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INSTANTONS AND BRANES IN MANIFOLDS

WITH VECTOR CROSS PRODUCTS∗

JAE-HYOUK LEE† AND NAICHUNG CONAN LEUNG‡

Abstract. In this paper we study the geometry of manifolds with vector cross products and its
complexification.

First we develop the theory of instantons and branes and study their deformations. For exam-
ple they are (i) holomorphic curves and Lagrangian submanifolds in symplectic manifolds and (ii)
associative submanifolds and coassociative submanifolds in G2-manifolds.

Second we classify Kähler manifolds with the complex analog of the vector cross product, namely
they are Calabi-Yau manifolds and hyperkähler manifolds. Furthermore we study instantons, Neu-
mann branes and Dirichlet branes on these manifolds. For example they are special Lagrangian
submanifolds with phase angle zero, complex hypersurfaces and special Lagrangian submanifolds
with phase angle π/2 in Calabi-Yau manifolds.

Key words. Instanton, Brane, vector cross product, complex vector cross product, Calibrated
submanifold
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1. Introduction. The vector product, or the cross product, in R
3 was gener-

alized by Gray ([1],[6]) to the product of any number of tangent vectors, called the
vector cross product (abbrev. VCP). The list of Riemannian manifolds with VCP
structures on their tangent bundles includes symplectic (or Kähler) manifolds, G2-
manifolds and Spin (7)-manifolds. They are manifolds with special holonomy and
they play important roles in string theory, M-theory and F-theory respectively. In
this paper we develop the geometry of the VCP in general.

We also introduce the complex analog of the VCP in definition 26, called the
complex vector cross product (abbrev. C-VCP). We prove that there are only two
classes of manifolds with C-VCPs.

Theorem 1. If M is a closed Kähler manifold with a C-VCP, then M must be
either (i) a Calabi-Yau manifold, or (ii) a hyperkähler manifold.

They are again manifolds with special holonomy and they play important roles in
Mirror Symmetry. Notice that the list in the Berger classification of holonomy groups
of oriented Riemannian manifolds coincides with the list of Riemannian manifolds
admitting a VCP or a C-VCP.

We study the geometry of instantons,which are submanifolds in M preserved by
the VCP. Instantons are always absolute minimal submanifolds in M . When an in-
stanton is not a closed submanifold in M , we require its boundary to lie inside a brane
in order to have a Fredholm theory for the free boundary value problem. For exam-
ple, when M is a symplectic manifold, then instantons and branes are holomorphic
curves and Lagrangian submanifolds in M respectively. These geometric objects play
important roles in understanding the symplectic geometry of M . When M is a G2-
manifold (resp. Spin (7)-manifold), instantons correspond to BPS states in M-theory
(resp. F-theory) and branes are supersymmetric cycles.
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We define a g⊥
M -valued tensor τ on M and we prove that instantons A in M can

be characterized by the condition

τ |A = 0.

Such a characterization is useful in describing the deformations of instantons (see
section 2.3 for details.).

For a brane C in M , its normal bundle is naturally identified with the space
Λr

V CPT
∗
C of VCP forms of degree r on C. We prove that infinitesimal deformations of

branes are parameterized by such differential forms on C which are closed. Further-
more they are always unobstructed, namely the moduli spaces of branes are always
smooth. (See section 2.5 for details).

For the complex analog, the definition of instantons depends on a parameter
called the phase θ. We prove that they can be characterized by the vanishing of
certain differential forms on them. Such characterization is needed to describe the
deformation of these instantons.

For C-VCPs, there are two types of branes corresponding to the Dirichlet type
and Neumann type boundary value problems for instantons. We call them D-branes
and N-branes respectively. We will discuss some of their basic properties and they
can classified as follows.

Manifolds
w/ C-VCP

Calabi-Yau manifolds hyperkähler manifolds

Instantons Special Lagrangianθ=0 I-holomorphic curves

N-Branes Complex Hypersurfaces J-complex Lagrangians

D-Branes Special Lagrangianθ=−π/2 K-complex Lagrangians

In the sequel [11] to this paper, we define higher dimensional knot spaces for the
manifolds with VCPs. They admit natural symplectic structures and the geometry of
branes and instantons in M can be interpreted as the geometry of Lagrangians and
holomorphic curves in these knot spaces. For C-VCPs, we construct isotropic knot
spaces for Calabi-Yau manifolds M and we show that they have natural holomorphic
symplectic structures. Both special Lagrangian submanifolds and complex hypersur-
faces in M give complex Lagrangian submanifolds in its isotropic knot space, but
with respect to different complex structures in its twistor space. Relations to Mirror
Symmetry will also be discussed there.

2. Instantons and branes. In this section we introduce and study instantons
and branes on manifolds with (complex) vector cross products. Traditionally instan-
tons refer to gradient flow lines of a Morse function f on a Riemannian manifold
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(M, g), as studied by Witten in [16]. Morse theory can be generalized to any closed
one form φ, because φ = df locally. Supposing that φ is nonvanishing, we can choose
a Riemannian metric on M such that it has unit length at every point. Then the
gradient flow lines for the vector field X, defined by φ = ιXg, can be reinterpreted as
one-dimensional submanifolds in M calibrated by φ.

Suppose that M is a symplectic manifold with a symplectic form ω. By transgres-
sion on ω, we obtain a closed one form on the free loop space of M . The instantons
in the free loop space correspond to holomorphic curves in M and they are calibrated
by ω. We continue to call these instantons and they play important roles in the closed
String theory (see e.g. [17]). In open String theory, we consider holomorphic curves in
M with boundaries lying on a Lagrangian submanifold in M , which we call a brane.

In general instantons are submanifolds (of the smallest dimension) which are
preserved by the VCP, and branes are the natural boundaries for the free boundary
value problems for instantons.

2.1. Manifolds with vector cross product. In this subsection we define
closed and parallel vector cross product structure on a Riemannian manifold. First we
need to review the VCP as introduced by Gray [6]. A basic example of VCPs is the
standard vector product on R

3. The vector product of any two linearly independent
vectors in a plane is a vector which is orthogonal to the plane and has the length
equal to the area of the parallelogram spanned by those vectors. Actually, these two
properties characterize the VCP as in the following definition by Brown and Gray [1].

Definition 2. On an n-dimensional Riemannian manifold M with a metric g,
an r-fold Vector Cross Product (VCP) is a smooth bundle map,

χ : ∧rTM → TM

satisfying






g (χ (v1, ..., vr) , vi) = 0 , (1 ≤ i ≤ r)

g (χ (v1, ..., vr) , χ (v1, ..., vr)) = ‖v1 ∧ ... ∧ vr‖
2

where ‖·‖ is the induced metric on ∧rTM .

We also write

v1 × ...× vr = χ (v1, ..., vr) .

The first condition in the above definition is equivalent to the following tensor φ being
a skew symmetric tensor of degree r + 1, i.e. φ is a differential form,

φ (v1, ..., vr+1) = g (v1 × ...× vr, vr+1) .

The VCP can also be characterized in terms of φ as follows.

Definition 3. A VCP form of degree r+1 is a differential form φ ∈ Ωr+1 (M)
satisfying

|ιe1∧e2..∧er
(φ)| = 1

for any orthonormal vectors e1, ..., er ∈ TxM , for any x in M .

The following proposition is immediate.
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Proposition 4. Let (M, g) be a Riemannian manifold and φ ∈ Ωr+1 (M). We
write φ (v1, ..., vr+1) = g (χ (v1, ..., vr) , vr+1) with χ : ∧rTM → TM . Then φ is a
VCP form if and only if χ is a VCP.

As we will see, a Hermitian almost complex structure is equivalent to a 1-fold
VCP and the corresponding Kähler form is the corresponding VCP form. In fact the
complete list of VCPs is surprisingly short. The classification of the linear VCPs on
a vector space V with a positive definite inner product g, by Brown and Gray [1], can
be summarized in the following.

(i) r = 1 : If χ : V → V is a 1-fold VCP, then |χ (v)| = |v| implies that χ
is an orthogonal transformation. Polarizing 〈χ (v) , v〉 = 0, we obtain 〈χ (u) , v〉 +
〈u, χ (v)〉 = 0, that is χ∗ = −χ. Together we have χ2 = −id. Namely a 1-fold VCP
is equivalent to a Hermitian complex structure on V . The symmetry group of χ is
isomorphic to U (m) = O (2m) ∩ GL (m,C). On the other hand, the isomorphism
U (m) = O (2m) ∩ Sp (2m,R) reflects the fact that a 1-fold VCP is determined by its
corresponding VCP form, or its Kähler form φ. The standard example is V = C

m

with

φ = dx1 ∧ dy1 + · · · + dxm ∧ dym.

(ii) r = n − 1 : an (n− 1)-fold VCP on an n-dimensional inner product space
V is the Hodge star operator ∗ given by g on Λn−1V and the VCP form of degree
n is the induced volume form volV on V . The automorphism group preserving the
VCP form volV is the group of linear transformations preserving g and volV , i.e.
Aut (V, volV ) = O (n) ∩ SL (n,R) = SO (n). The standard example is V = R

n and

φ = dx1 ∧ dx2 ∧ · · · ∧ dxn.

(iii) r = 2 : a 2-fold VCP on a 7-dimensional vector space R
7 is a cross product

defined as a × b = Im (ab) for any a, b in R
7 = Im O, the set of imaginary octonion

numbers. For coordinates (x1,..., x7) on Im O, the corresponding VCP form Ω of
degree 3 can be written as

Ω = dx123 − dx167 + dx145 + dx257 + dx246 − dx356 + dx347

where dxijk = dxi ∧ dxj ∧ dxk. Bryant [3] showed that the group of real-linear
transformations of Im O preserving the VCP form Ω actually preserves g and VCP
and it is the rank two exceptional Lie group G2, the automorphism group of the
octonion O, i.e. Aut (Im O,Ω) = G2 ⊂ SO (Im O) = SO (7).

(iv) r = 3 : a 3-fold VCP on an 8-dimensional vector space R
8 is a cross product

defined as a× b × c =
(

a
(

b̄c
)

− c
(

b̄a
))

/2 for any a, b and c in R
8 ∼= O, the octonion

numbers. For coordinates (x1,..., x8) on O, the corresponding VCP form Θ of degree
4 can be written as

Θ = −dx1234 − dx5678 −
(

dx21 + dx34
) (

dx65 + dx78
)

−
(

dx31 + dx42
) (

dx75 + dx86
)

−
(

dx41 + dx23
) (

dx85 + dx67
)

.

Bryant [3] also showed that the group of real-linear transformations of O preserving
the VCP form Θ on O preserves g and the VCP, and it is Spin (7), i.e. Aut

(

R
8,Θ

)

=
Spin (7) ⊂ SO (8).

From the above classification of linear VCPs, the existence of a VCP on a Rie-
mannian manifold M is equivalent to the reduction of the structure group of the
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r 1 n-1 2 3

n = dim V 2m n 7 8

V C
m

R
n ImO O

Table 1

Classification of r-fold V CP on V ≃ R
n

frame bundle from O (n) to U (m), SO (n) , G2 and Spin (7), for r = 1, n− 1, 2 and
3 respectively. Using the obstruction theory in topology, the necessary and sufficient
conditions for the existence of such a reduction of structure group in the r = n− 1, 2
and 3 cases are w1 = 0, w1 = w2 = 0 and w1 = w2 = p2

1 − 4p2 + 8χ = 0 respectively.
Here wi, pi and χ are the Stiefel-Whitney class, the Pontrjagin class, and the Euler
class of M , respectively (see e.g. [9]).

Given a VCP on a Riemannian manifold M , that is a linear VCP on each tangent
space of M , we would impose certain integrability conditions for its coherence. For
example, a 1-fold VCP is a Hermitian almost complex structure on M . This defines
a symplectic structure or Kähler structure on M if the corresponding VCP form on
M is closed or parallel respectively. In general we have the following definition.

Definition 5. Suppose that M is a Riemannian manifold with a VCP χ and φ
is its corresponding VCP form. We call χ a closed (resp. parallel) VCP if dφ = 0
(resp. ∇φ = 0, where ∇ is the Levi-Civita connection on M).

The classification of manifolds with closed/parallel VCP is presented in the fol-
lowing table.

r Closed VCP Parallel VCP

1 Almost Kähler manifolds Kähler manifolds

n− 1 Oriented Riem. manifolds Oriented Riem. manifolds

2 Almost G2-manifolds G2-manifolds

3 Spin (7) -manifolds Spin (7) -manifolds

Remark. A VCP form φ of degree r+1 on M induces a VCP form of degree r on
any oriented hypersurface H in M , namely the restriction of ινφ to H where ν is the
unit normal vector field on H . However it usually does not preserve the closedness of
the VCP form. For example, Calabi [5] and Gray [6] showed that such a two form on
any hypersurface in R

7 = Im O is never closed unless it is an affine hyperplane. This
result is generalized by Bryant [2] to any codimension two submanifold in O, where
he showed that closedness of such a two form is equivalent to the submanifold being
a complex hypersurfaces for some suitable complex structure on O.

Remark. We consider any nontrivial smooth map f : M1 → M2 between two
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Riemannian manifolds with r-fold VCPs. If f preserves their VCPs, i.e.

f∗ (v1 × ...× vr) = (f∗v1) × ...× (f∗vr) ,

for any tangent vectors v1, v2, ..., vr to M1, then Gray [7] showed that f is actually an
isometric immersion unless r = 1 and f would be a holomorphic map. In particular
any diffeomorphism of M preserving an r-fold VCP with r ≥ 2 is automatically an
isometry of M , i.e. Diff (M,χ) ⊂ Isom (M, g).

In the next subsection we study submanifolds in M which are preserved by the
VCP.

2.2. Instantons for vector cross products. In a symplectic manifold with
a compatible almost complex structure J , namely an almost Kähler manifold, an
instanton is a two-dimensional submanifold which is preserved by J , and a brane
is a Lagrangian submanifold, i.e. a middle-dimensional submanifold such that the
restriction of the symplectic form vanishes. They play essential roles in symplectic
geometry. These notions have natural analogs for manifolds with VCPs.

Definition 6. Let M be a Riemannian manifold with a closed r-fold VCP χ.
An (r + 1)-dimensional submanifold A is called an instanton if it is preserved by χ.
That is, for any tangent vectors u1, ..., ur in TxA we have u1 × ...× ur ∈ TxA.

In this subsection we establish some basic properties for instantons. The following
lemma is immediate from the definition.

Lemma 7. Suppose that A1 and A2 are two instantons in M with clean intersec-
tion A1 ∩A2. Then A1 ∩A2 cannot be of codimension one in A1 or A2.

When A is a holomorphic curve in an almost Kähler manifold M , its normal
bundle NA/M has a natural complex structure whose holomorphic sections describe
infinitesimal deformations of A inside M . The next proposition generalizes such a
structure on NA/M to any VCP structure.

Proposition 8. Let M be a Riemannian manifold with an r-fold VCP χ and A is
an instanton in M . Then χ restricts to give a bundle map Λr−1TA⊗NA/M → NA/M ,
where NA/M is the normal bundle of A in M .

Proof. Suppose that A is an instanton in M . At any given point x in A and any
tangent vectors u1, ..., ur−1 in TxA and any normal vector ν in NA/M,x, we want to
show that

u1 × ...× ur−1 × ν ∈ NA/M,x.

This is because for any u in TxA,

g (u1 × ...× ur−1 × ν, u) = φ (u1, ..., ur−1, ν, u)

= −φ (u1, ..., ur−1, u, ν)

= −g (u1 × ...× ur−1 × u, ν)

= 0.

The last equality follows from the fact that A is preserved by χ and therefore u1 ×
...× ur−1 × u lies in TxA. This implies that there is a bundle map,

Λr−1TA ⊗NA/M → NA/M .
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In fact the normal bundle to an instanton is always a twisted spinor bundle over
A and the above bundle map is given by the Clifford multiplication.

An instanton in M is always a minimal submanifold with absolute minimal vol-
ume. This will follow from an equivalent characterization of instantons, namely they
are those submanifolds in M calibrated by φ. The theory of calibration is developed
by Harvey and Lawson in [8] to produce absolute minimal submanifolds. Recall that
a closed differential form ψ of degree k on a Riemannian manifold M is called a
calibrating form if it satisfies

ψ (x) |V ≤ volV ,

for every oriented k-plane V in TxM , at each point x in M . Here volV is the volume
form on V for the induced metric. A calibrated submanifold A is a submanifold where
ψ|A is equal to the induced volume form on A. An important observation is the
following: any other submanifold B, homologous to A, satisfies

V ol (B) ≥ V ol (A) =

∫

A

[ψ] ,

and the equality sign holds if and only if B is also a calibrated submanifold in M . We
will discover that all the examples of calibrated submanifolds studied in [8] are either
instantons or branes in manifolds with VCPs or complex VCPs.

The next lemma shows that instantons are calibrated submanifolds.

Lemma 9. Let M be a Riemannian manifold with a closed r-fold VCP χ and we
denote the corresponding VCP form as φ . Then we have (i) φ is a calibrating form,
(ii) an (r + 1)-dimensional submanifold A in M is calibrated by φ if and only if it is
an instanton.

Proof. The closed form φ is a calibrating form because for any x in M and for
any oriented orthonormal tangent vectors e1, e2, ..., er+1 at x, it satisfies,

φ(e1, e2, ..., er+1) = 〈χ (e1, e2, ..., er) , er+1〉

≤ |χ (e1, e2, ..., er)| · |er+1|

= ‖e1 ∧ e2 ∧ ... ∧ er‖ · |er+1|

= 1.

The equality signs hold if and only if χ (e1, e2, ..., er) = er+1. Namely the linear
span of e1, e2, ..., er+1 is preserved by χ.

As a corollary of this lemma and basic properties of calibration, an (r + 1)-
dimensional submanifold A in M is an instanton if and only if its total volume with
respect to the induced metric satisfies the following equality,

V ol (A) =

∫

A

[φ] .

Examples of instantons. (i) Instantons in an oriented n-dimensional manifold
(i.e. VCP form of degree n) are open subsets inM . (ii) Instantons in a Kähler manifold
(i.e. parallel VCP form of degree 2) are holomorphic curves. (iii) Instantons in a G2-
manifold (i.e. parallel VCP form of degree 3) are called associative submanifolds (see
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[8][10]). (iv) Instantons in a Spin (7)-manifold (i.e. parallel VCP form of degree 4,
called the Cayley form) are called Cayley submanifolds (see [8][10]).

Suppose that (M, g, χ) has a torus symmetry group, say M = X × T k. Then
an r-fold VCP on M induces an (r − k)-fold VCP on X . Moreover a submanifold
B in X is an instanton if and only if B × T k is an instanton in M . For instance if
Σ is a holomorphic curve is a Calabi-Yau threefold X , then Σ × S1 is an associative
submanifold in the G2-manifold X × S1 and vice versa.

The next proposition shows that instantons arise naturally as fixed sets of sym-
metry.

Proposition 10. Suppose that σ is an isometric involution of M preserving its
r-fold VCP χ. If the fixed point set Mσ has dimension r + 1 then it is an instanton
in M .

Proof. Given any tangent vectors v1, ..., vr to Mσ at any point x, we write

v1 × · · · × vr = t+ n,

where t (resp. n) is tangent (resp. normal) to Mσ. Since Mσ is the fixed point set of
an involution, we have σ∗ (t+ n) = t− n. On the other hand,

σ∗ (v1 × · · · × vr) = σ∗ (v1) × · · · × σ∗ (vr)

= v1 × · · · × vr

because σ preserves χ. This implies n = 0, thus Mσ is preserved by χ, namely an
instanton in M .

Remark. Given any r-dimensional analytic submanifold S in M , an r-fold VCP
χ on M determines a unique normal direction on S. Using Cartan-Kähler theory, we
can always integrate out this direction and obtain an instanton in M containing S
(see e.g. [8]).

2.3. Deformations of instantons. In order to describe instantons and their
deformations effectively, we need to develop further the linear algebra of an inner
product space V with an r-fold VCP

χ : ∧rV → V ,

or their associated VCP form φ ∈ Λr+1V ∗. We will show that instantons can be given
by the solutions of the equation τ |A = 0 for an appropriate τ : ∧r+1V → g⊥. Such a
description is very useful in describing the deformations of instantons.

Definition 11. Let V be an inner product space with an r-fold VCP χ. We
define a homomorphism

τ : ∧r+1V → ∧2V

as the composition of the following homomorphisms:

∧r+1V
(i)
→ V ⊗ ∧rV

(ii)
→ V ⊗ V

(iii)
→ ∧2V,

where these maps are (i) the natural inclusion, (ii) id⊗χ, (iii) the natural projection.
Explicitly we have

τ (v1, ..., vr+1) =
1

√
r + 1

r+1
∑

k=1

(−1)k−1 vk ∧ χ (v1, ..., v̂k, ..., vr+1) .
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As a matter of fact, the image of τ lies inside a much smaller subspace in ∧2V . We
define g ⊂ so (V ) ∼= ∧2V ∗ to be the space of infinitesimal isometries of V preserving
the VCP χ. Namely ζ ∈ so (V ) ⊂ End (V ) lies inside g if

ζ (v1 × v2 × ...× vr) = ζ (v1) × v2 × ...× vr + ...+ v1 × v2 × ...× ζ (vr) ,

for any v1, v2, ..., vr in V . This is equivalent to

r+1
∑

i=1

φ (v1, v2, ..., ζ (vi) , ..., vr+1) = 0,

for any v1, v2, ..., vr in V . The next proposition says that the image of τ is orthogonal
to g ⊂Λ2V ∗ with respect to the natural pairing between Λ2V and Λ2V ∗.

Proposition 12. Let V be an inner product space with an r-fold VCP χ, we
have

τ : ∧r+1V → g⊥ ⊂ ∧2V.

Proof. Given any ζ ∈ g ⊂ so (V ) ⊂ End (V ), we denote the corresponding two
form in ∧2V ∗ as ζ̄. For any vi’s in V , we compute

〈

τ (v1, ..., vr+1) , ζ̄
〉

= ζ̄

(

1
√
r + 1

r+1
∑

i=1

(−1)i−1 vi ∧ (v1 × ...× v̂i × ...× vr+1)

)

=
1

√
r + 1

〈

r+1
∑

i=1

(−1)i−1 (v1 × ...× v̂i × ...× vr+1) , ζ (vi)

〉

=
(−1)

r

√
r + 1

r+1
∑

i=1

φ (v1, ..., ζ (vi) , ..., vr+1)

= 0.

Hence the result is proved.

The main property of τ is given by the following theorem.

Theorem 13. Let V be an inner product space with an r-fold VCP χ and φ its
associated VCP form. We have

|φ (v1, ..., vr+1)|
2 + |τ (v1, ..., vr+1)|

2
∧2 = |v1 ∧ ... ∧ vr+1|

2
Λr+1

Proof. It suffices to assume that vi’s are orthogonal to each other. Note that when
l 6= m, we have vl perpendicular to both vm and χ (v1, ..., v̂m, ..., vr+1) and therefore,

〈vl ∧ χ (v1, ..., v̂l, ..., vr+1) , vm ∧ χ (v1, ..., v̂m, ..., vr+1)〉 = 0.

We compute



130 J.-H. LEE AND N. C. LEUNG

|τ (v1, ..., vr+1)|
2

=
1

r + 1

∣

∣

∣

∣

∣

r+1
∑

k=1

(−1)
k−1

vk ∧ χ (v1, ..., v̂k, ..., vr+1)

∣

∣

∣

∣

∣

2

=
1

r + 1

r+1
∑

k=1

|vk ∧ χ (v1, ..., v̂k, ..., vr+1)|
2

=
1

r + 1

r+1
∑

k=1

(

|v1|
2 · · · |vr+1|

2 − 〈vk, χ (v1, ..., v̂k, ..., vr+1)〉
2
)

=
1

r + 1

r+1
∑

k=1

(

|v1|
2 · · · |vr+1|

2 − |φ (v1, ..., vr+1)|
2
)

= |v1 ∧ ... ∧ vr+1|
2
− |φ (v1, ..., vr+1)|

2
.

Hence the result is proved.

As an immediate corollary of the above theorem, we have

Corollary 14. Suppose that χ is an r-fold VCP on V . An (r + 1)-dimensional
linear subspace P ⊂ V is preserved by χ, i.e. an instanton, if and only if

τ (v1, ..., vr+1) = 0

for any basis v1, ..., vr+1 of P .

Remark. These two results were first obtained by Harvey and Lawson in the
G2- and Spin (7)-manifolds cases using special structures of the octonions [8].

We also denote the above condition as τ (P ) = 0. Assuming this is the case, we
denote the orthogonal decomposition of V as

V = P ⊕N .

Similarly we have the following decomposition,

∧2V ∼= ∧2P ⊕ ∧2N ⊕ (P ⊗N) .

Proposition 15. Suppose that χ is an r-fold VCP on V with an orthogonal
decomposition

V = P ⊕N

where P is an (r + 1)-dimensional linear subspace of V preserved by χ. We have

τ (p1, ..., pr, n) ∈ P ⊗N

for any p1, ..., pr in P and n ∈ N .

Proof. Note that P being an instanton in V implies that

〈χ (p1, ..., pr−1, n) , pr〉 = ±〈χ (p1, ..., pr−1, pr) , n〉 = 0.
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That is χ (p1, ..., pr−1, n) ∈ N , or equivalently, pr ∧ χ (p1, ..., pr−1, n) ∈ P ⊗ N .
However τ (p1, ..., pr, n) is a linear combination of terms of this form and therefore
τ (p1, ..., pr, n) ∈ P ⊗N . This proves the proposition.

We are going to use these linear algebra results to study the deformations of
instantons. Given any VCP χ on a Riemannian manifoldM , the spaces of infinitesimal
automorphisms of (TM , χ) on various fibers glue together to form a subbundle

gM ⊂ Λ2T ∗
M .

Similarly the vector cross product χ determines a tensor

τ ∈ Ωr+1
(

M,g⊥
M

)

.

On the global level, the above corollary 14 is equivalent to the following result.

Theorem 16. If M is a Riemannian manifold with an r-fold VCP χ, then an
(r + 1)-dimensional submanifold A is an instanton if and only if

τ |A = 0 ∈ Ωr+1
(

A,g⊥
M

)

.

This theorem is useful in studying the deformation of instantons. We first recall
that any nearby submanifold to A is the image of the exponential map

expv : A→M,

for some small normal vector field v ∈ Γ
(

A,NA/M

)

. Therefore, given any instanton
A in M , we can describe its nearby instantons as the zeros of the following map,

F : Γ
(

A,NA/M

)

→ Γ
(

A,g⊥
M

)

defined as F (v) := ∗A exp∗
v (τ) where ∗A is the Hodge star operator of A. Suppose

that At is a family of submanifolds in M with A = A0 an instanton and we denote
its variation normal vector field as

v =
dAt

dt

∣

∣

∣

∣

t=0

∈ Γ
(

A,NA/M

)

.

By proposition 15 and A being an instanton, we have

dτ |At

dt

∣

∣

∣

∣

t=0

∈ Γ
(

A, T ∗
A ⊗NA/M ∩ g⊥

M

)

.

In particular the derivative of F is given by

F ′ (0) : Γ
(

A,NA/M

)

→ Γ
(

A, T ∗
A ⊗NA/M ∩ g⊥

M

)

F ′ (0)

(

dAt

dt

∣

∣

∣

∣

t=0

)

=
dτ |At

dt

∣

∣

∣

∣

t=0

.

By studying individual cases, we find out that NA/M is always a twisted spinor
bundle over A and the linearization of F coincides with a twisted Dirac operator, i.e.
F ′ (0) = D.
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2.4. Branes for vector cross products. In symplectic geometry, the natural
free boundary condition for holomorphic curves requires their boundaries lie inside
a Lagrangian submanifold. The analog of a Lagrangian submanifold for VCP forms
of higher degree is called a brane. In this section we derive some basic properties of
branes and show that the brane does not exist in the Spin (7) case.

Definition 17. Suppose M is an n-dimensional manifold with a closed
VCP form φ of degree r + 1. A submanifold C is called a brane if







φ |C= 0

dimC = (n+ r − 1) /2.

Remark on the dimension of a brane : Branes have the largest possible dimension
among submanifolds C satisfying φ|C = 0. To see this, it suffices to consider the linear
case. Taking any (r − 1)-dimensional linear subspace W in C, the interior product
of φ by any orthonormal basis of W determines a symplectic form on the orthogonal
complement of W in M , which we denote as M/W . Furthermore C/W is an isotropic
subspace in M/W and therefore dimC/W ≤ (dimM/W ) /2. The equality sign holds
exactly when dimC = (n+ r − 1) /2.

As we recall in a symplectic manifold, a holomorphic disk intersects perpendic-
ularly a Lagrangian submanifold along the boundary. We have the following lemma
for intersection of an instanton and branes along the boundaries of the instanton in a
manifold with a closed VCP form.

Lemma 18. Let A be an instanton in an n-dimensional manifold M with a closed
VCP form φ of degree r + 1. Suppose the boundary of A lies in a brane C, then A
intersects C perpendicularly along ∂A.

Proof. For x ∈ ∂A ⊂ C, consider u ∈ TxA perpendicular to ∂A and any v ∈ TxC.
Observe that there are u1, ..., ur ∈ Tx (∂A) such that u = u1 × u2 × ...× ur since φ|A
is the volume form on A. Then,

g (u, v) = g (u1 × u2 × ...× ur, v)

= φ (u1, u2, ..., ur, v) = 0

because u1, u2, ..., ur and v lie in TxC and φ|C = 0. That is, u is perpendicular to
C.

Note that we only need the assumption φ|C = 0 on C in the above lemma.
The condition φ|C = 0 also implies that [φ] ∈ Hr+1 (M,C). Any such instanton
A minimizes volume within the relative homology class [A] ∈ Hr+1 (M,C) , and the
volume equals to the pairing of [φ] and [A]. Furthermore any submanifold (A′, ∂A′) ⊂
(M,C) with [A′] = [A] and vol (A′) = vol (A) is also an instanton. However, if
dimC < (n+ r − 1) /2, then finding instantons with boundaries lying on C is an
overdetermined system of equations.

Since the definition of branes depends only on the closed VCP form φ instead of
χ, the image of any brane under an φ-preserving diffeomorphism f ∈ Diff (M,φ) is
again a brane. Infinitesimally, v = dft/dt|t=0 ∈ V ect (M,φ) satisfies Lvφ = 0. This
implies that ιvφ is a closed form because φ is closed.
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Definition 19. Suppose that φ is a closed VCP form on M . A φ-preserving
vector field v ∈ V ect (M,φ) is called a φ-Hamiltonian vector field if ιvφ is exact.
That is

ιvφ = dη

for some degree r differential form η, which we call a φ-Hamiltonian differential

form.

We will discuss the φ-Hamiltonian equivalence of branes in the next section.

Examples of branes. (i) Branes in an oriented n-dimensional Riemannian man-
ifold (i.e. VCP form of degree n) are hypersurfaces. (ii) Branes in a Kähler mani-
fold (i.e. parallel VCP form of degree 2) are Lagrangian submanifolds. (iii) Branes
in a G2-manifold (i.e. parallel VCP form of degree 3) can be identified as those
four-dimensional submanifolds calibrated by ∗φ (see [8][10]) and they are called coas-
sociative submanifolds. (iv) The next result shows that there is no brane in any
Spin (7)-manifold.

Theorem 20. A brane does not exist in any Spin (7)-manifold. That is, there is
no 5-dimensional submanifold where the Cayley form vanishes.

Proof. Suppose that C is any submanifold in a Spin (7)-manifold M where the
Cayley form vanishes. This implies that χ (ei, ej , ek) (denoted as χijk) is perpendicular
to C for any orthonormal tangent vectors el on C. Notice that these unit vectors
satisfy

χijp ⊥χijq.

This is because

‖χ(ei,ej,ep + eq)‖ = ‖ep + eq‖,

which implies that

g (χ(ei,ej, ep), χ(ei,ej,eq)) = g (ep, eq) = 0.

If dimC = 5, i.e. C is a brane in M , then its normal bundle has rank three.
However, by the above property, χ123, χ124, χ134 and χ234 are four orthonormal vectors
normal to C, which is a contradiction.

Remark on 0-fold VCPs. Even though we usually assume r is positive and
exclude 0-fold the VCP in the classification, such a VCP or its corresponding VCP
form is simply given by a closed one form φ with unit pointwise length. When φ has
integral period, we can integrate it to obtain a function,

f : M → S1 and φ = f∗dθ.

Instantons are gradient flow lines for the Morse function f on M . Branes are middle-
dimensional submanifolds in fibers of f .
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Manifolds M
( dimM)

VCP form φ
(degree of φ)

Instanton A
( dimA)

Brane C
( dimC)

Oriented Riem. mfd.
(n)

Volume form
(n)

Open Subset
(n)

Hypersurface
(n− 1)

Kähler mfd.
(2m)

Kähler form
(2)

Holomorphic
Curve

(2)

Lagrangian
Submanifold

(m)

G2-manifold
(7)

G2-form
(3)

Associative
Submanifold

(3)

Coassociative
Submanifold

(4)
Spin (7) -mfd.

(8)
Cayley form

(4)
Cayley submfd.

(4)
N/A

Table 2

Classification of instantons and branes

2.5. Deformation theory of branes. The intersection theory of branes plays
an important role in describing the geometry of the vector cross product; this is analo-
gous to the role of the Floer’s Lagrangian intersection theory in symplectic geometry.
Deformation theory of branes is essential in understanding both the intersection the-
ory of branes and the moduli space of branes.

First we need to identify the normal bundle to any brane.

Proposition 21. Let C be a brane in M . The VCP χ induces a surjective
homomorphism

χ : ΛrTC → NC/M .

Proof. Note that φ|C = 0 implies

χ : ΛrTC → NC/M ⊂ TM .

When C has the maximum possible dimension, i.e. a brane, this is a surjective
homomorphism onto NC/M . If this were not the case there would exist ν ∈ NC/M

perpendicular to the image of χ (ΛrTC), thus φ would vanish on the linear span of TC

and ν, i.e. a bigger space containing C. This gives a contradiction.

By taking the dual on χ : ΛrTC → NC/M , we obtain an injective map,

t : N∗
C/M → ΛrT ∗

C

defined by

t (α) (u1, ..., ur) := α (χ (u1, ..., ur))

for α ∈ N∗
C/M and u1, ..., ur ∈ TC .

Definition 22. Let C be a brane in M with an r-fold VCP. We define Λr
V CPT

∗
C

to be the image of the above injective map t : N∗
C/M → ΛrT ∗

C.

Observe that

α (χ (u1, ..., ur)) = g (χ (u1, ..., ur) , ᾰ) = φ (u1, ..., ur, ᾰ)
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where ᾰ ∈ NC/M such that its dual is α. Then, for any α ∈ N∗
C/M with |α| = 1,

t (α) is a VCP form on TC of degree r. This is because for any orthonormal vectors
e1, ..., er−1 ∈ TC,x and x ∈ C,

∣

∣ιe1∧...∧er−1
(t (α))

∣

∣ =
∣

∣

∣−ι
e1∧...∧er−1∧ᾰ

(φ)
∣

∣

∣ = 1

because φ is a VCP form and ᾰ is a unit normal vector. Therefore we proved the
following proposition.

Proposition 23. Suppose that C is a brane in a manifold M with a VCP form
of degree r + 1, then the image of the map

t : NC/M → ΛrT ∗
C ,

is the subbundle spanned by the VCP form of degree r on TC,x for all x ∈ C.

By using the classification results of branes below, we will see that Λr
V CPT

∗
C equals

(i) T ∗
C when r = 1, (ii) Λ2

+T
∗
C when r = 2, (iii) Λn−1T ∗

C when r = n− 1. Note that a
brane does not exist when r = 3 (Proposition 20).

Using the exponential map, small deformations of C correspond to sections of
NC/M and the branes are the zeros of the following map,

F : Γ
(

NC/M

)

→ Ωr+1 (C)

F (v) = (expv)
∗ φ,

defined on a small neighborhood of the origin in Γ
(

NC/M

)

. We are going to study
the deformation theory of branes following the approach by McLean in [13]. Under
the identification t : Γ

(

NC/M

)

∼= Ωr
V CP (C), the differential of F at 0 is given by the

exterior derivative because

dF (0) (v) = Lv (φ) |C = d (ιvφ) |C = d (t (v)) .

Recall F (0) = 0, we obtain [F (v)] = [F (0)] = 0 ∈ Hr+1 (C) because C and
expv (C) are homologous in M . Therefore we have

F : Ωr
V CP (C) → dΩr (C)

F (0) = 0,

dF (0) = d.

If we know that dΩr
V CP (C) = dΩr (C), then using the implicit function theorem, we

can show that F−1 (0) is smooth near 0 and the tangent space is given by the kernel
of dF (0). The condition dΩr

V CP (C) = dΩr (C) can be verified in each individual
case, however the authors do not know of any general proof of this. In any case we
have proved the following result.

Proposition 24. Suppose that φ is a VCP form of degree r + 1 on M . Then
small deformations of any brane C are parametrized by closed form in Ωr

V CP (C). In
particular the space of branes in M is smooth.

The space of branes is usually infinite dimensional. But quotienting out the equiv-
alence relationship of φ-Hamiltonian, the moduli space of branes is finite dimensional.

Definition 25. Suppose that C1 and C0 are two branes in a manifold M with
a closed VCP form φ of degree r + 1. They are called φ-Hamiltonian equivalent
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to each other if they are joined by a family of branes Ct such that their deformation
vector fields vt = dCt/dt ∈ Γ

(

NCt/M

)

satisfy

ιvt
φ = dηt,

for some ηt ∈ Ωr−1 (C).

Using the Hodge theory and the previous proposition, we have the tangent space
to the moduli space of branes at any point C equals Hr

V CP (C), the space of harmonic
forms in Ωr

V CP (C). In particular, the moduli space is smooth and of finite dimension.
Its tangent space is given by (i) H1 (C,R) when r = 1; (ii) H2

+ (C,R) when r = 2 and
(iii) Hn−1 (C,R) ∼= R when r = n − 1. In the third case, i.e. φ is the volume form
on M , two nearby hypersurfaces C and C′ are φ-Hamiltonian equivalent if there is a
singular chain B satisfying ∂B = C − C′ and V ol (B) = 0.

Lagrangian intersection theory in symplectic geometry plays the central role in
the subject, and also plays a very essential role in mirror symmetry. Naively speaking
we need to count the number of instantons bounding two Lagrangian submanifolds.
It is natural to generalize this to other VCPs and count the number of instantons
bounding two branes. This is a very difficult problem except when r equals zero. In
this case, suppose that C1 and C2 are two branes in M , i.e. Ci ⊂ f−1 (θi) for i = 1, 2
are middle dimensional submanifolds. Here we continue the notations in the previous
remark. Since f is a Riemannian submersion, M is a Riemannian mapping cylinder,
i.e.

M = X × [0, 1]/ ∼

for some isometry h on X , identifying X × {0} and X × {1}. Thus both Ci’s can be
regarded as middle dimensional submanifolds in X . Then instantons in M bounding
C1 and C2 correspond to intersection points between C1 and hk (C2) in X for any
integer k. Therefore the generating function for the number of instantons is given
explicitly by the following topological sum,

∞
∑

k=−∞

#
(

C1 ∩ h
k (C2)

)

tk.

Remark. Instantons and branes are important classes of submanifolds in M ,
reflecting its geometry. For examples, they are usually supersymmetric cycles in
various physical theories. In the next chapter we study the complex version of the
VCP. In that case, the theory of instantons and branes is even more interesting.

3. Complex vector cross product.

3.1. Classification of complex vector cross products. In this section we
study vector cross products on complex vector spaces, or Hermitian complex mani-
folds. For the sake of convenience, the complex vector cross product (C-VCP) will
be defined in terms of complex vector cross forms on a Hermitian complex manifold.
Recall that a Hermitian complex manifold is a Riemannian manifold (M, g) with a
Hermitian complex structure J , that is g (Ju, Jv) = g (u, v) for any tangent vectors u
and v.

Definition 26. On a Hermitian complex manifold (M, g, J) of complex dimen-
sion n, an r-fold complex vector cross product (abbrev. C-VCP) is a holomorphic
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form φ of degree r + 1 satisfying

|ιe1∧e2..∧er
(φ)| = 2(r+1)/2,

for any orthonormal tangent vectors e1, ..., er ∈ T 1,0
x M , for any x in M .

A C-VCP is called closed (resp. parallel) if φ is closed (resp. parallel with respect
to the Levi-Civita connection) form.

Notice that if the manifold M is a closed Kähler manifold, then every holomorphic
form in M is closed. For completeness we include the proof of this well-known fact.

Lemma 27. Suppose M is a closed Kähler manifold. Then every holomorphic
form is a closed differential form.

Proof. Assume that ψ is any holomorphic form of degree k in M , that is ψ ∈
Ωk,0 (M) and ∂̄ψ = 0. We need to show that ∂ψ = 0 ∈ Ωk+1,0 (M). By the Riemann
bilinear relation, the pairing

∫

η1 ∧ η̄2 ∧ ω
n−k−1

is definite on ηi ∈ Ωk+1,0 (M). That is,

∫

M

|∂ψ|
2
ωn = C

∫

M

∂ψ ∧ ∂ψ ∧ ωn−k−1.

Using integration by parts on closed manifolds and holomorphicity of ψ, we have

∫

M

|∂ψ|
2
ωn = −C

∫

M

∂∂̄ψ ∧ ψ̄ ∧ ωn−k−1 = 0.

This implies that ∂ψ = 0, that is, ψ is a closed form on M .

We are going to see that there are exactly two classes of Kähler manifolds with C-
VCPs, namely Calabi-Yau manifolds and hyperkähler manifolds. Furthermore every
C-VCP is automatically parallel, in particular closed, provided that the manifold itself
is closed.

Example. Calabi-Yau manifold (i.e. (n − 1)-fold C-VCP). A linear complex
volume form φ on C

n is an element in Λn,0 (Cn) with φφ̄ equals the Riemannian

volume form on C
n ∼= R

2n. This is because of the equality |detC (A)|
2

= det (AR)
between a complex matrix A and its realization AR. It is given as follows,

φ = dz1 ∧ dz2 ∧ ... ∧ dzn,

for a suitable choice of complex coordinates z1, z2, ..., zn on V . It is easy to see that
φ defines a constant (n− 1)-fold C-VCP. Similarly an (n− 1)-fold C-VCP structure
on a closed Kähler manifold (M, g) is a holomorphic volume form Ω ∈ Ωn,0 (M),

ΩΩ̄ = Cnω
n,

where the constant Cn equals in (−1)
n(n−1)/2

2−n/n!. This implies that the Ricci
curvature of M vanishes. Thus, using Bochner arguments, we can show that every
holomorphic form on M is parallel. In particular Ω is a parallel complex volume form
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on M and therefore the holonomy group of M lies inside SU (n), i.e. a Calabi-Yau
manifold. A celebrated theorem of Yau [18] says that any closed Kähler manifold with
trivial first Chern class c1 (M) admits Kähler metric with vanishing Ricci curvature.
This implies that M is a Calabi-Yau manifold if the canonical line bundle is trivial
holomorphically.

Example. Hyperkähler manifold (i.e. 1-fold C-VCP). A hyperkähler manifold is
a Riemannian manifold (M, g) of dimension n = 4m with its holonomy group lying
inside Sp (m) = GL (m,H) ∩ SO (4m). Namely it has parallel Hermitian complex
structures I, J and K satisfying the Hamilton relation,

I2 = J2 = K2 = IJK = −Id.

These complex structures define three different Kähler structures ωI , ωJ and ωK on
(M, g) respectively. If we fix one of them, say J , then Ω = ωI − iωK ∈ Ω2,0 (M)
is a parallel J-holomorphic symplectic form on M . These two descriptions of a hy-
perkähler manifold are equivalent and it is simply the global version of the isomor-
phism Sp (m) = U (2m)∩ Sp (m,C). This form Ω is a parallel 1-fold C-VCP form on
M . The reasoning is the same as the one in the real case. In the linear case, this is
given as follows,

Ω = dz1 ∧ dz2 + ......+ dz2m−1 ∧ dz2m,

for some suitable choice of coordinates on C
2m. Conversely, if Ω is a 1-fold C-VCP

on a closed Kähler manifold (M, g, J), then it is a holomorphic symplectic form on
M . Since Sp (m) ⊂ SU (2m), any hyperkähler manifold is a Calabi-Yau manifold.
This implies that Ω is indeed parallel as before. Therefore a hyperkähler structure is
equivalent to a 1-fold C-VCP on any closed Kähler manifold.

We remark that, as in the real setting, a constant r-fold C-VCP on a complex
vector space induces an (r − 1)-fold C-VCP on any of its complex hyperplanes.

We are going to show that there is no other complex vector cross product be-
sides the holomorphic volume form and the holomorphic symplectic form as discussed
above. In particular, there is no complex analog of the VCP for G2-manifolds and
Spin (7)-manifolds.

Theorem 28. On a complex vector space V of complex dimension n, there is
an r-fold C-VCP if and only if either (i) r = 1 and n = 2m or (ii) r = n − 1 and
n arbitrary. The corresponding C-VCP form is a holomorphic symplectic form and a
holomorphic volume form respectively

Proof. From the above two examples, there is an (n− 1)-fold C-VCP on V , and
moreover if n is an even number, a 1-fold C-VCP exists on it. Now, we need to see
there is no other type of C-VCP on a complex vector space. For that matter, we
claim that for r ≥ 2 if there is an r-fold C-VCP on a complex vector space V of
complex dimension n, then r must be n− 1. At first, observe that for r ≥ 2, an r-fold
C-VCP on a vector space induces an (r − 1)-fold C-VCP on the complex hyperplane.
Therefore, an r-fold C-VCP on a complex vector space of complex dimension n is a
reduced 2-fold C-VCP on a complex (n − r + 2)-dimensional vector space. Now, to
prove our claim, it is enough to verify if there is a 2-fold C-VCP on a complex vector
space W , then its complex dimension must be three.
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As in the first example of C-VCP, when dimC W = 3, there is a 2-fold C-VCP.
Now, we need to show there is no higher complex vector space with a 2-fold C-VCP.
Suppose dimC W ≥ 4 with a 2-fold C-VCP φ, and by choosing any unit holomorphic
vector z in W , consider a complex subspace Z spanned by z and z̄. Then, ιzφ is a
1-fold C-VCP on Z⊥ and moreover dimC Z

⊥ is at least four because dimC Z
⊥ ≥ 3

and an even number so that Z⊥ has a 1-fold C-VCP.
Now, we may rewrite the 2-fold C-VCP on W as

φ = z∗ ∧ ιzφ+ φ1,

where z∗ is dual form of z and φ1 is the sum of terms without z∗. Since dimC Z
⊥ is at

least 4, the 1-fold C-VCP ιzφ on Z⊥ has the form a∗1 ∧ b
∗
1 + a∗2 ∧ b

∗
2....where a1, a2, b1

and b2 are orthonormal holomorphic vectors in Z⊥. We consider the following,

ι(b1+b2)ι(a1+a2)φ = ιb1ιa1
φ+ ιb2ιa1

φ+ ιb1ιa2
φ+ ιb2ιa2

φ

= 2z∗ + ιb2ιa1
φ+ ιb1ιa2

φ,

and

ι(−
√
−1b1+b2)ι(−

√
−1a1+a2)φ = −

√
−1ιb2ιa1

φ−
√
−1ιb1ιa2

φ.

Note that a1 + a2, b1 + b2, −
√
−1a1 + a2 and −

√
−1b1 + b2 are holomorphic vectors

with the same length.
The interior products of any terms from ιzφ and φ1 are zero because they satisfy

for example, |ιa1∧b1φ| = 1. This implies that φ1 does not have any terms in ιzφ.
Hence we have ιb1 ιa1

φ = z∗ and ιb2 ιa2
φ = z∗.

From this choice of orthonormal holomorphic vectors z, a1, b1, a2 and b2, holo-
morphic vectors a1 + a2 and b1 + b2 are orthogonal to each other, and this is true
between holomorphic vectors −

√
−1a1 + a2 and −

√
−1b1 + b2. So ι(b1+b2)ι(a1+a2)φ

and ι(−
√
−1b1+b2)ι(−

√
−1a1+a2)φ are supposed to produce the same length by defin-

ition of the C-VCP, but it can be checked that this is impossible because z∗ and
ιb2ιa1

φ+ ιb1 ιa2
φ are perpendicular to each other. From this contradiction, a complex

vector space W is of complex dimension three so that it has a 2-fold C-VCP.

From this proposition and the examples of C-VCPs, one can conclude the following
theorem.

Theorem 29. (Classification of C-VCPs) Suppose M is a closed Kähler man-
ifold of complex dimension n, with an r-fold C-VCP. Then either

(i) r = n− 1 and M is a Calabi-Yau manifold, or
(ii) r = 1 and M is a hyperkähler manifold.

3.2. Instantons for complex vector cross products. In this section, we
introduce and study instantons and branes on a Kähler manifold M with a closed
C-VCP φ ∈ Ωr+1,0 (M). Recall that an instanton, in the real setting, is an (r + 1)-
dimensional submanifold A preserved by χ, or equivalently A is calibrated by the VCP
form. In the complex setting, the real and imaginary parts of the complex VCP form
are always calibrating forms and we called such calibrated submanifolds instantons.

Theorem 30. Suppose φ is a closed C-VCP form of degree r + 1 on a Kähler
manifold M , then (i) Re

(

eiθφ
)

is a calibrating form for any real number θ, and (ii)

an (r + 1)-dimensional submanifold A in M is calibrated by Re
(

eiθφ
)

only if

Im
(

eiθφ
)

|A = ω|A = 0.
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Proof. It suffices to check the linear case, namely M = C
n with the standard

complex structure J. Consider any oriented orthonormal vectors a1,..., ar+1 in R
2n =

C
n and denote ξ = a1 ∧ ...∧ ar+1, then

{

Re
(

eiθφ
)

(ξ)
}2

+
{

Im
(

eiθφ
)

(ξ)
}2

=
∣

∣

(

eiθφ
)

(ξ)
∣

∣

2
= |φ (ξ)|

2
.

Since φ is of type (r + 1, 0), we have

|φ (ξ)|
2

= 2−(r+1) |φ (ξ ⊗ C)|
2
.

where ξ⊗C = ã1∧ ...∧ ãr+1, with ãi=
(

ai −
√
−1Jai

)

/
√

2. This is because dzi (ãk) =
√

2dzi (ak).
If we denote the dual vector of any one form η as η#, then

2−(r+1) |φ (ξ ⊗ C)|
2

= 2−(r+1) |φ (ã1, ..., ãr+1)|
2

= 2−(r+1)
∣

∣

∣

〈

(ιã1∧...∧ãr
φ)# , ãr+1

〉∣

∣

∣

≤ 2−(r+1)
∣

∣

∣(ιã1∧...∧ãr
φ)

#
∣

∣

∣ |ãr+1|

= 2−(r+1) |ιã1∧...∧ãr
φ| ≤ 1,

because φ is a C-VCP and ã1, ..., ãr+1 are elements in T 1,0M of unit length. Therefore

∣

∣Re
(

eiθφ
)

(ξ)
∣

∣ ≤ 1,

and when the equality sign holds, we have (i)
∣

∣Im
(

eiθφ
)

(ξ)
∣

∣ = 0, (ii) (ιã1∧...∧ãr
φ)#

parallel to ãr+1 and (iii) |ιã1∧...∧ãr
φ| = 2r+1. Since a1,..., ar+1 are orthonormal,

condition (iii) is equivalent to ã1, ..., ãr+1 being orthonormal vectors in T 1,0M . This
happens exactly when the linear span of a1,..., ar+1 is isotropic with respect to ω.

We remark that when φ is the holomorphic volume form of a Calabi-Yau manifold,
then a middle dimensional submanifold A in M is calibrated by Re

(

eiθφ
)

if and only

if it satisfies Im
(

eiθφ
)

|A = ω|A = 0, and it is called a special Lagrangian submanifold
with phase angle θ.

Definition 31. On a closed Kähler manifold M with an r-fold C-VCP φ, an
(r + 1)-dimensional submanifold A is called an instanton with phase θ ∈ R if it is
calibrated by Re

(

eiθφ
)

, i.e.

Re
(

eiθφ
)

|A= volA.

Equivalently, Im
(

eiθφ
)

|A= 0 and
∣

∣ιe1∧...∧er+1
(φ|A)

∣

∣ = 1 for any orthonormal tangent
vectors e1, ..., er+1 on A.

Remark. Recall that the volume of a calibrated submanifold is topological. In
this case, for the fundamental class [A] ∈ Hr+1 (A,Z) and

[

Re
(

eiθφ
)]

∈ Hr+1 (M,R),

vol (A) =

∫

A

Re
(

eiθφ
)

= [A] ·
[

Re
(

eiθφ
)]

Using the classification result of C-VCPs in theorem 29, φ must be either a holo-
morphic volume form in a Calabi-Yau manifold or a holomorphic symplectic form in
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a hyperkähler manifold. In the former case, instantons are called special Lagrangian
submanifolds (see e.g. [15]). In the latter case,

Re
(

eiθ (ωI − iωK)
)

= cos θωI + sin θωK = ωcos θI+sin θK

so instantons are Jθ-holomorphic curves where Jθ = cos θI + sin θK .

3.3. Dirichlet and Neumann branes. Schoen’s school studies ([4], [14], [15])
free boundary value problems for special Lagrangian submanifolds in a Calabi-Yau
manifold M . Suppose that A is a special Lagrangian submanifold of zero phase,
i.e. calibrated by Re ΩM , in M . If the boundary of A is non-empty and lies on a
submanifold C in M , then (i) C being a complex hypersurface in M corresponds to
Neumann boundary condition on A and (ii) C being a special Lagrangian submanifold
of phase π/2 corresponds to Dirichlet boundary condition on A. Motivated from these,
we have the following definitions of branes in Hermitian complex manifolds.

Definition 32. On a Hermitian complex manifold (M,ω) of complex dimension
n with an r-fold C-VCP φ ∈ Ωr+1,0 (M) ,

(i) a submanifold C is called a Neumann brane (abbrev. N -brane) if dim (C)
= n+ r − 1 and

φ|C = 0,

(ii) an n-dimensional submanifold C is called a Dirichlet brane (abbrev. D-
brane) with phase θ ∈ R if

ω|C = 0 , Re
(

eiθφ
)

|C= 0

Even though branes are defined in Hermitian complex manifolds, for simplicity
we will focus on branes in a closed Kähler manifold.

As in the real setting, N -branes are submanifolds in M with the biggest dimension
on which φ vanishes. Furthermore N -branes are complex submanifolds in M because
of the following proposition.

Proposition 33. Suppose that M is an n-dimensional Kähler manifold with
an r-fold C-VCP. Assume that S is a submanifold in M such that φ|S = 0, then
dimS ≤ n+ r − 1.

When the equality sign holds, i.e. S is an N -brane, then it is a complex subman-
ifold in M .

Proof. It suffices to check the linear case, i.e. TxS, x ∈ S. Consider a tangent vec-
tor a ∈ TxS and ã =

(

a−
√
−1Ja

)

/
√

2. Since φ ∈ Ωr+1,0, ιãφ =
√

2ιaφ. Therefore,
for b1, ..., br in TxS, we have

√
2φ (a, b1, ..., br) = φ (ã, b1, ..., br) .

So if φ (a, b1, ..., br) = 0, then φ (Ja, b1, ..., br) = 0, namely, φ|S = 0 implies φ|S+JS =
0. And more if S has the maximal dimension, then TxS is a complex linear subspace.
In that case, as in the real setting, we have dimC S = (n+ r − 1) /2.

The above proposition can also be verified case by case using the classification
result of C-VCPs. The following classification of instantons and branes for the C-VCP
is presented with the classification of C-VCPs on a closed Kähler manifold.
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Instantons and branes in Calabi-Yau manifold : (n − 1)-fold C-VCP

A closed Kähler manifold of complex dimension n with an (n− 1)-fold C-VCP φ
is a Calabi-Yau n-fold.

An instanton in the Calabi-Yau n-fold is a special Lagrangian submanifold with
phase θ since it is calibrated by Re

(

eiθφ
)

. As in the previous proposition, an N -brane
in the Calabi-Yau n-fold is a complex hypersurface, and a D-brane is a special La-
grangian submanifold with phase θ−π/2, because it is calibrated by Re

(

ei(θ−π/2)φ
)

=

Im
(

eiθφ
)

.

Instantons and branes in hyperkähler manifold : 1-fold C-VCP

A closed Kähler manifold of complex dimension 2n with a Kähler form ωJ and
a 1-fold C-VCP φ is a hyperkähler manifold. Denote φ =: ωI −

√
−1ωK and J , I

and K as the complex structures corresponding to Kähler structures ωJ , ωI and ωK

, respectively. Moreover, by putting eiθφ in place of φ, one can observe Re eiθφ is
another Kähler structure with a complex structure Jθ = cos θI + sin θK.

Now, an instanton in a hyperkähler manifold is a Jθ-holomorphic curve since
it is calibrated by Re eiθφ, namely preserved by Jθ. An N -brane in a hyperkähler
manifold is a real 2n-dimensional submanifold where φ vanishes, and as in the previous
proposition, it is equivalently a J-complex Lagrangian which is a complex submanifold
preserved by a complex structure J with complex dimension n. A D-brane is a
real 2n-dimensional submanifold where ω and Re

(

eiθφ
)

vanish. One can show that
a D-brane is preserved by Jθ+π/2, the almost complex structure corresponding to

− Im
(

eiθφ
)

, since eiθφ = ωJθ
−
√
−1ωJθ+π/2

. So a D-brane is equivalently a Jθ+π/2-
complex Lagrangian.

The above classification of instantons, N -branes and D-branes in manifolds with
C-VCPs is summarized in the table on page 122.

4. Final remarks. In this paper we study both real and complex vector cross
products. Instantons in either setting are calibrated submanifolds. This gives a unified
way to explain the calibrating property of many such examples, as studied by Harvey
and Lawson in [8]. It is desirable to study further the calibration geometry from this
point of view. On the other hand, understanding the mean curvature flow(MCF)
for branes would give us a unified treatment for hypersurfaces MCF and Lagrangian
MCF.

Manifolds with real VCPs include symplectic/Kähler and G2-manifolds. In [11],
we relate the geometry of the VCP on the manifolds M to the symplectic geometry
of their knot spaces KΣM . Motivated from this relationship, it is natural to study
the intersection theory of branes and count the number of instantons bounding them,
similar to the Floer’s homology theory of Lagrangian intersections. For example, in
the case of G2-manifolds, counting associative submanifolds bounding nearby coas-
sociative submanifolds is closely related to the Seiberg-Witten invariants of the four
dimensional coassociative submanifolds [12]. Results along this line should be useful
in understanding the M-theory in Physics.

Manifolds with C-VCPs are either Calabi-Yau manifolds or hyperkähler mani-
folds. In [11] we construct a complex analog of knot spaces for Calabi-Yau mani-
folds and show that they behave like hyperkähler manifolds. Furthermore both com-
plex hypersurfaces and special Lagrangians in a Calabi-Yau manifold give complex
Lagrangians in this infinite dimensional hyperkähler manifold, but with respect to
different complex structures in the twistor family. Therefore one would hope that
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the mirror symmetry transformation for Calabi-Yau manifolds can be explained as a
twistor rotation. Further studies along this direction will be quite interesting.
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