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1 Introduction

Riemannian holonomy group hol (M, g) measures the richness of algebraic struc-
ture on a Riemannian manifold1. For a generic metric, the holonomy group equals
SO (m) with m = dimRM . Manifolds with special holonomy include Kähler man-
ifolds with hol (M, g) = U (n) and Calabi-Yau manifolds with
hol (M, g) = SU (n) where m = 2n. They play very important roles in geometry
and mathematical physics such as string theory and M-theory. Riemannian holon-
omy groups were completely classified by Berger [Ber53] and all these geometries
have been given a unified description in terms of real, complex, quaternionic and
octonionic structures (that is, normed division algebras) and orientability in [HL]
for symmetric spaces and [Leu02] for non-symmetric ones.

Another important branch in Riemannian geometry is the conformal geom-
etry where one allows the Riemannian metric to be scaled by a conformal factor,
i.e. g ∼ eug for any function u. In this article, we explain how one integrates con-
formal geometry with real, complex, quaternionic and octonionic geometries. In
particular we give a uniform proof to the following theorem on rigidity of calibrated
cycles in projective spaces, which is a generalization of the results of Lawson and
Simons from conformal and complex geometries to quaternionic and octonionic
geometries. After we have discovered this, we were informed that this result has
been proved earlier by [Ohn86]. We hope that our approach from Jordan algebra
provides a unified viewpoint on all these seemingly different kinds of geometries.

Main Theorem: In APn, where A ∈{R,C,H,O,Rm}, any stable
minimal submanifold S (or more generally rectifiable current) must
be complex, by which we means TxS is invariant under all the linear
complex structures at x for almost every x ∈ S.
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1All manifolds are connected compact oriented smooth manifolds.
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Remark 1. There is an S2-family of linear complex structures at every point of
HPn, and also an S6-family of linear complex structures at each point of OP2.

Remark 2. When A = O, we only allow n ≤ 2; When A = Rm, only n=1 is
admitted, and RmP1 = Sm. We will explain this notation in the next section.

2 R, C, H, O and conformal geometry

In [Leu02] the second author gave a unified description of geometries of each
holonomy group by first defining the group GA (n) of twisted automorphisms of
An and its subgroup HA (n) of special twisted automorphisms, where
A ∈{R,C,H,O} is a normed division algebra and n equals one when A = O. They
are given explicitly in the following table:

A R C H O
GA (n) O (n) U (n) Sp (n) Sp (1) Spin (7)
HA (n) SO (n) SU (n) Sp (n) G2

Their corresponding geometries are as follows.

A R C H O
GA (n) Riemannian Kähler Quaternionic-Kähler Spin (7)
HA (n) Volume Calabi-Yau Hyperkähler G2

Due to the nonassociativity of the octonion, there are obvious difficulties
to define its modules On and their automorphism groups HO (n). Nonetheless,
for n ≤ 3, this problem can be resolved by considering the space of self-adjoint
operators, leading to the notion of Jordan algebra which we shall describe below.

On Rn, the space of self-adjoint operators is simply the space of symmet-
ric n × n matrices, denoted by Sn (R). The symmetrization of ordinary matrix
multiplication

A ◦B = (AB + BA) /2

makes Sn (R) into a formally real Jordan algebra. Namely it is an algebra over R
whose multiplication ◦ is commutative and power associative (that is, (a ◦a) ◦a =
a ◦ (a ◦ a)), together with

a1 ◦ a1 + · · ·+ an ◦ an = 0 ⇒ a1 = · · · = an = 0.

The same product also makes the space Sn (A) of Hermitian symmetric ma-
trices with entries in A ∈{R,C,H} into a Jordan algebra. When n = 3, an analog
of the product can still be defined for A = O, making S3 (O) into an exceptional
Jordan algebra (see e.g. [Bae02]) even though O lacks of associativity.

Inside Sn (A) we may collect all rank one projections, which are matrices p
with p ◦ p = p and tr p = 1, to form the projective space APn−1. For instance,
while the module O3 does not exist, the concept of octonion lines in O3 can be
replaced by rank one projection operators in S3 (O), and the space of them forms
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the octonion projective plane OP2, which can be identified as the symmetric space
F4/Spin (9).

Since Sn (A) and APn−1 are spaces of self-adjoint operators on An, they
should share the same automorphism group HA (n) as An. This is indeed true in
the classical cases when A ∈ {R,C,H} and continues to have such an interpretation
in the exceptional case A = O. The following gives a complete list of simple
formally real Jordan algebras [JvNW34] and their automorphism groups (The
center has removed for simplicity):

A R C H O Rm

Sn (A) Sn (R) Sn (C) Sn (H) S3 (O) S2 (Rm) ' Rm ⊕ R1,1

APn−1 RPn−1 CPn−1 HPn−1 OP2 AP1 = Sm

HA (n) SO (n) SU (n) Sp (n) F4 SO (m + 1)

Amazingly there is one more item in the list of Jordan algebras besides those
coming from normed division algebras, namely the spin factor S2 (Rm) ' Rm ⊕
R1,1. It consists of 2× 2 matrices of the form

(
a− b v

v a + b

)
↔




v
b
a




where v ∈ Rm and a, b ∈ R, and we set v · w = vtw for v, w ∈ Rm to carry out
matrix multiplication. The embedded projective space is








v
b
1
2


 : ‖v‖2 + b2 =

1
4




∼= Sm.

Notice that the automorphism group SO (m + 1) of S2 (Rm) is also the isom-
etry group of Sm, and it is contained as a maximal compact subgroup in the
non-compact group Conf(Sm) = SO (m + 1, 1). A natural question arises: For
A ∈{R,C,H,O}, is there a symmetry group of APn−1 which gives an analog to
the conformal symmetry SO (m + 1, 1) of Sm?

To answer this question, one identifies Sm as the conformal boundary of the
hyperbolic ball

Bm+1 := {M ∈ S2 (Rm) : detM = 1} ∼= SO(m + 1, 1)/SO(m + 1)

on which SO (m + 1, 1) acts as isometries. Under this identification, one has
Conf(Sm) ∼= Isom(Bm+1) = SO (m + 1, 1) which preserves collinearity in the sense
that Conf(Sm) maps circles to circles in Sm.

Now for A ∈ {R,C,H}, if we collect the symmetries of APn−1 which is
linear but not necessarily isometries, we obtain the group SL (n,A) [SBG+95].
Analogously APn−1 can be identified as a part of the conformal boundary of {M ∈
Sn (A) : detM = 1} ∼= SL (n,A) /SU(n,A) on which SL (n,A) acts as isometries.
We get the answer for A ∈ {R,C,H}: SL (n,A) can be regarded as the conformal
symmetry of APn−1, which plays the same role as SO (m + 1, 1) acting on Sm.
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In general, let’s denote these non-compact symmetry groups as NA (n) which are
listed below. Notice that HA (n) sits inside NA (n) as a maximal compact subgroup,
and NA (n) /HA (n) can be identified with the space of symmetric matrices with
determinant one.

A R C H O Rm

HA (n) SO (n) SU (n) Sp (n) F4 SO (m + 1)
NA (n) SL (n,R) SL (n,C) SL (n,H) E−26

6 SO (m + 1, 1)

We may observe that when m = 1, 2, 4 and 8, NRm (2) = SL (2,A) with
A being real, complex, quaternion and octonion respectively. Hence, sl (2,R) =
so (2, 1), sl (2,C) = so (3, 1), sl (2,H) = so (5, 1), sl (2,O) = so (9, 1). In general
we have sl (2,A) = so

(
A⊕ R1,1

)
[Bae02].

The above point of view integrates conformal geometry with real, complex,
quaternionic and octonionic geometries. In the next section we will illustrate
this viewpoint by studying the variation of volume of cycles under the conformal
symmetry NA (n) of APn−1 in a unified manner.

Remark 3. In [AB03], Atiyah and Berndt studied the complexified version of
APn−1 with A ∈{R,C,H,O}. We can extend these descriptions to A = Rm as in
the following table :

A R C H O Rm

(A⊗ C)Pn−1 CPn−1
`
CPn−1

´2
GrC (2, 2n− 2) E6

Spin(10)U(1)
O(m+2)

O(m)O(2)

HA⊗C (n) SU (n) SU (n)2 SU (2n) E6 SO (m + 2)

NA⊗C (n) Sp (2n,R) SU (n, n) O∗ (4n) E−25
7 SO (m + 2, 2)

Notice that the maximal compact subgroup of NA⊗C (n) is the product of
HA⊗C (n) with U(1). Furthermore,

NA⊗C (n)
HA⊗C (n) U(1)

= S+
n (A) + iSn(A)

is a tube domain (see for example [Gro94]). This gives a complete list of tube
domains.

They also have a quaternionic analog :

A R C H O Rm

(A⊗H)Pn−1 HPn−1 GrC(2, 2n− 2) GrR(4, 4n− 4) E7
Spin(12)O(4)

O(m+4)
O(m)O(4)

HA⊗H (n) Sp(n) SU(2n) SO(4n) E7 SO(m + 4)

NA⊗H (n) Sp(n, 1) SU(2n, 1) SO(4n, 4) E−24
8 SO(m + 4, 4)

3 Cycles under conformal symmetries

In the last section, we regard NA (n + 1) as the conformal symmetry group of APn.
Its Lie algebra

nA (n + 1) = hA (n + 1)⊕ S′n+1 (A)
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induces vector fields which acts infinitestimally on APn. Here the Lie algebra
hA (n + 1) of HA (n + 1) induces Killing vector fields, and S′n+1 (A) consists of
trace-free symmetric matrices, which can be regarded as constant vector fields
in S′n+1 (A), projecting to conformal vector fields on APn ⊂ S′n+1(A). We are
adopting the metric

〈A,B〉 := 2 Re(tr AB) = 2 Re(trA ◦B)

on S′n+1(A) which induces the standard metric on APn.
We would like to compute the average second variation of the volume of

a cycle in APn under the action of nA (n + 1). First, Let us quickly review the
terminology and set up some notations.

3.1 Terminology and notations

For a global vector field V on a Riemannian manifold M , the second variation
QS(V ) of the volume M of a rectifiable current S under V is defined as

QS(V ) :=
d2

dt2

∣∣∣∣
t=0

M((φt)∗S) =
∫

M

d2

dt2

∣∣∣∣
t=0

||(φt)∗Sx||dνS(x),

where φt is the flow induced by V , Sx denotes the unit simple vector representing
the oriented tangent space of S at x, and νS denotes the Borel measure associated
with S. S is said to be stable if QS(V ) ≤ 0 for all vector fields V on M . We
will denote the integrand d2

dt2

∣∣∣
t=0

||(φt)∗ξ|| by Qξ (V ), the second variation of an
oriented orthonormal p-frame ξ under V . One has the following second variation
formula for a gradient vector field V [LS73]:

Qξ (V ) = 〈AV,V ξ, ξ〉+ 2‖AV ξ‖2 − (〈AV ξ, ξ〉)2

=




p∑

j=1

〈AV ej , ej〉



2

+ 2
p∑

j=1

q∑

k=1

(〈AV ej , nk〉)2 +
p∑

j=1

〈AV,V ej , ej〉 , (3.1)

where ξ = e1 ∧ · · · ∧ ep, which is extended to an orthonormal basis
{e1, . . . , ep, n1, . . . , nq} of TM . Here for any smooth vector fields V and W , AV (u),
AV,W are endomorphisms of TM defined by

AV X :=∇XV ;
AV,W X :=(∇VAW )X = ∇V∇X̃W −∇∇V X̃W, (3.2)

where ∇ is the Levi-Civita connection, X̃ is a smooth local extension of X ∈ TM .
An endomorphism L of TM is extended to operate on

∧p
TM by Leibniz rule:

L(e1 ∧ · · · ∧ ep) =
p∑

j=1

e1 ∧ · · · ∧ Lej ∧ · · · ∧ ep.

From the above second variation formula, we see that Qξ, and hence QS ,
is a quadratic form on the space of smooth vector fields on M , and we may
restrict it to a finite-dimensional subspace F of vector fields and take the trace
(trQξ|F ) =

∑Qξ(V ), where V runs through an orthonormal basis of F .
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3.2 Main theorem

Coming back to our situation M = APn, since vector fields induced by hA (n + 1)
preserve metric and does not contribute to the second variation, we have

trQξ|nA(n+1) = trQξ|S′n+1(A)

and so we may concentrate on F = S′n+1 (A).
Moreover, notice that APn is an orbit of the group HA (n + 1) acting on

S′n+1 (A). This symmetry helps to reduce a lot of calculations, as illustrated by
the following lemma:

Lemma 4. Let G act isometrically on an inner product space V, and M ⊂ V be
a G-invariant submanifold. The projection of each u ∈ V gives a vector field Vu

on M , and the space of all these vector fields is denoted by F . Then

trQξ|F = trQg·ξ|F

for all g ∈ G.

Proof. Since the metric on M is G-invariant, the Levi-Civita connection ∇ is G-
equivariant, that is,

∇g∗·X(g∗ · V ) = g∗ · (∇XV ).

Hence one has

AV (g · ξ) = g · (Ag−1
∗ V · ξ); AV,W (g · ξ) = g · (Ag−1

∗ V, g−1
∗ W · ξ).

Applying to the second variation formula, we get

Qg·ξ(Vu) = Qξ(g−1
∗ Vu) = Qξ(Vg−1

∗ u),

where the last equality is due to G-invariance of metric. And so

trQη =
∑

u

Qη(u) =
∑

u

Qξ(g−1
∗ u) = trQξ,

where u, and hence g−1
∗ u, runs through an orthonormal basis of V. The last

equality follows from the fact that trace is independent of choice of orthonormal
basis. ¤

By the above lemma, where we take M = APn,V =S′n+1 (A) and G =
HA (n + 1), it suffices to consider average second variation of a p-frame ξ =
e1 ∧ · · · ∧ ep at a particular point x ∈ APn, because p-frames at another point
can be moved to x by some g ∈ HA (n + 1). Let’s fix x = En+1,n+1 ∈ APn, which
is the matrix with value 1 at the (n + 1, n + 1) position and all other entries zero.

We shall need the following formula, whose proof is given in the appendix:
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Theorem 5. Assume that M = G/K ⊂ V is a compact symmetric space which is a
G-orbit of an orthogonal representation V of G. The projection of each u ∈ V gives
a vector field Vu on M . The average second variation of an oriented orthonormal
p-frame ξ = e1 ∧ . . . ∧ ep at x ∈ M under all such vector fields is given by

trQξ =
p,q∑

j,k=1

(
2 ‖ II(ej , nk)‖2 − 〈 II(ej , ej), II(nk, nk)〉) ,

where II is the second fundamental form of M ⊂ V at x, and {ej}p
j=1 ∪ {nk}q

k=1

is an orthonormal basis of TM .

With the above formula, it remains to compute the second fundamental form
of APn. Let’s take the following coordinates around x:

An → APn ⊂ S′n+1(A),

Q 7→ 1
1 + ‖Q‖2

(
Q
1

) (
Q∗ 1

)
,

Here we adopt the following notations:

Q =
Λ∑

l=0

ilXl,

where Xl are column n-vectors, i0 := 1, and for 1 ≤ l ≤ Λ, il are the linearly
independent imaginary square roots of unity in A. Recall that for the case A = Rm,
n = 1, Λ = 0, Q = X0 is an element in Rm with Q∗ = Q and Q ·Q := 〈Q,Q〉. For
the other four cases, the entries of Xl are real numbers.

The basis of coordinate tangent vector fields is { ∂

∂xj
l

: 0 ≤ l ≤ Λ, 1 ≤ j ≤ N},
where ∂

∂xj
l

denote the il-directions. N =m in the case of A=Rm, and N =n for all

the other four cases. Using product rule (which is valid for multiplication in A),

∂

∂xj
l

∣∣∣∣∣
Q

=
1

1 + ‖Q‖2
(

ilwj

0

) (
Q∗ 1

)

+
1

1 + ‖Q‖2
(

Q
1

) (
ilwT

j 0
)

− 2XT
l wj

(1 + ‖Q‖)2
(

Q
1

) (
Q∗ 1

)
,

where wj stands for the column n-vector with j-th coordinate 1 and other coor-
dinates zero, and T stands for transpose. Recall that when A = Rm, n equals 1,
and so transpose of an element is just itself. Differentiating both sides along ∂

∂xk
r
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at 0 ∈ An,

∂

∂xk
r

∣∣∣∣
0

(
∂

∂xj
l

)

=





(
2δjk 0
0 −2δjk

)
for A = Rm,

(
irilEkj + ilirEjk 0

0 −(iril + ilir)δjk

)
for A = R,C,H,O,

which is already perpendicular to TxAPn, because

∂

∂xj
l

∣∣∣∣∣
0

=
(

0 ilwj

ilwT
j 0

)
.

Under the metric 〈A,B〉 = 2Re tr (AB), our coordinate vectors are pairwise or-
thogonal, each has length 2. We scale them to get an orthonormal basis { 1

2
∂

∂xj
l

:

1 ≤ j ≤ n, 0 ≤ l ≤ Λ}.
We conclude that

Lemma 6. The second fundamental form II( 1
2

∂

∂xj
l

, 1
2

∂
∂xk

r
) of APn ⊂ S′n+1(A) at x

is given by




1
2

(
δjk 0
0 −δjk

)
for A = Rm,

1
4

(
irilEkj + ilirEjk 0

0 −(iril + ilir)δjk

)
for A ∈ {R,C,H,O}.

Now we are ready to compute trQξ for an orthonormal p-frame
ξ = e1 ∧ · · · ∧ ep at x ∈ APn. Complete B = {ej}p

j=1 to an orthonormal basis
{ej , nk} in the form 




v1, J1v1, . . . , JΛv1

...
...

...
vN , J1vN , . . . , JΛvN





where Jl : TxAPn → TxAPn is the differential of left multiplication of il on An ⊂
APn.

Such an orthonormal basis can be brought to the basis of normalized co-
ordinate vectors by the action of the isotropy group K < G. This is easy for
RPn, CPn and HPn: SO(n), SU(n) and Sp(n) acts transitively on orthonormal
frames, unitary frames and quaternionic unitary frames respectively. For OP2,
K = Spin(9) < F4, we argue as follows: TxOP2 is the spinor representation of
Spin(9). Under this action

TxOP2 ⊃ S15 ∼= Spin(9)/Spin(7)
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(see P.283 of [DH93]). Hence we can use σ ∈ Spin(9) to bring 1
2

∂
∂x1

0
to v1. Spin(7)

fixes v1 and hence acts on Tv1S15, which splits into the vector representation V7

and the spinor representation of Spin(7).
{

σ
(

1
2

∂
∂x1

l

)}7

l=1
and {Jlv1}7l=1 form two

bases of V7 having the same orientation. Then we can bring
{

σ
(

1
2

∂
∂x1

l

)}7

l=1
to

{Jlv1}7l=1 by an element in Spin(7).
{

σ
(

1
2

∂
∂x2

l

)}7

l=1
can be brought to {Jlv2}7l=0

by Spin(7) using similar reasoning, because

Spin(7)/G2
∼= S7 and G2/SU(3) ∼= S6

and SU(3) acts transitively on the collection of unitary bases of C3.
By Lemma 4, average second variations of ξ and g· ξ are the same for all

g ∈ G, and hence we may assume

Jlvj =
1
2

∂

∂xj
l

,

so that we can apply Lemma 6 directly.
For the case A = Rm in which AP1 = Sm, Lemma 6 gives

∥∥∥∥ II(
1
2

∂

∂xj
,
1
2

∂

∂xk
)
∥∥∥∥

2

= δjk,

which is the usual formula for the second fundamental form of Sm ⊂ Rm+1. To-
gether with Theorem 5, the result of Lawson and Simons [LS73] is reproduced:

trQξ =
p,q∑

j,k=1

(−1) = −pq ≤ 0,

where p+q = m, implying that the average second variation of a rectifiable current
of non-zero volume in Sn is negative for 0 < p < m, and hence cannot be stable.

Now let’s turn to the other four cases. Lemma 6 gives

‖ II(ej , nk)‖2 =
{

0 for nk = ±Jlej for some 1 ≤ l ≤ Λ,
1
4 otherwise,

and

〈 II(ej , ej), II(nk, nk)〉 =
{

1 for nk = ±Jlej for some 1 ≤ l ≤ Λ,
1
2 otherwise,

so the summand appeared in Theorem 5 is

2‖ II(ej , nk)‖2 − 〈 II(ej , ej), II(nk, nk)〉

=
{−1 for nk = ±Jlej for some 1 ≤ l ≤ Λ,

0 otherwise,
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meaning that for each ej , every Jlej-direction normal to ξ contributes −1 to trQξ,
and all other normal directions have no effect. Hence

trQξ = −
p∑

j=1

(number of l such that ±Jlej 6∈ B)

= −
p∑

j=1

Λ∑

l=1

‖e1 ∧ · · · ∧ Jlej ∧ · · · ∧ ep‖2

= −
Λ∑

l=1

‖Jl · ξ‖2 ≤ 0.

(Here J acts on ξ by Leibniz rule.) Equality holds if and only if ‖Jl · ξ‖2 = 0 for all
1 ≤ l ≤ Λ, meaning that ξ is invariant under each Jl, and hence invariant under
the SΛ−1-family of complex structures. Hence we obtain the following theorem:

Theorem 7. In APn, where A ∈{R,C,H,O,Rm}, any stable minimal submani-
fold S (or more generally rectifiable current) must be complex, by which we means
TxS is invariant under all the linear complex structures at x for almost every
x ∈ S.

We remark that in HPn, a quaternionic submanifold must be totally geodesic.

4 Appendix: Average second variation in symmet-
ric orbits

Our aim is to prove the following theorem, which we have used in the last section
to compute the average second variation of the volume of a cycle in APn along
directions in hA (n + 1):

Theorem: Assume that M = G/K is a compact symmetric space which is a
G-orbit of an orthogonal representation V of G. The projection of each u ∈ V
determines a vector field Vu, or simply V , on M . The average second variation of
an oriented orthonormal p-frame ξ = e1 ∧ · · · ∧ ep at x ∈ M under all such vector
fields is given by

trQξ =
p,q∑

j,k=1

(
2 ‖ II(ej , nk)‖2 − 〈 II(ej , ej), II(nk, nk)〉)

where II is the second fundamental form of M ⊂ V at x, and {ej}p
j=1 ∪ {nk}q

k=1

is an orthonormal basis of TxM .

The method of proof is similar to [LS73]. The Lie algebra g of G decomposes:

g = k⊕m

where m := k⊥. On G we have a natural G-invariant metric given by negative of
the Killing form, which can be scaled such that m is isometric to TxM . We shall
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use the same symbol to denote an element of g, its induced vector field on V, and
the restricted Killing vector field on M . Recall that

[g1, g2]M = −[g1, g2] (4.3)

where [·, ·]M is the Lie bracket for vector fields on M , and [·, ·] is the Lie bracket
on g. On the right hand side g1, g2 denote elements in g, while on the left hand
side they denote their induced Killing vector fields on M .

Let’s complete ξ = e1∧· · ·∧ep to an orthonormal basis {e1, . . . , ep, n1, . . . , nq}
of TxM ∼= m, and further take an orthonormal basis {β1, . . . , βr} of k, so that
{β1, . . . , βr, e1, . . . , ep, n1, . . . , nq} forms an orthonormal basis of g.

We now express the projection V = Vu of u ∈ V in terms of Killing vector
fields induced by g on M .

Lemma 8.

V =
r∑

µ=1

〈u, βµ〉βµ +
p∑

ν=1

〈u, eν〉 eν +
q∑

γ=1

〈u, nγ〉nγ .

Proof. Denote the basis {β1, . . . , βr, e1, . . . , ep, n1, . . . , nq} of g by A.
At x ∈ M the above equation is obvious, because βµ(x) = 0,

and {e1, . . . , ep, n1, . . . , nq} forms an orthonormal basis of TxM .
At another point y ∈ M , let {ẽ1, . . . , ẽp, ñ1, . . . , ñq} be an orthonormal basis

of TyM ∼= m, and we complete it to an orthonormal basis

B = {β̃1, . . . , β̃r, ẽ1, . . . , ẽp, ñ1, . . . , ñq}
of g. Both A,B are orthonormal basis of g, so B = AT , where T is an orthogonal
matrix.

V (x) =
∑

j

〈u,Bj〉Bj =
∑

j

〈
u,AkT k

j

〉
AiT

i
j =

∑

j

〈u,Aj〉Aj

since
∑

j T k
j T i

j = δki. ¤

Proof to Theorem 5: From the second variation formula (3.1), the average
second variation is given by

trQξ =
∑

u




p∑

j=1

〈AV ej , ej〉



2

+2
∑

u

p,q∑

j=1,k=1

(〈AV ej , nk〉)2 +
∑

u

p∑

j=1

〈AV,V ej , ej〉

where u runs through an orthonormal basis of V, each gives a vector field V = Vu

on M by projection. We compute term by term for the three terms appeared in
the above expression.

Recall [Hel01] that for a symmetric space,

∇K1K2 =
1
2

[K1,K2]M
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for Killing vector fields K1 and K2 on M . Applying this to the expression of V
given in Lemma 8,

∇ej
V =

〈
u, ∂ej

βµ

〉
βµ +

1
2
〈u, βµ〉 [ej , βµ]M +

〈
u, ∂ej

eν

〉
eν +

1
2
〈u, eν〉 [ej , eν ]M

+
〈
u, ∂ej

nγ

〉
nγ +

1
2
〈u, nγ〉 [ej , nγ ]M , (4.4)

where ∂ is the trivial connection of V, and so ∂v is the usual directional derivative
along v ∈ TxV ∼= V. (Recall that βµ, eν , nγ can be regarded as vector fields on V,
and so the above directional derivatives make sense.)

To simplify the above expression at x, notice that k induces zero vectors at
x, and hence βµ ∈ k vanishes at x. Together with equation (4.3) and the fact that

[k, k] ⊂ k, [k,m] ⊂ m, [m,m] ⊂ k. (4.5)

we have
∇ej

V (x) =
〈
u, ∂ej

eν

〉
eν +

〈
u, ∂ej

nγ

〉
nγ

and hence
〈AV ej , ej〉 =

〈∇ej
V (x), ej

〉
=

〈
u, ∂ej

ej

〉
;

〈AV ej , nk〉 =
〈∇ej

V (x), nk

〉
=

〈
u, ∂ej

nk

〉
.

The first term
∑

u

(∑p
j=1 〈AV ej , ej〉

)2

is

∑
u




p∑

j=1

〈AV ej , ej〉



2

=
∑

u

p∑

j,k=1

〈
u, ∂ej ej

〉 〈u, ∂ek
ek〉

=
p∑

j,k=1

〈
∂ej ej , ∂ek

ek

〉

=

∥∥∥∥∥∥

p∑

j=1

II(ej , ej)

∥∥∥∥∥∥

2

,

where ∂ej ej = II(ej , ej) because ∇ej ej = [ej , ej ]M/2 = 0.
The second term 2

∑
u

∑p,q
j=1,k=1 (〈AV ej , nk〉)2 is

2
∑

u

p,q∑

j=1,k=1

(〈AV ej , nk〉)2 = 2
∑

u

p,q∑

j=1,k=1

(〈
u, ∂ej

nk

〉)2

= 2
p,q∑

j,k=1

‖∂ej
nk‖2

= 2
p,q∑

j,k=1

‖ II(ej , nk)‖2,

where ∂ej
nk = II(ej , nk) at x because ∇ej

nk(x) = [ej , nk]M/2 = 0.
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Now we turn to compute the third term
∑

u

∑p
j=1 〈AV,V ej , ej〉, which is more

complicated. At x,

〈AV,V ej , ej〉 =
〈∇V∇ej

V −∇∇V ej
V, ej

〉

=
〈∇V∇ej

V, ej

〉

=
p∑

ν=1

〈u, eν〉
〈∇eν∇ej V, ej

〉
+

q∑
γ=1

〈u, nγ〉
〈∇nγ∇ej V, ej

〉
,

where ∇∇V ej V (x) = 0 because

∇V ej(x) =
p∑

ν=1

〈u, eν〉 [eν , ej ]M
2

+
q∑

γ=1

〈u, nγ〉 [nγ , ej ]M
2

= 0.

We now compute the first part
∑ 〈u, eν〉

〈∇eν∇ej V, ej

〉
of the third term.

Differentiating equation (4.4) along eν , we get

∇eν
∇ej

V (x) =
1
2

〈
u, ∂ej

βµ

〉
[eν , βµ]M +

1
2
〈u, ∂eν

βµ〉 [ej , βµ]M

+
〈
u, ∂eν

∂ej
eα

〉
eα +

1
4
〈u, eα〉 [eν , [ej , eα]M ]M

+
〈
u, ∂eν

∂ej
nγ

〉
nγ +

1
4
〈u, nγ〉 [eν , [ej , nγ ]M ]M .

Using the identity 〈[X, Y ]M , Z〉 = −〈Y, [X, Z]M 〉 for Killing vector fields
X, Y, Z, together with the relation (4.5) repeatedly, we get

〈∇eν
∇ej

V (x), ej

〉
=

〈
u, ∂eν

∂ej
ej

〉

and so

∑
u

p∑

j=1

p∑
ν=1

〈u, eν〉
〈∇eν

∇ej
V, ej

〉

=
∑

u

p∑

j=1

p∑
ν=1

〈u, eν〉
〈
u, ∂eν

∂ej
ej

〉

=
p∑

j,ν=1

〈
∂eν ∂ej ej , eν

〉

= −
∥∥∥∥∥∥

p∑

j=1

II(ej , ej)

∥∥∥∥∥∥

2

. (4.6)

Now proceed to compute the second part
∑ 〈u, nγ〉

〈∇nγ
∇ej

V, ej

〉
of the



208 Siu-Cheong Lau and Naichung Conan Leung

third term. Differentiating the equation (4.4) along nγ , we get

∇nγ
∇ej

V (x) =
1
2

〈
u, ∂ej

βµ

〉
[nγ , βµ]M +

1
2

〈
u, ∂nγ

βµ

〉
[ej , βµ]M

+
〈
u, ∂nγ

∂ej
eν

〉
eν +

1
4
〈u, eν〉 [nγ , [ej , eν ]M ]M

+
〈
u, ∂nγ

∂ej
nα

〉
nα +

1
4
〈u, nα〉 [nγ , [ej , nα]M ]M ,

and so 〈∇nγ∇ej V (x), ej

〉
=

〈
u, ∂nγ ∂ej ej

〉
.

∑
u

p∑

j=1

q∑
γ=1

〈u, nγ〉
〈∇nγ

∇ej
V, ej

〉

=
p,q∑

j,γ=1

〈
∂nγ ∂ej ej , nγ

〉

= −
p,q∑

j,γ=1

〈 II(ej , ej), II(nγ , nγ)〉 . (4.7)

Adding up equations (4.6) and (4.7), we get the third term

−
∥∥∥∥∥∥

p∑

j=1

II(ej , ej)

∥∥∥∥∥∥

2

−
p,q∑

j,γ=1

〈 II(ej , ej), II(nγ , nγ)〉 .

Adding up all the three terms, the average second variation is

p,q∑

j,k=1

(
2 ‖ II(ej , nk)‖2 − 〈 II(ej , ej), II(nk, nk)〉) .
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