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Moduli of bundles over rational surfaces and elliptic
curves I: Simply laced cases
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Abstract

It is well known that del Pezzo surfaces of degree 9 − n one-to-one correspond to flat En bundles
over an elliptic curve. In this paper, we construct ADE-bundles over a broader class of rational
surfaces that we call ADE-surfaces, and extend the above correspondence to all flat G-bundles
over an elliptic curve, where G is any simply laced, simple, compact and simply connected Lie
group. In what follows, we will construct G-bundles for a non-simply laced Lie group G over
these rational surfaces, and extend the above correspondence to non-simply laced cases.

1. Introduction

Let S be a smooth rational surface. If the anti-canonical line bundle −KS is ample, then S
is called a del Pezzo surface. It is well known that a del Pezzo surface can be classified as a
blow-up of CP

2 at n(n � 8) points in general position or CP
1 × CP

1. When these blown-up
points are in almost general position, such a surface is called a generalized del Pezzo surface,
according to Demazure [7]. It is also well known that the sub-lattice K⊥

S of Pic(S) is a root
lattice of type En. For more results on (generalized) del Pezzo surfaces one can see [7, 22].
Thus there is a natural Lie algebra bundle of type En over S. By restriction to a fixed smooth
anti-canonical curve Σ, one obtains a flat En bundle over Σ. Moreover, Donagi [8, 9] and
Friedman, Morgan and Witten [11, 12] prove that the moduli space of del Pezzo surfaces with
a fixed anti-canonical curve Σ can be identified with the moduli space of flat En bundles over
this elliptic curve Σ.

In this paper, we extend this correspondence to all compact, simple, simply laced and simply
connected Lie groups and to a broader class of rational surfaces, that are called ADE-surfaces.
This paper contains parts of the preprint [17], especially the construction of Lie algebra bundles
and their (fundamental) representation bundles, and we shall refer to [17] for some of the proofs.
In the following we sketch the contents briefly.

In Section 2, we first analyze the structure of the Picard lattice of a rational surface which is
a blow-up of P

2, P
1 × P

1 or the Hirzebruch surface F1 at some points. We shall see that there
is a sub-lattice of the Picard lattice that is a root lattice of ADE-type.

Next we generalize the definition of del Pezzo surfaces to that of ADE-surfaces, where an
En surface is just a del Pezzo surface of degree 9 − n. Roughly speaking, an ADE-surface S is
a rational surface with a smooth rational curve C on S such that the sub-lattice 〈KS , C〉⊥ of
Pic(S) is an irreducible root lattice (see Definition 2.5). The condition in Definition 2.5 implies
that C2 = −1, 0 or 1 and that the sub-lattice 〈KS , C〉⊥ is a root lattice of type En, Dn or An,
respectively (Proposition 2.6). Therefore such a surface is called a rational surface of En-type,
Dn-type or An-type accordingly.
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Note that the definition of an En surface implies that, after blowing down the (−1) curve C,
the anti-canonical line bundle −K will be ample. Thus the resulting surface is just a del Pezzo
surface. Thus the definition of ADE-surfaces naturally generalizes that of del Pezzo surfaces.

After this, we prove that an ADE-surface is nothing but a blow-up of P
2, P

1 × P
1 or F1 at

some points in general position. This gives us an explicit construction for any ADE-surface.
In Section 3, we construct Lie algebra bundles of ADE-type, and their natural representation

bundles over those surfaces discussed in Section 2. By a Lie algebra bundle over a surface S, we
mean a vector bundle that has a fiberwise Lie algebra structure, and this structure is compatible
with any trivialization. Similarly, by a representation bundle, we mean a vector bundle that is a
fiberwise representation of a Lie algebra bundle, and this fiberwise representation is compatible
with any trivialization.

More precisely, let S be an ADE-surface. Since the sub-lattice 〈KS , C〉⊥ of Pic(S) is a root
lattice, we can explicitly construct a natural Lie algebra bundle of corresponding type over S,
using the root system of the root lattice 〈KS , C〉⊥. Using the lines and rulings on S, we can
also construct natural fundamental representation bundles over S.

In Section 4, we shortly recall some well-known facts about flat G-bundles over elliptic curves.
In Section 5, we relate the above Lie algebra bundles of ADE-type over ADE rational surfaces

to flat G-bundles over an elliptic curve Σ, where G is a compact Lie group of corresponding type.
If an ADE rational surface S contains a fixed smooth elliptic curve Σ as an anti-canonical curve
then, by restriction, one obtains a flat ADE-bundle over Σ. We can prove that this restriction
identifies the moduli space of flat ADE-bundles over Σ and the moduli space of the pairs
(S,Σ ∈ | − KS |) with extra structure ζG which is called a G-configuration (Definition 5.2).
Our main result in this paper is the following theorem.

Theorem 1.1. Let Σ be a fixed elliptic curve and let G be a simple, compact, simply
laced and simply connected Lie group. Denote by S(Σ, G) the moduli space of the pairs (S,Σ),
where S is an ADE rational surface with Σ ∈ | − KS |. Denote by MG

Σ the moduli space of flat
G-bundles over Σ. Then, by restriction, we have the following properties.

(i) The moduli space S(Σ, G) can be embedded into MG
Σ as an open dense subset.

(ii) There exists a natural and explicit compactification for S(Σ, G), denoted by S(Σ, G),
such that this embedding can be extended to an isomorphism from S(Σ, G) onto MG

Σ .
(iii) Any surface corresponding to a boundary point in S(Σ, G) \ S(Σ, G) is equipped with

a G-configuration, and, on such a surface, any smooth rational curve has a self-intersection
number at least −2. Furthermore, in the En case, all (−2) curves form chains of ADE-type,
and the anti-canonical model of such a surface admits at worst ADE-singularities.

Physically, if G = En is a simple subgroup of E8 × E8, then these G-bundles are related to
the duality between F -theory and string theory. Among other things, this duality predicts that
the moduli of flat En bundles over a fixed elliptic curve Σ can be identified with the moduli of
del Pezzo surfaces with a fixed anti-canonical curve Σ. For details, one can consult [8, 9, 11,
12]. Our result can be considered as a test of the above duality for other Lie groups.

As an application, we have a more intuitive explanation for the well-known moduli space
MG

Σ of flat G-bundles over a fixed elliptic curve Σ. Furthermore, we can see very clearly how
the Weyl group of G acts on the marked moduli space of flat G-bundles over Σ.

Notation. In this paper, we fix some notation from Lie theory. Let G be a compact, simple
and simply connected Lie group. We denote by:

r(G) the rank of G;
R(G) the root system;
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Rc(G) the coroot system;
W (G) the Weyl group;
Λ(G) the root lattice;

Λc(G) the coroot lattice;
Λw(G) the weight lattice;
T (G) a maximal torus;

ad(G) the adjoint group of G, that is, G/C(G), where C(G) is the center of G; and
Δ(G) a simple root system of G.

When there is no confusion, we just ignore the letter G.

2. Rational surfaces of ADE-type

Before defining what ADE-surfaces are, we first give their explicit constructions.

2.1. En case

First we consider the En case, that is, the case of del Pezzo surfaces. We start with a complex
projective plane P

2 and n points x1, . . . , xn on P
2 with n � 8. Note that x2, . . . , xn may

be infinitely near points. For example, we say that x2 is infinitely near x1 if x2 lies on the
exceptional curve obtained by blowing up x1. Blowing up P

2 at these points in turn, we obtain
a rational surface, denoted by Xn(x1, . . . , xn) or by Xn for brevity.

These points are said to be in general position if they satisfy the following conditions.
(i) They are distinct points.
(ii) No three of them are collinear.
(iii) No six of them lie on a common conic curve.
(iv) No cubics pass through eight of them with one of the eight points a double point.

The following result is well known (see [7, 22]).

Lemma 2.1. Let xi ∈ P
2, with i = 1, . . . , n and n � 8. Then the following conditions are

equivalent to each other.
(i) These points are in general position.
(ii) The self-intersection number of any rational curve on Xn is greater than or equal to −1.
(iii) The anti-canonical class −KXn

is ample.

A surface Xn is called a del Pezzo surface if it satisfies one of the above equivalent conditions.
We say that xi ∈ P

2, where i = 1, . . . , n with n � 8 are in almost general position if any
smooth rational curve on Xn has a self-intersection number at least −2, and such a surface is
called a generalized del Pezzo surface (see [7]).

Let h be the class of lines in P
2 and let li be the exceptional divisor corresponding to the

blow-up at xi ∈ P
2, where i = 1, . . . , n. Denote by Pic(Xn) the Picard group of Xn, which is

isomorphic to H2(Xn, Z). Then Pic(Xn) is a lattice with basis h, l1, . . . , ln, of signature (1, n).
Let K = −3h + l1 + . . . + ln be the canonical class. We extend the definition of the Lie algebras
En, where n = 6, 7, 8, to all n with 0 � n � 8 by setting E0 = 0, E1 = C, E2 = A1 × C, E3 =
A1 × A2, E4 = A4 and E5 = D5.

We define the following:

Pn = {x ∈ Pic(Xn) | x · K = 0};
Rn = {x ∈ Pic(Xn) | x · K = 0, x2 = −2} ⊂ Pn;

In = {x ∈ Pic(Xn) | x2 = −1 = x · K};
Cn = {ζn = (e1, . . . , en) | ei ∈ In, ei · ej = 0, i �= j}.
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Figure 1. The root system En.

An element of In is called an exceptional divisor, and an element ζn ∈ Cn is called an
exceptional system (of divisors) (see [7, 22]).

Lemma 2.2. (i) Rn is a root system of type En with a system of simple roots: α1 =
l1 − l2, α2 = l2 − l3, α3 = h − l1 − l2 − l3, α4 = l3 − l4, . . . , αn = ln−1 − ln. Its root lattice is
just Pn, and its weight lattice is Qn = Pic(Xn)/ZK. Let l ∈ In; then Rn ∩ l⊥ is a root system
of type En−1 and Pn ∩ l⊥ is its root lattice.

(ii) The Weyl group W (En) acts on Cn simply transitively.

Proof. (i) For the proof that Rn is a root system of type En with given simple roots;
see Manin’s book [22]. We denote by Pic(Xn) a lattice with Z-basis h, l1, . . . , ln. Obviously,
{e0 = l1, e1 = α1, . . . , en = αn} forms another Z-basis. We take any x ∈ Pn ⊂ Pic(Xn). Let
x =

∑
ai · ei. Then x · K = 0 implies that a0 = 0. Thus Pn is the root lattice of Rn.

The natural pairing Pn ⊗ Pic(Xn) → Z induces a perfect pairing as follows:

Pn ⊗ (Pic(Xn)/ZK) −→ Z.

Thus the weight lattice is just Pic(Xn)/ZK.
For the last assertion, we can assume that l = l8; then it is obviously true.
(ii) See [22].

The Dynkin diagram is shown in Figure 1.

2.2. Dn case

Next we consider the Dn case. Let Y = F1 be a Hirzebruch surface. We fix the ruling f and
the section s, where s2 = −1. In fact F1 is the blow-up of P

2 at one point x0. Thus f = h − l0
and s = l0, where h is the class of lines on P

2 and l0 is the exceptional curve. Blowing up Y
at n points x1, . . . , xn, we obtain Yn. The Picard group Pic(Yn) of Yn is H2(Yn, Z), which is a
lattice with basis s, f, l1, . . . , ln. The canonical class K = −(2s + 3f −

∑n
i=1 li).

We define the following:

Pn = {x ∈ Pic(Yn) | x · K = 0 = x · f};
Rn = {x ∈ Pic(Yn) | x · K = 0 = x · f, x2 = −2};
In = {x ∈ Pic(Yn) | x2 = −1 = x · K, x · f = 0};

Cn =
{

ζn = (e1, . . . , en) | ei ∈ In, ei · ej = 0, i �= j;
∑

ei · s ≡ 0mod 2
}

.

In a similar way to before, an element ζn ∈ Cn is called an exceptional system (of divisors).
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Figure 2. The root system Dn.

Lemma 2.3. (i) Rn is a root system of type Dn with a system of simple roots: α1 =
f − l1 − l2, α2 = l1 − l2, . . . , αn = ln−1 − ln. Its root lattice is just Pn and its weight lattice is
Qn = Pic(Yn)/Z〈f,K〉.

(ii) The Weyl group W (Dn) acts on Cn simply transitively.

Proof. (i) Pic(Yn) is a lattice with Z-basis s, f, li, i = 1, . . . , n. Let x = as + bf +
∑

cili ∈
Rn, where a, b, ci ∈ Z. Then we have a system of linear equations as follows:

x2 = −2,

x · K = 0 = x · f.

Solving this, we obtain

a = 0,∑
c2
i = 2,

2b = −
∑

ci.

Thus, x = ±(li − lj), i �= j, or x = ±(f − li − lj), i �= j. That is Rn = {±(li − lj),±(f − li −
lj)| i �= j}. This implies that Rn is a root system of Dn-type with indicated simple roots.

Obviously, {e1 = s, e2 = l1, ei+2 = αi, i = 1, . . . , n} forms another Z-basis. We take any x ∈
Pn ⊂ Pic(Yn). Let x =

∑
ai · ei. Then x · K = 0 = x · f implies that a1 = a2 = 0. Hence Pn is

the root lattice of Rn.
The natural pairing Pn ⊗ Pic(Yn) → Z has kernel Z〈f,−2s +

∑
li〉 = Z〈f,K〉. Thus the

pairing induces a perfect pairing Pn ⊗ (Pic(Yn)/Z〈f,K〉) → Z. Hence the weight lattice is just
Pic(Yn)/Z〈f,K〉.

(ii) A simple computation shows that

In = {li, f − li|i = 1, . . . , n}.

Thus all the elements of Cn are of the form ζn = (u1, . . . , un), where the number of the ui, such
that ui = f − lk for some k, is even. Then, by the structure of W (Dn), the result is clear.

The Dynkin diagram is shown in Figure 2.

2.3. An−1 case

In the following we consider the An−1 case. For this, let Zn be the same surface as Yn.
We define the following:

Pn−1 = {x ∈ Pic(Zn) | x · K = x · f = x · s = 0};
Rn−1 = {x ∈ Pic(Zn) | x · K = x · f = x · s = 0, x2 = −2};
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In−1 = {x ∈ Pic(Zn) | x2 = −1 = x · K, x · f = 0 = x · s};
Cn−1 = {ζn = (e1, . . . , en) | ei ∈ In−1, ei · ej = 0, i �= j}.

As before, an element of ζn ∈ Cn−1 is called an exceptional system (of divisors).

Lemma 2.4. (i) Rn−1 is a root system of type An−1 with a system of simple roots:
α1 = l1 − l2, . . . , αn−1 = ln−1 − ln. Its root lattice is just Pn−1 and its weight lattice is
Pic(Zn)/Z〈f, s,K〉.

(ii) The Weyl group W (An−1) acts on Cn−1 simply transitively. In fact, W (An−1) acts as
the permutation group of l1, . . . , ln.

(iii) Let e be a (−1) curve that does not meet s. Then there exist i, j with i �= j such that
e = s + f − li − lj , and when n � 4 we have that 〈K, s, f, e〉⊥ is a reducible root lattice of type
A1 × An−3; when n = 3 we have that 〈K, s, f, e〉⊥ is not a root lattice; when n = 2 we have
that 〈K, s, f, e〉⊥ is the same as P1, which is of type A1.

(iv) Let ei, 1 � i � k, k � 2 be (−1) curves such that s, ei, 1 � i � k are disjoint pair-
wise. Then, when k �= 3 we have that 〈K, s, f, ei, 1 � i � k〉⊥ is not a root lattice. When
k = 3, either of the following two conditions holds: (a) if e1 = s + f − li2 − li3 , e2 = s +
f − li1 − li3 and e3 = s + f − li1 − li2 , then 〈K, s, f, e1, e2, e3〉⊥ is a root lattice of A-type;
(b) 〈K, s, f, e1, e2, e3〉⊥ is not a root lattice.

Proof. (i) Pic(Zn) is a lattice with Z-basis s, f, li, i = 1, . . . , n. A simple computation shows
that

Rn−1 = {li − lj | i �= j}.
Then it is obviously a root system of type An−1 with given simple roots.

Obviously, {e1 = s, e2 = f, e3 = l1, ei+3 = αi, i = 1, . . . , n} forms another Z-basis. We take
any x ∈ Pn−1 ⊂ Pic(Zn). Let x =

∑
ai · ei. Then x · K = x · f = x · s = 0 implies that a1 =

a2 = a3 = 0. Thus Pn−1 is the root lattice of Rn−1.
The natural pairing

Pn−1 ⊗ Pic(Zn) −→ Z

has a kernel given by

Z〈f, s,
∑

li〉 = Z〈f, s,K〉.

Thus the pairing induces a perfect pairing as follows:

Pn−1 ⊗ Pic(Zn)/Z〈f, s,K〉 −→ Z.

Hence the weight lattice is just Pic(Zn)/Z〈f, s,K〉.
(ii) In fact In−1 = {l1, . . . , ln}. Hence an element of Cn−1 is just a permutation of l1, . . . , ln.
(iii) Let e = as + bf +

∑
cili; then e is a (−1) curve and e · s = 0 imply that e must be

of the form s + f − li − lj , with i �= j. Without loss of generality, we can assume that e =
s + f − l1 − l2. Then the result follows from a simple computation.

(iv) First let k = 2. From the proof of (iii), we know both e1 and e2 are of the form s +
f − li − lj , with i �= j. Since e1 · e2 = 0, it follows that we can assume e1 = s + f − l1 − l2 and
e2 = s + f − l1 − l3. Then the result follows easily. For k = 3, if e1 = s + f − li2 − li3 , e2 =
s + f − li1 − li3 and e3 = s + f − li1 − li2 then 〈K, s, f, e1, e2, e3〉⊥ = 〈K, s, f, li1 , li2 , li3〉⊥. We
can assume that li1 = l1, li2 = l2, li3 = l3. Then 〈K, s, f, l1, l2, l3〉⊥ is a root lattice of A-type.
Other cases are similar.

The Dynkin diagram is shown in Figure 3.
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Figure 3. The root system An−1.

Note that Lemma 2.3 and Lemma 2.4(i) and (ii) are still true if we replace F1 by any
Hirzebruch surface Fk(k � 0).

2.4. ADE-surfaces

Now we show that, in a suitable sense, the converse of the above lemmas is also true. As
promised in the introduction, we see that the following definition generalizes that of del Pezzo
surfaces.

Definition 2.5. Let (S,C) be a pair consisting of a smooth rational surface S and a
smooth rational curve C ⊂ S with C2 �= 4. The pair (S,C) is said to be of ADE-type (or an
ADE-surface) if it satisfies the following two conditions:

(i) Any (smooth) rational curve on S has a self-intersection number at least −1.
(ii) The sub-lattice 〈KS , C〉⊥ of Pic(S) is an irreducible root lattice of rank equal to

rank(Pic(S)) − 2.

The following proposition shows that such surfaces can be classified into three types.

Proposition 2.6. Let (S,C) be a rational surface of ADE-type. Let n = rank(Pic(S)) − 2.
Then C2 ∈ {−1, 0, 1} and the following properties hold:

(i) when C2 = −1, we have that 〈KS , C〉⊥ is of En-type, where 4 � n � 8;
(ii) when C2 = 0, we have that 〈KS , C〉⊥ is of Dn-type, where n � 3;
(iii) when C2 = 1, we have that 〈KS , C〉⊥ is of An-type.

Proof. By the first condition in Definition 2.5, it is clear that C2 � −1. Therefore there are
the following four cases.

First, suppose that C2 = −1. Then we can contract C to obtain a smooth surface S̃. Let
π : S → S̃ be the blow-down. Then the projection

Pic(S) = Pic(S̃) ⊕ Z〈C〉 −→ Pic(S̃)

induces an isomorphism 〈KS , C〉⊥ ∼= 〈KS̃〉⊥. However, the latter is an irreducible root system
if and only if S̃ is a blow-up of CP

2 at n(4 � n � 8) points. At this time 〈KS̃〉⊥ is a root system
of En-type. Thus S is a blow-up of CP

2 at n + 1(4 � n � 8) points.
Second, suppose that C2 = 0. Then by the Riemann–Roch theorem, the linear system |C|

defines a ruling over P
1 with fiber C. Contracting all (−1) curves in fiber, we obtain a relatively

minimal model (not unique), which is P
1 × P

1 or the Hirzebruch surface F1. Thus, S is a blow-up
of P

1 × P
1 or F1 at n points. Moreover, the lattice 〈KS , C〉⊥ must be of Dn-type by Lemma 2.3.

Third, suppose that C2 = 1. Then, blowing up one point p0 ∈ C, we obtain S̃, which is
a ruling over P

1 with fiber C̃ = C − E and section E, where E is the exceptional curve
associated to this blow-up. Contracting all (−1) curves which do not intersect with E in
fiber, we will obtain F1. Thus S̃ is a blow-up of F1 at n points. Furthermore, we have
〈KS , C〉⊥ ∼= 〈KS̃ , C̃, E〉⊥. Therefore the lattice is a root lattice of An-type by Lemma 2.4.

Finally, suppose that C2 � 2. Note that, since we assume that C2 �= 4, the situation of
Lemma 2.4(iv(a)) cannot happen. Hence we only need to discuss the case where C2 = 2, because
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the discussion on general cases is similar. Blowing up S at two points p, q ∈ C, with p �= q, we
obtain S̃ with exceptional curves Ep, and Eq. Let C̃ = C − Ep − Eq be the strict transform of
C, then |C̃| defines a ruling with fiber C̃ and section s = Ep (fixed). In a similar way to before,
contracting all (−1) curves E in fiber that satisfy E · C̃ = 0 = E · s, we will obtain F1. Then
S̃ can be considered as a blow-up of F1 at n points. Note that 〈KS , C〉⊥ ∼= 〈KS̃ , C̃, s, Eq〉⊥.
We know that 〈KS̃ , C̃, s〉⊥ is a root lattice of An-type from Lemma 2.4. Then the result also
follows from Lemma 2.4.

Remark 2.7. We extend the definition of En surfaces to all n with 0 � n � 8, by defining
En(n � 3) surfaces to be del Pezzo surfaces of degree 9 − n.

Corollary 2.8. On an ADE-surface, any exceptional divisor perpendicular to C is
represented by an irreducible curve. Therefore, any exceptional system consists of exceptional
curves.

Proof. In the En case, the result follows from Proposition 2.6 and Lemma 2.1. In Dn and
An cases, according to Proposition 2.6, the result is obvious.

In the following we generalize the definition for n � 8 points being in general position to
any n � 0. Define S = P

2 (or P
1 × P

1 or F1). Denote by Sn(x1, . . . , xn) (or Sn for brevity)
the blow-up of S at n points x1, . . . , xn. We say that x1, . . . , xn are in general position if
any smooth rational curve on Sn has a self-intersection number at least −1. Furthermore, we
say that x1, . . . , xn are in almost general position if any smooth rational curve on Sn has a
self-intersection number at least −2.

Corollary 2.9. Let (S,C) be an ADE-surface. Then the following properties hold.

(i) In the En case, blowing down the (−1) curve C, we obtain a del Pezzo surface of degree
9 − n.

(ii) In the Dn case, S is just a blow-up of P
1 × P

1 or F1 at n points in general position with
C as the natural ruling.

(iii) In the An case, let S̃ be the blow-up of S at a point on C, with the exceptional curve
E; then S̃ is a blow-up of F1 at n + 1 points, and the strict transform C̃ of C defines a ruling
with E as the section of F1.

3. Lie algebra bundles over rational surfaces of ADE-type and their representation bundles

When G is of ADE-type, for each ADE-surface S we can construct a natural G = Lie(G) bundle
and natural fundamental representation bundles over S, which are determined by the lines (or
exceptional divisors in general) and rulings on S.

Definition 3.1. By a Lie algebra G = Lie(G) bundle we mean a vector bundle that
fiberwise carries a Lie algebra structure of G-type, and this Lie algebra structure is compatible
with trivialization of this bundle. By a representation bundle of a G-bundle, we mean a vector
bundle V that fiberwise is a representation of G, and the action of G on V is compatible with
their trivialization.
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We describe these bundles in the following, and give the detailed arguments only in the En

case, since other cases are similar.

3.1. En bundles over En surfaces

Let (S,C) be an En surface. Recall that S = Xn+1(x1, . . . , xn+1) and C is the exceptional
divisor associated to the blow-up at xn+1. Define S̃ = Xn(x1, . . . , xn). Since 〈KS , C〉⊥ ∼= K⊥

S̃
,

we can just consider the surface S̃ = Xn(x1, . . . , xn).
Since we have a root system of En-type attached to Xn, inspired by the Cartan decomposition

of a complex simple Lie algebra, we can construct a Lie algebra bundle over Xn as follows:

En = O⊕n
⊕

D∈Rn

O(D).

The fiberwise Lie algebra structure of En is defined as the following. We fix the system of
simple roots of Rn as

Δ(En) = {α1 = l1 − l2, α2 = l2 − l3, α3 = h − l1 − l2 − l3, . . . , αn = ln−1 − ln},

and take a trivialization of En. Then, over a trivializing open subset U , we have En|U ∼= U ×
(C⊕n

⊕
α∈Rn

Cα). We take a Chevalley basis {xU
α , α ∈ Rn;hi, 1 � i � n} for En|U and define

the Lie algebra structure by the following four relations, namely, Serre’s relations on a Chevalley
basis (see [14, p. 147]):

(a) [hihj ] = 0, 1 � i, j � n;
(b) [hix

U
α ] = 〈α, αi〉xU

α , 1 � i � n, α ∈ Rn;
(c) [xU

α xU
−α] = hα is a Z-linear combination of h1, . . . , hn;

(d) if α and β are independent roots, and β − rα, . . . , β + qα are the α-strings through β,
then [xU

α xU
β ] = 0 if q = 0, while [xU

α xU
β ] = ±(r + 1)xU

α+β if α + β ∈ Rn.
Note that hi, with 1 � i � n, are independent of any trivialization, and so the relation

(a) is always invariant under different trivializations. If En|V ∼= V × (C⊕n
⊕

α∈Rn
) is another

trivialization, and fUV
α is the transition function for the line bundle O(α)(α ∈ Rn), that is,

xU
α = fUV

α xV
α , then the relation (b) is given by

[hi(fUV
α xV

α )] = 〈α, αi〉fUV
α xV

α ,

that is, we have

[hix
V
α ] = 〈α, αi〉xV

α .

Thus (b) is also invariant; and (c) is also invariant since (fUV
α )−1 is the transition function for

O(−α)(α ∈ Rn). Finally, (d) is invariant since fUV
α fUV

β is the transition function for O(α +
β)(α, β ∈ Rn).

Therefore, the Lie algebra structure is compatible with the trivialization. Hence it is well
defined. In other words, we can construct globally a Lie algebra bundle over a surface once we
are given a root system consisting of divisors on this surface.

The following relations are intricate. One is the relation between In (the set of all exceptional
divisors) and the fundamental representation associated to the highest weight λn that is dual
to the simple root αn (see Figure 1). Another one is the relation between the set of rulings and
the fundamental representation associated to the highest weight λ1 that is dual to the simple
root α1 (Figure 1). We explain the relations in the following.

Let Ln be the fundamental representation with the highest weight λn. Then we have the
relations listed in Table 1 between the dimension of Ln and the number of In.

Denote by Run the set of all rulings on Xn. Let Rn be the fundamental representation with
the highest weight λ1. Then we have the relations listed in Table 2 between the dimension of
Rn and the number of Run.
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Inspired by these, we can construct a fundamental representation bundle Ln and Rn using
the exceptional divisors and the rulings, respectively, on Xn as follows:

Ln =
⊕
l∈In

O(l) when n � 7,

L8 =
⊕
l∈I8

O(l) ⊕O(−K)⊕8;

respectively,

Rn =
⊕

R∈Run

O(R) when n � 6,

R7 =
⊕

R∈Ru7

O(R) ⊕O(−K)⊕7.

The fiberwise action is defined naturally, which is in fact compatible with any trivialization.
For example, we consider the bundle Ln and suppose that n � 7. Take U and V as before, and

suppose that they also trivialize Ln, that is Ln|U ∼= U × (
⊕

l∈In

Cl) and Ln|V ∼= V × (
⊕

l∈In

Cl).

Take eU
l or eV

l = gV UeU
l to be the basis of Cl over U or V , respectively. Then define xU

α .eU
l to be

equal to eU
l′ if l′ = α + l ∈ In and be equal to 0 otherwise. Furthermore define hα.eU

l = (α · l)eU
l .

Note that the situation here is slightly different from some standard usage, for example [6,
14], since the self-intersection number of an element of Rn or In is negative. However, this
does not matter if we take the simple root system to be {−α1, . . . ,−αn}, and the pairing to be
(x, y) := −(x · y). First since λn(−αi) = (−αi, ln) = αi · ln = δin, we have λn

∼= (·, ln). Second
the action is irreducible since the Weyl group acts on In transitively. Lastly eU

ln
is the maximal

vector of weight λn. Therefore this fiberwise action does define the highest weight module with
the highest weight λn (see [14]).

Obviously, this fiberwise Lie algebra action is compatible with the trivialization.
For L8, note that the bijection I8 → R8 given by l → l + K induces an isomorphism

E8
∼= L8 ⊗O(K).

This implies that L8 is just the adjoint representation bundle.
Similarly, Rn is the fundamental representation bundle with the highest weight λ1

∼= (·, h −
l1) and the maximal vector eU

h−l1
, where the simple root system and the pairing are defined as

above. We also have that R7 ⊗O(K) ∼= E7 is the adjoint representation bundle.

Table 1. Lines and fundamental representations.

n 1 2 3 4 5 6 7 8

dim Ln 1 3 6 10 16 27 56 248
|In| 1 3 6 10 16 27 56 240

Table 2. Rulings and fundamental representations.

n 1 2 3 4 5 6 7 8

dim Rn 1 2 3 5 10 27 133 3875
|Run| 1 2 3 5 10 27 126 2160
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Example 1. We look at the sl(2) sub-bundle

O ⊕O(α) ⊕ (−α),

where α = l1 − l2. Then the bundle O(l1) ⊕O(l2) is the standard representation bundle.
Furthermore, the line bundle O(h − l1 − l2) is a trivial representation.

In fact, the Lie algebra bundle En is uniquely determined by its representation bundles Ln

and Rn, according to [1]. Concretely (see [17] for more details), the following properties hold:
(i) E4 is the automorphism bundle of R4 preserving ∧5R4

∼= O(−2K);
(ii) E5 is the automorphism bundle of R5 preserving q5 : R5 ⊗ R5 → O(−K), where q5 is

defined by O(R′) ⊗O(R′′) → O(−K) if R′ + R′′ = −K, and 0 otherwise;
(iii) E6 is the automorphism bundle of R6 and L6 preserving

c6 : L6 ⊗ L6 −→ R6 and c∗6 : R6 ⊗ R6 −→ L6 ⊗O(−K),

where c6 is defined by the map (li, lj) → 2h −
∑

k �=i,j lk and c∗6 is defined by the map
(h − li, h − lj) → h − li − lj .

(iv) E7 is the automorphism bundle of L7 preserving

f7 : L7 ⊗ L7 ⊗ L7 ⊗ L7 −→ O(−2K),

where f7 is defined by the map (C1, C2, C3, C4) → −2K if C1 + C2 + C3 + C4 = −2K,
and 0 otherwise;

(v) E8 is the automorphism bundle of L8 preserving

L8 ∧ L8 −→ L8 ⊗O(−K).

For X6, the bijection Ru6 → I6 defined by R → −(R + K) induces an isomorphism R6
∼=

L ∗
6 ⊗O(−K), which is consistent with the duality between L6 and R6 for the Lie group E6.

3.2. Dn bundles over rational ruled surfaces

Let (S,C) be a Dn surface. By Proposition 2.6, it is clear that S dominates F1 or F0(= P
1 × P

1)
with ruling C. We can suppose that S dominates F1 since, for the other case the argument
is the same. Thus S = Yn(x1, . . . , xn) is the blow-up of F1 at n points xi, with i = 1, . . . , n,
where, for any i, we find that xi does not lie on the section s.

Since Rn is a root system of type Dn, the Lie algebra bundle can be constructed as follows:

Dn = O⊕n
⊕

D∈Rn

O(D).

Recall that, in the Dn case, we have

In = {C| C2 = C · K = −1, C · f = 0}
= {li, f − li | i = 1, . . . , n}.

The fundamental representation bundle of Dn with the highest weight λn, where λn is the
fundamental weight corresponding to αn = ln−1 − ln, is

Wn =
⊕

C∈In

O(C).

In fact, Wn is the standard representation bundle of Dn.
Note that there are n singular fibers, and each singular fiber is of the form li + l′i, where

l′i = f − li, i = 1, . . . , n. The relation

O(li) ⊗O(l′i) = O(f)
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implies that we can define a non-degenerated fiberwise quadratic form as follows:

qn : Wn ⊗ Wn −→ O(f).

The two spinor bundles are defined as

S+
n =

⊕
S2=S·K=−1,S·f=1

O(S) and S−
n =

⊕
T 2=−2,T ·K=0,T ·f=1

O(T ).

Moreover, there are all kinds of structures on these representation bundles, for example, the
Clifford multiplication:

S+
n ⊗ W ∗

n −→ S−
n and S−

n ⊗ Wn −→ S+
n .

When n = 2m − 1 is odd, we have the isomorphism as follows:

(S+
n )∗ ⊗OYn

((m − 4)f − K) ∼= S−
n .

When n = 2m is even, we have isomorphisms as follows:

(S+
n )∗ ⊗OYn

((m − 3)f − K) ∼= S+
n ,

(S−
n )∗ ⊗OYn

((m − 4)f − K) ∼= S−
n .

For more details, see [17].

3.3. An−1 bundles and their representation bundles

Let S be an An−1 surface. By Proposition 2.6, we can assume that S = Zn(x1, . . . , xn) be the
blow-up of F1 at n points xi, with i = 1, . . . , n, where for any i it is clear that xi does not lie
on the section s. Recall that

Rn−1 = {li − lj | i �= j}

and

In−1 = {l1, . . . , ln}.

Since Rn−1 is a root system of An−1-type, the Lie algebra bundle can be constructed as

An−1 = O⊕n−1
⊕

D∈Rn−1

O(D),

and the standard representation bundle is

Vn−1 =
⊕

C∈In−1

O(C) =
n⊕

i=1

O(li).

The kth fundamental representation bundle is just

∧k(Vn−1) ∼=
⊕

i1<...<ik

O(li1 + . . . + lik
).

We also have An−1 = End0(Vn−1).
We summarize the content of this section as follows.

Conclusion. For every ADE-surface S, there is a natural Lie algebra bundle of correspond-
ing ADE-type over S. Furthermore, we can construct two natural fundamental representation
bundles over S, using lines and rulings on S. Moreover, the Lie algebra bundle can be
considered as the automorphism (Lie algebra) bundle of these fundamental representation
bundles preserving natural structures.
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4. Flat G-bundles over elliptic curves

In this section we review some well-known results about flat G-bundles over elliptic curves.
Let Σ be an elliptic curve with identity element 0. The fundamental group π1(Σ) = Z ⊕ Z.

Let G be a compact, simple and simply connected Lie group of rank r with root system R,
coroot system Rc, Weyl group W , root lattice Λ, coroot lattice Λc and maximal torus T . The
dual lattice Λ∨

c of Λc is the weight lattice. We denote the moduli space of flat G-bundles over
Σ by MG

Σ . It is well known that we have the following isomorphisms:

MG
Σ
∼= Hom(π1(Σ), G)/ad(G)
∼= Hom(π1(Σ), T )/W
∼= T × T/W
∼= Σ ⊗Z Λc/W.

The second isomorphism is by Borel’s theorem [5], which says that a commuting pair of
elements in G can be diagonalized simultaneously. The last isomorphism comes from

Hom(π1(Σ), T ) = Hom(π1(Σ), U(1) ⊗Z Λc) ∼= Hom(π1(Σ), U(1)) ⊗Z Λc

and

Hom(π1(Σ), U(1)) ∼= Pic0(Σ) ∼= Σ.

A theorem of Bernshtein and Shvartsman [4] and Looijenga [18] says that

Σ ⊗Z Λc/W ∼= WP
r
s0=1,s1,...,sr

,

where the latter is the weighted projective space with the weights si, and s1, . . . , sr are the
coefficients of the highest coroot of Rc.

One element of Hom(Λ,Σ)/W can only determine a flat ad(G) = G/C(G) bundle in general.
For the adjoint group ad(G), the moduli space of flat ad(G) bundles Mad(G)

Σ contains
Hom(Λ,Σ)/W as a connected component (see [11]). On the other hand, we have the following
short exact sequences:

0 −→ Λ −→ Λ∨
c −→ Γ −→ 0

and

0 −→ Hom(Γ,Σ) −→ Hom(Λ∨
c ,Σ) −→ Hom(Λ,Σ) −→ 0.

Here Γ is a finite abelian group. The second sequence is exact since Σ is a divisible abelian group.
It follows that Hom(Λ,Σ) and Σ ⊗Z Λc are isogenous as abelian varieties. Let d be the exponent
of the finite group Γ. If we fix a dth root of unity in Jac(Σ) ∼= Σ (equivalently, if we fix a cyclic
subgroup of Σ of order d), then we can uniquely extend a homomorphism f0 ∈ Hom(Λ,Σ) to
a homomorphism f ∈ Hom(Λ∨

c ,Σ) ∼= Λc

⊗
Z

Σ. We have explained the following.

Lemma 4.1. When we fix a dth root of unity in Jac(Σ), we have an isomorphism

Hom(Λ∨
c ,Σ)/W ∼= Hom(Λ,Σ)/W,

and therefore

MG
Σ
∼= Hom(Λ,Σ)/W.

Remark 4.2. We have constructed ADE (Lie algebra) bundles over ADE rational surfaces.
We see that the restriction of such a Lie algebra bundle to the anti-canonical curve Σ will
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uniquely determine a flat G-bundle over Σ. To obtain a simple Lie group G = En or Dn, we
need to assume that 4 � n � 8 or n � 3.

5. Flat G-bundles over elliptic curves and rational surfaces: simply laced cases

From this section on, we fix our ADE-surface S to be the rational surface Xn(x1, . . . , xn),
Yn(x1, . . . , xn), or Zn(x1, . . . , xn). For Xn, we assume n � 8.

Given any smooth elliptic curve Σ with identity 0 ∈ Σ, we assume that our surface S contains
Σ as an anti-canonical curve. For this aim, we first embed Σ into P

2 as an anti-canonical curve,
using the projective embedding φ determined by the linear system |3(0)|, where (0) is the
divisor of the identity element of Σ, and assume that all these blown-up points xi ∈ Σ for
i = 1, . . . , n, and that 0, x1, . . . , xn are in general position. Moreover, we blow up P

2 at 0 to
obtain the embedding of Σ into F1 as an anti-canonical curve, and take the exceptional curve
l0 as the section s for the ruled surface F1.

Convention. In the Zn case, it is well known that in order to obtain a flat SU(n)-bundle
over Σ we need one more assumption as follows:∑

xi = 0 in Σ.

We explain how the moduli space MG
Σ is related to the moduli space of rational surfaces of

the above types. Denote by S(Σ, G) the moduli space of the pairs (S,Σ), where S is an ADE
rational surface of the same type as that of G and Σ ∈ | − KS |.

Proposition 5.1. There exists a well-defined map

φ : S(Σ, G) −→ Hom(Λ,Σ)/W,

where Λ is the lattice Pn or Pn−1 defined in Section 2.

Proof. First we consider the case where S = Xn is a del Pezzo surface, that is, all blown-up
points are in general position. Suppose that we are given the pair (Xn,Σ ∈ | − KXn

|). For each
element y ∈ Pn, we find that y stands for a holomorphic line bundle over S. Restricting y to
Σ, we obtain a holomorphic line bundle over Σ, denoted by Ly. The degree of Ly is given by

deg(Ly) = y · (−K) = 0.

Thus Ly is an element of the Jac3obian of Σ, which is canonically isomorphic to Σ since the
identity element of Σ is given. Thus we obtain a map from Pn to Σ : y → Ly, which is obviously
a homomorphism of abelian groups. However, for one pair (Xn,Σ), we can have different choices
of simple roots in order to identify Pn with the root lattice of En, and all choices only differ
by the action of the Weyl group W (En). Hence, finally we obtain a well-defined map from the
moduli space S(Σ, En) of such pairs (Xn,Σ) to the projective variety Hom(Pn,Σ)/W (En).

The other two cases are similar. Roughly speaking, given a pair (Yn,Σ) or (Zn,Σ), we obtain
an element in, respectively,

Hom(Pn,Σ)/W (Dn) or Hom(Pn−1,Σ)/W (An−1).

In fact we can prove a theorem of Torelli-type for the above correspondence. Roughly
speaking, the moduli space S(Σ, G) of the pairs (S,Σ) is isomorphic to Hom(Λ,Σ)/W , where
Λ is our root lattice.
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Figure 4. A surface with an An−1-configuration (l1, . . . , ln). (A colour version of this figure is
available as supplementary data at the Journal of the London Mathematical Society online.)

Definition 5.2. Let S = Xn, Yn or Zn. An exceptional system ζn = (e1, . . . , en) ∈ Cn on
Xn, Yn or Zn is called a G-configuration for G = En, Dn or An−1, respectively, if en is a
(−1) curve, and if after blowing down en we have that en−1 is a (−1) curve. Furthermore, this
process can proceed successively until, after blowing down e1, we obtain P

2 or F1 for G = En or
Dn and An−1. Denote by ζG a G-configuration. When S is equipped with a G-configuration
ζG, and S has Σ as an anti-canonical curve, we call S a rational surface with G-configuration
and denote it by a pair (S,G).

Equivalently, a G-configuration ζEn
, ζDn

or ζAn−1 on S = Xn, Yn or Zn, means that S could
be considered as the blow-up of P

2, F1 or F1, respectively, at n (maybe not distinct) points
y1, . . . , yn ∈ S successively, such that e1, . . . , en are the corresponding exceptional divisors.

Lemma 5.3. Let S be a surface with G-configuration. Then any smooth rational curve on
S has a self-intersection number at least −2. Furthermore, in the En case, all these (−2) curves
form chains of ADE-type.

Proof. Let L be a smooth rational curve on S. Then L · Σ � 0. By the adjoint formula, we
have −2 = L2 + L · KS . Since Σ is linearly equivalent to −KS , we have L2 � −2. For the last
assertion, see [7].

On an ADE-surface, by Corollary 2.8, any exceptional system is an ADE-configuration. Thus,
we can restate the result of Lemma 2.2(ii), Lemma 2.3(ii) and Lemma 2.4(ii) as follows.

Proposition 5.4. For an ADE-surface, W (G) acts on the set of all G-configurations simply
transitively.

This proposition implies that a G-configuration determines exactly an isomorphism from Pn

(or Pn−1 for An−1) to the corresponding root lattice Λ(G).
An An−1-configuration on Zn is illustrated in Figure 4.
A Dn-configuration on Yn is illustrated in Figure 5.
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Figure 5. A surface with an Dn-configuration (l1, . . . , ln). (A colour version of this figure is
available as supplementary data at the Journal of the London Mathematical Society online.)

Figure 6. A surface with an En-configuration (l1, . . . , ln). (A colour version of this figure is
available as supplementary data at the Journal of the London Mathematical Society online.)

Also an En-configuration on Xn is illustrated in Figure 6.
Recall the definition for ζDn

: ζDn
= (e1, . . . , en) where ei · KYn

= −1, ei · f = 0, ei · ej = δij

and
∑

ei · s ≡ 0mod 2. Next we explain geometrically why we need to assume that
∑

ei · s ≡
0mod 2.

Definition 5.5. Let C ⊂ P
2 be a curve of degree d. A point P ∈ C is called an ordinary

k-fold point of C if P is a k-fold singular point and C has k distinct tangent directions at P .

Lemma 5.6. Let C be a plane curve of degree d with an ordinary (d − 1)-fold point P .
Then the following properties hold.

(i) The point P is the only singular point of C.
(ii) The normalization of C is a smooth rational curve.
(iii) Fix a point P ∈ P

2. Then the variety of all plane curves of degree d with P as an
ordinary (d − 1)-fold point is of dimension 2d.

(iv) Given P and other 2d generic points, there exists a unique curve C ⊂ P
2 of degree

d, such that C has P as an ordinary (d − 1)-fold point and passes through these 2d generic
points.
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Proof. (i) We apply Bezout’s theorem. (ii) We apply the genus formula. (iii) Let [x, y, z] be
the homogenous coordinates of P

2 and let P = [1, 0, 0]. Then C is defined by the polynomial

f(x, y, z) = g(y, z) +
d−1∏
i=1

(aiy − biz)x,

where deg(g) = d. Therefore, the dimension is 2d.

Proposition 5.7. Let Σ be embedded into F1 (with section s) as a smooth anti-canonical
curve and x1, . . . , xn are distinct points of Σ. Blowing up F1 at the xi, we obtain Yn with
corresponding exceptional curves li, with i = 1, . . . , n.

(i) When n = 2k, if x1, . . . , xn are in general position, then after contracting f − l1, . . . , f −
ln, we still obtain the surface F1. In other words, we obtain the same surface Y2k by blowing
up either {x1, . . . , xn}, or {−x1, . . . ,−xn}.

(ii) When n = 2k + 1, if x1, . . . , xn are in general position, then after contracting f −
l1, . . . , f − ln, the resulting surface is P

1 × P
1, but not F1.

Proof. Let C be a negative rational curve in Yn that does not intersect f − li, with i =
1, . . . , n. Then C satisfies the following equations

C · C = −m,m > 0;
C · K = m − 2;

C · (f − li) = 0, i = 1, . . . , n.

Since C is a rational curve and Σ ∈ | − K|, we have that C · (−K) � 0. Thus m � 2. Then
m = 1 or 2. Considering F1 as the blow-up of P

2 at 0 ∈ Σ with exceptional curve s, we can
assume that C = a · h − b · s −

∑
ci · li, with a � 0, b � 0 and ci � 0. Solving the system of

equations, we obtain

m = 1 or 2,
b = a − 1,

ci = 1, i = 1, . . . , n,

a = (n − 1 + m)/2.

For m = 1, we find that n = 2a is even. We have the class as follows:

C = ah − (a − 1)s −
n=2a∑
i=1

li = af + s −
2a∑
i=1

li.

This means that all of the points 0, x1, . . . , xn lie on the curve π(C), where π : Yn → P
2 is the

blow-up of P
2 successively at 0, x1, . . . , xn. There exists exactly one such curve C for generic

x1, . . . , xn, and it is smooth, by Lemma 5.6. Hence, after contracting f − l1, . . . , f − l2a, we
still obtain F1.

For m = 2, it is clear that n = 2a + 1 is odd. We have the class as follows:

C = ah − (a − 1)s −
n=2a+1∑

i=1

li = af + s −
2a+1∑
i=1

li.

This means that all of the points 0, x1, . . . , xn lie on the curve π(C), where π : Yn → P
2 is the

blow-up of P
2 successively at 0, x1, . . . , xn. There exists no such curve for generic x1, . . . , xn,

by Lemma 5.6. Hence, after contracting f − l1, . . . , f − l2a+1, no rational curve with negative
self-intersection number can survive. Therefore the resulting surface is P

1 × P
1, but not F1.
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Example 2. Blowing up F1 at two points x1 and x2 we obtain Y2. Contracting f − l1 and
f − l2, or contracting l1 and l2, we always obtain the surface F1. However, contracting f − l1
and l2, we just obtain the surface P

1 × P
1, but not F1!

Remark 5.8. (i) Lemma 5.6 has a corresponding version for P
1 × P

1.
(ii) A G-configuration ζG = (e1, . . . , en) for S = Xn, Yn or Zn just means that, after blowing

down en, en−1, . . . , e1 successively, we still obtain P
2, F1 or F1, respectively.

Let S be an ADE-surface equipped with a G-configuration ζG. We denote the moduli space
of the pairs (S,Σ) by S(Σ, G), where two pairs (S,Σ) and (S

′
,Σ

′
) are equivalent if and only if

there is an isomorphism π from S to S′ such that π|Σ is also an isomorphism from Σ to Σ′.
We show that S(Σ, G) is isomorphic to an open dense subset U of the variety Hom(Λ,Σ)/W .

In fact, for any element θ ∈ (Hom(Λ,Σ)/W ) \ U , the boundary component, we can find possibly
non-equivalent pairs (S,Σ) such that θ comes from the restriction. Thus, we can complete
S(Σ, G) by adding these pairs and identifying them as one point. Denote the completion by
S(Σ, G). Then we can identify S(Σ, G) with the projective variety Hom(Λ,Σ)/W . This provides
a natural compactification for the moduli space S(Σ, G).

More precisely, let S = Xn, Yn or Zn be an ADE-surface and let Λ be the root lattice of En,
Dn or An−1, respectively, with corresponding Weyl group W . Furthermore, we fix a 3rd, 2nd
or nth root of unity in Jac(Σ) ∼= Σ in the En, Dn or An−1 case (equivalently, we fix a cyclic
subgroup of Σ of order d = 3, 2 or n). Then we have the following theorem.

Theorem 5.9. (i) There is an injective map φ from the moduli space S(Σ, G) onto an
open dense subset of Hom(Λ,Σ)/W .

(ii) The injective map φ can be extended to a bijective map from the completion S(Σ, G)
onto Hom(Λ,Σ)/W .

(iii) Moreover, the completion is obtained by including all rational surfaces with G-
configuration to S(Σ, G). Any smooth rational curve on a surface corresponding to a boundary
point has a self-intersection number at least −2, and in the En case these (−2) curves form
chains of ADE-type.

Proof. First we suppose S = Xn. We have constructed the map φ in Proposition 5.1. We
prove the injectivity. We fix a G-configuration ζG = (l1, . . . , ln) on Xn, and a simple root system:
α1 = l1 − l2, α2 = l2 − l3, α3 = h − l1 − l2 − l3, α4 = l3 − l4, . . . , αn = ln−1 − ln. Blowing down
ln, ln−1, . . . , l1 successively, we obtain P

2 with Σ as an anti-canonical curve. For all i = 1, . . . , n,
let xi ∈ Xn be the unique intersection points of li and Σ. Then Xn can be considered as
a blow-up of P

2 at these n points xi ∈ Σ, with i = 1, . . . , n with exceptional curves li, with
i = 1, . . . , n.

According to previous arguments, we have a homomorphism g ∈ Hom(Λ,Σ). Let g(αi) =
pi ∈ Σ; then we have the following equations by the group law of Σ as an abelian group:

x1 − x2 = p1,

x2 − x3 = p2,

−x1 − x2 − x3 = p3,

xk−1 − xk = pk, k = 4, . . . , n.

The determinant of the coefficient matrix of this system of linear equations is ±3. Thus it
has unique solution (if we fix a third root of unity in Jac(Σ)). That is, the xi are uniquely
determined by g up to Weyl group actions. The Weyl group actions just lead to choices of
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other G-configurations. By Proposition 5.4, this does not change the pair (Xn,Σ). Hence, φ
is injective. These points xi are not ‘in general position’ if and only if pi will satisfy some
(finitely many) equations. That means the image of φ must be open dense in Hom(Λ,Σ)/W .
The extendability of φ is also because of the existence and uniqueness of the solution of the
above equations.

For the cases of Yn and Zn, the arguments are similar. It is easy to see that the map φ is
well defined in both cases. For Yn, the system of linear equations is given by

−x1 − x2 = p1,

xk−1 − xk = pk, k = 2, . . . , n.

The determinant is ±2. Thus the solution is uniquely determined (if we fix a 2nd root of unity
in Jac(Σ)). The remaining arguments are just the same as in the first case. Finally, for the case
of Zn, the system of equations is given by∑

xi = 0,

xk−1 − xk = pk−1, k = 2, . . . , n.

The determinant is ±n. Then the solution is uniquely determined (if we fix an nth root of
unity in Jac(Σ)). The remaining arguments are just the same as in the En case. These prove
(i) and (ii).

For (iii), the result follows from Lemma 5.3.

Remark 5.10. The referee remarked that the set φ(S(Σ, G)) in Theorem 5.9 was exactly
the complement of the discriminant in Hom(Λ,Σ)/W . This is the case for En-type. As
the referee indicated to us, this follows from the description by Looijenga [19, 20] and
Pinkham [24] of Hom(Λ,Σ)/W as the semi-universal deformation space of a simple elliptic
singularity. The deformation space is realized as a family of affine surfaces, and the fiberwise
compactification is a del Pezzo surface with an anti-canonical elliptic curve as the complement
divisor. Furthermore, the −2 curves on fibers produce the vanishing cycles that determine
the discriminant locus in Hom(Λ,Σ)/W . For other cases, it is hoped to be true. However, we
cannot give a proof at present. When the anti-canonical curve C ∈ | − KS | is a nodal rational
curve, the moduli space of pairs (S,C) is considered by Looijenga in [21]. This is in fact a
degeneration of the situation above, where the elliptic curve degenerates into a nodal curve.
It is also interesting to study the configurations on such surfaces which are related to some
fundamental representations.

As a conclusion of Lemma 4.1 and Theorem 5.9, we have the following.

Theorem 5.11. When we fix a dth root of unity in Jac(Σ), we have a bijection

S(Σ, G) ∼−→ MG
Σ ,

where d is the exponent of the finite group Λc/Λ.

Remark 5.12 [11, 12, 26]. The moduli space of flat An bundles over Σ is exactly the
ordinary projective space CP

n. This can be described as follows. A flat SU(n + 1) bundle
is determined uniquely by n + 1 points on Σ with sum equal to 0, up to isomorphism.
Furthermore, n + 1 points on Σ with sum equal to 0 are determined uniquely by a global
section H0(Σ,OΣ(n(0))) up to a scalar, where (0) is the divisor of the identity element 0. Thus
the moduli space of flat SU(n + 1) bundles is isomorphic to P(H0(Σ,OΣ((n + 1)P ))) = P

n.
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From this we see that the moduli space of pairs (S, Σ) is just the ordinary complex projective
space CP

n.

Example 3. We look at what the pre-image of a trivial G-bundle is. For example, in
the E8 case, the trivial bundle means the element 0 ∈ Hom(Λ(E8),Σ)/W (G). By the above
correspondence, all xi = 0 in Σ. This means that we can blow up P

2 at the identity element 0
(an inflection point) eight times to obtain the surface represented by this pre-image, which is
a boundary point in the moduli space S(Σ, G). Blowing it up once more, we obtain an elliptic
fibration with a singular fiber of Ẽ8-type [3].
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