they are absolute volume
minimizers. This is the theory of calibration, developed by Harvey and Lawson
[59], based on the Wirtinger formula which gives the volume minimizing properties
for complex submanifolds in Kähler manifolds.

A differential form φ ∈ Ωk (M) in a Riemannian manifold M is called a
calibration form if dφ = 0 and φ (P ) ≤ vol (P ) for any oriented k-plane P in TM .
An important observation is that every k-dimensional submanifold S in M with
φ|S equal its volume form for the induced metric is always a volume minimizing
submanifold within its homology class [S] ∈ Hk (M). This is because if [S′] = [S],
we have

∫
S
φ =
∫

S′ φ using integrating by part and dφ = 0. Therefore

V ol (S) =
∫

S

φ =
∫

S′
φ ≤ V ol (S′) .

Furthermore, any S′ with the same volume as S is also calibrated by φ.
Examples include complex submanifolds in Kähler manifolds which are cali-

brated by ωk/k!, special Lagrangian submanifolds in Calabi-Yau manifolds which
are calibrated by Re Ω, associative (resp. coassociative) submanifolds inG2-manifolds
which are calibrated by Ω (resp. ∗Ω) and Cayley submanifolds in Spin (7)-manifolds
which are calibrated by Θ. The existence of these calibrations can be explained
naturally in terms of vector cross products (see Section 9).
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3.7 Harmonic maps

Given any smooth map
f : M → N

its linearization df (x) : TxM → Tf(x)N at x ∈M determines a section

df ∈ Γ (M,T ∗
M ⊗ f∗TN) .

Given any Riemannian metrics gM and gN on M and N respectively, we can
measure its length |df | (x) ≥ 0. The harmonic energy of f is defined as follows,

E (f) =
∫

M

|df |2 dvgM .

The Euler-Lagrange equation is

∆f = 0 ∈ Γ (M, f∗TN) .

Here ∆f = Trg∇ (df) with

∇ (df) ∈ Ω1 (M,T ∗
M ⊗ f∗TN) ∼= Γ (M,T ∗

M ⊗ T ∗
M ⊗ f∗TN )

the covariant derivative of the section df .
WhenN = R, harmonic maps are simply harmonic functions. WhenN = S1,

any f : M → S1 defines a closed one form f∗ (dθ) on M representing a class
in H1 (M,Z). Thus harmonic maps to S1 correspond to harmonic one forms
representing classes in H1 (M,Z).

Recall that (i) Hodge theorem says that every cohomology class has a unique
harmonic form representative, which minimizes the energy and (ii) Bochner for-
mula implies that harmonic one forms are zero if RcM > 0.

Harmonic maps behave like harmonic one forms. The Bochner formula can
be generalized to

∆ |df |2 =
1
2
|∇df |2 +RcM (df, df)−RmN (df, df, df, df)

Using this formula, Eells-Sampson [41] showed that if N is negatively curved, but
not necessary compact, then any homotopy class of map f : M → N admits a
unique harmonic map representative, which also minimizes the harmonic energy.
If, moreover RcM > 0, then there is no nontrivial harmonic map at all. These
Bochner type arguments for harmonic maps were refined by Siu, Yau and others
to prove various superrigidity type theorems for locally symmetric spaces.

We note that holomorphic maps between Kähler manifolds are harmonic.
When M is one dimensional, i.e. a circle S1, then f (M) is a geodesic in N

and the parametrization f has constant speed. In general, harmonic maps and
minimal submanifolds are quite different objects as the former one depends on the
choice of gM .
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Sigma model
When M is two dimensional, then the harmonic energy E (f) is unchanged if we
scale gM to eugM with u any smooth function on M , i.e. E (f) depends only on
the conformal structure on M . The sigma model, or σ-model, in physics consider
E (f) as the action functional on the space of maps, or bosonic fields, Map (M,N)
and this gives a conformal field theory. When we couple it with fermionic fields,
i.e. spinors of M twisted by f∗TN , there is a supersymmetry (abbrev. N = 1
SUSY) between bosons and fermions. When N is a Kähler (resp. hyperkähler)
manifold, then we can add more fermionic fields and obtain a N = 2 (resp. N = 4)
SUSY σ-model.

In the Kähler case, we have

E (f) =
∫

M

|df |2 =
∫

M

|∂f |2 +
∫

M

∣
∣∂̄f
∣
∣2 .

On the other hand, ∫

M

f∗ω =
∫

M

|∂f |2 −
∫

M

∣
∣∂̄f
∣
∣2 .

Thus

E (f) =
∫

M

f∗ω + 2
∫

M

∣
∣∂̄f
∣
∣2 .

Note that
∫

M
f∗ω = [ω] (f (M)) depends only on the homotopy class of the map

f . Thus in a fixed homotopy class, holomorphic maps have the least harmonic
energy

∫
M
f∗ω. This continues to hold true for any symplectic manifold M with

a compatible metric. Similar situations also happen for gauge theory over an
oriented Riemannian four manifold (Section 4.1).

Witten [134] studied twisted versions of N = 2 σ-models and defined two
different models of TFT, called the A-model and B-model. The A-model describe
the quantum symplectic geometry of N and Gromov-Witten invariants (section
5.4) are partition functions in this model. The B-model describe the complex
geometry of N and there are no instanton effects.

When N is a Calabi-Yau manifold, the mirror symmetry conjecture says that
there should be another Calabi-Yau manifold N ′ such that the A-model and the
B-model on N and N ′ got interchanged (Section 6.3).

4 Oriented four manifolds

Oriented manifolds of dimension two are special as they are one dimensional com-
plex manifolds, i.e., Riemann surfaces. This is because SO (2) ∼= U (1). Similarly,
oriented manifolds of dimension four are one dimensional quaternionic manifolds
because SO (4) = Sp (1)Sp (1). As Λ2R4 ∼= sp (1) ⊕ sp (1) ∼= so (4), given any
oriented Riemannian four manifold M , we have a decomposition of its two forms
into self-dual (SD) and anti-self-dual (ASD) components,

Λ2 (M) = Λ2
+ (M)⊕ Λ2

− (M) .
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Indeed this corresponds to the eigenspace decomposition for the Hodge star op-
erator ∗ on the space of two forms. There is a corresponding decomposition for
harmonic two forms, via Hodge theory we have

H2 (M) = H2
+ (M)⊕H2

− (M) .

This decomposition depends only on the conformal structure of M . Note that
∫

M

φ ∧ φ = ±
∫

M

|φ|2

for φ ∈ H2
± (M). Thus the intersection product qM on H2 (M) is positive (resp.

negative) definite onH2
+ (M) (resp. H2

− (M)) The signature τ (M) = dimH2
+ (M)−

dimH2− (M) is a topological invariant ofM and it equals to the characteristic num-
ber p1 (M) /3 by the Hirzebruch signature formula.

4.1 Gauge theory in dimension four

Donaldson theory
First we note that the Yang-Mills energy functional

∫

M

|FA|2

on an oriented Riemannian four manifold (M, g) depends only on the conformal
class of the metric g.

As curvature tensors are matrix-valued two forms, for Hermitian connections
DA on any complex vector bundle E over an oriented Riemannian four manifold
M , we have

FA = F+
A + F−

A

with
F±

A :=
1
2

(FA ± ∗FA) ∈ Ω2
± (M,ad (E)) ,

the (anti-)self-dual (abbrev. SD/ASD) components of FA. Notice that
∫

M

|FA|2 =
∫

M

∣
∣F+

A

∣
∣2 +
∫

M

∣
∣F−

A

∣
∣2

and when c1 (E) = 0, we also have

c2 (E) =
−1
8π2

∫

M

Tr FA ∧ FA

=
−1
8π2

∫

M

∣
∣F+

A

∣
∣2 +

1
8π2

∫

M

∣
∣F−

A

∣
∣2 .

Thus the Yang-Mills energy functional satisfies,
∫

M

|FA|2 = 8π2c2 (E) + 2
∫

M

∣
∣F+

A

∣
∣2 .
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Therefore, when c2 (E) ≥ 0, the absolute minimal for the Yang-Mills energy is
realized by ASD connections, i.e. F+

A = 0, also called instantons.

For a line bundle over R3,1, the ASD-equation

F+
A = 0

is the Maxwell equation for electromagnetism. In general, when E is a line bundle,
this linear equation is well-understood via Hodge theory. The situation is much
more complicated when the rank r of E is higher as the moduli space of solutions is
not compact. When r equals two, using foundational works of Uhlenbeck, Taubes
and others, Donaldson [38] studied the intersection theory on this moduli space
and defined new and powerful invariants for the differentiable structures on four
manifolds. When M is a Kähler surface, then the instanton equation is the same
as the Hermitian Yang-Mills equation with zero slope. Donaldson [36] showed that
this latter equation is solvable precisely when E is a polystable holomorphic vector
bundle overM . In higher dimensions, this result is proved by Uhlenbeck-Yau [125].

Witten [132] described the Donaldson invariants as partition functions of a
topological field theory (TFT) with N = 2 supersymmetries. This TFT links the 4-
dimensional Donaldson theory and the 3-dimensional Chern-Simons Floer theory
and 2-dimensional gauge theory as explained by Atiyah [3].

Seiberg-Witten theory
After much work from both mathematicians and physicists, Witten [132] found
that the Donaldson theory should be equivalent to a much simpler theory using
the so-called Seiberg-Witten (SW) theory. In this theory, DA is a connection of a
line bundle L. The SW-equation is

F+
A = σ (φ)

DAφ = 0.

Here φ ∈ S+
L is a positive spinor field twisted by L. The operator DA is the twisted

Dirac operator and σ : ad
(
S+

L

) �→ Λ2
+T

∗
M is a natural isomorphism.

The Weitzenbock formula

D∗
ADAφ = D∗

ADAφ+
R

4
φ+ F+

A · φ

implies that the SW-equation has no nontrivial solution if M has positive scalar
curvature. It can also be used to show that the moduli space of solutions to
the SW-equation is compact. This makes the SW theory much simpler than the
Donaldson theory. The compactness of the moduli space of SW equation still holds
true even if we allow the spinor field φ to have eigencomponents by Leung-Xu [100]
using an eigenvalue estimate by Vafa-Witten [126].

SW theory has many important applications in different branches of four
dimensional theory, including (i) differential topology, for instance the Thom con-
jecture [78], (ii) Kähler geometry, (iii) Riemannian geometry, for instance the study
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of Einstein metric [80][87][90] and (iv) symplectic geometry, for instance SW=GW
by Taubes and classification of symplectic four manifolds with b+ = 1 [104][118].

Vafa-Witten theory
Vafa and Witten also studied a N = 4 TFT on four manifolds in [127] and derived
the Vafa-Witten equation

F+
A + [B,B] + [C,B] = 0

D∗
AB +DAC = 0,

where B ∈ Ω2
+ (M,ad (E)) and C ∈ Ω0 (M,ad (E)). The S-duality in physics

predicts that the generating function for the Euler characteristics of these moduli
spaces is a modular form. More recently, Vafa-Witten introduced another N = 4
TFT [127] and conjectured that S-duality for this theory would give a physical
explanation of the Langlands program.

4.2 Riemannian geometry in dimension four

Recall that the Riemannian curvature tensor Rm is a self-adjoint operator on
Λ2T ∗

M . With respect to the decomposition of two forms into SD and ASD compo-
nents, we have

Rm =
(
W+ +R/12 Rc0

Rc0 W− +R/12

)
.

Here R is the scalar curvature, Rc0 is the tracefree part of the Ricci curvature
and W = W+ + W− is the Weyl curvature (Section 12) and it depends only
on the conformal structure on M. When W = 0, M is conformally flat. M is
called an ASD (resp. SD) manifold if W+ = 0 (resp. W− = 0). Note that if we
reverse the orientation of M , then W+ and W− get interchanged. The signature
τ (M) = dimH2

+ (M)− dimH2
− (M) can be expressed as

τ (M) =
1

12π2

∫

M

∣
∣W+
∣
∣2 −
∣
∣W−∣∣2 .

When M is an Einstein manifold, the Euler characteristic χ (M) can be computed
as follows,

χ (M) =
1

8π2

∫

M

∣
∣W+
∣
∣2 +
∣
∣W−∣∣2 +R2/24.

In particular, we obtain the Hitchin inequality

τ (M) ≤ 2
3
χ (M) ,

where the equality sign holds if and only if W− = R = 0. When M is Kähler, this
inequality can be rewritten as c21 (M) ≤ 4c2 (M). In the Kahler-Einstein case, it
can be sharpened to

c21 (M) ≤ 3c2 (M) ,
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the Miyaoka-Yau inequality. The equality sign holds if and only if the universal
cover of M is the complex ball B2

C
= SU (2, 1) /U (2). Note that Yau showed

that every Kähler manifold with c1 (M) = 0 or < 0 admits a Kahler-Einstein
metric. Thus this inequality is an important tool in the study of the classification
problem of complex algebraic surfaces. Lebrun [80] generalized the Miyaoka-Yau
inequality to the real case with the help of the Seiberg-Witten invariants. If the
Seiberg-Witten invariant is nonzero with respect to the reversed orientation on
a Kahler-Einstein surface, then the index τ (M) is nonnegative, and it is zero if
and only if the universal cover of M is covered by the product of complex disks
B1

C
×B1

C = (SU (1, 1) /U (1))2. Recall that B2
C

and B1
C
×B1

C are the only Hermitian
symmetric spaces of noncompact type in this dimension [87]. There is also a non-
Hermitian symmetric space, namely the hyperbolic ball B4, for which one can also
find a characterization using Chern number inequality by using the non-Abelian
Seiberg-Witten equation [90].

Twistor transform
We can associate to every oriented Riemannian four manifold M a 6-dimensional
manifold Z, called the twistor space of M , which is equipped with an almost
complex structure JZ . It is the total space of a fiber bundle

S2 → Z
π→M

with fiber over x ∈ M being the set of all linear orthogonal complex structures
on TxM , which is a copy of SO (4) /U (2) � S2. For instance, when M = S4, we
have Z = CP

3 and the fibration is given by sending a complex line in C4 to the
quaternionic line in H2 that it spans as S4 = HP

1.
. The necessary and sufficient condition for (Z, JZ) to be a complex manifold

is W+ = 0 on M .
Every Kähler surface with zero scalar curvature is an ASD 4-manifold. Taubes

[117] showed that after taking connected sum with sufficiently many copies of CP
2,

every M admits an ASD metric.
Atiyah, Hitchin and Singer [4] showed that if M is an ASD 4-manifold, then

the conformal geometry of M can be described in terms of the complex geometry
of Z, called the twistor transformation. We will discuss a particular interesting
class of ASD four manifolds, namely the K3 surfaces, in Section 6.4.

5 Kähler geometry

A Kähler manifold is a Riemannian manifold M with a compatible complex struc-
ture. Recall that M is a complex manifold if it has a covering by complex coordi-
nate charts with holomorphic transition functions. In the linear setting, a complex
vector space is equivalent to a real vector space V with a R-linear homomorphism
J : V → V satisfying J2 = −1. It is compatible with an inner product g on V if g
is Hermitian, i.e. for any u, v ∈ V we have g (Ju, Jv) = g (u, v) . In this case, we
have a non-degenerate two form ω ∈ Λ2V ∗ defined by

ω (u, v) = g (Ju, v) .
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Thus V is a symplectic vector space. Indeed any two of these structures g, J and
ω determines the third one, i.e. the intersection of any two of the three subgroups
O (2n), GL (n,C) and Sp (2n,R) in GL (2n,R) is always the unitary group U (n).

On a manifold M , an almost complex structure is a linear complex structure
Jx on every tangent space TxM . M is called a Kähler manifold if g is Hermitian
and J is parallel, ∇J = 0. Equivalently a Kähler manifold is a Riemannian
manifold with holonomy U (n).

A Kähler manifold is always a complex manifold by the theorem of Newlander
and Nirenberg which states that an almost complex structure is integrable, i.e.
coming from the linearization of a complex structure on M if and only if the
Nijenhuis tensor N ∈ Ω2 (M,TM) vanishes, where

4N (u, v) = [u, v] + J [Ju, v] + J [u, Jv]− [Ju, Jv]

for any u, v ∈ TxM and for any x ∈M . In particular, if J is parallel with respect
to some torsion free connection ∇, say the Levi-Civita connection, then M is a
complex manifold.

An important observation is that if M is already a Hermitian complex mani-
fold, then the Kählerian condition ∇J = 0, or equivalently ∇ω = 0 ∈ Ω2 (M,TM ),
can be reduced to the closedness of the Kähler form, dω = 0 ∈ Ω3 (M). This
implies that every complex submanifold of a Kähler manifold is always Kähler. In
particular, every projective algebraic manifold M in CP

N is Kähler, thus providing
abundant examples of Kähler manifolds. Kodaira embedding theorem gives a nec-
essary and sufficient condition for a compact Kähler manifold M to be projective,
namely the Kähler class [ω] ∈ H2 (M,R) should be defined over Z. As a result,
Kähler geometry and complex algebraic geometry are intimately related to each
other.

5.1 Kähler geometry — complex aspects

Dolbeault cohomology and Hodge (p, q)-decomposition
A linear complex structure on a real vector space V can be rephrased as a decom-
position V ⊗ C = V 1,0 ⊕ V 0,1 satisfying V 0,1 = V 1,0. Indeed V 1,0 and V 0,1 are
the ±i eigenspaces of J . Taking tensor powers, we have

∧kV ⊗ C =
⊕

p+q=k

V p,q with V q,p = V p,q.

Here V p,q =
∧pV 1,0 ⊗

∧qV 0,1. We have a corresponding decompositions for dif-
ferential forms on any almost complex manifold M ,

Ωk (M,C) =
⊕

p+q=k

Ωp,q (M) with Ωq,p (M) = Ωp,q (M) .

The exterior differentiation d : Ωk (M,C) → Ωk+1 (M,C) decomposes into
d = ∂ + N + ∂̄ + N̄ with ∂ : Ωp,q (M) → Ωp+1,q (M) and N : Ωp,q (M) →
Ωp+2,q−1 (M) being the tensor product with the Nijenhuis tensor. M being a
complex manifold, i.e., N = 0, is equivalent to

∂̄2 = 0 : Ωp,q (M)→ Ωp,q+2 (M) .
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That is, we have an elliptic complex

0→ Ω0,0 (M) ∂̄→ Ω0,1 (M) ∂̄→ · · · ∂̄→ Ω0,n (M)→ 0 with ∂̄2 = 0,

called the Dolbeault complex.
The corresponding cohomology group is called the Dolbeault cohomology, de-

noted

Hp,q

∂̄
(M) =

Ker
(
∂̄
)

Im
(
∂̄
)

∣
∣
∣
∣∣
Ωp,q(M)

.

Its dimensions hp,q (M) = dimHp,q

∂̄
(M)’s are called the (p, q)-Hodge numbers of

M.
Similarly, on any holomorphic vector bundle E over M , there is a twisted ∂̄

operator,

∂̄E : Ωp,q (M,E)→ Ωp,q+1 (M,E) with ∂̄2
E = 0,

and the corresponding cohomology groups are denoted as Hp,q

∂̄
(M,E). There is a

canonical identification Hp,q

∂̄
(M,E) ∼= H0,q

∂̄
(M,ΛpT ∗

M ⊗ E) and we simply write
it as Hq (M,ΛpT ∗

M ⊗ E). Analogous to the Poincaré duality, the Serre duality
gives the isomorphism

Hp,q (M,E) ∼= Hn−p,n−q (M,E∗)∗ .

In particular,
Hq (M,E) ∼= Hn−q (M,KM ⊗ E∗)∗ .

If we endow both M and E with Hermitian metrics, then we can define the
twisted Laplacian operator

∆∂̄E
= ∂̄E ∂̄

∗
E + ∂̄∗E ∂̄E ,

where ∂̄∗E is the adjoint of ∂̄E and the Hodge theorem of representing cohomol-
ogy classes by harmonic forms has a direct generalization here which gives an
isomorphism

Hp,q

∂̄
(M,E) ∼= Ker

(
∆∂̄E
|Ωp,q(M,E)

)
.

When M is a Kähler manifold, one can prove that ∆ = 2∆∂̄ and this has
many important consequences. For instance, we have the following Hodge (p, q)-
decomposition,

Hk (M,C) =
⊕

p+q=k

Hp,q

∂̄
(M) with Hq,p

∂̄
(M) = Hp,q

∂̄
(M) .

In particular, every odd degree Betti number of a compact Kähler manifold is
even, b2l+1 (M) ∈ 2Z.

This collection of subspaces Hp,q (M)’s in Hk (M,Z)⊗C is called the Hodge
structure of M . It depends only on the complex structure on M , but not on the
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choice of Kähler metrics and it carries important informations about the complex
structure.

Hard Lefschetz action
Recall that ω (u, v) = g (Ju, v) defines a symplectic structure on M . In particular,
[ω]l 
= 0 ∈ H2l (M,R) for any 0 ≤ l ≤ n. Let

L : Ωk (M)→ Ωk+2 (M)
L (φ) = φ ∧ ω

and Λ be its adjoint operator. Then H = [L,Λ] : Ωk (M)→ Ωk (M) is a multiple
of the identity operator, H = (n− k). The relationships

[H,L] = 2L, [H,Λ] = −2Λ and [L,Λ] = H

defines an sl (2,R)-action on Ω∗ (M). The closedness of ω implies that L can be
descended to H∗ (M,R) and the Kähler property of M , i.e. ω is parallel, implies
that both L and Λ commute with ∆ and therefore the above sl (2,R)-action can
be descended to H∗ (M,R), called the Hard Lefschetz action. This action allows
us to recover H∗ (M,R) from Ker (Λ), called the primitive cohomology and to
reduce the Hodge structure on H∗ (M,C) to the primitive cohomology and define
a polarized Hodge structure.

Kähler identities
First order Kähler identities give relationships between zeroth order operators L,
Λ, H and first order operators ∂, ∂, ∂∗, ∂

∗
. They are

[L, ∂∗] = i∂,
[
L, ∂

∗]
= −i∂,

[Λ, ∂] = i∂
∗
,
[
Λ, ∂
]

= −i∂∗,

and all other brackets are zero. Indeed these formulas hold true even when J is only
an almost complex structure, namelyM is a symplectic manifold with a compatible
almost complex structure J , sometimes called an almost Kähler structure.

Second order Kähler identities are

∆ = 2∆∂ = 2∆∂ ,

and ∆ commutes with L, Λ, H , ∂, ∂̄, ∂∗ and ∂̄∗. We have seen earlier that the
identity ∆ = 2∆∂ is used to define the Hodge structure on H∗ (M,C).

Recall that the identities among zeroth order operators L, Λ, H define a
sl (2,R)-action on Ω∗ (M) and there is a canonical identification between Lie alge-
bras sl (2,R) ∼= su (1, 1). Indeed all the above identities together define an action
on Ω∗ (M,C) by the super Lie algebra

su (1, 1)sup = su (1, 1)⊕ C
1,1 ⊕ R

with C1,1 spanned by ∂, ∂, ∂∗, ∂
∗

and R spanned by ∆.
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Indeed this super Lie algebra action encompasses the hard Lefschetz action
and all the Kähler identities. It has natural generalizations to manifolds defined
over other normed division algebras (section 10).

Deformation of complex structures
A complex structure on M can be characterized by the ∂̄-operator

∂̄ : Ωp,q (M)→ Ωp,q+1 (M)

satisfying the integrability condition
(
∂̄
)2 = 0. A different complex structure is

then given by
∂̄ + φ with φ ∈ Ω0,1 (M,TM ) .

The integrability condition becomes

∂̄φ+ [φ, φ] = 0.

For a smooth family of complex structures ∂̄ + φ (t),

φ (t) = tφ1 + t2φ2 + t3φ3 + · · ·

we have

∂̄φ1 = 0
∂̄φ2 = − [φ1, φ1] and so on.

The first equation says that infinitesimal deformations of complex structures
are parametrized by Ω0,1 (M,TM ) ∩ Ker

(
∂̄
)
. Up to diffeomorphisms, they are

parametrized by the cohomology group H1 (M,TM ). When H2 (M,TM ) = 0, the
second equation for φ2 can always be solved and the same is true for all other φj ’s.
Using the Hodge theory for any given φ1, we can obtain a convergent power series
solution φ (t) for small t and therefore we have an honest family of deformations of
the complex structure ∂̄. This means that the moduli space of complex structures
is smooth and with tangent space H1 (M,TM ) at ∂̄.

Even when H2 (M,TM ) 
= 0, the integrability condition can sometimes be
solved for any given φ1. For example, this is the case for Calabi-Yau manifolds. In
general there is a Kurinishi (nonlinear) map κ defined on a neighborhood of the
origin,

κ : H1 (M,TM )→ H2 (M,TM ) ,

such that the moduli space of complex structures on M near ∂̄ is given by κ−1 (0).
The map satisfies κ (φ) = [φ, φ] + O

(
|φ|3
)
. The space H2 (M,TM ) is called the

obstruction space for the deformations.
For a holomorphic bundle E over a fixed complex manifold M , infinitesimal

deformations of E are parametrized byH1 (M,End (E)) and the obstruction space
is given by H2 (M,End (E)). There are also analogous spaces for deformations of
flat bundles.
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For a holomorphic map f : C → M , the space of infinitesimal deformations
(resp. obstruction space) of f with fixed M is given by H0

(
C,Nf(C)/M

)
(resp.

H1
(
C,Nf(C)/M

)
)

We remark that the deformation theory only deal with the local structure
of moduli spaces. Construction of a global moduli space as a complex variety, or
projective variety, is a different matter, which is often dealt with via the geometric
invariant theory.

Subvarieties and coherent sheaves
We remark that on any Kähler manifold M , the form ωk/k! ∈ Ω2k (M) is always
a calibration form and those submanifolds calibrated by it are precisely complex
submanifolds in M . This follows from the Wirtinger formula. As a corollary,
complex submanifolds S in Kähler manifolds are volume minimizers and they
define nontrivial cohomology classes because

∫
S ω

k/k! is the volume of S,

PD [S] ∈ Hp,p

∂
(M) ∩H2p (M,Z) ,

where p = n − k is the complex codimension of S. This continues to hold true
even when S is singular, namely a subvariety in M . The famous Hodge conjecture
asks that whether every class in Hp,p

∂
(M) ∩H2p (M,R) is represented a Q-linear

combination of subvarieties in a projective manifold M .
The Chern classes cp (E) for any holomorphic vector bundle also lie inHp,p

∂
(M)∩

H2p (M,Z) and this continues to hold true for any coherent sheaf, which allows E
to be singular. Quasi-isomorphism classes of complexes of coherent sheaves form
a derived category Db (M). It contains much information about M , for instance,
it determines M completely when c1 (M) is either positive or negative [15].

5.2 Kähler geometry — Riemannian aspects

Hermitian Yang-Mills metrics
Given any Hermitian metric hE on a holomorphic vector bundle E over a complex
manifold M , there is a unique Hermitian connection DE satisfying DEhE = 0 and

(DE)0,1 = ∂E : Ω0 (M,E)→ Ω0,1 (M,E) .

In terms of any local holomorphic frame ei’s on E, we have

DE = d+ h−1∂h, and

FE = ∂
(
h−1∂h

)
∈ Ω1,1 (M,ad (E)) ,

where h =
(
hij

)
with hij = hE (ei, ej). This implies that

c1 (E) =
i

2π
[TrE (FE)] =

i

2π
[
∂∂ log deth

]

and Chern classes are of type (p, p), i.e. cp (E) ∈ Hp,p (M) ∩H2p (M,Z).
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For holomorphic bundles over a Kähler manifold, the Yang-Mills equation
D∗

EFE = 0 is equivalent to DE (ΛFE) = 0 because of the Kähler identity
[
Λ, ∂
]

=
−i∂∗. Thus an eigenbundle in E for the bundle endomorphism ΛFE is a holomor-
phic (parallel) subbundle. Thus, unless E is reducible, the Yang-Mills equation
reduces to a first order differential equation, called the Hermitian-Yang-Mills equa-
tion,

ΛFE = µEI,

where the constant µE is called the slope of E and it is given by2

µE =
1
r

∫

M

c1 (E) ∧ ωn−1

(n− 1)!
,

where r is the rank of E.
We remark that when M is a Kähler surface, then the equations F 0,2

E =
ΛFE = 0 is the same as the ASD equation for unitary connections on the four
manifold M . This is because Λ2

+
∼= Rω ⊕ Re Λ0,2 ⊕ Im Λ0,2.

A Hermitian-Yang-Mills connection is not just a critical point for the Yang-
Mills functional

∫
|FE |2, it is an absolute minimizer! This can be seen from the

following equality, derived from the Chern-Weil theory,

∫

M

∣
∣
∣∣FE −

1
r
T r (FE) I

∣
∣
∣∣

2
ωn

n!

=
∫

M

∣
∣
∣
∣ΛFE −

1
r
T r (ΛFE) I

∣
∣
∣
∣

2
ωn

n!

− 4π2 (r − 1)
r

∫

M

[
c21 (E)− 2r

r − 1
c2 (E)

]
ωn−2

(n− 2)!
.

As a corollary, if a holomorphic bundle E admits a Hermitian-Yang-Mills
connection, then it must satisfy the following Chern number inequality,

∫

M

c21 (E)ωn−2 ≤ 2r
r − 1

∫

M

c2 (E)ωn−2.

Furthermore, if the equality sign holds, then FE = 1
rTr (FE) I, i.e. a projectively

flat connection and thus DE corresponds to a homomorphism ρ : π1 (M)→ PU (r).
A necessary condition for the existence of Hermitian-Yang-Mills connection

is E being a Mumford polystable bundle, i.e. a direct sum of Mumford stable
bundle. Recall that E is Mumford stable if every nontrivial coherent subsheaf S
in E satisfies the following slope inequality,

µS < µE .

The celebrated theorem of Donaldson [36], Uhlenbeck and Yau [125] says that
the converse is also true. Namely a holomorphic bundle E admits a Hermitian
Yang-Mills connection if and only if E is a Mumford polystable bundle.

2For simplicity, we have normalized the volume of M to be one.
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Mumford stability was introduced to construct projective moduli space of
holomorphic bundles over Riemann surfaces via geometric invariant theory (GIT).
The correct notion of stability in higher dimension is the Gieseker stability which
replaces the slope inequality by the normalized Hilbert polynomial inequality,

1
rk (S)

χ
(
M,S⊗ L⊗k

)
<

1
rk (E)

χ
(
M,E ⊗ L⊗k

)

for sufficiently large k. Here L is a line bundle over M with c1 (L) represented by
ω and χ

(
M,E ⊗ L⊗k

)
is given by

χ
(
M,E ⊗ L⊗k

)
=

n∑

q=0

(−1)q dimHq
(
M,E⊗ L⊗k

)
=
∫

M

e
i

2π FE+kωTdM ,

by the Riemann-Roch formula and the Chern-Weil theory. Notice that the dom-
inating terms for large k is given by the slope. In [88] the author showed that
Gieseker polystability is a necessary and sufficient condition for the existence of a
bounded solution to the following equation,

(
e

i
2π FE+kωTdM

)[2n]

=
χ
(
M,E ⊗ L⊗k

)

rk (E)
ωn

n!
IE ,

for sufficiently large k on any sufficiently smooth holomorphic bundle E. The
relationship with the symplectic geometry will be discussed in Section 5.3.

Curvature for Kähler metrics
When h = g is a Hermitian metric on the tangent bundle E = TM , then the
Kählerian condition for g is equivalent to DE being torsion free. Yet another
equivalent definition of g being a Kähler metric is the existence of holomorphic
normal coordinate , i.e., given any point p0 ∈M, there exists a local holomorphic
coordinate zj = xj + iyj’s such that for nearby point p, we have

gij (p) = δij +O
(
|p− p0|2

)
.

The symmetries for the curvature tensor Rm of a Kähler metric are richer
than the Riemannian case. First we note that the inclusion u (n) ⊂ o (2n) corre-
sponds to

(
V 1,1
)

R
⊂ Λ2VR for any Hermitian vector space V . This implies that

Rmij̄kl̄ is Hermitian symmetric with respect to ij̄ and also to kl̄ for any complex
coordinates zj = xj+iyj’s. Second the Ricci tensor Rc being Hermitian symmetric
means that Rc ∈ u (n) ∼=

(
Λ1,1T ∗

M

)
R

and the corresponding (1, 1)-form Rc (J ·, ·)
will again be denoted as Rcij̄ . Explicitly we have

Rcij̄ = gkl̄Rmij̄kl̄

=
∂

∂zi

∂

∂z̄j
log det (gkl̄) .

In particular, the first Chern class of M (modulo torsion) is represented by the
Ricci form,

c1 (M)
R

=
i

2π
[Rc] .
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The scalar curvature is given by R = gij̄Rcij̄ = ∆ log det (gkl̄).
Recall in the Riemannian case that when RcM ≥ 0, harmonic one forms are

parallel and they must be zero if RcM > 0. In the Kähler case, holomorphic p-
forms are harmonic. When M has RcM ≥ 0, they are parallel and zero if RcM > 0,
i.e. M is Fano.

If Rm = λI as an endomorphism of u (n), then the universal cover of M must
be either the complex projective space CP

n, the complex ball or Cn according to
λ being positive, negative or zero. These are called complex space forms.

If Rc = λω, i.e., M is a Kähler-Einstein manifold, then first of all c1 (M)
R

must be represented by a multiple of some Kähler form ω0. Unless c1 (M)
R

= 0,
the canonical line bundle KM = ΛnT ∗

M or its inverse is positive and therefore
M is a projective manifold by the Kodaira’s embedding theorem. If we write
Rc (ω0) = λω0 + i∂∂f and ω = ω0 + i∂∂φ for some smooth functions f and φ on
M with average one, then the Kähler-Einstein equation is reduced to the following
fully nonlinear second order elliptic equation, called the complex Monge-Ampère
equation,

det
(
gij̄ +

∂2φ

∂zi∂z̄j

)
= e−λφ+f det

(
gij̄

)
.

When c1 (M)
R

= 0, Yau [137] solved this equation and proved that there is
a unique metric in every Kähler class with zero Ricci curvature, Rc = 0. In fact,
Yau’s theorem also solved a conjecture of Calabi which says that every (1, 1)-form
representing c1 (M)

R
can be represented uniquely as the Ricci form of a metric in

any Kähler class on any compact Kähler manifold M .
As a corollary of Yau’s theorem, c1 (M)

R
= 0 implies that

c2 (M) [ω]n−2 ≥ 0,

for any Kähler class [ω] and the equality sign holds if and only if the universal
cover of M is Cn. Zero Ricci curvature means that the canonical line bundle
KM = ΛnT ∗

M is a flat line bundle. Suppose that c1 (M) = 0 as an integral class,
then KM is indeed trivial and its covariant constant section defines a holomorphic
volume form on M . Thus the holonomy group of M is reduced to SU (n) and
such a manifold is called a Calabi-Yau manifold and plays a very important role
in string theory.

When c1 (M)
R
< 0, Aubin and Yau solved the Monge-Ampère equation, thus

proving that there is a unique Kähler-Einstein metric in the Kähler class−c1 (M)
R
.

The Chern number inequality becomes

(−1)n cn1 (M) ≤ 2 (n+ 1)
n

(−1)n c2 (M) cn−2
1 (M) .

When the equality sign holds, then the universal cover of M must be the complex
hyperbolic ball.

When c1 (M)
R
> 0, M is called a Fano manifold and there are nontrivial

obstructions to the existence of Kähler-Einstein metrics, for instance the Futaki
invariant. Yau conjectured that there should be a notion of stability which relates
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to the existence of such a canonical metric. This problem has been studied by
many mathematicians including Donaldson, Mabuchi, Phong, Tian and others.
Donaldson showed that this relationship between stability and the existence of
canonical metrics should continue to hold true for constant scalar curvature Kähler
metrics, i.e., R = const.

5.3 Kähler geometry — symplectic aspects

Recall that the Kähler form ω (u, v) = g (Ju, v) defines a closed non-degenerate two
form, i.e., a symplectic form. On the classical level, symplectic geometry is a much
more linear theory than the complex geometry (Section 5.3). On the quantum
level, it becomes a very rich and challenging subject which includes the theories of
Gromov-Witten invariants and the Fukaya-Floer category. The mirror symmetry
conjecture says roughly that complex geometry and quantum symplectic geometry
should be equivalent to each other.

Basic symplectic geometry
Let us start by reviewing some aspects of the classical symplectic geometry. First
the Darboux lemma says that every symplectic manifold is locally standard which
is R2n with

ω0 =
∑n

j=1dx
j ∧ dyj .

We can view this as the cotangent bundle T ∗Rn of Rn with coordinates xj ’s
and dual coordinates yj ’s along fibers. In fact ω0 defines a canonical symplectic
structure on the cotangent bundle M = T ∗X of any manifold X .

A vector field v on M preserves the symplectic form ω if and only if ιvω
is closed one form. If ιvω = df is exact, then v is called a Hamiltonian vector
field. Moser’s lemma says that if ωt is an one parameter family of symplectic
forms in M representing the same cohomology class, then all these (M,ωt)’s are
symplectomorphic to each other. Thus the moduli space of symplectic structures
on M is locally isomorphic to H2 (M,R). One can also include B-fields B on M
and such that the moduli space of symplectic structures with B-fields B + iω is a
complex space which is locally isomorphic to H2 (M,C). This concept is originated
in string theory and important in mirror symmetry.

The natural class of submanifolds in (M,ω) consists of Lagrangian subman-
ifolds L which are n-dimensional submanifolds in M satisfying ω|L = 0. For
instance the zero section and every fiber in the cotangent bundle T ∗X are La-
grangian submanifolds. In general, if we regard a section L in T ∗X as the graph
of an one form φ ∈ Ω1 (X), then L is a Lagrangian submanifold if and only if φ is
a closed form, i.e., dφ = 0. Indeed a neighborhood of any Lagrangian submanifold
L is always symplectically equivalent to the cotangent bundle T ∗L and therefore
the moduli space of Lagrangian submanifolds L in M modulo Hamiltonian equiv-
alences is locally given by H1 (L,R). If we consider the moduli space of A-cycles
(L,DE), i.e., L is a Lagrangian submanifold inM andDE is a flat U (1)-connection
over L, then it is again a complex manifold and locally isomorphic to H1 (L,C).
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Lagrangian fibrations
A Lagrangian fibration π : M → B is called a (singular) real polarization on M , or
an integrable system. It plays an important role in geometric quantization of the
symplectic manifold M . Another standard way to obtain geometric quantization
is to equip M with a complex structure such that ω is the corresponding Kähler
form, this is called a complex polarization.

Away from singular fibers, we have a surjective bundle homomorphism TM →
π∗TB over M and the kernel is called the vertical tangent bundle TvertM . For
Lagrangian fibration, we have

TvertM ∼= π∗T ∗B.

Thus we have n commuting vector fields along fibers which are linearly independent
at every point. This determines canonical affine structures on smooth fibers.
When π is proper, i.e., fibers are compact, then fibers are tori T ∗

xB/Λx. This gives
a lattice subbundle Λ in T ∗B over B outside the discriminant locus Disc (π). As
a result, the base B\Disc (π) also has a GL (n,Z)× Zn-affine structure.

Toric varieties P∆ are examples of symplectic manifolds with Lagrangian
fibrations in which the fibers are orbits of an Hamiltonian torus action (see below)
and the base is a convex polytope ∆. The simplest compact toric varieties are
certainly complex projective spaces CP

n+1.

Hamiltonian action and symplectic reduction
Suppose (M,ω) is a symplectic manifold with a Hamiltonian action by a compact
Lie group G with moment map

µ : M → (LieG)∗ .

We recall that a moment map µ is a G-equivariant map such that for any v ∈
Lie (G) and v# the vector field on M that v generates, then v# is the Hamiltonian
vector field for the function x→ µ (x) (v), i.e.

ιv#ω = d (µ (v)) .

If a 2n-dimensional symplectic manifold M has an effective Hamiltonian T k-
action, then k is at most n. When k = n, the moment map

µ : M → R
n

is a Lagrangian fibration on M and the image is convex polytope ∆ in Rn. Such
a M is called a toric variety and its geometry is completely dictated by the poly-
tope ∆. For instance, when ∆ is the standard simplex in Rn, M is the complex
projective space CP

n with the toric action is induced from T n ⊂ (C×)n ⊂ P
n.

When M has a Hamiltonian G-action, there is a procedure to divide out the
symmetry to produce another (possibly singular) symplectic manifold

M//G = µ−1 (0) /G
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called the symplectic quotient or symplectic reduction. We can also replace 0 by
other coadjoint orbit.

We assume that (M,ω) is a Kähler manifold with ω being defined over Z,
thus [ω] = c1 (L) for a positive line bundle L. Suppose that the complexification
GC of G acts holomorphically on M and the action can be lifted to L. We can
apply the Geometric Invariant Theory, developed by Mumford, to construct a
quotient space M/GC within the category of algebraic varieties. In this construc-
tion, one needs to remove unstable points in M to ensure that the quotient space
is Hausdorff. Kempf-Ness showed that this complex algebraic approach and the
symplectic approach of taking quotient are equivalent to each other,

M/GC ∼= M//G.

This identification is particularly fruitful in many infinite dimensional settings as
a guiding principle.

Symplectic geometry and gauge theory
Given a Hermitian complex vector bundle E over a symplectic manifold (M,ω), the
space A (E) of unitary connections on E has a natural symplectic form Ω defined
as follows: The tangent space of A (E) at any connection DA can be identified as
Ω1 (M,ad (E)). Given any tangent vectors B and C, we define

Ω (DA) (B,C) =
∫

M

TrEB ∧ C ∧
ωn−1

(n− 1)!
.

The action on A (E) by the group G (E) of gauge transformations of E preserves
Ω and its moment map is given by

µ : A (E)→ Ω2n (M,ad (E))

µ (DA) = FE ∧
ωn−1

(n− 1)!
.

When M is a Riemann surface, both Ω and µ are independent of the sym-
plectic form on M and the symplectic quotient

A (E) //G (E) = {DA : FA = 0} /G (E) ,

is the moduli space of flat connections on E, i.e.

Hom (π1 (M) , U (r)) /U (r) .

There are natural generalizations of this to other compact Lie groups. The infinite
dimensional analog of the identification between GIT quotient and symplectic quo-
tient suggests that every polystable holomorphic bundle over M admits a unitary
flat connection. This was proved by Narishima-Seshadra.

When M is a Kähler manifold and E is a holomorphic vector bundle over
it, we can restrict our attention to the subset Ahol (E) consisting of those con-
nections DA satisfying F 0,2

A = 0, namely (DA)0,1 defines a holomorphic struc-
ture on E. In this case, the suggested isomorphism between Ahol (E) //G (E)
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and Ahol (E) /GC (E) is the theorem of Donaldson [36] and Uhlenbeck-Yau [125]
which says that every Mumford polystable holomorphic bundle admits a unique
Hermitian-Yang-Mills connection.

However, in algebraic geometry, the correct stability condition is the Gieseker
stability defined using the Hilbert polynomial,

χ
(
M,E ⊗ L⊗k

)
=
∫

M

TrE

[
e

i
2π FA+kωIE ∧ TdM

]

The analog of the equivalence between GIT quotient and the symplectic quotient
was established in [88] for the existence of solutions to the following equations for
large k,

[
e

i
2π FA+kωIE ∧ TdM

](n,n)

=
χ
(
M,E ⊗ L⊗k

)

r
IE
ωn

n!
.

This equation is also a moment map equation for the G (E)-action onAhol (E) with
respect to the following nonconstant symplectic form Ωk [89]:

Ωk (DA) (B,C) =
∫

M

TrE

[
e

i
2π FA+kωIE ∧B ∧ C

]

sym
∧ TdM .

The Gieseker stability is an asymptotic stability as k goes to infinity. For
each finite k, Donaldson studied the finite dimensional GIT/symplectic quotients
equivalences and conjectured that Gieseker stable bundles should admit balanced
metrics for large k’s and they converge to the Hermitian-Yang-Mills metrics if E
is also Mumford polystable. This problem was solved by Wang [129].

Space of Kähler forms
Donaldson and Semmes showed that the space of Kähler metrics in a fixed Kähler
class on M is an infinite dimensional symplectic manifold with a Hamiltonian
action by Diff (M). Furthermore, the moment map can be identified with the
scalar curvature of a Kähler metric. Thus the GIT/symplectic quotients equiva-
lences should relate the existence of constant scalar curvature Kähler metrics with
GIT stability of the manifold M .

In the next section, we discuss symplectic geometry on the quantum level.

5.4 Gromov-Witten theory

Gromov-Witten invariants
Given a complex structure J on M , we study complex submanifolds C in M ,
namely TxC is J-linear in TxM for any x ∈ C. This notion continues to make
sense for any almost complex structure and such submanifolds C are called J-
pseudo holomorphic submanifolds, or simply J-holomorphic submanifolds. Recall
that an almost complex structure is simply a complex structure on the tangent
bundle TM . If we choose a generic almost complex structure on M , then it admits
no J-holomorphic submanifolds C of dimC C ≥ 2, even locally, as the Cauchy-
Riemann equation is an over-determined system of differential equations. However,
there are always many J-holomorphic curves, at least locally. In order to count
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the number of such curves, it turns out that it is better to use the parametrized
version, namely we consider the moduli spaceMcurve (M) of J-holomorphic maps
from genus g Riemannian surfaces Σ to M ,

f : Σ→M.

When M is equipped with a compatible symplectic structure ω, thenMcurve (M)
has a natural compactification Mcurve (M) by stable maps where the domain
Riemann surface Σ is allowed to have nodal singular points and f is required to
have only finite number of automorphisms. Recall that every J-holomorphic curve
is calibrated by ω, in particular, f (Σ) always represents a nontrivial homology
class [f (Σ)] ∈ H2 (M,Z) \ {0}.

Infinitesimal deformations of f are parametrized by H0
(
Σ, Nf(Σ)/M

)
(sec-

tion 5.1). When H1
(
Σ, Nf(Σ)/M

)
= 0, then f always has unobstructed deforma-

tions. In this case,Mcurve (M) is smooth and its dimension is determined by the
Riemann-Roch formula,

dimCMcurve (M) =
∫

Σ

f∗c1 (M) + (g − 1) (3− n) .

In order to count the number of curves in M , we impose conditions to cut down
the dimension ofMcurve (M). For instance, we can require f (Σ) to pass through
specific points in M . These define the Gromov-Witten invariants, or simply GW-
invariants. These are invariants for the deformation class of symplectic forms on
M . In particular, it is independent of the choice of compatible almost complex
structures onM . Even whenMcurve (M) is singular, there is a theory using virtual
fundamental class to define these invariants.

GW-invariants can be interpreted as the partition functions for the A-model
TFT in the N = 2 SUSY σ-model on the Kähler manifold M .

In general, GW-invariants are difficult to compute. When dimR M = 4,
Taubes showed that GW-invariants with no constraints are equivalent to the SW-
invariants. This result has far-reaching consequences in four dimensional sym-
plectic geometry. When the symplectic manifold (M,ω) has a lot symmetries, for
instance a toric variety, then GW-invariants can be computed in many instances
via Bott localization, at least in the genus zero case. This method can be general-
ized to complex hypersurfaces of small degrees in Fano toric varieties as well. It
was initiated by Kontsevich, motivated from the mirror symmetric conjecture for
Calabi-Yau manifolds. The mirror theorem which computes the genus zero GW-
invariants for quintic CY threefolds in terms of the variation of Hodge structures
of its mirror manifold was proven by developing this approach by Givental [47] and
Liu-Lian-Yau [105]. There are other approaches in determining GW-invariants, for
example the Yau-Zaslow argument for the number of rational curves on K3 sur-
faces (section 6.4) and various physical methods coming from dualities in string
theory and M-theory.

The genus zero GW-invariants can be used to deform the cup product struc-
ture on the cohomology ring H∗ (M) and results in the quantum cohomology ring
QH∗ (M) for the symplectic manifold (M,ω). It is originated from the (closed)
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string theory. QH∗ (M) can be formally interpreted as the middle dimensional
cohomology ring of the free loop space LM via the Witten-Morse theory for the
symplectic area functional

A : LM → R

A (γ) =
∫ γ1

γ0

ω.

Here γt is an one-parameter family of loops in M connecting γ = γ1 to a back-
ground γ0. Here

∫ γ1

γ0
means the integration over the two dimensional surface

∐

t∈[0,1]

γt spanned by the path of loops. Critical points of A (γ) are constant loops

in M , thus M can be viewed as the critical set of A inside LM . After choosing a
compatible metric on M , gradient flow lines in LM correspond to J-holomorphic
cylinders in M .

Floer theory of Lagrangian intersections
In open string theory, the boundaries of a string, namely a path γ (t) in M , lies
on Lagrangian submanifolds Li in M , i.e. γ (0) ∈ L0 and γ (1) ∈ L1. Similarly, we
consider the symplectic area functional A on the space LL0→L1M of all such paths.
Critical points of A are constant paths and therefore correspond to intersection
points in L0 ∩ L1 and gradient flow lines of A are holomorphic strips between
Li’s joining two intersection points. Floer and others developed the Witten-Morse
theory in this setting and defined Floer cohomology groups HFM

Lagr (L0, L1) for
Lagrangian intersections. Fukaya and others [45] extended these structures and
defined the Fukaya category Fuk (M), which is conjecturally dual to the derived
category of coherent sheaves under mirror symmetry.

6 Calabi-Yau geometry

6.1 Calabi-Yau manifolds

A Kähler manifold M is called a Calabi-Yau manifold if it admits a parallel holo-
morphic volume form Ω ∈ Ωn,0 (M), i.e.

∇Ω = 0

(2i)−n (−1)n(n+1)/2 Ω ∧ Ω̄ = vM ,

where vM = ωn/n! is the Riemannian volume form and n is the complex dimension
of M . Equivalently, M is a Riemannian manifold with holonomy group inside
SU (n). If M is compact, then Ω being parallel can be replaced by holomorphicity,
i.e. ∂̄Ω = 0. The complex volume form Ω defines a C-orientation on M and it fits
into the unified description of geometries of special holonomy in terms of normed
division algebra (see Section 10).

Recall that a volume form vM on M defines a symplectic form on KΣ (M) =
Mapemb (Σ,M) /Diff (Σ) where dim Σ = dimM − 2. One can also use the holo-
morphic volume form Ω to define a holomorphic symplectic form on the isotropic
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knot space KC

Σ (M) where dimR Σ = n − 2. Furthermore the special Lagrangian
geometry of M can be interpreted as the complex symplectic geometry of KC

Σ (M)
(Section 9.4).

Since the Ricci curvature of a Kähler metric is given by

Rcij̄ = − ∂2

∂zi∂z̄j
log det (gkl̄) ,

any Calabi-Yau manifold has zero Ricci curvature. In particular, its canonical
line bundle KM is trivial and c1 (M) = 0. By Yau’s celebrated theorem [137],
any compact Kähler manifold M with c1 (M) = 0 admits a unique Calabi-Yau
metric in every Kähler class. Thus it is easy to identify which Kähler manifold
admits a Calabi-Yau metric. Nevertheless, we still do not know how to write down
explicitly any nontrivial Calabi-Yau metric on any compact Calabi-Yau manifold.
For instance, any smooth projective hypersurface of degree n + 2 in CP

n+1 is
a Calabi-Yau manifold. More generally, a hypersurface in a toric variety X∆

representing the class c1 (X∆) is a (possibly singular) Calabi-Yau variety if and
only if ∆ is a reflexive polytope, i.e., both ∆ and its polar dual polytope � are
integral. This construction can be easily generalized to complete intersections in
toric varieties and produces many examples of Calabi-Yau manifolds.

Even though we do not know any explicit Calabi-Yau metric on compact
manifolds, there are many such examples on noncompact manifolds, including the
total space of the canonical line bundle KCP

n−1 of CP
n−1 and the cotangent bundle

T ∗
Sn of the sphere. These metrics are found by utilizing the symmetries of these

spaces to reduce the Monge-Ampère equation to an ODE.
Every holomorphic p-form in Hp,0 (M) is parallel since RcM = 0 for a Calabi-

Yau manifold M . The existence of such forms can usually be used to reduce the
holonomy group of M to a smaller subgroup. Using the deRham decomposition
for holonomy groups, up to a finite cover, M is a product of irreducible factors and
they are (i) complex tori Cn/Γ, (ii) irreducible hyperkähler manifolds, i.e., hol =
Sp (n/2) or (iii) strict Calabi-Yau manifolds, i.e., hol = SU (n). Only complex
tori have nontrivial holomorphic one forms and hp,0 (Cn/Γ) =

(
n
p

)
. hyperkähler

manifolds admit holomorphic symplectic forms, indeed h2l,0 = 1 and h2l+1,0 = 0
for irreducible hyperkähler manifolds. We will discuss more about the hyperkähler
geometry in Section 11.1. When hol = SU (n), the only nontrivial holomorphic
p-form is the holomorphic volume form and therefore hp,0 = 0 for 1 ≤ p ≤ n− 1.
By the Lefschetz hyperplane theorem, any Calabi-Yau hypersurface, or complete
intersection, in a Fano toric variety is a strict Calabi-Yau manifold provided that
n ≥ 2.

Since KM is trivial for a Calabi-Yau manifold, we have

Hq (M,TM ) ∼= Hq
(
M,Λn−1T ∗

M

) ∼= Hn−1,q (M) .

In particular, the spaces of infinitesimal deformations and obstructions are given
by Hn−1,1 (M) and Hn−1,2 (M) respectively. Tian [122] and Todorov [124] proved
that the Kuranishi map κ : H1 (M,TM )→ H2 (M,TM ) is zero. Thus the moduli
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space of complex structures on M is always smooth and of dimension hn−1,1 (M).
This moduli space has many nice properties, especially in complex dimension three
(Section 7).

6.2 Special Lagrangian geometry

Special Lagrangian submanifolds
For Kähler manifolds, complex submanifolds are calibrated and therefore they
are absolute minimizers for the volume functional. For Calabi-Yau manifolds,
there is a natural class of Lagrangian submanifolds which are calibrated. Harvey
and Lawson [59] found that for any given phase angle θ, the differential form
Re
(
eiθΩ
)
∈ Ωn (M) is a calibrated form. Furthermore a submanifold L in M is

calibrated by Re
(
eiθΩ
)

if and only if

ω|L = 0 and Im
(
eiθΩ
)
|L = 0.

Such a L is called a special Lagrangian submanifold of phase θ.
We remark that for any Lagrangian submanifold L in M , the volume form

vL for the induced metric satisfies

vL = eiθ(x)Ω|L

for some function θ (x) : L→ R/2πZ. It is the Hamiltonian function for the mean
curvature vector field on L, i.e.

ιHω = dθ (x) .

This implies that the mean curvature flow preserves the Lagrangian property and
they satisfy the PDE

∂θ

∂t
= ∆θ.

This is a non-linear equation as the Laplacian is defined with respect to the in-
duced metric on L which is changing in time. Lagrangian mean curvature flow
in Calabi-Yau manifolds enjoys many nice properties and the same is true for
hyperlagrangian mean curvature flow in hyperkähler manifolds (Section 10.3).

Unless specified otherwise, we assume that θ = 0 for the calibrating form.
When M = Cn, a Lagrangian graph Graph (dφ) over Rn is special if and only if
φ (x) satisfies

Im det
(
δjk + i

∂2φ

∂xj∂xk

)
= 0.

Examples of special Lagrangian submanifolds include the real locus of a Calabi-Yau
manifold, complex Lagrangian submanifolds in a hyperkähler manifold (Section
11.1). Many explicit examples of special Lagrangian submanifolds had been con-
structed in the noncompact setting by imposing symmetries to reduce the equation
to an ODE. There are also various compact examples constructed using singular
perturbation method to resolve singular special Lagrangians.
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In Section 9.5, we show that the isotropic knot space KC

Σ (M) is an infinite
manifold with an H-structure such that (i) every special Lagrangian submanifold
L of phase 0 in M determines a J-complex Lagrangian submanifold KC

Σ (L) in
KC

Σ (M) and (ii) certain special Lagrangian submanifold L′ of phase π/2 in M
determines a J-holomorphic curve in KC

Σ (M). Thus the Calabi-Yau geometry can
be interpreted as the hyperkähler geometry in the isotropic knot space KC

Σ (M).

Moduli of Special Lagrangian submanifolds and A-branes
Recall that given any Lagrangian submanifold L in M , its neighborhood is iso-
morphic symplectically to T ∗L and nearby Lagrangian submanifolds are graphs
of closed one forms on L. When L is special, then its infinitesimal deformations
are parametrized by harmonic one forms on L. McLean [108] proved that there is
no obstruction to extend any infinitesimal deformation to a honest one, thus the
moduli space MSLag (M) of special Lagrangian submanifolds L in M is smooth
with tangent space H1 (L,R). Hitchin [61] defined analogs of the (multi-valued)
Abel-Jacobi map,

p :MSLag (M)→ H1 (L0,R) and

p′ :MSLag (M)→ Hn−1 (L0,R)

and showed that (p, p′) is a Lagrangian immersion ofMSLag (M) into T ∗(H1
(
L0,

R
)) ∼= H1 (L0,R) × Hn−1 (L0,R). To define p, we consider a path of special

Lagrangian submanifolds Lt together with a loop γt in each Lt, then p (L1) ∈
H1 (L0,R) ∼= Hom (H1 (L0,R) ,R) is given by

p (L1) (γ0) =
∫ γ1

γ0

ω.

Similarly, p′ is defined using Im Ω in place of ω.
Note that the moduli space of flat U (1)-connections over L is naturally

H1
(
L, S1
)

= iH1 (L,R) /H1 (L,Z). Thus we could include flat U (1)-connections
over L to complexify the moduli space of special Lagrangian submanifolds to the
moduli space of A-branes MA−brane (M). It has a natural symplectic structure
with a Lagrangian fibration,

H1
(
L, S1
)
→MA−brane (M)→MSLag (M) .

Hitchin described MA−brane (M) using the symplectic reduction method as
follows: Fix a n-dimensional volume manifold (L, vL), then the mapping space
Map (L,M) has a natural Diff (L, vL)-invariant symplectic form ωMap given by

ωMap (f) (X,Y ) =
∫

L

ω (X,Y ) vL,

where X,Y ∈ T[f ]Map (L,M) ∼= Γ (L, f∗TM ). When H1 (L) = 0, this action is
Hamiltonian and the moment map µ is given by

µ (f) = [α] ∈ Ω1 (L) /dΩ0 (L) with f∗ω = dα.
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Thus

Map (L,M) //Diff (L, vL) = µ−1 (0) /Diff (L, vL)
∼=MLag

[L] (M) ,

those components containing f (L) in the moduli space of Lagrangian submanifolds
in M .

We can also restrict our attention to the complex submanifold MapΩ (L,M)
in Map (L,M) consisting of those f ’s satisfying f∗Ω = vL. Then

MapΩ (L,M) //Diff (L, vL) ∼=MSLag
[L] (M) .

However, this is a discrete set as special Lagrangian submanifolds L with H1 (L) =
0 are rigid. In general, when H1 (L) 
= 0, the above construction has a natural
generalization with the symplectic quotient isomorphic to MA−brane

[L] (M).
Analogous to representing every deRham cohomology class by a unique har-

monic form, we expect that most Hamiltonian equivalent classes of Lagrangian
submanifolds in Calabi-Yau manifolds admits a unique special Lagrangian repre-
sentative. The uniqueness question was studied by Thomas and Yau [120]. The
existence part is a hard analytic problem. Schoen and Wolfson studied it using a
variational approach while Smoczyk, M.T. Wang and others studied it using the
mean curvature flow. Notice that the mean curvature flow preserves the class of
Lagrangian submanifolds and its stationary points are given by special Lagrangian
submanifolds inside Calabi-Yau manifolds.

Special Lagrangian fibration is an important ingredient in the SYZ proposal
to explain the mirror symmetry phenomenons. Since we do not know how to write
down the Calabi-Yau metrics, it is in general very difficult to find such fibrations,
with the exception of complex Lagrangian fibrations on hyperkähler manifolds. In
the next section, we will explain how we attempt to construct special Lagrangian
fibrations on Calabi-Yau hypersurfaces in CP

n+1.

6.3 Mirror symmetry

Mirror symmetry is a duality transformation which interchanges symplectic geom-
etry and complex geometry between mirror Calabi-Yau manifolds (see e.g. [30]).

Physical origin, a brief encounter
Mirror symmetry is originated from the physical studies of the superstring theory.
The spacetime in superstring theory has dimension ten. In order to reduce to
our usual four dimensional spacetime, we need to compactify six dimensions. Fur-
thermore, this six dimensional internal space X must be a compact Calabi-Yau
threefold, possibly coupled with a E8 ×E8-bundle over it depending on the types
of string theory under considerations.

There are particular topological sectors of this string theory, called the A-
model and the B-model. From a mathematical point of view, they correspond to
the symplectic geometry and the complex geometry of X .
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Motivated from physical considerations, Greene and Plesser predicted that
there should be a conjugate theory in which the A-model and B-model switch to
each other, at least near the large complex structure limit (abbrev. LCSL). The
corresponding compactified Calabi-Yau threefold Y is called the mirror manifold
to X .

A-model on X
(symplectic geometry)

←−−−−−−−−−−−→
mirror symmetry

B-model on Y
(complex geometry)

The simplest Calabi-Yau threefold is the zero locus of a degree five homoge-
neous polynomial f in CP

4, the quintic Calabi-Yau threefold. For example if we
take

f (z0, z1, ..., z4) = z5
0 + z5

1 + · · ·+ z5
4 + ψ (z0z1 · · · z4)

then X = {f = 0} is a smooth Calabi-Yau threefold, called the Fermat Calabi-Yau
threefold, provided that ψ is any complex number not equal to one.

Candelas et al [29] did a highly nontrivial calculation of this equivalence
for the Fermat Calabi-Yau threefolds and showed physically that the number of
rational curves of any degree in X can be read off explicitly from the periods of
Y . This is an astonishing discovery as it relates two very different but equally
important subjects in algebraic geometry, namely the enumerative geometry of X
and the variation of complex structures of Y .

Mirror of A-cycles and B-cycles

In 1994 Kontsevich [76] proposed a more precise conjecture on this duality be-
tween symplectic and complex geometries, called the homological mirror symme-
try (HMS): If X and Y are mirror manifolds to each other, then the Fukaya-Floer
category of Lagrangian intersections in X is equivalent to the bounded derived
category of coherent sheaves on Y . HMS conjecture works for Calabi-Yau man-
ifolds of any dimension. For K3 surfaces, this conjecture was verified by Seidel
[115]. There are also generalizations of this duality for Fano manifolds and general
type manifolds.

The mirror symmetry conjecture predicts that (special) Lagrangian submani-
folds should behave like (Hermitian Yang-Mills) holomorphic vector bundles, mod-
ulo quantum effects. Thomas and Yau [120] formulated a very interesting conjec-
ture on the existence of special Lagrangian submanifolds which is the mirror of the
theorem of Donaldson, Uhlenbeck and Yau on the existence of Hermitian Yang-
Mills connection.

SYZ proposal

Strominger, Yau and Zaslow proposed a resolution of mirror symmetry in their
groundbreaking paper [116]. They conjectured that (i) mirror Calabi-Yau mani-
folds X and Y should admit special Lagrangian torus fibrations with sections in
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the large volume/complex structure limit;

T dual tori←−−−−→ T ∗

↓ ↓
X Y
↓ ↓
B B∗

(ii) they are dual torus fibrations to each other; (iii) a fiberwise Fourier-Mukai
transformation along fibers interchanges the symplectic (resp. complex) geometry
on X with the complex (resp. symplectic) geometry on Y .

It roughly says that the mysterious duality is simply a Fourier transforma-
tion! The quantum corrections coming from holomorphic curves are higher Fourier
modes.

A brief reasoning behind SYZ is as follows: From physical considerations, B-
branes are complex submanifolds, or more generally derived equivalent classes of
complexes of coherent sheaves, and A-branes are special Lagrangian submanifolds
coupled with unitary flat bundles. As mirror symmetry should identify the complex
geometry of Y with the symplectic geometry of X , their moduli spaces of branes
should be identified as well, at least at LCSL where quantum corrections had
been suppressed. Since any space Y is always the moduli space of points which
are complex submanifolds, Y should also be the moduli space of certain A-branes
in X . Furthermore the underlying Lagrangian submanifolds L of these A-branes
should coverX everywhere once, just like what points in Y did. Since deformations
of L are parametrized byH1 (L,R), we must have dimH1 (L,R) = n andX should
admit a special Lagrangian torus fibration

T → X
π→ B.

When we consider the complex submanifold which is Y itself, the moduli space
is a single point and the corresponding A-brane in X would be a rigid special
Lagrangian in X . Since

∫
Y

[Y ]∪[pt] = 1, this rigid special Lagrangian submanifold
should be a section to the above special Lagrangian fibration on X .

Next, given any torus fiber T in X , its dual torus T ∗ parametrizes flat U (1)-
bundles over T , namely A-branes in X with support T . Under mirror symmetry,
this T ∗ also parametrizes corresponding B-branes in Y , which are points in Y .
Thus T ∗ is a subspace in Y and therefore Y also has a torus fibration by such
T ∗’s.

T ∗ → Y
π→ B∗.

One can further argue that these two are dual special Lagrangian torus fibrations.
Besides giving dual fibrations on mirror manifolds X and Y , we have a trans-

formation between special Lagrangian fibers in X with zero dimensional complex
submanifolds in Y , namely points. This is a special case of a fiberwise Fourier-
Mukai transformation. For more general special Lagrangian submanifolds in X ,
say a section to the above fibration, then the intersection point of it with any fiber
T would determine a flat U (1) connection on T ∗ because (T ∗)∗ = T . By patching
them for various fibers T , we obtain a U (1) connection on the whole manifold Y .
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One expects that this determines a holomorphic line bundle on Y which is the
mirror to the section in X . This was verified in [101] in the semiflat case. We
call this transformation between the symplectic geometry of X and the complex
geometry of Y the SYZ mirror transformation.

The SYZ transformation was generalized to the mirror symmetry for local
Calabi-Yau manifolds by Leung-Vafa [97]. In [66], Hori-Vafa gave a physical proof
of the mirror symmetry using the SYZ proposal.

Special Lagrangian fibrations
It is difficult to find special Lagrangian fibrations on compact Calabi-Yau manifolds
as we do not know their metrics well. For noncompact Calabi-Yau manifolds, there
are examples with explicit Calabi-Yau metrics. Most of these examples also admit
explicit special Lagrangian fibrations. For instance,

π : C
3 → R

3

π (z1, z2, z3) =
(
|z1|2 − |z2|2 , |z2|2 − |z3|2 , Im z1z2z3

)

is a special Lagrangian fibration on C3 with generic fibers T 2 × R topologically.
In the following, we explain how we expect special Lagrangian fibrations

should appear for hypersurfaces. Suppose thatM is a degree n+2 CY hypersurface
in CP

n+1

M = {f (z0, z1, ..., zn+1) = 0} .

The most singular one is given by the union of coordinate hyperplanes, namely

M∞ = {z0z1 · · · zn+1 = 0} ⊂ CP
n+1.

For the family of Calabi-Yau manifolds Mt defined by

f (z0, z1, ..., zn+1) + t · z0z1 · · · zn+1 = 0,

the limit as t goes to infinity is called the large complex structure limit (abbrev.
LCSL). It can be characterized in terms of the period and it is also called the maxi-
mal unipotent monodromy limit [29]. Notice that the smooth partM∞\Sing (M∞)
is a union of (C×)n = T n × R

n and one expects that these T n-fibration can be
perturbed and extended to give a special Lagrangian fibration on Mt for t large.
Without the special condition, this approach was carried out by Gross, Mikhalkin,
Ruan and Zharkov. However the question of whether one can make the Lagrangian
fibrations on X special is a much more delicate question as we do not understand
the behavior of the Calabi-Yau metrics, whose existences are asserted by the cel-
ebrated theorem of Yau [137].

This approach can be generalized to Calabi-Yau hypersurfacesX in any Fano
toric variety P∆. Furthermore, their mirror manifolds Y are Calabi-Yau hypersur-
faces in another Fano toric variety P∇ whose defining polytope is the polar dual to
∆. Thus we can see that the Lagrangian fibration structures on X and Y should
be given by dual tori, at least away from singular fibers.
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The situation is quite different for Calabi-Yau twofolds, namely K3 surfaces,
or more generally for hyperkähler manifolds. In this case, the Calabi-Yau met-
ric on X is Kähler with respect to three complex structures I, J and K. When
X admits a J-holomorphic Lagrangian fibration, then this fibration is a special
Lagrangian fibration with respect to the Kähler metric ωI , as well as ωK . Further-
more, SYZ also predicts that mirror symmetry is merely a twistor rotation from
I to K in this case. For K3 surfaces, there are plenty of elliptic fibrations and
they are automatically complex Lagrangian fibrations because of their low dimen-
sion. Furthermore Gross-Wilson [57] described the Calabi-Yau metrics for generic
elliptic K3 surfaces by using the singular perturbation method. They used model
metrics which were constructed by Greene, Shapere, Vafa and Yau [51] away from
singular fibers and by Ooguri-Vafa [111] near singular fibers.

Recall that the base space B of any compact Lagrangian fibration

T → X
π→ B,

admits a canonical integral affine structure, possibly with singularities. This affine
structure will dictate the Calabi-Yau geometry at the large complex structure limit.

Outside the preimage of the singular set of B, the total space X is given by
the quotient of the cotangent bundle T ∗B by a lattice subbundle symplectically.
In order to understand the A-model on X , we need to be able to describe rational
curves and holomorphic disks on X in terms of the affine structure on B. There
has been much progress on this by the work of Fukaya, Kontsevich-Soibelman,
Siebert and Gross and others. Here tropical geometry plays an important role.

The tangent bundle TB of any affine manifold B admits a canonical complex
structure away from its singularities. Kontsevich and Soibelman [77], Gross and
Siebert [55] described how to deform this complex structure at the large complex
structure limit to nearby complex structures. Recall that the physical calculations
of Candelas et al [29] showed that the variation of their Hodge structures should
determine the Gromov-Witten invariants of rational curves of the mirror mani-
fold. This important formula was later proven by Givental, Lian, Liu and Yau
via a clever computation of Gromov-Witten invariants using localization method.
The above program will eventually give a mathematical explanation of this phe-
nomenon.

Explicit SYZ mirror transformation
Leung-Yau-Zaslow [101], [94] used the SYZ transformation to verify various cor-
respondences between symplectic geometry and complex geometry between semi-
flat Calabi-Yau manifolds. In this situation, there is no quantum corrections from
instantons, namely rational curves or holomorphic disks. To include quantum
corrections in the SYZ transformation for Calabi-Yau manifolds is a much more
difficult problem. However in the Fano case, there are recent results on applying
the SYZ transformation with quantum corrections by Auroux [8], Chan-Leung
[31][32].

In order to understand the mirror transformation, we look at the simplest
example, namely C

n. If we view Cn as a tangent bundle over B ∼= Rn,

M = TB
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then it has a canonical complex structure with holomorphic volume form

ΩM = dz1 ∧ dz2 ∧ · · · ∧ dzn.

If we view Cn as a cotangent bundle of B ∼= Rn,

W = T ∗B

then it has a canonical symplectic form

ωW =
∑

dxj ∧ dyj .

Every linear subspace P in B determines a complex subspace TP in M as
well as a Lagrangian subspace N∗

P/B in W . They are fiberwise dual to each other
with respect to the natural projections of TB and T ∗B to B. Any Lagrangian
section L in W is the graph of a closed one form η on B. Let DA = d + iα be
a flat U (1)-connection over L, then ∂̄E = ∂̄ + iα + β defines a new holomorphic
structure on the topologically trivial complex line bundle over M . These are the
simplest Fourier-Mukai transformations, or the mirror transformations.

Any Riemannian metric g on B ∼= Rn induces compatible Riemannian metric
gM and gW on (co)tangent bundles M and W . Suppose g is a Hessian metric, i.e.
there is a convex function φ : B → R such that

gij =
∂2φ

∂xi∂xj
.

Then gM is a CY metric on M = TB if and only if φ satisfies the real Monge-
Ampère equation

det
(

∂2φ

∂xi∂xj

)
= 1.

On the other hand, gW is a CY metric on W = T ∗B if and only if the Legendre
transformations ψ of φ satisfies the real Monge-Ampère equation

det
(

∂2ψ

∂xi∂xj

)
= 1.

We recall that the Legendre transformation of a convex function φ : B → R is
another convex function ψ : B∗ → R satisfying

φ+ ψ =
∑

xjx
j

where the dual affine spaces B and B∗ are identified under the map

B → B∗

xj

(
x1, . . . , xn

)
=

∂φ

∂xj
.

From above discussions, it is not surprising that the mirror symmetry trans-
formation should be a fiberwise FM transform coupled with a Legendre transform
along base directions.
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In simple situations, namely semi-flat CY manifolds [101][94], or Fano toric
manifolds [32], explicit mirror transformations can be constructed to explain var-
ious dualities between complex and symplectic geometries. However, the general
situation is still far from having a complete understanding, despite recent progress
by Gross-Siebert [56].

6.4 K3 surfaces

K3 surfaces as one dimension H-manifolds
In this section, we study two dimensional Calabi-Yau manifolds M in greater

details. Since SU (2) = Sp (1), a Calabi-Yau surface is the same as an one H-
dimensional hyperkähler manifold (Section 10). This is similar to the fact that
every oriented surface is a complex curve because of the isomorphism SO (2) =
U (1). The volume form on a Riemann surface is always a (Kähler) symplectic
form. Similarly, the holomorphic volume form ΩJ ∈ Ω2,0 (M) on a Calabi-Yau
surface is always a holomorphic symplectic form. We decompose ΩJ into real and
imaginary parts,

ΩJ = ωI − iωK

and we define I and K by

ωI (u, v) = g (Iu, v) and ωK (u, v) = g (Ku, v) .

Then just like the original complex structure J onM , both I and K are orthogonal
complex structures on M with Kähler forms ωI and ωK respectively. Furthermore
they satisfy the Hamilton relation

I2 = J2 = K2 = IJK = −id.

This gives an explicit description of the H-structure on any Calabi-Yau surface.
See Section 11.1 for more discussions on hyperkähler manifolds.

There are only two classes of compact Calabi-Yau surfaces, namely complex
tori C2/Λ and K3 surfaces.

A K3 surface is a simply connected Kähler surface M with c1 (M) = 0.
Siu and Todorov proved that the Kählerian property of M is automatic. The
cohomology group H2 (M,Z) together with the quadratic form qM given by the
intersection product is isomorphic to

LK3 = (−E8)⊕ (−E8)⊕
(

0 1
1 0

)
⊕
(

0 1
1 0

)
⊕
(

0 1
1 0

)

where E8 is the Cartan matrix for the exceptional Lie group E8. In particular,
qM has signature (3, 19).

Every smooth quartic surface in CP
3 is a K3 surface. Also, given any complex

torus A = C2/Λ, then A/Z2 has 16 ordinary double points. By blowing them up,
we obtain a K3 surface. A particular nice class of K3 surfaces M are elliptic K3
surfaces with sections.
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Moduli of K3 surfaces
The moduli space of complex structures on K3 surfaces can be described in terms
of the period map τ . Given a K3 surface M with holomorphic symplectic form
ΩJ , the span of [Re ΩJ ] and [Im ΩJ ] in H2 (M,R) defines an element, called the
period τ , in the period domain D,

D = SO+(3, 19)/SO(2)× SO(1, 19).

Here we have fixed an isomorphism between H2 (M,Z) with a fixed lattice LK3. It
is a nontrivial fact that the period map is a global isomorphism, called the global
Torelli theorem for K3 surfaces.

If we restrict to K3 surfaces which are projective, then the moduli space of
marked projective K3 surfaces is

SO+(2, k)/SO(2)× SO(k),

with 1 ≤ k ≤ 18 depending on the rank of H2 (M,Z) ∩ H1,1 (M). This is a
Hermitian symmetric space of type IV. Note that every K3 surface can be deformed
to a projective surface.

Every Einstein metric g on M is automatically Kähler by observations of
Hitchin and Todorov. Therefore it determines a S2-family of complex structures
on M . The analog of the period map for Einstein metrics on M associates to each
Einstein metric g the span of [ωI ], [ωJ ] and [ωK ] in H2 (M,R), which coincides
with H2

+ (M) the space of self-dual harmonic two forms on M . Thus the moduli
space of marked (orbifold) Einstein metrics on M with unit volume is

SO+(3, 19)/SO(3)× SO(19).

If we allow the volume of M to vary, then this adds a R+-factor to the above
moduli space. From physical motivations, we also consider B-fields which are
elements in H2 (M,U (1)). Then this extended moduli space [2] is isomorphic to

SO+ (3, 19)
SO (3)× SO (19)

× R+ ×H2 (M,R) � SO+ (4, 20)
SO (4)× SO (20)

.

The above isomorphism is defined as follows: The lattice of the total cohomology
is

H∗ (X,Z) � (−E8)⊕ (−E8)⊕
(

0 1
1 0

)
⊕
(

0 1
1 0

)
⊕
(

0 1
1 0

)
⊕
(

0 1
1 0

)

and it has signature (4, 20). Given any (H+, v, B) we associate to it a space-like 4-
dimensional space in H∗ (M,R) spanned by x−q (x,B) [M ] with x ∈ H+, together
with 1 +B +

(
v − 1

2q (B)
)
[M ].

There are conjectural dualities between the geometry, or more precisely the
physics, of K3 surfaces and flat tori T d coupled with flat E8×E8-bundles for small
d. Recall that the moduli space of flat tori is

SO+(d, d)/SO(d) × SO(d).
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When d equals 2 (resp. 3 and 4), the corresponding structures on K3 surfaces for
this duality are algebraic elliptic K3 surfaces with sections (resp. Einstein metrics
and Einstein metrics with B-fields).

Bundles over K3 surfaces
For any vector bundle E over a K3 surface M with a fixed complex structure J ,
the integrability condition F 0,2

A = 0 for a connection DA to define a holomorphic
structure on E is equivalent to FA ∧ ΩJ = 0 where ΩJ = ωI − iωK . Note that
F 0,2

A = FA ∧ ωJ = 0 is identical to the ASD equation F+
A = 0 and this system

of equations is equivalent to F 0,2
A = 0 with respect to I, J and K, i.e. a tri-

holomorphic bundle. This is also the same as the following system of equations,

FA ∧ ωI = FA ∧ ωJ = FA ∧ ωK = 0.

Recall that FA ∧ ωJ is the moment map for a gauge group action on the space
of unitary connection on E. Therefore, the moduli space MASD of ASD con-
nections, or polystable bundles, on M can be regarded as a hyperkähler quotient
A (E) ///G (E). In particular, it is a hyperkähler manifold (section 11), but not
necessarily compact.

Using the algebraic geometry approach, Mukai [109] showed that the moduli
space of polystable coherent sheaves on M admits a canonical holomorphic sym-
plectic form. Examples of such include the Hilbert scheme of n-points in M and
the universal compactified Jacobians of curves in M .

Holomorphic curves vs special Lagrangians in K3
Given any real surface C in M , it is a J-holomorphic curve if and only if ΩJ |C = 0,
i.e., C is a J-complex Lagrangian submanifold in (M,ΩJ). In particular, the
normal bundle of C is isomorphic to the cotangent bundle of C. For instance,
every rational curve in M is a (−2)-curve in the sense that the degree of the
normal bundle is −2. Since ΩJ = ωI − iωK , C is a Lagrangian submanifold in
M with respect to both the symplectic forms ωI and ωK . Of course, this is also
equivalent to

ωK |C = 0 and Im ΩK |C = 0,

i.e. C is a special Lagrangian submanifold in the Calabi-Yau surface (M,K,ωK ,ΩK).
Therefore, if (M,J) has an elliptic fibration with section, then the same fibration
is a special Lagrangian fibration with section on (M,K,ωK ,ΩK) .

In an elliptic fibration with section on a K3 surface M , the section S is always
a smooth rational curve, i.e., CP

1. In the generic case, singular fibers are nodal
rational curves with one node. The total number of singular fibers is 24. This is
because the Euler characteristic e (M) = 24 and smooth elliptic fibers have zero
Euler characteristic.

Yau-Zaslow formula
Motivated from physical considerations, Yau-Zaslow [138] found an amazing for-
mula for the number of rational curves on K3 surfaces in terms of a quasi-modular
form. This conjectural formula was generalized by Göttsche [49] to arbitrary genus
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(and arbitrary projective surface): Suppose C is a holomorphic curve in M repre-
senting a cohomology class [C] with q (C) = 2d − 2 and its divisibility, or index,
as r. If C is a smooth curve, then d is equal to the genus of C and also to the
dimension of the linear system of C. If we denote the number of genus g curves in
X representing [C] as Ng (d, r). Then the Gottsche-Yau-Zaslow formula says that

∑

d≥0

Ng (d, r) qd =

⎛

⎝
∞∑

k=1

k

⎛

⎝
∑

d|k
d

⎞

⎠ qk−1

⎞

⎠

g
∏

d≥1

(
1

1− qd

)24

=
(
d

dq
G2 (q)

)g
q

∆ (q)
.

where G2 (q) is the Eisenstein series. Notice that a generic Kähler K3 surface has
no curve at all. Using the family Gromov-Witten invariants for the twistor family
of complex structures on M , Bryan-Leung [19][20] gives a well-defined definition
of Ng (d, f). When [C] is a primitive class, i.e., r = 1, this formula was proved in
[19] and when g = 0, i.e., the original YZ conjecture, it was proved by Klemm-
Maulik-Pandharipande-Scheidegger [74].

7 Calabi-Yau 3-folds

Calabi-Yau manifolds M of complex dimension 3 have particularly rich geometry.
It is related to the fact that M × S1 is a G2-manifold and their geometries are
governed by the largest normed division algebra, namely the octonion O (see
section 10). Physically this is also the most important dimension in superstring
theory.

7.1 Moduli of CY threefolds

When M is a Calabi-Yau threefold with a fixed holomorphic volume form Ω, there
are natural cubic forms defined on H1 (M,T ∗

M ) and H1 (M,TM ), called the A-
Yukawa coupling YA and the B-Yukawa coupling YB defined as follows: Recall
that every element φ ∈ H1 (M,T ∗

M ) ∼= H1,1 (M) can be represented by an (1, 1)-
form, then

YA :
3⊗
H1 (M,T ∗

M )→ C

YA (φ1, φ2, φ3) =
∫

M

φ1 ∧ φ2 ∧ φ3.

If we represent ηi ∈ H1 (M,TM ) by an element in Ω0,1 (M,TM ), then wedging
them together and contracting with Ω gives (η1 ∧ η2 ∧ η3)�Ω ∈ Ω0,3 (M). Then

YB :
3⊗
H1 (M,TM )→ C

YB (η1, η2, η3) =
∫

M

Ω ∧ (η1 ∧ η2 ∧ η3)�Ω.
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The moduli space Mcpx of complex structures on Calabi-Yau 3-folds is a
projective special Kähler manifold, as first observed by Bryant-Griffiths [25] (see
also [43]). If we include the choice of a holomorphic volume form on M , then this
extended moduli space M̃cpx is a C×-bundle overMcpx and it is a special Kähler
manifold.

Let us recall the definition of special Kähler manifold. For any Kähler man-
ifold, its Kähler form is locally determined by a real valued function φ, called
the Kähler potential, i.e., ω = i∂∂φ (z, z̄), while for special Kähler manifold, it is
determined by a holomorphic function F (z), called the prepotential, which satisfies

φ =
1
2

Im
(
∂F
∂zi

z̄i

)
,

for suitable holomorphic coordinates z’s. From an intrinsic point of view, a Kähler
manifold (M, ω) with a torsion free flat symplectic connection∇ is a special Kähler
manifold if ∇∧J = 0. Such a manifold has a local holomorphic function F , called
the prepotential, which governs the special Kähler geometry. In terms of a suitable
dual holomorphic Darboux coordinates z’s and w’s, we have

wj =
∂F
∂zj

,

for all j. When X is a special Kähler manifold, its cotangent bundle M = T ∗X
admits a natural hyperkähler structure.

To define this structure on M̃cpx, we note that the tangent space at [M ] ∈
Mcpx (resp. [(M,Ω)] ∈ M̃cpx) is naturally identified withH1 (M,TM ) ∼= H2,1 (M)
(resp. H3,0 (M) ⊕ H2,1 (M)). Notice that the Poincaré pairing on the com-
plex vector space H3 (M,C) defines a holomorphic symplectic form and such that
H3,0 (M) ⊕H2,1 (M) is a complex Lagrangian subspace in it. We choose a sym-
plectic basis Ai’s, Bi’s for the middle homology group H3 (M,Z) modulo torsion,
i.e.

Ai ∩Aj = 0 = Bi ∩Bj and Ai ∩Bj = δi
j .

Then
zi =
∫

Ai

Ω

defines a local holomorphic coordinate system on M̃cpx. Similarly

wi =
∫

Bi

Ω

define another such coordinate and it is related to zi’s by a holomorphic Legendre
transformation, i.e. there exists a local holomorphic function F

(
zi
)

such that

wi =
∂F
∂zi

.

This gives the prepotential function on M̃cpx.
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In terms of this coordinate zi’s on M̃cpx, one has

YB = ∇3F .

Such structures determine a so-called Frobenius manifold structure on M̃cpx.
In general, the cotangent bundle of any special Kähler manifold admits a

canonical hyperkähler structure. In our situation, the fibers of the cotangent
bundle of M̃cpx can be identified as the universal covering of the intermediate
Jacobian J (M),

J (M) = H3 (M,Z) \H3 (M,C) /
(
H3,0 (M)⊕H2,1 (M)

)
.

Therefore H3 (M,Z) \T ∗M̃cpx is the universal intermediate Jacobian J univ for
Calabi-Yau threefolds. It admits a hyperkähler structure with a complex La-
grangian fibration over the extended moduli space of Calabi-Yau threefolds,

π : J univ → M̃cpx.

We remark that the second fundamental form of a Lagrangian submanifold L
is always a symmetric cubic tensor in Γ

(
L, Sym3T ∗

L

)
. For a Lagrangian fibration, if

we integrate the second fundamental forms for fibers, then we obtain a cubic tensor
on the base of the fibration. For our complex Lagrangian fibration J univ → M̃cpx,
this cubic tensor is nothing but the B-Yukawa coupling YB.

7.2 Curves and surfaces in Calabi-Yau threefolds

A real codimension two submanifold S in M is a complex surface if and only if
Ω|S = 0. Given any complex surface S in M , its normal bundle NS/M equals to
the canonical line bundle KS of S. When S is a del Pezzo surface, for instance
CP

2, NS/M is negative and therefore S can be contracted to a point. We call KS

a local Calabi-Yau manifold. When S is a Calabi-Yau surface, i.e., a K3 surface
or an Abelian surface, then NS/M is trivial and S can be deformed and gives a
complex surface fibration structure on M . Similarly when C is an elliptic curve, it
often happens that C is a fiber of an elliptic fibration on M . There has been much
studies on elliptic Calabi-Yau threefolds, including the geometry of its Kähler cone
by Wilson, stable bundles over them by Donagi, Friedman, Morgan and others.

Flops, smoothing and extremal transitions
When C is a smooth rational curve in M , then

NC/M
∼= O (−d)⊕O (d− 2)

for some integer d. In the generic situation withNC/M
∼= O (−1)⊕O (−1) negative,

C is called an (−1,−1)-curve, then C can be contracted to a rational double point,
i.e. locally given by {

z2
1 + z2

2 + z2
3 + z2

4 = 0
}
⊂ C

4.
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There is another small resolution of this rational double point and gives another
(−1,−1)-curve C′ as the exceptional set. This birational transformation is called
a simple flop. Suppose M ′ is obtained by flopping C in M , the cohomology
rings of M and M ′ are different, in particular the topology of M changes under
flops. Nevertheless, if we consider the quantum product by including contributions
from genus zero GW invariants to the classical cup product, then the quantum
cohomology ring of M and M ′ are the same [86]. In general, we expect that the
quantum geometries, or the string theories, of M and M ′ are the same.

We could also consider the smoothing of the rational double point by deform-
ing the complex structure to

{
z2
1 + z2

2 + z2
3 + z2

4 = t
}
⊂ C

4,

for small non-zero t. Topologically, this process replaces the singular point by a
(Lagrangian) S3, which is given by

{
z2
1 + z2

2 + z2
3 + z2

4 = t
}
∩R4 when t > 0. This

is called a vanishing cycle for the isolated singular point. Indeed this is the mirror
to the blowing up process which replaces the singular point by a (holomorphic)
S2 ∼= CP

1. The process of contracting a (−1,−1)-curve followed by a smoothing
is called an extremal transition. The mirror symmetry conjecture has predicted
several surprising consequences for such transitions, including a formula relating
open GW invariants on O (−1) ⊕ O (−1) over S2 with the Chern-Simons theory
on S3.

Thus the rational double point can be resolved in three different ways. One
by smoothing (with a S3 vanishing cycle) and two by blowing up (with a S2

exceptional cycle). When we view these from the G2 perspectives, all three look
the same and they are related by a triality symmetry (Section 8.5).

GW-invariants and multiple cover formula for CY3

For any Calabi-Yau 3-foldM , the moduli space of genus g holomorphic curves C in
M always has expected dimension zero. Thus we denote the GW-invariant which
counts the number of genus g curves in M representing a class β ∈ H2 (M,Z)
as Nβ

g (M). Notice that GW-invariants count the number of stable maps from
genus g curves to M and every curve C ⊂ M representing β ∈ H2 (M,Z) will
contribute to the GW-invariant for the class dβ because of a degree d stable map
f : Σ → M could multiply cover its image f (Σ) = C. Such contributions to the
GW-invariants should be subtracted in order to count the number of curves in
M . The multiple cover formulas tell us how each curve in the class β contributes
to the GW-invariant for the class dβ. In the genus zero case, the contribution is
d−3 when C is an (−1,−1)-curve. There are also multiple cover formula for other
contractible curves [17].

Superpotential for curves
Dimension being three plays a special role here as holomorphic curves are critical
points of the following Chern-Simons type functional Φ among real surfaces Σ in
M ,

Φ (Σ) =
∫

B

Ω
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where Ω ∈ Ω3,0 (M) is the holomorphic volume form on M and B is a real three
dimensional singular chain in M with ∂B = Σ − Σ0 for any fixed background
surface Σ0 in M .

Thus the universal moduli space M̃univ
curve of curves in Calabi-Yau 3-folds is

expected to be a generic finite cover of M̃cpx. We recall the universal Abel-Jacobi
map

AJ : M̃univ
curve → J univ .

To explain it, we fix a backgroundC0 and for any holomorphic curveC inM homol-
ogous to C0 we define AJ (C) ∈ H3 (M,Z) \H3 (M,C) /

(
H3,0 (M)⊕H2,1 (M)

)

by evaluating it on any cohomology class η ∈ H3 (M,C) as follows,

AJ (C) [η] =
∫

B

η,

where B is any singular chain in M with ∂B = C − C0. The map AJ defines a
complex Lagrangian subspace in J univ [121]. Locally, it is given by the graph of
an exact holomorphic one form dΦ on M̃cpx, where

Φ : M̃univ
curve → C

Φ (M,C) =
∫

B

Ω.

This is called the superpotential in the physics literature.

Gopakumar-Vafa conjecture
A holomorphic curve C ⊂M coupled with a holomorphic line bundle L over C is
called a BPS state in string theory. The moduli space MBPS (M) of such pairs
(C,L) carries a forgetful map to the moduli space of curve in M ,

π :MBPS (M)→Mcurve (M) .

One would like to find a good compactification of MBPS (M). For K3 sur-
faces, Yau and Zaslow [138] studied this space and derived an amazing formula
for the generating functions of the number of rational curves in K3 surfaces,
the Yau-Zaslow formula. From physical considerations, Gopakumar and Vafa
[48] conjectured that the cohomology group H∗ (MBPS (M)

)
should admits an

sl (2,R)× sl (2,R)-action and suitable combinations of its multiplicities are called
the BPS number denoted nβ

g (M) ∈ Z and they determine Gromov-Witten invari-
ants of M of every genus explicitly by the following formula,

∑

g≥0
β∈H2(M,Z)

Nβ
g (M)u2g−2qβ =

∑

g≥0
β∈H2(M,Z)

nβ
g (M)

∑

k>0

1
k

(
2 sin

ku

2

)2g−2

qkβ

where Nβ
g (M) is the GW-invariant and nβ

g (M) is the BPS number.
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7.3 Donaldson-Thomas bundles over Calabi-Yau threefolds

Holomorphic bundles E over a Calabi-Yau threefold M is another type of BPS
states in string theory. Recall that a connection DA defines a holomorphic struc-
ture on E if and only if (FA)0,2 = 0. Similar to the special feature of flatness
FA = 0 on three manifolds, (FA)0,2 = 0 is the Euler-Lagrange equation for the
holomorphic Chern-Simons functional CShol on Calabi-Yau threefolds M ,

CShol (DA) =
∫

M

Ω ∧ Tr
(
A ∧ dA+

2
3
A ∧A ∧A

)
,

where DA = DA0 +A for some fixed background connection DA0 . Equivalently,

CShol (DA) =
∫

M×[0,1]

Ω ∧ TrF 2
Ā,

with DĀ a connection over M × [0, 1] extending DA0 and DA on its boundaries.
This is similar to the functional Φ for real surfaces in M . We can therefore have
an analog of the Abel-Jacobi map AJbdl : M̃univ

bdl → J univ on the universal moduli
space M̃univ

bdl of holomorphic bundle over Calabi-Yau 3-folds and it is an Lagrangian
with superpotential given by

Φbdl : M̃univ
bdl → C

Φ (M,DA) =
∫

M×[0,1]

Ω ∧ TrF 2
Ā.

Indeed, this is a special case of the special geometry of cycles in G2-manifolds [73]
(Section 8).

For Calabi-Yau threefoldsM , using techniques from algebraic geometry, Don-
aldson and Thomas [40] define a count DTM for the number of stable holomorphic
bundles over M which is invariant under deformations of complex structures on
M . Indeed one can allow E to be singular as well, namely a coherent sheaf on
M . For example every holomorphic curve C in M defines an ideal sheaf IC on M
which is automatically stable and the corresponding Donaldson-Thomas invariants
DTM are conjectured by Maulik-Nekrasov-Okounkov-Pandharipande [107] to be
related to GW-invariants by

ZDT,β (q)
ZDT,0 (q)

= ZGW,β (u)

after a change of coordinate eiu + q = 0. Here ZDT,β (q) =
∑

n In,βq
n and

ZGW,β (u) =
∑

g Ng,βu
2g−2. It is proven that ZDT,0 (q) is given by the MacMahon

function M (q) =
∏

n≥1 (1− qn)−n.
Recently Pandharipande and Thomas [113] defined a related invariant by

counting stable pairs OM → OC in the derived category Db (M) instead of IC and
this has the effect of getting rid of the contributions of embedded points in C to
the DT-invariants. They are called the PT-invariants and denote ZPT,β (u). They
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conjectured the following relationship

ZDT,β (q)
ZDT,0 (q)

= ZPT,β (u)

Pandharipande and Thomas formally defined BPS count nβ
g in terms of PT-

invariants for irreducible curve classes.

7.4 Special Lagrangian submanifolds in CY3

An A-brane (L,DA) in a Calabi-Yau manifold M consists of a Lagrangian subman-
ifold L in M together with a flat U (1)-connection over L. In complex dimension
three, A-branes are critical points of the following Chern-Simons type functional

∫ L1

L0

(ω + FA)2

where (Lt, DAt) is a smooth path of A-branes connecting a background (L0, DA0)
to (L1, DA1) = (L,DA).

The moduli space of A-branes has a natural symplectic structure and admits
a Hamiltonian action by the group of gauge transformation G = C∞ (M,S1

)
of

the flat line bundle over L. The corresponding moment map µ is given by

µ (L,DA) = Im Ω|L.

Therefore the symplectic quotient is the moduli space of special Lagrangian sub-
manifolds in M [119].

Because of these special properties in dimension three, one might expect to be
able to count the number of special Lagrangian spheres in Calabi-Yau threefolds,
as studied by Joyce [72] and other people.

7.5 Mirror symmetry for Calabi-Yau threefolds

General mirror symmetry conjectures are expected to hold true for Calabi-Yau
manifolds of any dimension. The conjecture was originated from the studies of
string theory in which the Calabi-Yau manifolds always have complex dimension
three. Indeed there are many mysterious dualities for the geometry/physics of
Calabi-Yau threefolds, which are not shared by Calabi-Yau manifolds of higher
dimensions. A reason that Calabi-Yau threefold geometry is much richer is due to
the fact that SU (3) ⊂ G2 = Aut (O). As a matter of fact, many of these dualities
comes from dualities/triality in G2-geometry/physics conjecturally.

We have explain that the complex geometry and the symplectic geometry
for Calabi-Yau threefolds are expected to be unchanged under flops and (mirror)
transformed to each other under extremal transitions. This includes the large
N duality for Chern-Simons theory of knots in S3. Nekrasov argued physically
that the large N Chern-Simons theory on S3 can also be described in terms of
the geometry of the moduli spaces of ASD connections on R4. Very roughly
speaking, the reason is as S3 shrinks to a point in its cotangent bundle and creates
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a conical singularity, the physics of the ten dimensional spacetime T ∗S3 ×R4 can
be approximated by the physics of the base manifold R4.

Atiyah-Witten [7] observed that both the O (−1,−1) bundle over S2 where
ordinary flops take place and the cotangent bundle over S3 where extremal tran-
sitions take place are quotients of the spinor bundle over S3, a seven dimensional
G2-manifold, by S1 in different ways. These different ways are connected by G2

triality flops. Thus when lifting to the G2-geometry, flops and extremal transitions
are the same operation. Only when we quotient it by S1 to obtain Calabi-Yau man-
ifolds, then we break the symmetry. We expect that G2-flops on S3 will preserve
both the associative geometry and the coassociative geometry on G2-manifolds.

The closed string theory on M×R3,1 is conjecturally dual to the M-theory on(
S1 ×M

)
×R3,1. This led to the conjecture of Gopakumar-Vafa [48] and eventually

the many developments of counting curves in Calabi-Yau threefolds, including the
Donaldson-Thomas invariants, the Pandharipande-Thomas invariants and their
relationships with the Gopakumar-Vafa BPS-invariants.

For the open string theory on X × R3,1 with the boundaries of string lying
on a special Lagrangian submanifold L in M , the conjectural M-theory dual is a
G2-manifold X which admits a S1-fibration to M whose fibers over L degenerate
to points. For M-theory on more general G2-manifolds X , the conjectural duals
are Calabi-Yau threefolds M coupled with E8×E8-bundles, as studied by Gukov-
Yau-Zaslow [58].

Another link between Calabi-Yau threefolds and G2-manifolds comes from
the topological M-theory [33] in which the Hitchin volume functional on the space
of three forms is being quantized. The natural projectively flat connection over
the parameter space can be interpreted as the BCOV anomaly equation [12] for
Calabi-Yau threefolds. The BCOV theory was originally arisen from studies of the
Kodaira-Spencer theory of gravity and their mirror symmetry between A- and B-
models. The BCOV mirror conjecture is a powerful tool to compute higher genus
Gromov-Witten invariants for Calabi-Yau threefolds as their generating function
is the partition function in A-model of this theory.

8 G2-geometry

8.1 G2-manifolds

A seven dimensional Riemannian manifold (M, g) is called a G2-manifold if it has
a parallel vector cross product (VCP) on its tangent spaces.

Recall that a linear homomorphism J : Rm → Rm is an orthogonal complex
structure if and only if it satisfies (i) Ju⊥u and (ii) |Ju| = |u| for any vector u.
The only constraint is m being an even integer. Now we generalize it to a bilinear
homomorphism × : Rm ⊗ Rm → Rm by requiring (i) u× v perpendicular to both
u and v and (ii) |u× v| equals the area of the parallelogram spanned by u and v.
Obviously the standard vector product, or sometimes called the cross product, in
R3 is an example of such. One way to express this product is by identifying R3

with Im H and defining u × v = Im (u · v) with u · v the product of quaternions.
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The same formula also defines a VCP on the imaginary octonions R7 ∼= Im O. In
fact these are all VCPs [50].

The octonion product can also be recovered from the VCP, and thus the
group of isometries of R7 preserving × equals the group of algebra automorphisms
of O, which is the exceptional Lie group G2. Therefore G2-manifolds do have
holonomy groups G2. Since SU (3) ⊆ G2, the product of any Calabi-Yau threefold
with R is always a G2-manifold. Like CY manifolds, G2-manifold always Einstein
manifolds, i.e., Rc = 0.

The analog of the Kähler form ω (u, v) = g (Ju, v) is the G2-form Ω ∈ Ω3 (M)
given by

Ω (u, v, w) = g (u× v, w) .

When M = X×R with X being a Calabi-Yau threefold with Kähler form ωX and
holomorphic volume form ΩX , then we have

Ω = Re ΩX − ωX ∧ dt.

Ω is a three form analog of a symplectic form as for any x ∈ M , Ωx ∈ Λ3T ∗
xM

lies in an open (positive) GL (7,R)-orbit. Unlike a symplectic form, the metric g
is determined by Ω,

g (u, v) vM = ιuΩ ∧ ιvΩ ∧Ω.

Furthermore, ∇Ω = 0 can be reduced to ∆Ω = 0. Thus a G2-manifold can be
characterized as a seven dimensional manifold processing a harmonic positive three
form Ω.

Despite such simplifications, there is no general existence result for compact
G2-manifolds, analogous to Yau’s theorem for Calabi-Yau manifolds. Using sin-
gular perturbation method to resolve singularities of T 7/Γ for certain finite group
Γ-action, Joyce [70] constructed the first nontrivial compact examples. Explicit
noncompact examples were constructed earlier by Bryant, Salamon and others by
imposing symmetries to reduce the G2-condition to an ODE. This included total
spaces of the spinor bundle S

(
S3
)

over S3, the self-dual two-form bundles Λ2
+

(
S4
)

and Λ2
+

(
CP

2
)
.

Analogous to the (p, q)-decomposition for Kähler manifolds, in the G2 setting,
we have

Ω1 (M) = Ω1
7

Ω2 (M) = Ω2
7 ⊕ Ω2

14

Ω3 (M) = Ω3
1 ⊕ Ω3

7 ⊕ Ω3
27,

and Ωk
d
∼= Ω7−k

d by the Hodge star operator ∗. These components correspond to
the irreducible decomposition of G2 acting on Λ∗R7. Here the subscript indicate
the dimension of these irreducible components inside Λ∗R7. We have (i) Λ3

1 is
spanned by Ω, (ii) Λ1

7
∼= Λ2

7
∼= Λ3

7 via T ∗ g→ T
� Ω→ Λ2T ∗ and T ∗ ∧Ω→ Λ4T ∗ ∗→ Λ3T ∗,

(iii) Λ2
14 corresponds to g2 ⊂ so (7) ∼= Λ2R7 and (iv) Λ3

27
∼= Sym2

0R7 corresponds
to deformations of the G2-metrics with fixed volume.
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8.2 Moduli of G2-manifolds

Given any G2-manifold M with G2-form Ω, we define a G2-Yukawa coupling as
follows

YΩ :
3⊗
H3 (M)→ R

YΩ (φ1, φ2, φ3) =
∫
∗Ω ∧
(
φ̃1 ∧ φ̃2 ∧ φ̃3

)
�Ω

where for any φi ∈ Ω3 (M), φ̃i ∈ Ω1 (M,TM ) is defined by

ιv1∧v2φi = ιv1∧v2∧φ̃i
Ω ∈ Ω1 (M)

for any vector v1 and v2. It satisfies

YΩ (Ω,Ω,Ω) = YΩ (Ω) =
∫
|Ω|2 =

∫
Ω ∧ ∗Ω.

When M = X × S1, then YΩ is a combination of YA and YB for the Calabi-Yau
threefold X .

Unless a compact G2-manifold is a metric product M = X × S1 up to a
finite cover, the holonomy group is the full G2. Via Bochner argument, we have
H1 (M) = 0 and therefore Hk

7 (M) = 0 for any k. Thus H3 (M) ∼= H3
1 (M) ⊕

H3
27 (M) parametrizes infinitesimal deformations of G2-metrics on M .

If we fix a marking, i.e., an isomorphism from H3 (M,Z) /Tor to a fixed
lattice, then the moduli space M̃G2 of marked G2-structure on M is locally iso-
morphic to H3 (M) and given by

p : M̃G2 → H3 (M)
(M,Ω)→ [Ω] .

If we restrict our attention to MG2 ⊂ M̃G2 consisting of those G2-metrics
with unit total volume, then up to a positive constant, the Weil-Petersson metric
is equal to YΩ (Ω,−,−), or ∇2YΩ (Ω). In particular, the metric is of Hessian type.
This is the real analog to the special Kähler structure on the moduli space of
complex structures on Calabi-Yau threefolds. Such a geometry is captured by the
cubic form ∇3YΩ (Ω), which is nothing but the G2-Yukawa coupling YΩ itself.

Similarly to the universal intermediate Jacobian in the Calabi-Yau threefolds
situation, we construct the bundle

JG2 → M̃G2

whose fiber over (M,Ω) is H3
(
M,S1

)
[73]. JG2 has a natural Kähler structure in

such a way that the above map is a Lagrangian fibration.
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8.3 (Co-)associative geometry

(Co-)associative submanifolds
The analog of the complex geometry defined by J (resp. symplectic geometry de-
fined by ω) is the associative geometry defined by × (resp. coassociative geometry
defined by Ω) on the G2-manifold M [84].

Since Rm admits a VCP only when m = 3 or 7, ×-invariant submanifolds
in M must have dimension three and they are called associative submanifolds, or
instantons. They are calibrated by Ω and therefore absolute minimal submanifolds
in M . Infinitesimal deformations of associative submanifolds are parametrized by
twisted harmonic spinors and their deformations could be obstructed.

The G2-analog of Lagrangian submanifolds are coassociative submanifolds in
M , which are four dimensional submanifolds C with Ω|C = 0. They are cali-
brated by ∗Ω, like special Lagrangian submanifolds. The normal bundle NC/M

is isomorphic to the bundle Λ2
+ (C) of self-dual two forms on C. Infinitesimal

deformations of C as coassociative submanifolds are parametrized by harmonic
self-dual two forms H2

+ (C) and their deformations are always unobstructed. In
particular, their moduli spaceMcoass (M) is smooth. Coassociative submanifolds
are natural boundary conditions for the free boundary value problem of associative
submanifolds with nonempty boundaries.

In the next section, we will explain that the theory of associative submanifolds
and coassociative submanifolds in G2-manifolds are special examples of instantons
and branes in manifolds with VCP. We could also view a G2-manifold M , or
more precisely M × S1, as an O-oriented O-manifold (see Section 10). From this
point of view, associative (resp. coassociative) submanifolds are H-Lagrangian
submanifolds of type I (resp. type II) in M .

When M = X × S1, a submanifold of the form Σ× S1 (resp. L× {p}) is an
associative submanifold in M if and only if Σ is a holomorphic curve (resp. L is
a special Lagrangian with phase zero) in the Calabi-Yau threefold X . Similarly, a
submanifold of the form L× S1 (resp. C × {p}) is a coassociative submanifold in
M if and only if L is a special Lagrangian with phase π/2 (resp. C is a complex
surface) in X .

Analogous to the roles that holomorphic disks play in the intersection theory
of Lagrangian submanifolds in symplectic manifolds, one should consider associa-
tive submanifolds bounding the intersections of coassociative submanifolds in the
G2-setting. This theory is also closely related to the Seiberg-Witten theory of the
coassociative submanifold C [99].

G2-TFT
It is natural to couple (co-)associative submanifolds C with U (r)-connections on
E over C. We consider the following Chern-Simons type functional

CSG2 : Map (C,M)×A (C)→ R

CSG2 (f1, DA1) =
∫

[0,1]×C

Tr exp (f∗ (Ω + ∗Ω) + FA) ,
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where f : [0, 1] × C → M with f (t, x) = ft (x) is an one parameter family of
maps joining f1 with a background map f0. This map is invariant under the
natural action of the connected component of the large gauge group G̃ consisting
of g̃ : E → E

E
g̃→ E

↓ ↓
M

g→M

covering a diffeomorphism g of M and linear isomorphisms along fibers. It fits into
the following fiber bundle with fiber the usual group of gauge transformations,

G → G̃ → Diff (C)

When dimC = 3,

CSG2 (f1, DA1) =
∫

[0,1]×C

∗Ω +
1
2
TrF 2

A.

Critical points are (f1, DA1)’s with f1 (C) as associative submanifold in M and
DA1 a flat connection over f1 (C). Thus the moduli space of critical points,

{dCSG2 = 0} /G̃ =MA−cycle (M)

is the moduli space of associative submanifolds coupled with flat bundles, called
associative cycles, or simply A-cycles in M .

When dimC = 4,

CSG2 (f1, DA1) =
∫

[0,1]×C

TrΩ ∧ FA.

Suppose that DA1 is a U (1)-connection, then the Euler-Lagrange equations is

Ω|f1(C) = 0 and F+
A1

= 0.

Thus the moduli space of critical points,

{dCSG2 = 0} /G̃ =MC−cycle (M)

is the moduli space of coassociative submanifolds coupled with ASD bundles, called
coassociative cycles, or simply C-cycles in M .

Formally, the Witten-Morse theory for CSG2 defines topological field theories,
called A-TFT and C-TFT for G2-manifolds [91][39].

Moduli of A- and C-cycles
The moduli spacesMA−cycle (M) andMC−cycle (M) process natural three forms,
four forms and cubic tensors, analogous to the G2-forms and Yukawa couplings.
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When r = 1, the forgetting maps to the moduli spaces of associative and coasso-
ciative submanifolds,

MA−cycle (M)→Massoc (M) and

MC−cycle (M)→Mcoass (M)

behave somewhat similar to an associative and coassociative fibrations respectively
[84].

We consider the universal moduli spaces of A- and C-cycles, i.e.,

MA−cycle =
∐

M∈M̃G2

MA−cycle (M) and

MC−cycle =
∐

M∈M̃G2

MC−cycle (M) .

There are analogs of the Abel-Jacobi maps to the universal G2-intermediate Jaco-
bian,

AJG2 :MA−cycle → JG2 and

AJG2 :MC−cycle → JG2 ,

whose images give Lagrangian subspaces in the Kähler manifold JG2 . Recall that
JG2 has a Lagrangian fibration over M̃G2 . Locally, these Lagrangian subspaces
are graphs of exact one forms on M̃G2 and these functions are G2-superpotentials
as in the physics literatures.

8.4 G2-Donaldson-Thomas bundles

Donaldson and Thomas generalized the ASD connections over oriented four mani-
folds and introduced the DT-connections on vector bundles E over manifolds with
holonomy SU (3), G2 and Spin (7). In the G2-setting, the DT-equation for the
curvature FA is

∗FA + FA ∧ Ω = 0,

or equivalently,
FA ∧ (∗Ω) = 0 ∈ Ω6 (M,ad (E)) .

DT-connections are absolute minimizers of the Yang-Mills functional
∫
|FA|2. We

can also rewrite the DT-equation as

FA ∈ Ω2
14 (M,ad (E)) .

Recall that g2 ⊂ so (7) corresponds to the component Λ2
14 ⊂ Λ2. Globally we

have the infinitesimal frame bundle g2 (M) ∼= Λ2
14T

∗
M ⊂ Λ2T ∗

M . Thus the above
equation is the same as

FA ∈ g2 (M)⊗ ad (E) .

In this form, the G2-DT connections are special O-connections over M from the
point of view of geometry over normed division algebra (Section 10).
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We could consider the previous Chern-Simons type functionals to this setting,

CSG2 : A (M)→ R

CSG2 (DA1) =
∫

[0,1]×M

Tr exp (f∗ (Ω + ∗Ω) + FA)

=
∫

[0,1]×M

Tr

[
∗Ω ∧ 1

2
F 2

A +
1
4!
F 4

A

]
.

The Euler-Lagrange equation is a perturbation of the G2-DT equation,

FA ∧ ∗Ω +
1
3!
F 3

A = 0.

The original G2-DT equation is the Euler-Lagrangian equation for the functional∫
[0,1]×M ∗Ω ∧ TrF 2

A.
The moduli spaceMDT (M) of G2-DT connections over M has many prop-

erties similar to those for moduli of (co-)associative cycles. For instance, it has
a natural three form, four form and a cubic tensor, similar to the G2-forms and
Yukawa couplings.

8.5 G2-dualities, trialities and M-theory

The mystery of the nonassociativity of O is hidden in the triality and we expect
that the full symmetry for G2-geometry is a mirror triality.

GYZ duality
For mirror symmetry, mirror Calabi-Yau threefolds X and Y admit dual special
Lagrangian T 3-fibrations. Furthermore, the mirror transformation between the
complex geometry and the symplectic geometry is a certain generalization of the
Fourier-Mukai transformation along these T 3 fibers. Gukov-Yau-Zaslow [58] argues
physically that if we couple X with a stable E8×E8-bundle, then its string theory
is dual to the M-theory on a G2-manifold M with a coassociative K3-fibration. On
the fiber level, this is the duality that we mentioned in Section 6.4. However, it
is not clear how to transform the Calabi-Yau geometry on X to the G2-geometry
on M . One is also curious whether this is part of a triality symmetry among X ,
Y and M .

Triality flops
When we resolve a rational double point singularity in a Calabi-Yau threefold,
we could either smooth it by deforming its complex structure, thus producing a
vanishing cycle S3, or we could blow it up, i.e. deforming its symplectic structure,
and producing an exceptional cycle S2. The mirror symmetry for this extremal
transition has produced many exciting mathematics. Recall that there are two
ways to blowup and they are related by a simple flop. It is expected that the
quantum symplectic geometry is unchanged under a simple flop.
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Atiyah-Witten [7] discovered that the extremal transition from S2 to S3

and the flop between S2’s can be naturally unified from the G2-perspectives.
Namely the G2-singular cone C

(
S3 × S3

)
admits three different resolutions, each

of them is the spinor bundle SS3 over S3 and they are related by triality G2-flops.
Only when we quotient by S1, three different resolutions give T ∗S3, OS2 (−1,−1),
OS2 (−1,−1) and they are related by extremal transitions and flop. Hence the du-
alities for Calabi-Yau threefolds become more symmetric from the G2-perspectives.
It is natural to ask how the various G2-TFTs behave under triality G2-flops. For
instance, it is interesting to ask whether the skein relation for knot invariants is a
consequence of the triality for the associative geometry under a G2-flop.

In M-theory, physicists study the membrane theory on an eleven dimensional
spacetime R3,1 ×M with M a G2-manifold. M-theory reduces to the superstring
theory when M is the product of a Calabi-Yau threefold with S1 whose size goes to
zero. As we mentioned above, there are many duality transformations in M-theory.
We hope that they can be combined together to form a mirror triality.

We remark that there is a similar story for eight dimensional Spin (7)-manifolds,
which is related to F-theory in physics. However we will not further discuss it here.

9 Geometry of vector cross products

A Kähler structure on a Riemannian manifold (M, g) is a parallel Hermitian com-
plex structure J : TxM → TxM . J being a linear Hermitian complex structure is
equivalent to

Ju ⊥ u and |Ju| = |u| .
Similarly, a G2-structure is a parallel product structure

× : TxM ⊗ TxM → TxM

satisfying similar defining properties. Their corresponding symplectic 2-form ω
and G2 3-form Ω play important roles in these geometries. Another example is
the standard volume form on R3 gives the vector product, or cross product, u × v
on R3. Such product structures coming from volume forms and Kähler forms have
particularly nice properties and they are examples of real vector cross products
(abbrev. R-VCP) [85]. VCPs are classified and the remaining two are G2-VCP
and Spin (7)-VCP. Manifolds with these structures play important roles in string
theory, M-theory and F-theory.

For C-VCP, there are only two of such and they come from holomorphic
volume forms and holomorphic symplectic forms. The corresponding Kähler man-
ifolds are Calabi-Yau manifolds and hyperkähler manifolds. Thus R-VCP and
C-VCP give a nice uniform description of special holonomies.

9.1 VCP manifolds

Riemannian manifolds with VCP
The classical vector product, or cross product, on R3 satisfies the property that
u × v is perpendicular to both u and v and with length equal to the area of the
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parallelogram spanned by u and v. The only such structure in higher dimension
is the G2-structure. A real vector cross product is such a product structure but
we allow the number r of variables to be different from two. When r = 1, this is
a Hermitian complex structure.

We define an r-fold vector cross product (R-VCP or simply VCP) on a Eu-
clidean space Rm to be a skew-symmetric multi-linear form

× : R
m ⊗ · · · ⊗ R

m → R
m

which satisfies

(i) (u1 × · · · × ur)⊥ui for all i
(ii) |u1 × · · · × ur| = ‖u1 ∧ · · · ∧ ur‖ .

Here ‖·‖ is the norm on r-forms.
Similar to the Kähler form and the G2-form, we define the VCP-form Ω ∈

Ωr+1 (Rm) as follow

Ω (u1, ..., ur, ur+1) = 〈u1 × · · · × ur, ur+1〉 .
The condition (i) for × ensures that Ω is skew-symmetric and condition (ii) is
equivalent to

|ιu1ιu2 · · · ιur Ω| = 1

for any orthonormal vectors ui’s.
It turns out that there are very few possibilities of such and they are classified

by Gray [50]: Any VCP-form must be one of the following: (1) volume form, (2)
symplectic form, (3) G2-form and (4) Spin (7)-form. G2 and Spin (7) VCPs live
in 7 and 8 dimensional spaces respectively and they are both directly linked to the
octonion O. In terms of R7 � Im O and R8 � O and octonion multiplications, we
have, in the G2-case,

u× v = Imuv

ΩG2 = dx123 − dx167 + dx145 + dx257 + dx246 − dx356 + dx347,

and in the Spin (7)-case,

u× v × w = (u (v̄w)− w (v̄u)) /2

ΩSpin(7) = −dx1234 − dx5678 −
(
dx21 + dx34

) (
dx65 + dx78

)
−

(
dx31 + dx42

) (
dx75 + dx86

)
−
(
dx41 + dx23

) (
dx85 + dx67

)
.

Here dxijk means dxi ∧ dxj ∧ dxk and so on. Note that G2 and Spin (7) are the
symmetry groups of the corresponding VCP-forms in R7 and R8 respectively.

A Riemannian manifold (M, g) with a VCP (resp. closed VCP and parallel
VCP) [85] means that it has VCP × on each of its tangent space and Ω is a
smooth form (resp. closed form and parallel form). For simplicity, we usually call
a Riemannian manifold with a parallel VCP simply a VCP-manifold.
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9.2 Instantons and branes

The closedness of Ω implies that Ω ∈ Ωr+1 (M) is a calibrating form. A (r + 1)-
dimensional submanifold C in M is calibrated by Ω if and only if it is preserved
by × and they are called instantons. For instance, when M is a Kähler mani-
fold, instantons are holomorphic curves; when M is a G2-manifold, instantons are
associative submanifolds; when M is a Spin (7)-manifold, instantons are Cayley
submanifolds.

The following characterization of an instanton is useful in studying the de-
formation theory of instantons: First we denote the symmetry group of × as
G ⊂ O (m) and its Lie algebra as g ⊂ o (m) ∼= Λ2V ∗. Over a VCP-manifold M ,
by putting g for each tangent space V = TxM together, we have a subbundle
gM ⊂ Λ2T ∗

M . We define a homomorphism

τ : Λr+1V → Λ2V

as the composition of the VCP of the last r components follows by the wedge
product, i.e.

τ (u0 ∧ u1 ∧ · · · ∧ ur) = u0 ∧ (u1 × · · · × ur) .

The image of τ lies inside g⊥, the orthogonal complement of the Lie algebra of G.
Over M , we have

τ ∈ Ωr+1
(
M,g⊥

M

)

and C is a instanton in M if and only if

τ |C = 0 ∈ Ωr+1
(
C,g⊥

M

)
.

Using this, one can show that infinitesimal deformations of an instanton in M are
parametrized by twisted harmonic spinors on C.

The well-behaved free boundary condition for holomorphic curves C in a
Kähler manifold C is by requiring the boundary ∂C to lie inside a Lagrangian
submanifold L ⊂ M . This notion generalizes to VCP-geometry. A submanifold
L in M is called a brane if (i) Ω|L = 0 and (ii) dimL = (n+ r − 1) /2. Indeed
this is the largest possible dimension among submanifolds L satisfying Ω|L = 0.
Lagrangian submanifolds in Kähler manifolds, hypersurfaces in volume manifolds
and coassociative submanifolds in G2-manifolds are examples of branes. However,
brane does not exist in any Spin (7)-manifold.

Suppose L is a brane in M , VCP determines a homomorphism from ΛrTL to
the normal bundle NL/M . Taking the adjoint of it, NL/M becomes a subbundle of
ΛrT ∗

L which is spanned by VCP-forms of degree r on L. Infinitesimal deformations
of a brane are parametrized by such degree r closed VCP-forms on L and they all
have unobstructed deformations. In particular, the moduli space of branes in M
is always smooth.

Thus the theory of VCP gives a unified approach to describe the geome-
tries of various important geometric objects in Kähler geometry, G2-geometry and
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Spin (7)-geometry. The following table summarizes all these structures.

VCP form Volume form Sympl. form G2-form Spin (7)-form

Instanton Domain Holo. curve Assoc. submfd. Cayley submfd.

Brane Hypersurface Lagr. submfd. Coass. submfd. n/a

9.3 Symplectic geometry on higher dimensional knot spaces

Symplectic forms are 1-fold VCP forms. Indeed the geometry of r-fold VCP
on M can be described in terms of the symplectic geometry of the infinite di-
mensional knot space KΣ (M) [83]. Here KΣ (M) is the set of all submanifolds
in M which are diffeomorphic to a fixed (r − 1)-dimensional space Σ, that is
KΣ (M) = Mapemb (Σ,M) /Diff (Σ). Here Map (Σ,M) is the space of all em-
beddings from a fixed (r − 1)-dimensional manifold Σ to M . Via transgression,
any (r + 1)-form Ω on M defines a 2-form ωK on KΣ (M), i.e.,

ωK (f) (X,Y ) =
∫

Σ

ιf∗(X)∧f∗(Y )Ω.

It is clear that dωK = 0 if and only if dΩ = 0. The Riemannian metric on M
defines one on KΣ (M). One can show that Ω is a r-VCP form on M if and only
if ωK is an 1-VCP form on KΣ (M), in particular a symplectic form.

Furthermore, a submanifold L in M is a brane if and only if KΣ (L) is a
Lagrangian submanifold in KΣ (M) . Given a holomorphic curve D in KΣ (M), it
is a family of submanifolds in M , i.e., there is a fiber bundle Σ → C → D and a
map C →M , then C is an instanton in M provided that the curve satisfies a nor-
mality condition. Thus the geometry of VCP on M is nothing but the symplectic
geometry on KΣ (M). For instance, one would expect to have intersection theory
of branes defined using instantons, similar to the intersection theory of Lagrangian
submanifolds defined using J-holomorphic discs.

This interpretation of VCP geometry in terms of symplectic geometry on
knot spaces is particularly fruitful for C-VCP.

9.4 C-VCP geometry

Kähler manifolds with C-VCP
We can similarly define a r-fold complex vector cross product (C-VCP) on a Her-
mitian vector space Cm [85]. More precisely, a C-VCP form Ω ∈ Ωr+1,0 (Cm) must
satisfy

|ιu1ιu2 · · · ιur Ω| = 1

for any orthonormal complex vector ui’s. There are only two C-VCPs, namely it
must be either (i) a complex volume form or (ii) a complex symplectic form.

Suppose (M,ω) is Kähler manifold with a holomorphic form Ω defining a
C-VCP, then Ω is automatically parallel. As a result, a Kähler manifold with a



Geometric Structures on Riemannian Manifolds 201

holomorphic C-VCP must be either (i) a Calabi-Yau manifold or (ii) a hyperkähler
manifold.

Instantons
Since Ω is a complex valued differential form, we have a S1-family of calibrating
forms. Namely for any real number θ, Re

(
eiθΩ
)

is a calibrating form and those
submanifolds C it calibrates are called instantons with phase θ. Instantons can
be characterized as those (r + 1)-dimensional submanifolds C in M satisfying

Im
(
eiθΩ
)
|C = ω|C = 0.

When M is a Calabi-Yau manifold, then C is a special Lagrangian submanifold
with phase θ. When M is a hyperkähler manifold, then C is a Jθ-holomorphic
curve where Jθ = (cos θ) I + (sin θ)K.

N-branes and D-branes
There are two types of boundary conditions for instantons: Neumann boundary
condition and Dirichlet boundary condition. The corresponding branes are called
N-branes and D-branes. A N-brane is a real (n+ r − 1)-dimensional submanifold
L in M satisfying

Ω|L = 0.

A D-brane is a middle dimensional submanifold L in M satisfying

ω|L = Re
(
eiθΩ
)
|L = 0.

As in the real case, N-branes are biggest dimension submanifolds where the re-
striction of Ω vanishes. This forces L to be a complex submanifold in M .

When M is a Calabi-Yau manifold, a N-brane (resp. D-brane) is a complex
hypersurface (resp. special Lagrangian submanifold with phase θ + π/2) in M .
Even though complex hypersurfaces and special Lagrangian submanifolds seems to
be very different from each other, both of them correspond to complex Lagrangian
submanifolds in the isotropic knot space K̂Σ (M) ofM (as will be explained below).
The difference is they are complex Lagrangian with respect to different complex
structures in the twistor family of K̂Σ (M).

WhenM is a hyperkähler manifold, a N-brane (resp. D-brane) is a J-complex
Lagrangian submanifold (resp. Jθ+π/2-complex Lagrangian submanifold) in M .
The deformation theory of instantons with boundaries lying in N-branes and D-
branes was studied by Schoen’s school. The following table summarizes these
structures.

C-VCP mfd. Calabi-Yau mfd. Hyperkähler mfd.

Instanton SLag. w/ θ = 0 J-holomorphic curve

D-brane Cpx. hypersurface J-cpx. Lagr. submfd.

N-brane SLag. w/ θ = π/2 I-cpx. Lagr. submfd.
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9.5 Hyperkähler geometry on isotropic knot spaces of CY

Recall that the R-VCP geometry on M can be interpreted as the symplectic ge-
ometry on KΣ (M), the space of submanifolds in M , i.e.,

KΣ (M) = Mapemb (Σ,M) /Diff (Σ) .

We will simply write Map (Σ,M) for Mapemb (Σ,M). For C-VCP we should
complexify this picture and consider the quotient of Map (Σ,M) by the complex-
ification of Diff (Σ), which does not exist! So one tries to replace the complex
quotient by the symplectic quotient: Suppose (M, g, J, ω) is a Kähler manifold
with a C-VCP form Ω ∈ Ωr+1,0 (M) . In order to induce a symplectic form ωMap

on Map (Σ,M) from ω on M , we need to fix a background volume form νΣ on Σ,
then

ωMap (f) (u, v) =
∫

Σ

(f∗ω) (u, v) νΣ

for any f ∈Map (Σ,M) and any u, v ∈ TfMap (Σ,M) = Γ (Σ, f∗TM ).
Since we have fixed a background volume form on Σ, only volume preserving

diffeomorphisms of Σ preserves ωMap. The moment map for the Diff (Σ, νΣ)-
action on Map (Σ,M) is

µ : Map (Σ,M)→ Ω1 (Σ) /dΩ0 (Σ)
µ (f) = [α]

where f∗ω = dα (Section 6.2). In particular, µ−1 (0) consists of isotropic embed-
dings of Σ into M . However, the symplectic quotient

Map (Σ,M) //Diff (Σ, νΣ) = µ−1 (0) /Diff (Σ, νΣ)

is too big as we should take the symplectic quotient by the larger group Diff (Σ) .
In [83], a natural coisotropic foliation D on µ−1 (0) is constructed and the quotient
space

K̂Σ (M) = µ−1 (0) /Diff (Σ)

is a natural substitute for the nonexisting symplectic quotient Map (Σ,M) //Diff
(Σ), called the isotropic knot space. Furthermore, K̂Σ (M) admits almost complex
structures I, J and K satisfying the Hamilton relation and a natural 1-fold C-
VCP structure. However, in this infinite dimensional setting, we only know that
K̂Σ (M) is a holomorphic symplectic manifold, not hyperkähler.

Thus we have constructed an infinite dimensional holomorphic symplectic
manifold K̂Σ (M) from any Calabi-Yau manifold M . Analogous to the real situa-
tion, a normal Jθ-holomorphic curve in K̂Σ (M), where Jθ = (cos θ) I + (sin θ)K,
corresponds to an instanton, i.e. a special Lagrangian submanifold with phase θ
in M .

More interestingly, (i) if L is a complex hypersurface (i.e. a N-brane) in M,
then K̂Σ (L) is a J-complex Lagrangian submanifold in K̂Σ (M) and (ii) if L is a
special Lagrangian submanifold with phase θ + π/2 (i.e., a D-brane with phase
θ), then K̂Σ (L) is a Jθ+π/2-complex Lagrangian submanifold in K̂Σ (M). The
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reason that K̂Σ (L) also defines a complex Lagrangian in K̂Σ (M) is because it is
automatically sitting inside µ−1 (0).

For quaternionic-Kähler manifolds, i.e., Hol (M, g) ⊆ Sp (n)Sp (1), there
is no well-defined H-VCP structure because of the noncommutativity of H. In
summary, we have explained the source of reduction to every non-symmetric Rie-
mannian holonomy groups as M carrying different A-VCP with A ∈ {R,C,H}.

none r = n − 1 r = 1 r = 2 r = 3

R-VCP O (n) SO (n) U (n) G2 Spin (7)

C-VCP U (n) SU (n) Sp (n)

H-VCP Sp (n) Sp (1)

10 Geometry over normed division algebras

10.1 Manifolds over normed algebras

Normed division algebras
We have seen that Riemannian manifolds (M, g) with special holonomy groups
have various algebraic structures on their tangent bundles TM . It is not surprising
that such structures are related to normed algebras A. We recall that a real algebra
A with a norm ‖·‖ is a normed algebra if it satisfies the obvious compatibility
condition:

‖ab‖ = ‖a‖ ‖b‖
for any a, b ∈ A. Note that a normed algebra is always a division algebra. It
is a classical fact that R, C, H and O form the complete list of normed division
algebras. In this section, we will see that different holonomy groups correspond to
manifolds being defined over various A and whether it is A-oriented or not.

Each tangent space of a Riemannian manifold (M, g) certainly has a norm.
If it also has an A-module structure, then it will reduce the holonomy group of
M . For instance, a Riemannian manifold with a parallel C-module structure on
its tangent spaces is a Kähler manifold. We can give a unified way to describe
all Riemannian holonomy groups and their geometries from this point of view,
even including Riemannian symmetric spaces (see Section 13). There are many
advantages to this. It helps us to discover new links between different kinds of
geometries and obtain new results. For example the hard Lefschetz sl (2,R)-action
for compact Kähler manifolds can be naturally generalized to all holonomy groups
in [96] and the results of mean curvature flow for Lagrangian submanifolds in
Calabi-Yau manifolds was generalized to hyperlagrangian submanifolds in the H

case in [98]. We could even include conformal geometry in the same arena with
the help of Jordan algebras (Section 12).

The first issue is O-module does not make sense as O is not an associative
algebra. Using Jordan algebras, one can resolve this problem as long as the O-
dimension is not more than three. In fact, we need to use this and its extension via
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the magic square to describe exceptional symmetric spaces in terms of two normed
division algebras. For the time being, we will restrict to the one dimensional case,
i.e., O itself.

A-manifolds and A-orientations
Now we define a Riemannian A-manifold M to be a Riemannian manifold with
its holonomy group lies inside the group GA (n) of twisted isomorphisms of An,
which is defined as follows: Suppose V is a normed linear A-module of rank n. A
R-linear isometry φ of V is called a twisted isomorphism if there exists θ ∈ SO (A)
such that

φ (vx) = φ (v) θ (x)

for any v ∈ V and x ∈ A. When A is R or C, θ is necessarily the identity. The
reason of introducing θ is because a H-structure is given by the twistor S2-family
of complex structures, rather than a particular choice of the triple (I, J,K). We
have the symmetry group GH (n) is Sp (n)Sp (1). In the O case, GO (1) is the
exceptional holonomy group Spin (7).

Next we introduce the notion of an A-orientation for Riemannian A-manifolds.
Orientability requires the notion of determinant. In the complex and quater-
nionic cases, detA corresponds to the projection to the second component in
U (n) = SU (n) × U (1) /Zn and Sp (n)Sp (1) respectively. In the octonion case,
it is simply the octonion product because we only consider the one dimensional
case. Therefore a twisted isomorphism g ∈ GA (n) is called special if detA (g) fixes
1 ∈ A. That is g is an element in the isotropic subgroup of 1 in GA (n), which
we denote HA (n) and the corresponding manifolds are called special A-manifolds.
They are given explicitly in the following table:

A R C H O

GA (n) O (n) U (n) Sp (n) Sp (1) Spin (7)

HA (n) SO (n) SU (n) Sp (n) G2

Their corresponding Riemannian geometries are as follows.

A R C H O

GA (n) Riemannian Kähler Quaternionic-Kähler Spin (7)

HA (n) Volume Calabi-Yau Hyperkähler G2

In the above definition, a G2-manifold is a real eight dimensional manifold.
However its universal cover is a Riemannian product manifold M × R with M
a seven dimensional G2-manifold as defined previously. This is because G2 =
Aut (O) fixes R ⊂ Im O and therefore sits inside SO (7).

suA (1, 1)sup-action
When M is a Kähler manifold, the hard Lefschetz theorem says that there is
a natural sl2 (R)-action on differential forms Ω∗ (M) and the cohomology group
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H∗ (M,R). Notice that sl2 (R) ∼= su (1, 1). Indeed there is a super Lie algebra

su (1, 1)sup = su (1, 1)⊕ C
1,1 ⊕ R

which acts on the space of differential forms Ω∗ (M) extending the hard Lefschetz
action. Here C1,1 acts by the first order differential operators ∂, ∂̄, ∂∗ and ∂̄∗ and
R acts by the second order differential operator, the Laplacian ∆. Having such
an action encompass (i) the hard Lefschetz action, (ii) first order Kähler identities
and (iii) second order Kähler identities.

Suppose M is only an oriented Riemannian manifold, then Ω∗ (M) admits
an so (1, 1)sup = so (1, 1)⊕ R1,1 ⊕ R where R1,1 acts via d and d∗ and R acts via
∆.

When M is a hyperkähler manifold, there is a similar action of

sp (1, 1)sup = sp (1, 1)⊕H
1,1 ⊕ R

on Ω∗ (M) encompassing all the hyperkähler identities.
The existence of such actions can be explained via the geometry over normed

algebras point of view. The basic reason is the exterior algebra Λ∗ (An) can be
naturally identified with the spinor representation for the vector space An,n. Such
actions have natural generalization to all (A-oriented) A-manifolds [93].

10.2 Gauge theory over (special) A-manifolds

When a Riemannian manifold has special holonomy, there is usually a special kind
of connections on bundles over them, for instance holomorphic bundles over Kähler
manifolds and Donaldson-Thomas bundles over G2- and Spin (7)-manifolds. Us-
ing normed division algebras to describe different holonomy groups gives us a
particular nice unified way to describe all these different types of connections.

If M is a (special) A-manifold, then the Lie algebra of its holonomy group
is (hA (n) ⊂)gA (n) ⊂ so (m) , where m and n are dimensions of M over R and A

respectively. This determines a subbundle in the bundle of 2-forms Λ2T ∗
M , denoted

hA (TM ) ⊂ gA (TM ) ⊂ Λ2T ∗
M .

Recall that the curvature FA of a connection DA on a bundle E is a ad (E)-valued
2-form, FA ∈ Λ2T ∗

M⊗ad (E) . On a (special) A-manifold M , it is natural to require
FA to lie inside Γ (M,gA (TM )⊗ ad (E)) (resp. Γ (M,hA (TM )⊗ ad (E))) and we
call such a connection a (special) A-connection. Most of them can be identified
with well-known Yang-Mills connections as indicated in the following table.

A-connections special A-connections

C F 0,2
E = F 2,0

E = 0 F 0,2
E = F 2,0

E = ΛF = 0

(Holomorphic bundles) (Hermitian Yang-Mills bdls.)

H F ∈ gH (TM ) ⊗ ad (E) F 0,2
I = F 0,2

J = F 0,2
K = 0

(B-bundles) (ASD or hyperholomorphic bdls.)

O ∗FE + Θ ∧ FE = 0 F ∧ Θ = 0

(Spin (7)-Donaldson-Thomas bdls.) (G2-Donaldson-Thomas bdls.)
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10.3 A-submanifolds and (special) Lagrangian submanifolds

A-submanifolds in A-manifolds
Complex submanifolds form an important class of submanifolds in Kähler mani-
folds. However there are very few quaternionic submanifolds in a H-manifold as
they are always totally geodesic submanifolds. And we have no O-submanifold as
G2- and Spin (7)-manifolds already have O-dimension one. However, the geometry
of (special) Lagrangian submanifolds in (special) A-manifolds is very rich.

(Special) A/2-Lagrangian submanifolds
When a symplectic vector space (V, ω) has a compatible complex structure J , a
Lagrangian subspace L in V gives an orthogonal decomposition V = L⊕JL. When
V is an A-module, it has several compatible complex structures J1, . . . , J2r−1 where
r = dimR A/2 and therefore V has several symplectic structure ω1, . . . , ω2r−1. For
example, when V = Hn, a subspace which is both ωI - and ωK-Lagrangian is
automatically J-linear and therefore a J-complex Lagrangian subspace. In general,
if L ⊂ An is Lagrangian with respect to half of the symplectic forms, say ω1, ..., ωr,
then it is Jl-linear for the remaining complex structures. In particular, it is a
(A/2)-module. Here we denote C/2 = R, H/2 = C and O/2 = H. We call such
a L a (A/2)-Lagrangian subspace in V. Globally on M , this defines the notion of
(A/2)-Lagrangian submanifolds in any Riemannian A-manifold.

There is also a corresponding notion of orientability for such L, i.e. phase an-
gles are constant on L, which defines the class of special (A/2)-Lagrangian subman-
ifold and all of these are calibrated submanifolds. To describe the phase angle con-
cretely, we recall the Grassmannian of (A/2)-Lagrangian subspaces in Cn (resp. Hn

and O) is U (n) /SO (n) (resp. Sp (n)Sp (1) /U (n)U (1) and Spin (7) /Sp (1)3).
There is phase angle map to S1 (resp. S2/ ± 1 and S4) and the fiber over θ
consists of special (A/2)-Lagrangian subspaces of phase angle θ. Thus giving any
(A/2)-Lagrangian submanifold L, there is a phase angle map

θ : L→ Sd

where d = dim A/2 and in the H-case it is well-defined up to the antipodal map.
L is special if this is the constant map.

We identify all the them in the following table.

A
A

2
-Lagrangian submfd. special A

2
-Lagr. submfd.

C Lagrangian submfd. special Lagr. submfd.

H hyperlagrangian submfd. complex Lagrangian submfd.

O Cayley submfd. (co-)associative submfd.

When L is a Lagrangian submanifold in a Calabi-Yau manifold M , the phase
angle function θ (x) satisfies

ιHω = dθ (x) ,
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where H is the mean curvature vector of L. This implies that Lagrangian subman-
ifolds in M , or more generally in a Kahler-Einstein manifold, are invariant under
the mean curvature flow. And the phase angle θ (x) satisfies the non-linear PDE

∂θ

∂t
= ∆θ

where ∆ is the Laplacian operator with respect to the induced metric on L which is
changing it t. It does not develop type I singularity. Furthermore, if L is minimal,
then it must be calibrated, namely a special Lagrangian submanifold.

Indeed, the same is true for A/2-Lagrangian submanifolds in any special A-
manifold in general. When A = O, Cayley submanifold is already calibrated and
therefore the other interesting situation is for hyperlagrangian submanifolds L in
a hyperkähler manifold M [98]. In this case, the phase angle function θ (x) : L→
S2/ ± 1 has the following nice property: The target S2 is the twistor family of
complex structures on M and for any x ∈ L, the tangent space TxL ⊂ TxM is
complex linear with respect to the complex structure Jθ(x). We also have

ιHΩJθ(x) = ∂̄θ,

and θ (x) satisfies the harmonic map flow. These can be used to show that the
mean curvature flow preserves the hyperlagrangian property and type I singularity
does not appear, just as what happens in the Calabi-Yau case.

11 Quaternion geometry

When we go from R to C and then to H, their geometries become more and more
rigid. For instance, every higher dimensional H-manifold is Einstein. Also every
complex submanifold in a Kähler manifold has zero mean curvature, in fact an
absolute volume minimizer, and every quaternionic submanifold has zero second
fundamental form, i.e. a totally geodesic submanifold. This is because the second
fundamental form must be skew-Hermitian with respect to I and J (of course K
as well). Using IJ = K, it becomes Hermitian with respect to K and therefore it
must be zero. In general, every quaternionic map from Hm to Hn must be affine
H-linear.

Twistor spaces
Recall that a Riemannian H-manifold M has its holonomy group in Sp (n)Sp (1).
It is also called a quaternionic-Kähler manifold. If we also assume H-orientability,
then its holonomy group is inside Sp (n) and it is a hyperkähler manifold. Every
tangent space TxM is modeled on Hn, thus it has three complex structures I, J
and K. Indeed, any element in the unit sphere S2 in the three dimensional vector
space spanned by I, J and K is a complex structure on TxM . They form a S2-fiber
bundle

S2 → Z →M.
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The total space is called the twistor space. In fact, this is the associated bundle
for the Sp (n)Sp (1)-frame bundle over M via the adjoint action of the Sp (1)-
factor on S2 ⊂ Im H. Equivalently, the inclusion Sp (n)Sp (1) ⊂ SO (4n) defines
a subbundle in the bundle of two forms,

Λ2
sp(n) ⊕ Λ2

sp(1) ⊂ Λ2,

and Z is the unit sphere bundle inside Λ2
sp(1). When M is of dimension four, the

above inclusion is the decomposition of any two form into ASD and SD compo-
nents,

Λ2
− ⊕ Λ2

+ = Λ2.

The tangent space of Z at any (x, Jx) in Z splits into vertical and horizontal
components via the Riemannian metric on M . Since each fiber is S2, the vertical
component has a natural complex structure and Jx is a complex structure on the
horizontal component, thus Z has a natural almost complex structure. In fact,
it is integrable as long as n ≥ 2, namely the twistor space is always a complex
manifold. Moreover every S2 fiber is a holomorphic curve in Z. When n = 1, this
requires W+ = 0.

Furthermore, the H-geometry on M can be described in terms of the complex
geometry on Z, the so-called twistor transformation.

11.1 Hyperkähler geometry

On a hyperkähler manifold M , H-orientibility guarantees that each I, J and K
can be consistently defined over the whole manifold M . In particular Z = M×S2,
but non-holomorphically. Indeed, the projection to S2 is the S2-family of complex
structures on M , called the twistor family. The three complex structures satisfies
the Hamilton relation,

I2 = J2 = K2 = IJK = −id.

Given any J in the twistor family, (M, g, J) is a Calabi-Yau manifold which
corresponds to the embedding Sp (n) ⊂ SU (2n), analogous to U (n) ⊂ SO (2n)
in the complex case. The corresponding Kähler form will be denoted as ωJ . The
parallel form

ΩJ = ωI − iωk ∈ Ω2,0
J (M)

defines a holomorphic symplectic structure on (M,J). The J-holomorphic volume
form for the Calabi-Yau structure on (M,J) is simply the top exterior power of
ΩJ .

Conversely, if a compact Kähler manifold (M,J) admits a holomorphic sym-
plectic form ΩJ , then TM is isomorphic to T ∗

M as holomorphic vector bundles and
therefore all its odd Chern classes vanish. In particular, c1 (M) = 0 and it admits
a Ricci flat Kähler metric g by Yau’s theorem. ΩJ is a parallel form with respect
to g and both Re ΩJ and Im ΩJ define Kähler structures on M which make M
into a hyperkähler manifold.
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Examples of hyperkähler manifolds
Using this method, Beauville constructed higher dimensional hyperkähler man-
ifolds from four dimensional ones S, i.e., K3 surfaces and Abelian surfaces, by
resolving the singularities of symmetric powers of S, called the Hilbert schemes
of points in S. Instead of considering moduli space of points in S, Mukai [109]
showed that the moduli spaceM of stable coherent sheaves on S has a canonical
holomorphic symplectic form. When there is no strictly semi-stable sheaf, thenM
is compact and therefore a hyperkähler manifold. O’Grady [110] studied the res-
olutions of the compactification of M and constructed two compact hyperkähler
manifolds which are not birational to Beauville’s examples.

Recall that the cotangent bundle of any complex manifold X admits a canon-
ical holomorphic symplectic form but we cannot use Yau’s theorem to assert that
T ∗X is hyperkähler as it is noncompact. Nevertheless, Calabi [28] has constructed
explicit hyperkähler metric on T ∗Pn. In fact, the cotangent bundle of any Hermi-
tian symmetric space of compact type is hyperkähler [14].

Hyperkähler manifolds also arises from the geometry of Calabi-Yau threefolds
Y . The infinite dimensional space of isotropic knots in Y carries a natural H-
structure [83]. Moreover, complex surfaces or special Lagrangian submanifolds in
Y define complex Lagrangian submanifolds in it.

As we mentioned in Section 7.1, if we enlarge the moduli space of com-
plex structures on Calabi-Yau threefolds by including a choice of the holomorphic
volume forms, then the universal intermediate Jacobian over it is a hyperkähler
manifold. Moreover, under the Abel-Jacobi map, the universal moduli spaces of
holomorphic curves define a complex Lagrangian subvariety in it. The underlying
structures on this enlarged moduli space of Calabi-Yau manifolds is the special
Kähler structure [43].

Moduli of hyperkähler manifolds
The moduli spaces of hyperkähler manifolds have many nice properties. First since
M is always a Calabi-Yau manifold, the moduli space of complex structures on M
is smooth, by the Tian-Todorov lemma. Every complex deformation Mt of M is
again a hyperkähler manifold and the corresponding holomorphic symplectic form
Ωt satisfies the following important property:

q0 (Ωt) = 0 and q0 (ReΩt) > 0,

Here

q0 : H2 (M,C)→ C

q0 (φ) =
n

2

∫
Ωn−1Ω̄n−1φ2 + (1− n)

∫
Ωn−1Ω̄nφ

∫
ΩnΩ̄n−1φ,

is called the Beauville-Bogomolov quadratic form. It is a quadratic form of sig-
nature (3, b2 − 3) on H2 (M,R). The local Torelli theorem says that the period
map

τ : T → D = SO+ (3, b2 − 3) /SO (2)SO (1, b2 − 3)
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which sends a marked hyperkähler manifold Mt to the real two plane in H2 (M,R)
spanned by Re Ωt and Im Ωt is a local isomorphism.

Complex Lagrangian submanifolds
As we mentioned before, any quaternionic submanifold in a hyperkähler manifold is
totally geodesic. Thus there are very few of such. On the other hand, the geometry
of complex Lagrangian submanifolds is rather rich. Bryant also studied other types
of submanifolds in hyperkähler manifolds [26][21]. A complex submanifold L of
middle dimension in a holomorphic symplectic manifold M is called a complex
Lagrangian submanifold if the restriction of ΩJ to M is zero.

Any middle dimensional complex submanifold L in M with c1 (L) positive
is always a complex Lagrangian submanifold because there is no nontrivial holo-
morphic two form on L by Bochner arguments. For instance any CP

n in M is a
complex Lagrangian submanifold. As in the real case, the cotangent bundle of any
complex manifold X is always a holomorphic symplectic manifold with the zero
section X being a complex Lagrangian submanifold in it.

Hitchin showed that when M is a hyperkähler manifold and L is a middle
dimensional submanifold in M , then the vanishing of ΩJ on L already implies
that L is a complex submanifold. On the other hand, a complex submanifold L
in M being a complex Lagrangian can be characterized by the property that the
cohomology class [L] it represents is Ω-primitive [17]. Furthermore, the rational
cobordism class of L is completely determined by [L] ∈ H2n (M,Z).

Since complex Lagrangian submanifolds are examples of special Lagrangian
submanifolds, the moduli spaceMcxLag (M) of complex Lagrangian submanifolds
in M is smooth. Hitchin [62] defined an analog of the Abel-Jacobi map

τ :McxLag (M)→ H1 (L0,C)

by integrating Ω along a path of 1-cycles between any complex Lagrangian sub-
manifold L and a fixed one L0. Since L0 is a Kähler manifold, H1 (L0,R) is a
complex vector space. Hitchin showed that τ is a local embedding with image
a complex Lagrangian subspace in H1 (L0,C) � T ∗ (H1 (L0,R)

)
. On the cotan-

gent space T ∗H1, there is a canonical pseudo Kähler metric. The restriction
of it to McxLag (M) is positive definite and of Hessian type. This implies that
McxLag (M) is a special Kähler manifold.

From a physical perspective, the σ-model with a hyperkähler manifold M
as a target has N = 4 SUSY. If we require the domain Riemann surfaces to
have boundaries and their images lie inside a fix complex Lagrangian submanifold
L ⊂ M , then only half of the SUSY can be preserved. Hence we have a N = 2
SUSY theory. Moduli spaces of such theories are generally known (physically) to
have special Kähler geometry. In our case here, it is simply the moduli space of
complex Lagrangian submanifolds in M (possible with M varying). Therefore we
expect such a moduli space is special Kähler.

Complex Lagrangian fibrations
There are many examples of hyperkähler manifolds that admit complex Lagrangian
fibrations. For instance, the moduli space of curves coupled with line bundles in
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any K3 surface S has a complex Lagrangian fibration with each fiber consisting
of sheaves which support on a fixed curve in S. This moduli space plays an
important role in the original derivation of the Yau-Zaslow formula (Section 6.4).
Every elliptic fibration on a K3 surface S is a complex Lagrangian fibration because
of the low dimension. This induces complex Lagrangian fibrations on the Hilbert
schemes of points in S.

Matsushita [106] proved that every holomorphic fibration on an irreducible
projective hyperkähler manifold is a complex Lagrangian fibration provided that
the base is normal. The base must be a Fano variety with the same Hodge number
as CP

n (or simply write Pn). A folklore conjecture says that the base must always
be Pn. Note that Huybrechts proved that given any compact hyperkähler manifold
M , a given complex structure is projective if and only if there exists a holomorphic
line bundle L overM such that q0 (c1 (L)) > 0 where q0 is the Beauville-Bogomolov
quadratic form.

For a complex Lagrangian fibration on a projective hyperkähler manifold,
every smooth fiber is an Abelian variety. We call such a fibration an algebraically
integrable system. In this case, the base has a natural special Kähler structure
away from the discriminant locus. Furthermore, the second fundamental forms
for the fibers define a symmetric cubic tensor on the base which characterizes this
fibration, as studied by Donagi-Markman [34][35].

Hyperkähler flops
There are explicit examples of hyperkähler metrics on cotangent bundles of any
compact Hermitian symmetric space, for instance the complex Grassmannian
GrC (r, n) or Pn. Using the fact that the cotangent bundles of a vector space
V and its dual space V ∗ are both equal to V ×V ∗, there is canonical identification
between T ∗Pn and T ∗ (Pn)∗ outside their zero sections Pn and Pn∗ respectively.
This surgery operator can be done on any holomorphic symplectic manifold M of
complex dimension 2n. Namely if M contains a complex (Lagrangian) submani-
fold P

n, then we can replace it by P
n∗ and obtain a new holomorphic symplectic

manifold M ′. This is called a hyperkähler flop.
Since M\Pn and M ′\Pn∗ are isomorphic, every complex Lagrangian L in M

determines one in M ′, called the Legendre transform of L, denoted L∨. Note that
their intersections with Pn and Pn∗ are dual varieties. The usual Plücker formula
for dual varieties was generalized in [92] and give

L1 · L2 +
(L1 · Pn) (L2 · Pn)

(−1)n+1 (n+ 1)
= L∨

1 · L∨
2 +

(L∨
1 · Pn∗) (L∨

2 · Pn∗)

(−1)n+1 (n+ 1)
.

We recall the classical Plucker formula for an algebraic curve C ⊂ P2 and its dual
curve C∨ ⊂ P2∗,

d∨ = d (d− 1)− 2δ − 3κ,

where d (resp. d∨) is the degree of C (resp. C∨) and δ (resp. κ) is the number of
double points (resp. cusp) of C.

Thus this gives a duality transformation between the categories of coherent
sheaves on complex Lagrangians submanifolds in M and its hyperkähler flop M ′.
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When the H-dimension ofM is two, Hu and Yau [68] showed that hyperkähler
flops are the only birational transformations among hyperkähler manifolds. Note
that birational transformations are isomorphisms in H-dimension one. For higher
dimensional hyperkähler manifolds, Mukai [109] studied a hyperkähler flop along a
family of Pk inM when the total space Z of the family is a complex coisotropic sub-
manifold in M of complex codimension k. This is also called a Mukai elementary
modification. There is also a natural generalization of the Legendre transformation
between categories of complex Lagrangians in this setting [92].

More general birational transformations can be constructed when the above
coisotropic family of P

k develops singularities. Then the model birational transfor-
mation between T ∗Pn and T ∗Pn∗ will be replaced by Springer correspondences, for
instance between cotangent bundles of complex Grassmannians T ∗GrC (r,Cn) and
T ∗GrC (r,Cn∗) . This stratified version of the Mukai elementary transformation is
constructed by Markman.

11.2 Quaternionic-Kähler geometry

Oriented four manifolds are quaternionic-Kähler manifolds of H-dimension one,
because Sp (1)Sp (1) = SO (4) . We usually referred to quaternionic-Kähler mani-
folds M as those with holonomy group equals Sp (n)Sp (1) instead of a subgroup
of it. When n ≥ 2, quaternionic-Kähler manifolds have two very special properties:
(1) the Ricci curvature of M equals g or −g and they are called positive and neg-
ative respectively. Namely they are Einstein manifolds. (2) The canonical almost
complex structure on the twistor space Z is always integrable, i.e., Z becomes a
complex manifold. As a result, we usually require oriented four manifolds to have
these properties to be called quaternionic-Kähler, namely they are ASD Einstein
four manifolds.

The list of compact Riemannian symmetric spaces which are quaternionic-
Kähler is

Sp (n)
Sp (n− 1)Sp (1)

,
U (n)

U (n− 2)U (2)
,

O (n)
O (n− 4)O (4)

,
G2

Sp (1)Sp (1)
,

F4

Sp (3)Sp (1)
,

E6

SU (6)Sp (1)
,

E7

Spin (12)Sp (1)
,

E8

E7Sp (1)
.

Notice that for each simply connected compact Lie group, there is exactly one
compact quaternionic-Kähler symmetric space associated to it.

It has been a folklore conjecture that these are the only quaternionic-Kähler
manifolds in the positive case and this has recently been proven by Kobayashi.

12 Conformal geometry

Two Riemannian metrics g and g′ on M are called conformally equivalent if there
is a smooth function u on M such that g′ = e2ug. A conformal structure on M is
an equivalence class of Riemannian metrics g under conformal equivalences. For
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example, the standard metric on Sn\ {p} is conformally equivalent Rn and we
called such a metric conformally flat.

The following combination of the curvature tensor depends only on the con-
formal class of g,

W = Rm− 1
n− 2

(
Rc− R

n
g

)
◦ g − R

2n (n− 1)
g ◦ g,

and W is called the Weyl curvature tensor. When dimM ≥ 4, g is locally con-
formally flat if and only if W = 0. When dimM = 2, M is a Riemann surface
and conformal structures are the same as complex structures on M . In particular,
the group Conf

(
S2
)

of conformal transformations of S2 is infinite dimensional.
However, when n = dimM ≥ 3, we have

Conf (Sn) = SO (n+ 1, 1) .

This group is generated by SO (n) together with inversions.
There are many important topics in conformal geometry, for instances (i) the

Yamabe problem, solved by Schoen, says that there is always a constant scalar
curvature metric within any conformal class of metrics; (ii) the harmonic energy
E (f) =

∫
Σ |df |

2 for a map f : (Σ, gΣ) → (M, gM ) is invariant under conformal
change of gΣ when dim Σ = 2. This fact is essential to the two dimensional
conformal field theory (abbrev. 2d CFT) in physics (Section 3.7); (iii) the Yang-
Mills energy functional YM (DA) =

∫
M
|FA|2 for a connection DA on a unitary

bundle Cr → E → (M, gM ) is invariant under conformal changes of gM when
dimM = 4. This fact is important for the Donaldson theory (Section 4.1). Other
conformally invariant quantities include the Willmore functional in dimension four
and the conformal volume of Li-Yau.

In this section, we will only explain that conformal geometry can be inter-
preted as an extension of real, complex, quaternion and octonion geometry with
the help of Jordan algebras [79].

Jordan algebras
Due to the nonassociativity of the octonions, we do not have a well-defined notion
of its modules On. Nonetheless, when n ≤ 3 there is a way to define the symme-
try group of the non-existing object O

n, by considering the space of self-adjoint
operators.

Recall on Rn, the space of self-adjoint operators is simply the space of sym-
metric n×n matrices, denoted by Sn (R). The symmetrization of ordinary matrix
multiplication

A ◦B = (AB +BA) /2

makes Sn (R) into a formally real Jordan algebra. Namely it is an algebra over R

whose multiplication ◦ is commutative and power associative (that is, (a ◦ a) ◦ a =
a ◦ (a ◦ a)), together with

a1 ◦ a1 + · · ·+ an ◦ an = 0 ⇒ a1 = · · · = an = 0.
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The same product also makes the space Sn (A) of Hermitian symmetric ma-
trices with entries in A ∈{R,C,H} into a Jordan algebra. When n = 3, an analog
of the product can still be defined for A = O, making S3 (O) into an exceptional
Jordan algebra (see e.g. [9]) even though O lacks of associativity.

Inside Sn (A) we may collect all rank one projections, which are matrices p
with p ◦ p = p and tr p = 1, to form the projective space AP

n−1. For instance,
even though one has problem to define O3, each rank one projection operator in
S3 (O) can be interpreted as an octonion line in O3, and the space of them forms
the octonion projective plane OP

2, which can be identified as the symmetric space
F4/Spin (9).

Since Sn (A) is the space of self-adjoint operators on An, it should share the
same automorphism group HA (n) as A

n. This is indeed true in the classical
cases when A ∈ {R,C,H} and continues to have such an interpretation in the
exceptional case A = O. The following gives a complete list of simple formally
real Jordan algebras and their automorphism groups:

A R C H O R
m

Sn (A) Sn (R) Sn (C) Sn (H) S3 (O) S2 (Rm) � R
m ⊕ R

1,1

AP
n−1

RP
n−1

CP
n−1

HP
n−1

OP
2

AP
1 = S

m

HA (n) SO (n) SU (n) Sp (n) F4 SO (m + 1)

Amazingly there is one more item in the list of Jordan algebras besides those
coming from normed division algebras, namely the spin factor S2 (Rm) � Rm ⊕
R1,1. It consists of 2× 2 matrices of the form

(
a− b v
v a+ b

)
↔

⎛

⎝
v
b
a

⎞

⎠

where v ∈ Rm and a, b ∈ R, and we set v · w = vtw for v, w ∈ Rm to carry out
matrix multiplication. The embedded projective space is

⎧
⎨

⎩

⎛

⎝
v
b
1
2

⎞

⎠ : ‖v‖2 + b2 =
1
4

⎫
⎬

⎭
∼= S

m.

Notice that the automorphism group SO (m+ 1) of Sm is contained as a
maximal compact subgroup in the non-compact group Conf(Sm) = SO (m+ 1, 1).
A natural question arises: For A ∈{R,C,H,O}, is there a symmetry group of
AP

n−1 which gives an analog to the conformal symmetry SO (m+ 1, 1) of Sm?
To answer this question, one identifies Sm as the conformal boundary of the

hyperbolic ball

Bm+1 := {M ∈ S2 (Rm) : detM = 1} ∼= SO(m+ 1, 1)/SO(m+ 1)

on which SO (m+ 1, 1) acts as isometries. Under this identification, one has
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Conf(Sm) ∼= Isom(Bm+1) = SO (m+ 1, 1) which preserves collinearity in the sense
that Conf(Sm) maps circles to circles in Sm.

Now for A ∈ {R,C,H}, if we collect the symmetries of AP
n−1 which are

linear but not necessarily isometries, we obtain the group SL (n,A). Analogously
AP

n−1 can be identified as a part of the conformal boundary of {M ∈ Sn (A) :
detM = 1} ∼= SL (n,A) /SU(n,A) on which SL (n,A) acts as isometries. We
get the answer for A ∈ {R,C,H}: SL (n,A) can be regarded as the conformal
symmetry of AP

n−1, which plays the same role as SO (m+ 1, 1) acting on Sm.
In general, let’s denote these symmetry groups as NA (n) which are listed below.
Notice that HA (n) sits inside NA (n) as a maximal compact subgroup.

A R C H O R
m

NA (n) SL (n, R) SL (n, C) SL (n, H) E−26
6 SO (m + 1, 1)

HA (n) SO (n) SU (n) Sp (n) F4 SO (m + 1)

Here E−26
6 is a split Lie group of type E6 and its maximum compact subgroup

is F4.

We observe that when m = 1, 2, 4 and 8, NRm (2) = SL (2,A) with A being
real, complex, quaternion and octonion respectively. Hence, sl (2,R) = so (2, 1),
sl (2,C) = so (3, 1), sl (2,H) = so (5, 1), sl (2,O) = so (9, 1). In general we have
sl (2,A) = so

(
A⊕ R1,1

)
[9].

The above point of view integrates conformal geometry with real, complex,
quaternionic and octonionic geometries.

13 Geometry of Riemannian symmetric spaces

13.1 Riemannian symmetric spaces

A Riemannian manifold (M, g) is called a Riemannian symmetric space, or sim-
ply a symmetric space, if every point x ∈ M has an involutive isometry σx ∈
Diff (M, g) satisfying σx (x) = x and dσx = −id on TxM . Recall that involutive
means σ2

x = id. A typical example is the GrassmannianGrR (r, n) of r-dimensional
linear subspaces in Rn. Suppose x represents a subspace P0, then σx (P ) is the re-
flection of P along P0 with respect to the orthogonal decomposition Rn = P0⊕P⊥

0 .
Similarly, if Rn is endowed with a complex (resp. symplectic) structure, then the
Grassmannian of complex (resp. Lagrangian) subspaces in R

n is also a symmet-
ric space for the same reason. We will explain in this section that all compact
Riemannian symmetric spaces are basically of these types.

A noncompact example of a symmetric space is the Grassmannian Gr+
R

(r, n)
of spacelike subspaces, namely it is the set of r-dimensional subspaces P in R

r,n−r

such that restriction of the signature (r, n− r) inner product 〈·, ·〉′ =
∑r

j=1

(
dxj
)2−

∑n
k=r+1

(
dxk
)2 to P is positive definite. Note that Gr+

R
(r, n) is naturally an open
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subset in GrR (r, n) and they are called the compact/noncompact dual to each
other. Similarly, the Grassmannian of spacelike complex (resp. Lagrangian) sub-
spaces in Cr,n−r is a noncompact symmetric space, denoted as Gr+

C
(r, n) (resp.

LGr+
C

(n) when n = 2r).
The curvature tensor of a symmetric space is always covariant constant, i.e.

∇Rm = 0. This is because dσx acts as (−1) on TxM and ∇Rm is an odd de-
gree tensor. Conversely, the universal cover of any Riemannian manifold M with
∇Rm = 0 is a symmetric space and we call such a M a locally symmetric space.

A symmetric space M has a large group of isometries Diff (M, g) which acts
transitively on M . That is, for any p, q ∈ M , there is an isometry σ satisfying
σ (p) = q. Indeed σ is the involutive symmetry σx for the midpoint x of the
geodesic segment joining p and q. If we denote G = Diff (M, g) and K as the
isotropy subgroup fixing a point x ∈M , then we have

M ∼= G/K.

In particular, dσx (x) = −id on TxM = g/k, where g and k are the Lie algebras
of G and K respectively. Indeed there is a Lie algebra homomorphism σ : g → g
satisfying σ2 = id and the eigenspace decomposition of σ is given by g = k⊕p with
eigenvalues 1 and −1 on k and p respectively. Equivalently, g has a decomposition
g = k⊕ p as vector spaces satisfying

[k,k] ⊂ k, [k,p] ⊂ p and [p,p] ⊂ k.

Note that p = TxM . Furthermore, up to covering, M is determined by such a
structure (g, σ), called an involutive Lie algebra.

The Riemannian structure on M is reflected by the existence of a positive
inner product on g which is invariant under σ and adgk and this is called an
orthogonal structure on (g, σ).

The curvature of M can be expressed in terms of the Lie algebra structure
of g, namely for any X,Y ∈ p = TxM , we have

〈Rm (X,Y )X,Y 〉M = −〈[X, [X,Y ]] , Y 〉g

Rc (X,Y ) = −Trp (adX ◦ adY ) = −1
2
〈X,Y 〉g .

Orthogonal involutive Lie algebras and therefore Riemannian symmetric spaces
has been completely classified by Cartan and we will describe them as Grassman-
nians. We recall from section 3 that holonomy groups of Riemannian manifolds
are classified by Berger into two types: the first type are manifolds defined over a
normed algebra A and with or without A-orientation; the second type are locally
symmetric spaces.

Suppose M = G/K is an irreducible symmetric space, then it is compact
(resp. noncompact) if and only if its curvature is positive (resp. negative), with
the only exception that the universal cover of M is R

n in which case its curvature
is zero. As the curvature of M can be expressed in terms of the Killing form of
g, M is compact if and only if G is a compact Lie group and M is noncompact if
and only if K is a maximal compact subgroup in a noncompact Lie group G.
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Symmetric spaces always come in pairs (Mc,Mn) with Mc = Gc/Kc (resp.
Mn = Gn/Kn) is a compact (resp. noncompact) symmetric space and the Lie
algebras have the same complexification

gc ⊗C ∼= gn ⊗C,

and under this isomorphism,

kc
∼= kn and pc

∼= ipn.

Mc and Mn are called compact/noncompact dual to each other. In many
cases, Mn is naturally an open subset in Mc. For instance

O (r, n− r)
O (r)O (n− r) ⊂

O (n)
O (r)O (n− r)

or equivalently,
Gr+

R
(r, n) ⊂ GrR (r, n)

as the open subset consisting of those r-dimensional subspaces which are spacelike.
Every compact Lie group G is an example of symmetric spaces when we view

it as a quotient of G × G by G under the diagonal action. The Lie group O (n)
(resp. U (n) and Sp (n)) can be viewed as the Grassmannian of maximal isotropic
subspaces in R

n,n (resp. C
n,n and H

n,n). Recall that a maximal isotropic subspace
is a half dimensional linear subspace with the restriction of the signature (n, n)
inner product to it being identically zero.

When a Lie group G is noncompact, it also determines a symmetric space
M = G/K where K is a maximal compact subgroup in G. Indeed every noncom-
pact symmetric space is of this form. For example, when G is the complexification
KC of a compact Lie group K, then KC/K is the noncompact dual to K.

13.2 Jordan algebras and magic square

Every compact Lie group is a compact symmetric space. Up to finite covers, they
are determined by their Lie algebras and they are classified into An = su (n+ 1),
Bn = so (2n+ 1), Cn = sp (n), Dn = so (2n), E6, E7, E8, F4 and G2. Note that
classical Lie algebras, i.e., An, Bn, Cn and Dn, consist of infinitesimal symmetries
of inner product spaces Rn, Cn and Hn. Recall that G2 can also be interpreted
as the symmetry group of O. The remaining ones can be interpreted as the sym-
metries of (A⊗ B)3 with both A and B normed division algebras. However, this
magic square approach of Tits [123] and Freudenthal [44] is more subtle (see [9]
for a beautiful account). They show that

gn (A,B) = DerSn(A)⊕
[
Sn(A)Tr=0 ⊗ Im B

]
⊕Der(B)

admits a natural Lie algebra structure. Here Sn (A) is the Jordan algebra of A-
Hermitian n×n matrices (n = 3 if A or B is the octonion). On the one hand, going
from A to 2A, for instance from R to C, corresponds to enlarging the symmetry of
a linear space V to its complexification V ⊕ V = V ⊗ C with one added complex
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structure. We can also identify this as the tangent bundle TV of V . On the
other hand, going from B to 2B corresponds to enlarging the symmetry of V to its
symplectification V ⊕ V ∗ = T ∗V . The corresponding Lie groups Gn (A,B) (up to
finite cover and center) are given in the following table.

B\A R C H O

R SO (n) SU (n) Sp (n) F4

C SU (n) SU (n)2 SU (2n) E6

H Sp (n) SU (2n) SO (4n) E7

O F4 E6 E7 E8

This is called the magic square because of the symmetry of interchanging A and B,
just like mirror symmetry! Loosely speaking, Gn (A,B) is the group of symmetries
of (A⊗ B)n.

The set of all real linear subspaces in (A⊗ B)n which are complex linear
with respect to all complex structures coming from A and B will be called (A,B)-
Grassmannian, or simply Grassmannian, and it is denoted as GrAB (r, n), or sym-
bolically as {(A⊗ B)r ⊂ (A⊗ B)n} and they are given in the following table.

A\B R C H O

R
O(n)

O(k)O(n − k)

U(n)

U(k)U(n − k)

Sp(n)

Sp(k)Sp(n − k)

F4

Spin(9)

C
U(n)

U(k)U(n − k)

U(n)2

U(k)2U(n − k)2
U(2n)

U(2k)U(2n − 2k)

E6

Spin(10)U(1)

H
Sp(n)

Sp(k)Sp(n − k)

U(2n)

U(2k)U(2n − 2k)

O(4n)

O(4k)O(4n − 4k)

E7

Spin(12)Sp(1)

O
F4

Spin(9)

E6

Spin(10)U(1)

E7

Spin(12)Sp(1)

E8

SO(16)

Every GrAB (r, n) is a compact Riemannian symmetric space G/K with G =
Gn (A,B) and K equals to Gr (A,B)Gn−r (A,B), possibly up to U (1) or Sp (1)
factors.

Next we consider real linear subspaces in (A⊗ B)n which are complex linear
with respect to all complex structures coming from A and B except the last J
from A and instead we require it to be Lagrangian with respect to ωJ . The
set of all such subspaces is called Lagrangian (A,B)-Grassmannian, or simply
Lagrangian Grassmannian, and it is denoted as LGrAB (n), or symbolically as{(

A

2 ⊗ B
)n ⊂ (A⊗ B)n

}
and they are given in the following table.

B\A R C H O

R n/a n/a n/a n/a

C
U (n)

O (n)

SU (n)2

SU (n)

SU (2n)

Sp (n)

E6

F4

H
Sp (n)

U (n)

U (2n)

U (n)2
SO (4n)

U (2n)

E7

E6U (1)

O
F4

Sp (3) Sp (1)

E6

SU (6) Sp (1)

E7

Spin (12) Sp (1)

E8

E7Sp (1)
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Each LGrAB (n) is a compact Riemannian symmetric space G/K with G = Gn

(A,B) and K equals to Gn

(
A

2 ,B
)
, possibly up to U (1) or Sp (1) factors. This

is because the orthogonal complement of a Lagrangian subspace is naturally its
dual space. Note that the symmetric space G2/SO (4) = G2/Sp (1)2 is the La-
grangian Grassmannian LGrOR (1) . With a little more work, SO (2n) /U (n) can
be described in a similar fashion [69].

In fact we have given the list of all symmetric spaces of compact type up to
covering with the exceptions of E6/Sp (4) and E7/SU (8). They can be realized
as follows: We consider real linear subspaces in (A⊗ B)3 which are complex lin-
ear with respect to all complex structures coming from A and B except the last
complex structures JA from A and JB from B and instead we require it to be La-
grangian with respect to both ωJA

and ωJB
. The set of all such subspaces is called

double Lagrangian (A,B)-Grassmannian, or simply double Lagrangian Grassman-
nian, and it is denoted as LLGrAB, or symbolically as

{
Λ2
(

A

2 ⊗
B

2

)4 ⊂ (A⊗ B)3
}

and they are given in the following table.
Each LLGrAB is a compact Riemannian symmetric space G/K with G =

G3 (A,B) and K = G4

(
A

2 ,
B

2

)
! A reason for having dimension four appearing in

K is roughly as follows: If we consider the decomposition of two forms on R4

into self-dual and anti-self-dual forms, Λ2R4 = Λ2
+R4 ⊕ Λ2

−R4, then each Λ2
±R4 is

a Lagrangian subspace in a copy of C3 in the decomposition C3 ⊗ C = C3 ⊕ C3.
Thus SU (3)2 /SO (4) = [SU (3) /SO (3)]2 and similarly we have SU (6) /SU (4) =
SU (6) /SO (6). We should warn our readers that much care is always needed
whenever A or B equals O [69].

B\A R C H O

R n/a n/a n/a n/a

C n/a
SU (3)2

SO (4)

SU (6)

SU (4)

E6

Sp (4)

H n/a
SU (6)

SU (4)

SO (12)

U (6)

E7

SU (8)

O n/a
E6

Sp (4)

E7

SU (8)

E8

SO (16)

These give a simple description of all locally symmetric spaces of compact
type up to covering as Grassmannians of complex/Lagrangian subspaces in (A⊗ B)n

except compact Lie groupsG. In fact compact Lie groupsGn (A,B) can also be de-
scribed as the Grassmannians of maximal isotropic subspaces in T ∗ (A⊗ B)n with
respect to the canonical symmetric bilinear form of type (m,m). These structures
are related to the generalized complex structures as introduced by Hitchin.

How about symmetric spaces M̂ of noncompact type? In many cases M̂
admits an open embedding into its compact dual M̂ ⊂M . The simplest example
is

Gr+
R

(r, n) =
O (r, n− r)

O (r)O (n− r) ⊂
O (n)

O (r)O (n− r) = GrR (r, n)

where Gr+
R

(r, n) is the Grassmannian of spacelike linear subspaces of dimension
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r in Rr,n−r. Indeed this holds true in general for Hermitian symmetric spaces as
well.

13.3 Hermitian and quaternionic symmetric spaces

Hermitian symmetric spaces
A Riemannian symmetric space G/K is called a Hermitian symmetric space if
it admits a G-invariant complex structure. This happens precisely when K has a
U (1)-factor, possibly up to a finite cover. Classical irreducible compact Hermitian
symmetric spaces are classified into

(i) Type I(p,q) SU (p+ q) /S (U (p)U (q)),
(ii) Type II(n) Spin (2n) /U (n),
(iii) Type III(n) Sp (n) /U (n) and
(iv) Type IV(n) Spin (n+ 1) /Spin (n)U (1).

There are natural embeddings

Gn/K ⊂ p ⊂ Gc/K

where the first embedding realizes Gn/K as a bounded domain in CN , called the
Harish-Chandra embedding and Gn/K ⊂ Gc/K is called the Borel embedding. An
example of these embeddings is

Gr+
C

(r, n) ⊂ Hom
(
C

r,Cn−r
)
⊂ GrC (r, n) .

Conversely, every bounded domain D in CN has a natural Kähler metric,
called the Bergman metric. If it is also symmetric in the sense that every point
x ∈ D is fixed by a biholomorphic involution as an isolated fixed point, then
this involution must preserve the Bergman metric. Thus noncompact Hermitian
symmetric spaces are the same as bounded symmetric domains.

The bounded symmetric domain Sp (2n,R) /U (n) can be transformed to
the Siegel upper half space S+

n (R) + iSn (R) by the Cayley transformation, where
S+

n (R) is the set of positive definite symmetric matrices of rank n. It is well-known
that Sp (2n,R) /U (n) is the universal cover of the moduli space of n-dimensional
Abelian varieties, or equivalently the moduli space of weight one polarized Hodge
structures. Indeed every noncompact Hermitian symmetric space can be described
as the moduli space of polarized Hodge structures of certain types by the work of
Deligne.

Recall that Sn (R) is a Jordan algebra and every Jordan algebra is of the form
Sn (A), with A ∈ {R,C,H,O,Rm}. When A = O, we have n = 3 and S3 (O) is the
exceptional Jordan algebra; when A = Rm, we have n = 2 and S2 (Rm) ∼= Rm,1

is the spin factor. Every S+
n (A) + iSn (A) is a noncompact Hermitian symmetric

space and they form the complete list of tube domains. We have

A R C H O R
m

S+
n (A) + iSn (A)

Sp (2n, R)

U (n)

U (n, n)

U (n)2
O∗ (4n)

U (2n)

E7,3

E6U (1)

O (m + 2, 2)

O (m + 2) O (2)
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In fact, they are simply the Grassmannians of spacelike (C⊗ A)-Lagrangians in
(H⊗ A)n,

S+
n (A) + iSn (A) ∼= LGr+

HA
(n) .

We also remark that S+
n (A) ∼= LGr+

CA
(n) .

Quaternionic symmetric spaces
A symmetric space M = G/K is called a quaternionic symmetric spaces if it
is also a quaternionic-Kähler manifold, namely its holonomy group lies inside
Sp (n)Sp (1) with 4n = dimR M . Similar to the characterization of Hermitian
symmetric spaces, G/K is a quaternionic symmetric space if and only if K con-
tains a Sp (1)-factor, possibly up to a finite cover. This Sp (1)-factor always corre-
sponds to the longest root of G. As a matter of fact, there is exactly one compact
quaternionic symmetric space for each simple Lie group, up to finite covers.

Classical compact quaternionic symmetric spaces are

Sp (n+ 1)
Sp (n)Sp (1)

,
U (n+ 2)
U (2)U (2)

and
O (n+ 4)
O (n)O (4)

.

Note that Sp (n+ 1) /Sp (n)Sp (1) ∼= HP
n is the set of H-lines in Hn+1. Recall

from the magic square that when n = 2m, su (2m) should be regarded as the set of
infinitesimal symmetries of (C⊗H)m. Thus U (n+ 2) /U (n)U (2) ∼= (C⊗H) Pm.
Similarly, O (n+ 4) /O (n)O (4) ∼= (H⊗H)Pm with n = 4m. We can also include
the exceptional symmetric space (O⊗H)P

2 ∼= E7/SO (12)O (4) in this list of
quaternionic symmetric spaces of the form (A⊗H) Pm for some normed division
algebra A.

Exceptional compact quaternionic symmetric spaces are

F4

Sp (3)Sp (1)
,

E6

SU (6)U (2)
,

E7

SO (12)O (4)
,

E8

E7Sp (1)
and

G2

Sp (1)2
.

The first four in the above list correspond to the sets of H-Lagrangians in (O⊗ A)3

with A = R, C, H and O respectively, i.e. LGrOA (3). And the last one is simply
the set of H-Lagrangians in O, i.e. LGH (1).

14 Conclusions

In this article, we summarized certain aspects of geometric structures on Rie-
mannian manifolds M . From a topological perspective, we discussed bundles and
submanifolds, leading to K-theory and cohomology theory. When M is equipped
with a Riemannian metric, we look for canonical structures by minimizing the
energy of a connection and the volume of a submanifold. The Euler-Lagrange
equations are the Yang-Mills equations and the minimal surface equations. They
are both system of second order partial differential equations.

Most spaces we encounter in nature have more geometric structures. That
is why symmetry is such an important subject in physics. Spaces with the largest
amount of symmetries are Riemannian symmetric spaces. They are model spaces
in geometry as well as many important moduli spaces.
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A compatible complex structure J on M gives a symplectic structure ω via
ω (u, v) = g (Ju, v). This makes M into a Kähler manifold. Kähler geometry is
a very rich subject as it includes the complex algebraic geometry for projective
manifolds. Kählerian is also the necessary and sufficient condition for the existence
of N = 2 supersymmetry for σ-models in physics. J defines the complex geometry
on M while ω defines the symplectic geometry on M . These two geometries are
conjecturally dual to each other by the mirror symmetry conjecture, provided that
M has a C-orientation, namely a Calabi-Yau manifold.

Berger classified all possible reduced holonomy groups and the author de-
scribed them in terms of normed algebras A ∈ {R,C,H,O} and A-orientability.
This means that geometric structures on (M, g) do always come from, possibly
more than one, J or equivalently ω. This approach also gives a unified descrip-
tion of various canonical Yang-Mills connections and calibrated submanifolds in
M . As a result, we found new results and relationships among these geometries.
These canonical connections and submanifolds are not just critical points of the
energy/volume functionals, they are absolute minimizers. Furthermore they are
governed by first order PDEs and they define, at least formally, topological invari-
ants of M via various topological field theories.

The O-geometry has the richest structure and its corresponding geometries
have holonomy groups Spin (7) ⊃ G2 ⊃ SU (3) in dimension 8, 7 and 6 respec-
tively. The lack of associativity for O is rescued by the triality as we have seen it
reflected in G2-geometry. The octonion structure is also equivalent to the vector
cross product, which is a natural generalization of the complex structure, thus we
have seen that G2-geometry resembles the Kähler geometry in many ways. The
H-Lagrangian geometry in the O-geometry brings the beautiful low dimensional
geometry and physics in dimension 4, 3 and 2 into an integral part of the O-
geometry. For instance the author expects that the skein relation for knots in R3

and the Morgan-Mrowka-Szabó formula for the SW-invariants are consequences of
the G2-triality.

The duality and triality transformations among different geometries have
proven to be a powerful tools to uncover many structures and producing amazing
formulas. Many of these formulas have been verified by computational methods.
The SYZ approach to explain the mirror symmetry has sparked many exciting
developments in mathematics, as well as in physics. We expect to continue to see
many more of such developments in the coming years until we fully understand
the SYZ transformations.
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[137] Yau S.-T., On the Ricci curvature of a compact Kähler manifold and the
complex Monge-Ampère equation, I, Comm. Pure and Appl. Math. 31 (1978)
339-411.

[138] Yau S.-T.and Zaslow E., BPS states, string duality, and nodal curves on K3,
Nucl. Phys. B 471 (1996) no. 3, 503-512.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 2.03333
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
    /DEU <>
    /CHS ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


