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Curvature Flow 
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ABSTRACT. In this article, we define a new class of  middle dimensional submanifolds of  a Hyperkiihler 

manifold which contains the class of  complex Lagrangian submanifolds, and show that this larger class is 

invariant under the mean curvature flow. Along the flow, the complex phase map satisfies the generalized 
harmonic map heat equation, tt is also related to the mean curvature vector via a first order differential 

equation. Moreover, we proved a result on nonexistence of  Type I singularity. 

A hyperk~hler manifold M is a Riemanninan manifold with holonomy Sp (n). It admits 
a complex structure J and a holomorphic symplectic form g2j e f2 2'~ (M) because Sp (n) = 
U (2n) n Sp (2n, C). In fact it admits a 2-sphere family of such structures, called the twistor 
family S 2. Hyperk~ler  geometry arises naturally in many moduli problems, see, for example, 
[1, 7] and it is also intimately related to physical theory with N = 4 supersymmetfies, see, 
for example, [6]. A submanifold L in M is called a complex Lagrangian submanifold if it is 
Lagrangian with respect to f2j for some J e S 2. Since g2j is a complex form, Lagrangian respect 
to ~2j implies two independent conditions. This is more restrictive than the usual meaning of 
being Lagrangian in a symplectic manifold. Complex Lagrangian submanifold with respect to 
f2j is always a J-complex submanifold of M. In particular, it is calibrated by the K~ihler form 
ogj and an absolute minimal submanifold in M. The geometry of such submanifolds are studied 
in [8, 9], for instance. 

Since we have a 2-sphere family of holomorphic symplectic structures f2j with J ~ S 2 on 
M, we could relax the assumption to the tangent spaces 
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to be a complex Lagrangian subspace with respect to f2j(x) with varying J (x) e S 2. Such an 
L is called a hyper-Lagrangian submanifold of M and the above map x --* J (x) is called the 
complex phase map 

J :L---~ S 2 " 

It is not difficult to see that this notion is defined for a larger class of manifolds, namely 
Quaternionic-K~ihler manifolds, i.e., Riemannian manifolds with holonomy Sp (n) Sp (1). For 
example, CIt Dn C HIt ~ and any surface in an oriented four manifold are examples of hyper- 
Lagrangian submanifolds. 

In this article we study the geometry of hyper-Lagrangian submanifolds in a hyperkahler 
manifold. We prove the formula relating the mean curvature vector H of L and the complex 
phase map J ,  

i 
OJ = ~ H , ~ 2 j .  (1.1) 

In particular, if L is minimal and the cohomology class [J] 6 H 2 (L, Z) vanishes, then L is a 
complex Lagrangian submanifold of M. This class [J] is called the complex Maslov index of L. 

We show that the mean curvature flow of a hyper-Lagrangian submanifold L in M preserves 
the hyper-Lagrangian condition. To prove this, we need to couple the mean curvature flow of 
L with a harmonic map flow for J and derive appropriate estimates in order to use a maximum 
principle argument as in [11]. 

We also show that if the image of J lies in a hemisphere of S 2, then this remains so under 
the mean curvature flow. Furthermore, Type I singularity will not occur in this situation. 

When the hyperkahler manifold is of dimension four, or more generally a Kahler Einstein four 
manifold, these results were obtained by Jingyi Chen [2] and Mutao Wang [13] independently. 
In this case, the above hemisphere condition is equivalent to the surface being a symplectic 
submanifold in the Kahler Einstein four manifold. 

Another well-behaved class of middle dimensional submanifolds under mean curvature flow 
are Lagrangian submanifolds in a Calabi-Yau manifold[2, 11, 12, 13]. The results there are 
completely analogous to those we obtain in this article. This is not a coincidence as our results 
are the quaternion version of their complex geometric statements. The comparisons of geometry 
defined over different normed algebras were studied by the first author in [10]. The following 
table compares the corresponding notions used in this article: 

Complex C Quatemion ~II 
Lagrangian Submanifold Hyper-Lagrangian Submanifold 

n n 
Kahler Manifold Quatemionic-Kahler Manifold 

Special Lagrangian Submanifold Complex Lagrangian Submanifold 
n O 

Calabi-Yau Manifold Hyperk~hler Manifold 

Remark that given any hyper-Lagrangian submanifold L in a hyperkiihler manifold M, 
suppose that Re (flJ(x)) is constant for all x e L. Then L is also a Lagrangian submanifold in M, 
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regarded as a Calabi-Yau manifold via a natural inclusion Sp (n) C SU (2n). In this circumstance, 
our results for hyper-Lagrangian submanifolds in hyperk~khler manifolds are indeed the same as 
the corresponding results for Lagrangian submanifolds in Calabi-Yau manifolds. 

Our article will be organized as follows. We will first prove some formulae which are needed 
in the rest of  the article in Section 2. In Section 3, we study the mean curvature flow and show 
that the hyper-Lagrangian condition is preserved. After this, we study the compatibility condition 
for a hyper-Lagrangian submanifold and prove the formula (1.1) in Section 4. Finally, we give 
a brief discussion on the regularity of  mean curvature flow of  a hyper-Lagrangian submanifold 
in Section 5. 

2. T e r m i n o l o g i e s  and basic c o m p u t a t i o n s  

Let (M 4n, g-) be a hyperk~hler manifold, L 2n C M be a submanifold of  middle dimension, 
and F : L -+ M be the inclusion. Let Ja, ~ = 1, 2, 3 be parallel complex structures such that 

3 J1J2 = J3 = -J2J1. Then any J = Y~a=I ac~J,~ with constant a = (al, a2, a3) �9 S 2 is also a 
parallel complex structure. Let ,7 be the set of  all J �9 F ( F  -1 (End(TM)) such that 

3 

J(p)  = ]~_ac~(p)Jct with (al(p),a2(p),a3(p)) �9 r . 

~t=l 

Note that ,7 can be identified with the set of  smooth maps a : L ~ ~2. 

For any J �9 ,7 we follow the definitions in [11] to define 

(1) the 2-form 

w ( j ) ( . , . )  = ~ ( j . , . ) ,  

(2) an operator N(J )  : TpL --+ (TpL) -k by 

N ( J ) v  :=  ( J r )  -L, and 

(3) a t enso ron  L: 

h(J)(u, v, w) :=  - ~ ( N ( J ) ( u ) ,  Vvw) = ~ v ( N ( J ) ( u ) ) ,  w) . 

In order to simplify notations, we will write co, N and h for ~o(J), N(J) ,  and h(J),  respectively, if 
the dependence on J is clear. And we will reserve the notations oJc~, N~, and ha for oJ (Ja), N (J~), 
and h(Ja), respectively, once a choice of  {J~}3=1 is fixed. Itis then obvious thatw = ~ ac~o~(JcD, 
N = ~ aa N ( J  a), and h = ~ a~ h (J~); and the construction is independent on the choice of  the 
orthogonal set of  parallel complex structures J~, ot = 1, 2, 3. 

L e t x  ~, i = 1 , . . . , 2 n ,  and y ~ , x  = 1 , . . . , 4 n  be local coordinates on L a n d M ,  re- 
spectively. Let ei = dF(Oxi). Then {ei} is a basis for TL in F-1TM.  And we will denote 
h i j k  = h ( J ) i j k  = h ( J ) ( e i ,  e j ,  ek)  for J �9 `7 and hc~,ijk = h u ( e i ,  e j ,  ek) .  Similarly, we will 
w r i t e  o)ct,i j = og~(ei , e j ) .  

Suppose that N(J)  is an isomorphism in a coordinate neighborhood. Then r l (J ) i  j : =  

-~(N(J)(ei), N(J) (e j ) )  is invertible and we will denote the inverse by rl(J) ij . As before, we will 
write ~]ij and r/u for the purpose of  simplifying notations. 
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Most of the equations used in [11] are still valid for general J 6 ft. In particular, we have 

2n 

N(ei) = Jei - E w/e  j ,  (2.1) 
j = l  

17ij = g i j  + cok cokj �9 (2.2) 
- -  II 
V e k e j  = F k j e  n -- r l m n h m k j N ( e n )  . (2.3) 

Note that only quantities in the second term on the right-hand side of the Equation (2.3) depends 
on J. We also have 

V l h i k j  -- V k h i l j  = g"-i_jkl + rl mncos (hml jhsk i  -- h m k j h s l i )  

-Jr rlmn cos i (hmkjhnls  -- hml jhnks )  , 

where R--ijkl = g ( - R ( e k ,  el)e j ,  N ( e i ) ) ,  and 

e i j k l  = "-'gijkl -[- rl mn (hmikhnj l  -- hmi lhn jk )  �9 

(2.4) 

(2.5) 

However, when w is no longer parallel or closed, other equations have to be modified. 

Proposit ion 2.1. For any orthogonal set of  parallel complex structures 3 {J~}~=l and any J = 
3 Y~=l a~J~, the corresponding h = h( J)  and o9 = co(J) satisfy 

3 

hki j  = h ik j  + Vjcoik  -- Z ( V j a u ) o ) c t , i k  �9 
~=1 

P r o o f  
is parallel, 

The proof is straightforward by the corresponding proposition of [11]. As each J~ 

hki j  = E actha,kij  

= Eac~(hct,ikj '[- Vjcoa,ik) 

= hik j  -Jr E a a V j c o a , i k  
ol 

= hik j -[- Vjcoik  -- E ( V j a ~ ) c o a , i k  �9 [] 

Proposit ion 2.2. For any J ~ if ,  the corresponding 2-form co = co(J) satisfies 

Vk  V jcoli -- Vl  V jcoki -~ V j Vicolk 21- RTljcoks -~- RSjkcols -- R jklcosi "~- V j (dco)uk �9 

P r o o f  The proof is exactly the same as in [11]. The only modification is that w is not closed, 
so the last term does not vanish in general. [ ]  

Proposi t ion 2.3. For any orthogonal set of  parallel complex structures { J~ }3=1 and any J = 
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3 )-~a=l a~Ja, we have 

Vlhkij -- Vkhlij - -  - -  3 ROkl Jr- V j ViO)lk q- o)Si Rsjkl q- WkRsil j "Jr" o)~ Rsijk 
+ tlmno)S (hraljhski -- hmkjhsli) 

+ E(Vi Vjae)o)a,kl 

+ E(ViaaVjo)a ,k l  + VjaaViOga,kl) 
Ol 

+ E(Vlat~Vjo)a,ik + VkactVjo)ct,li) . 
Ol 

Proof. By Proposition 2.1, 

V l h k i j - - V k h l i j =  V I (  h ik j - } -v jOgik-E(v jaa) ( 'OaJk  ) o r  

347 

= (Vlhik j -- Vkhilj) "-[- (VkVjO)li -- ViVjO)ki ) 

+ - v ,  

O~ 

The first two terms can be handled using Proposition 2.2 and Equation (2.4) as in [ 11 ] and we obtain 
- -  - -  $ 

Vlhkij -- Vkhlij : RUM -'{- V j Vi(.Olk "-[- o)S Rsjkl "-[- r j -t- o)[ Rsijk 
+ rlmn(hmljhski - hmkjhsli) 

q- Vj(dO))lik -I- E [Vk ((Vjau)O)ot,il) - VI ((Vjaot)o)et,ik)] . (2.6) 
O! 

Since o)a are closed for all a = 1, 2, 3, we have 

V j (do))lik = E V j (daa A ogc,)lik 
Ot 

= E Vj [(Vlae)o)e,ik -- (Viaa)o)a,lk -I- (V,a,~)o),~,li] 
Ol 

= ~ [(vjv/a~)o~,ik + (vjvia~),o~,kt + (VjVka~),o~,t;] 

Jr E [ (vlaa) v jcOa'ik Jr (Viaa) V jogg,kl q- (Vkace) V jo)~,li ] . 
o l  

On the other hand, 

E [ vk ((Vjaa)~e,il)- Vl ((Vjae)o)e,ik)] 

= E[(VkVjaa)o)u , i l -[ -  VjaeVkO)e,il] 
Ol 

- -  E [ (vlvjd~176 "}- VJaotVl~176 
Ol 

~--" E [ (vkVjaa)O)a'il -- (VlVjaot)o)et,ik Jr VjactVio)ot,kl] �9 
6[ 
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Therefore, the extra terms in the last line of  Equation (2.6) can be written as 

Vj(do.)) l ik  + E [ V k  ( (Vjaa) t~ - V l ((Vjaot)O.)a,ik)] 
ol 

= E ( V j V i a o t ) o ) o t , k l  + E(ViaotVj( -Oot ,k l  + VjaotVio)ot,kl) 
ol ol 

-t- E (Vlaot V jo)ct,ik -t- Vkaot V jo)a,il) , 
Ol 

which is the desired result. [] 

3. Mean curvature flow 

In this section, we are going to prove that hyper-Lagrangian submanifolds are preserved under 
mean curvature flow. Our proof is similar to that of  Smoczyk [11]. However, the defining almost 
complex structure J of  the hyper-Lagrangian submanifold and the 2-forms here corresponding 
the symplectic form are no longer parallel or closed. This introduces a lot of  extra terms and a 
need of  an estimate of  the covariant derivative of  the corresponding symplectic form. Moreover, 
unlike the situation in [11], the harmonic map heat flow equation is not just a consequence of  the 
mean curvature flow, it will also be used to obtain the necessary estimate. 

3.1. Mean curvature flow 

As in [11], the assumption that N is an isomorphism ensures that the mean curvature vector 
of  L can be written as 

H = --rlmngklhmklN(en). 

From now on, the corresponding mean curvature form with respect to J is defined by 

O" H "~  H_Jo9 

which can be written in term of coordinates as follow 

tTH = Hi d x  i : =  gklhikl  d x  i �9 

Similarly, for ot = 1, 2, 3, we write 

O'H a : =  H~O)ct = H~,i dx  i �9 

In terms of  the coefficients of  ~rH, the mean curvature vector can be written as 

H = -r lmnHmN(en) .  

Note that all the above depend on the J ~ ,.7 except the mean curvature vector. 

Now, we assume that F : L ~ M is deformed under the mean curvature flow 

which can be written as 

d 
-d-~Ft=H, F o = F ,  

d 
-~TFt = -rlmnHmN(en),  FO = F 
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for any J e ft .  Suppose that the mean curvature flow exists for t e [0, T) and the metric at 
time t is gt. Leta(t ,  p) : [0, T) x L --+ S 2 be a smooth mapping and J(t) = ~P,~ a,( t ,  p)Ju be 
the corresponding deformation of the tensor J along the mean curvature flow. We are going to 
calculate the deformation of the corresponding 2- form ~o (t) on Lt. 

Proposition 3.1. Suppose that J(t) = ~ u  au(t, p )J ,  is a deformation o f  J = J(O) in ,7 
along the mean curvature flow Then the corresponding 2-form co(t) = oo( J (t ) ) satisfies 

d 
z('Oij s ji + A~ 

�9 s__ k s--k 
+~ ji +09~Rskik +~ kj 

mn s k + rl Ogn(hmi hsjk -- hmjkhsik) 

+ E [ ( O t a .  -- Aaa)ogu,i j-  2Vka.VkOg.,ij ] 

+ E (ha,kkjViau -- h . , kk iVja . )  . 

Proof. Since co, are parallel, we have for ot = 1, 2, 3 that 

a 
ato~.,~j = (aa.o),j + (U~ao,.),j = (do.o)~j . 

Hence, 

d 
-~ O) i j 

v - '  [" aa~ ] 
= 2_,[--~-~o.,/j +a.(g~rn.)iy 

_1 

Y Oaa 
= ~L--~-~o . , i j+(d(a ,~crH.) ) i j - - (da .A~r t4 . ) i j ]  

raa. q 

= - ( d a d  , ,  ( d o - . )  u . 
_1 

Using Proposition 2.3, we have 

(dCrH)ij s_ ji + AO)ij 

s-- k s k ogS-~s k -[-~ ji-[-r.ojRs ik + kj 
mn s k + rl wn(hmi hsjk -- hmjkhsik) 

+ E[(Aaa)oJa, j i  + 2Vka.Vkoo.,ji] 
o[ 

+ E (Via.VkWa,kj -- Vja~VkWu,ki) �9 
Ol 

Therefore, together with 

E ( d a u  A CrHa)i j = E [ (via~ -- (Vjau)Hu,i] , 
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d 
ZO)i j  s_ ji q- AO)ij 

s--  k (.OjRskik ..[_ s--  k + mkRs ji "~ s i Rs kj 

mn s l  h k h hmjkhsik) -]- 0 (On [ mi sjk - -  

+ ~ [~Ota~ - /Xa~)o~, i j  - 2Vka~Vk,O~,ij] 
~t 

+ ~ [Via~(Vk,O~,kj -- t-/~,j) - Vja~(Vk~O~,ki --/-/~,i)] �9 
o/ 

Finally, by Proposition 2.1, for each ot = 1, 2, 3, we  have 

Hct,i ---- hct,ikk = ha,kik "a t- ~TkO.)ot,ki �9 

Putting this in the above and note that hct,kik = hct,kki, we have proved the proposition. [ ]  

L e m m a  3.2. Let a : L ---> S 2 be the map corresponding to some J ~ f f  with respect to an 
orthogonal set o f  complex structures { Ja }3~= 1. Then we have 

E (Wiaet)hot,kkj : rllShlkj E [ (a  • Via)atOot,ks + ton(Viaot)Oga,kn] , 
ol ol 

where a x Via is the cross product o f  a = (a~) and Via = (Viac~) by regarding them as vectors 
in 3-space. 

P r o o f .  By definition 

hc~,kkj = --~(Naek, Vekej) 

= --~((Jctek) •  

= -~(J~ek,(Vekey) • 

= --g(Jc~ek, rllShtkjN(es)) 

= --rllShlkjg(Juek, Jes - tonsen) 

= rllShlkj [(.Oot,kn ton --g(Jotek,  Jes)] 

= rllShlkj[O)a,knOfl--Ea#~(Jotek, Jfes) ] . 

Therefore 

E ( V i a a ) h ~ , k ~  ~lS hlk j E (Viaot)(,oot,kno)n 
ol  

- -  o l S h l k j  E ( a ~ V i a ~ ) - g ( J ~ e k ,  J~es) 
c t , f l  
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= rllShlkj E (V ia~)Wa ,knOf  
Cl 

-- rltShlkj E (aot Viaet)g( Jotek, Jc~e~) 
O1 

+ 171Shlkj y~(aaVia f l  -- aflViact)g(JotJflek, e~) 
fl < ot 

= 17lShlk j E(Viac~)wc~,knwn 
Ol 

-- tllS h lk j gks E ( ac~ V i a~ ) 
o/ 

+ 17Is hlkj Z (ac~ Via# -- a~ V i a~ )~( Jot J# ek, e,).  
fl < ot 

Using the fact that )--~a a~ = 1, we have y~a ac~Viaa = 0 and hence 

~"~(Viaa)ha,kkj = 171Shlkj E (Viac~)Wa,knwn 
Ol Ol 

+ rllShlkj Z (aa V ia l  -- a~ ~iau)g(Ju Jflek, es) �9 
fl < ot 

This is the desired result. [] 

L e m m a  3.3. Let  { J~ }3= 1 be an orthogonal set o f  complex structures o f  a hyperkahler manifoM 

(M an , g) such that N2 = N(J2) and N3 = N(J3) are isomorphisms at each point o f  a submanifold 
L 2n C M.  Then 

Vi O)l,kl mn h = --173 3,mik~ In + 173mnh3 mik~ lJW~ n 

mnh o) mn j - rl2 2,rail 3,kn -- 172 h2,milWl,kj~ n �9 

Moreover, i f  L is compact, then there is a constant C > 0 such that 

IVwll _< Cv/lw2[ 2 + Iw3[ 2 �9 

Proof .  Letei be an orthonormalbasis of TL  in a neighborhood of a point p. Then by definition, 

ViO)l,kl = (Ve i tOl) (ek, el) = ei (o91 (ek, el)) -- Wl (Vei ek, el) -- Wl (ek, Ve i el) �9 

Since ~1 is parallel, we have 

ViO)l,kl = -~1 (-Veiek, el) § "ml (ek, Veiel) -- -~1 (Veiek, el) -- -ml (ek, Veiel) 

= -~l((-Veiek)• 

Using J1 = J2J3, 

7i~ ,kl = ek) ' ,e l )  + (Veiel) 1) 

=  (Ve, ek) • -  (J3ek,  (Ve e0") 
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~ e i e k )  "1- = -O~nh2 ,mikN2(en)  = -03mnh3,mikN3(en)  , 

= g(J2el, J3(o3mnh3.mikN3(en))) + g(J3ek, J2(o2mnh2,milN2(en))) 

= 03mnh3,mikg(J2el, J3N3(en)) -]- 02mnh2,milg(J3ek, J2N2(en)). 

Then by the definition of  the operator N, we have 

J2N2(en) = J 2 ( J 2 e n - o g ~ , n e j )  = - e n - o ) J , n J 2 e j ,  

and similarly for J3. Putting this into the above, we conclude that 

ViOgl,kl = 03mnh3,mik [g(J2el ,  --en) -- o)~,ng(J2el, J3e j )]  

q- 02mnh2,mil [g(J3ek,  --en) --09~,ng(J3ek, J2e j ) ]  

mn mn J 
= - 7 3  h3,mikO)2,1n -- 73 h3,mikO)l,ljO)3, n 

mn mn j 
-- 72 h2,milO)3,kn -- 72 h2,mil~ n �9 

This completes the proof of  the first part of  the lemma and the last part of  the lemma follows im- 
mediately. [ ]  

3.2. Main theorems and harmonic map heat flow 

Theorem 3.4.  Let (M 4n, g) be a hyperMihler manifold. Let Lt C M 4n, t ~ [0, T) for some 
T > O, be a family o f  middle dimensional submanifolds given by the mean curvature flow. 
Suppose that for each point (t, p) ~ Lt, there is a parallel complex structm'e J of  M such that, 
for all parallel complex structure K of  M orthogonal to J, 

-~(K., ")lrpL, = O, 

and that J is smooth in (t, p). Then the defining map J = J(t,  x) from [0, T) x Lo to S 2, the 
space of  parMlel complex structures of  M, satisfies the harmonic map heat flow equations with 
variable metric 

OtJ = & t J  , 

where At J is the tension field of  J with respect to the induced metric gt on Lt .  

Proof. Let to ~ [O, T) and p be a point in Lto. Then J~ = J (to, p) is a fixed parallel complex 
3 structure of  M. We may complete this to an orthogonal set {Ja}a=l, i.e., J1J2 = J3 = -J2J~. 

With respect to this basis, we can use standard spherical coordinates on S 2 to represent J in a 
neighborhood of  (to, p) ~ [0, T) • Lo by 

J = cos0 sin 9J1 + sin0 sin ~0J2 + cos ~oJ3, 

where 0 and q9 are functions of  (t, x) in a neighborhood of  (to, p). Then it is easy to see that 

K = - sin 0 J1 + cos 0 J2 ,  

and 
J K  = - cos 0 cos ~oJ1 - sin 0 cos ~oJ2 + sin ~0J3 
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are complex structures orthogonal to J .  Let's denote these three combinations by J = )--~.~ auJa, 
K = ~-~ baJa, J K  = ~ a  caJa and write a = (al, a2, a3) and so on. Then the map J is 
represented by 

a(t, x) = (cos0 sin ~0, sin0 sin ~0, c o s g ) .  

By a straightforward calculation, we have 

a(to, p) = (1, O, O), b(to, p) = (O, l, O), C(to, p) = (O, O, 1) , 

Vb(to, p) = ( - V O l ( t o , p ) ,  O, 0) ,  VC(to, p) = (Vq)[(to,p), 0, 0)  , 

Otb(to, p )  = (-19tOl(to,p), 0, 0 ) ,  OtC(to, p )  = (OttPl(to,p), O, O) , 

b x Vbl(to,p) = (0, 0, VOl(to,p)), c x Vcl(to,p) = (0, V~ol(to,p), O), 

Ab(to, p) = ( - A0, -IV012, 0) l(to,p), 
and 

AC(to, p) = ( A q), 2V0.  V~o, -]V~o[2)l(to,p). 

In the above, V and A denote the gradient and the Laplacian with respect to the induced metric 
on Lto; b x Vb  and c x Vc  the cross products by regarding b, Vb, c, and Vc as 3-vectors. 

By assumption, both ~(K.,  .) and ~ ( J  K., .) vanish on Tx Lt for any (t, x) in a neighborhood 
of (to, p).  In particular, w2 = 0)3 = 0 at (to, p).  Then by applying Proposition 3.1 to the 2-form 
~(K-, .), we have at the point (to, p),  

0 = [(Ot -- A)bl](-Ol,ij -- 2 V k b l V k O ) l , i j  

+ E (ha,kkj Vi  bot - hot,kki V j  bu) �9 
Ol 

Note that we have used the fact that Y-~s Rs_ji ---- 0 whenever ~(K. ,  .) -- 0 by the flatness of the 
Ricci curvature, see [11]. On the other hand, Lemmas 3.3 and 3.2 imply 

and 

Hence, we conclude that 

VO)l,i j = 0 , 

_hu,kkjVibc~ = O . 
Ol 

0 = [(Ot -- /k t )b l]a) l , i j  . 

Since w2 = 0,3 = 0, we have o91 # 0. Therefore, 

(Ot -- Zkt)bl = 0 ,  

which is equivalent to 
(Ot - At)O = O at (to, p ) .  

Similarly, by applying Proposition 3.1, and Lemmas 3.3 and 3.2 to the symplectic form ~ ( J  K-, .), 
we have 

(8t --  /kt)(p = 0 at (to, p) �9 

All together, we have proved that J satisfies 

(Ot -- A t ) J  = 0 

as a mapping from [0, T) x L0 to S 2. [ ]  
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Note that we have used the same notation to denote the Laplacian of functions and the tension 
field of  a map. However, as we have seen, no confusion will be created. 

L e m m a  3.5. Suppose that (M 4n, g-) is a h y p e r k ~ l e r  manifold and Lt C M 4n, t E [0, T) 
for some T > O, is a family o f  compact middle dimensional submanifolds given by the mean 
curvature flow. Le t  J = J (t, x)  ~ f f  be a harmonic map heat f low along the mean curvature 
f low Lt,  i.e., (Or - A t ) J  : O; and let K = K( t ,  p)  be the parallel complex structure o f  M 
corresponding to J (t, p)  constructed in the proo f  o f  Theorem 3.4. I f  for each point (t, p) ~ L t ,  
N (K) ,  N (J  K ) : Tp L t ----> (Tp L t) • are isomorphisms, then there is a constant c > 0 such that 

0~1~12 ~ atlg212 -t- clg212 , 

where ~2 (., .) = ~( K. ,  .) + i~( J K. ,  .). 

P r o o f  Lets fix a point (to, p)  and use the same notations and conventions as in the proof of  
the Theorem 3.4. Then as in [11], we use the flatness of  the Ricci curvature, Proposition 3.1, and 
Lemma 3.2 to deduce that, there is a constant A1 > 0 such that 

0 2 
~-Ico(K)l  < Allco(K)12 + 2 (co(K) ,aco(K) )  

+ 2 E [(Otb~ - Abu)(coa, co(K)) - 2Vkbu(Vkcou, co(K))] 

q- 2rl(K)lSh(K)lkj  E ( b  x Vib)a(cou, co(K)) ,  

where b x Vi is the cross product by regarding b and Vb as 3-vectors. 

Evaluating at (to, p ) ,  we have 

(Or -- a ) l co (g ) [  2 _< A2[a~212-b 2[V0121co212 

-I- 4 VkO ( Vkcol, co2) + 2rllShE,lkj ViO (co3, o92) , 

for some constant A2 > 0. Since Lt are compact, we can apply the last part of  Lemma 3.3 to 
conclude that there is a constant A3 > 0 such that 

(Or - a ) l co (g ) [  2 %_ A3([o~l 2 + 1co3[2) �9 

Similarly, we have at the point (to, p) ,  

(Ot - a ) l c o ( J K ) l  2 B21co312 - 4V0 �9 Vtp(co2, co3) 

d- 21Vtpl21co312 - 4Vk~o(Vkcol, CO3) 

+ 2rl~Sh3,1kjVi~o(co2, co3), 

for some constant B2 > 0. Hence, there exists a constant B3 > 0 such that 

(0 t - -  a ) l c o ( J g ) l  2 ___ n3(larzl 2 + Iw312). 

Combining these two inequalities, we have shown that 

(Or - a)lf212 _< c1~212 

with c = A3 + B3. [ ]  
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Next, we prove the main theorem of this section, namely, the mean curvature flow preserves 
the hyper-Lagrangian condition. 

Theorem 3.6. Let (M 4n, ~) be a hyperk~ler manifold. Let Lt C M 4n, t e [0, T) for some 
T > O, be a family of  middle dimensional submanifolds given by the mean curvature flow. 
Suppose that Lo C M is hyper-Lagrangian. Then Lt is hyper-Lagrangian for all t ~ [0, T). 

Proof. Consider the initial value problem for the generalized harmonic map heat flow to S 2 
along the mean curvature flow: 

( O t - A t ) |  on (0, T ) •  

| = J ( x ) .  

The short time existence implies that there is a T1 e (0, T) such that solution | x) = J(t,  x) 
exists for t e [0, T1). Recall that if L0 is hyper-Lagrangian, then for each point (0, p) e L0, 
there is a parallel complex structure J of M such that, for all parallel complex structure K of M 
orthogonal to J ,  

~(K., ")lZpZo = O . 

So we can pick K(t, x) satisfying the condition in the Lemma 3.5 and conclude that the corre- 
sponding complex 2-form ~2 satisfies 

(Ot - A)If212 __ clf2l 2, on (0, T1) x Zo 

If212(0, p) -- 0 .  

Therefore maximum principle implies that 1~"212 ~--" 0, by the assumption that L0 is hyper- 
Lagrangian. This proves the result for a short time. 

Now using the same notation as in the proof of the theorem, we see that 

~(K., .) =-- ~(JK. ,  .) =-- 0 

along Lt. Therefore at any point (t, p) e [0,/'1) x L0 and in the basis and coordinates chosen as 
in the proof of the theorem, we have 

V(bawa) = V(cawa) = O. 

This implies, at the point (t, p),  

Vblo)l + Vo)2 = VClWl + Vo)3 = 0 .  

So 
IV01 ~ IVo~l and IVy01 ~ Ivw3l. 

Noting that Vjoga,ik = hu,ki j  --  hot,ikj and Ihc~,kijl <_ IVeiejl, we conclude that IV01 and IV~ol 
are bounded in terms of the geometry of mean curvature flow Lt as long as it exists. Hence, if 
T1 < T, we can find subsequence of J(t) converges to some element J in ,7" as t ---> T1. It is 
clear that J enjoys the same property on LTI as J(t)  on Lt, for t < T1. This implies that LTI is 
also hyper-Lagrangian. 

In conclusion, we have proved that the set of t ~ [0, T) with hyper-Lagrangian Lt is both 
open and closed in [0, T). This, of course, implies that Lt is hyper-Lagrangian for all t ~ [0, T). 
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4. Hyper-Lagrangian submanifolds 

Let (L 2n, g) be a hyper-Lagrangian submanifold in a hyperk/ihler manifold ( M  4n, g)  with 
respect to some J ( x )  in A2+,x and K ( x )  : L ~ A 2 , x  be a smooth map such that K ( x )  is 
orthogonal to J ( x )  for each x ~ L. Then by the hyper-Lagrangian condition, we have 

WKIL = O, Yx  ~ L . 

Suppose that {el }2n is an orthonormal frame field for T L  around a point x = p satisfying 

Je2v-1 = e2v for v = 1 . . . . .  n ,  

then { f / =  Kei  }2n 1= is an orthonormal frame field for the normal bundle satisfying 

J f 2 v - 1  ~ - f 2 v ,  

For the frame {ei, f i  }, we denote 

{ e~ = l(e2v_l - ie2v), 

f" = �89 + if20,  

Then it is obvious that 

{ J d v =  " ' l e  v , 

j f ~  �9 t tf~, 

{ K d  v = flu' , 

I It  
K f  v --e v, 

for v =  l , . . .  , n .  

,, 1(  e v = e2v-1 + ie2v) , 

f~' = l ( f 2 v - 1  -- i f 2v ) .  

Je~  = �9 It - - r e  v , 

Jf~ '  = - i f ~ '  , 

K e~  = f ~ ,  

Kf~ '  = - d  v . 

The frame fields {e~, f~} defined in the above will be referred as the canonical f r a m e  adapted to 
( J , K )  around the point  p. 

Correspondingly, we set 

{ ~bv = ~2v-1  + i~2v ,  ~ v  = ~'2v-1 - -  i~2v ,  

~v = ~ozv-I - i92v, ~v = ~02v-1 + i92v , 

for the frame {~1 . . . . .  ~2n, tPl . . . . .  92n} dual to {el . . . . .  e2n, f l  . . . .  f2n}. Then the 
J-holomorphic symplectic form is given by 

n 

~ J  = W J K  - -  i09K = - - i  ~ dpv A ~v , 

i)=1 

and the structural equations implies 

2n 2n 
d~i  = ~-~ j= l  ~ij  A ~j  - -  ~-~ j= l  qlJ i A ~oj 

I d a '  = * ' i  ^ + A , 

for some 1-forms ~ij, ogij, and 9i satisfying 

~ij  + ~j i  = 0 a n d  tpi j --]- ~oji : O .  



where (i j ,  ktlij, and q)ij are 

".At*u = 1 

13tz v = 1 

1 
C#v = -2 

79t* v = 1 

1 

for v,/z = 1 . . . . .  n, then 
shows for any # ,  v = 1 . . . . .  n, 
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Along the submanifold L, there exist hijk, symmetric in j ,  k, such that 

2n 

tltij = E hijk(k �9 
k=l 

It is clear that if we choose a normal coordinates around the point p, then the hijk defined here 
coincides with the h(K)i jk  defined in the previous section at the point p. Finally, the mean 
curvature vector is of course given by 

2n ( 2k_~ 1 ) H = - E hikk fi �9 
i=1 

From the above, the covariant derivatives of the orthonormal frames are given by 

[ ~Tei 2n X'~2n II1.. = Ej=I  (ij | ej -- Z.~j=I Jt @ f j  

X -'2n ql.. 2n [ f7fi = z.,j=l ,j | ej + Y~q=l 9ij | f j  , 

1-forms. If we set 

[(~2t*-l,2v-1 + ~2t*,2v) --i (~2t*,2v-1 -- ~2t*-l,2v)] , 

[(~2/x-l,2v-1 -- ~2/,,2v) - - i  (~2t*,2v-1 + (2t*-l,2u)] , 

[(d~/2t*-l,2v-1- ql2t*,2v)- i (kO2t*,2v-1 -t- kI/2t*-l,2v)] , 

[(kO2t*-l,2v-1 -t- kI/2t*,2v) - - i  (q/2t*-l,2v -- q/2t*,2v-1)] , 

[(q)2/x-l,2v-1 -'1-(P2.,2v) -t-i (q)2/*,2v-1- ~02p.-1,2v)] , 

[(~02t*-l,2v-1 -- q)it*,2v) -t- i (q)2/z,2v-1 n t- q02#-l,2v)] , 

straightforward calculation using ~ij -[- ~ji = 0 and ~Oab + ~Oba = 0 

{ Xge'v = Et* (.Avu | e'~ + But* | e'~) - Et* (C.v | f:, + 7)t*v | f~z') , 

V f"  = Et* (Cut* | e~ + Dvt* | e/~) + Et* (gut* | J~ + .~ut* | f/~') 

and 

(4.1) 

{ At*v + -At*v = Bvu + Bt*u = 0 ,  

= Yt*, + .%~ = O. 
(4.2) 

In order to prove the compatibility condition, for any fixed p ~ L, we set J1 = J (P) ,  
J2 K (p), and J3 J1J2. Then 3 = = {J~}~=l is an orthogonal set of parallel complex structures 
and they will he called the canonical basis adapted to (J, K)  at p. At the point p, we have 

n 
J1 ----- E (e2v-1 A e2v - f2v-1 A f2v) 

v=l 
n 

J2 = Y~. (e2~-1 A f2v-1 + e2v A fgu) 
v=l 
n 

3'3 = ~ (f2~/x e2~-1 - f2~-1 A e2~) 
u=l 
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in the canonical identification between 2-forms and 2-vectors. 

Now we can state the following. 

Theorem 4.1. Let L ~ be a hyper-Lagrangian in a hyperk~hler manifold M 4n with defining 
map J .  Le t  K : L --~ S 2 be any smooth map orthogonal to J at every point o f  L. Then for 
any fixed point p ~ L, the coefficient 1-forms o f  the structural equations for the canonical frame 
adapted to ( J, K)  around p satisfy the following conditions at the point p: 

m 

A~v + A g v  = 0 ,  (4.3) 

13vtz = 0, (4.4) 

Cv~ = Ctzv, (4.5) 

1 
Dutz = ~ v t z  (da3 + i da2) , (4.6) 

s  = 0 ,  (4.7) 

~'vu = 0 ,  (4.8) 

Cv~ = Av~z + iSvtz db3 , (4.9) 

where a~ and ba are, respectively, the components o f  J and K with respect to the canonical basis 
adapted to ( J,  K)  at p. 

Moreover, the differential o f  J at p as a map into S 2 is given by 

dJp = 2 ( ImDvv J2 + Re73vuJ3) for any v = 1 . . . . .  n . 

Proof .  We note that (4.3) and (4.7) are just (4.2). To prove the other conditions, we differentiate 
J e~v = ie~v to obtain 

(VJ)elu + J(Velv) = t" Ve  v' 

for all v = 1 . . . . .  n. Let Ja be the canonical basis adapted to (J, K) at p, and aa, b~ be the 
coefficients of J = ~--~a aa Ja and K = Y~a ba J~, respectively. Then by the hyper-Lagrangian 
condition, V J  at the point p is a linear combination of J2 = K ( p )  and -/3. Therefore, we have 
the following. 

V J = da2 J2 + da3.13 

at the point p. Putting this and the structural equations in the above equation, we obtain at the 
point p, 

(da2 - i da3) fv '  = 2i13v~ze~ - 2iT)vtzf~ ~ , 

which implies the Equations (4.6) and (4.4). 

Similarly, applying the same argument to Jf~ = if~ and Ke~ = f~v, we obtain (4.6) again 
and all other Equations (4.8), (4.5), (4.9) together with the identity da2 + dbl  = 0 at p. The last 
identity is automatically satisfied by the definition of aa and ba. 

The final part is an obvious conclusion of (4.6) and the proof is completed. [ ]  

The theorem indicates that hyper-Lagrangian is a strong condition which imposes a lot of 
restrictions on the structural equations. As a consequence, we have the following. 

C o r o l l a r y  4.2. Let  L 2n be a hyper-Lagrangian in a hyperkdihler manifold M 4n and for any 
p ~ L, J ( p )  be the a lmostcomplex  structure a t p  such that f2j(p)[rpL = O. Then J induces an 
integrable Kiihler structure on L with holomorphic normal bundle. 



Proof.  
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From Theorem 4.1, we have 

- t  T t Ve'~ = (Vev) = Y~u Auu | eu ' 
- , •  

= (vs;) = E. c.. | s;. 

The conclusions follow immediately. [] 

In the neighborhood of the point p, it is more convenient to use the following local repre- 
sentation of the map J 

al (x) + ia2(x) 
O ( x )  = 

1 -- a3(x) 

via stereographic projection. Then the theorem implies that at the point p, 

18 DvtL = ~ v~ d O .  (4.10) 

Using O, the conditions on the second fundamental form can be written as in the following. 

Coro l l a ry  4.3. Let L 2n be a hyper-Lagrangian in a hyperkiihler manifold M 4n with defining 
map J. Let K : L ~ S 2 be any smooth map orthogonal to J at every point o f  L. Then for any 
fixed point p ~ L, KO2U_I,2v_I ,  d, t2U,2v, ff, t2 /z_l ,2v ,  d, t2U,2v_ 1 ate symmetric in Iz, v; and 

[ 1 ~2u-l,2u-1 + qJ2U,2V = gSUU Re (dO) 
1 [qJ2u-l,2u - ~2u,2u-1 = -gSuv Im (dO) , 

where {~ij } is the second fundamental form in the canonical frame adapted to ( J, K) at p. 

Proof.  By definition, we have 

q 1 2 # - l , 2 v - 1  = Re (Cur + Duv ) , 

~I/2~,2 v = Re ( -Cur + Duv ) , 

~I/2/z--l,2v = Im (-Cuu - Duv ) , 

tI/2/z,2v_ 1 = Im (-Cuu + D~v) . 

Therefore, Equation (4.5) and (4.6) imply that all four 1-forms listed are symmetric in/z, v. And 
the two equations follow immediately by adding and subtracting corresponding equations. [ ]  

Coro l l a ry  4.4. Let L 2n be a hyper-Lagrangian in a hyperkiihler manifold M 4n with defining 
map J. Let K : L ~ ~2 be any smooth map orthogonal to J at every point o f  L. Then for any 
fixed point p ~ L, the second fundamental form {hijk } in the canonical frame adapted to ( J, K)  
at p satisfies 

hijk -= hjik for {i, j} 7~ {2# - 1, 2#} forany Ix, 

and 

h2/z_i,2/z, k = hE/z,E/z_l, k - Im (dO(ek)) . 

Moreover, for any lz, v, 

h2#-l,2v-l,k + h2tz,2v,k = BUy Re (dO(ek)) . 
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P r o o f .  It is immediately from the symmetries of ko that hijk  = h j i k  if i + j is even. If i + j 
is odd, then we consider h2#-l ,2v,k  -- h2v,2tz-l ,k.  By the symmetries of ko2g_l,2v and equation 
for dJ2/z_l,2v - gJ2/z,2v-1 we have 

1 
h2tz-l ,2v,k -- h2v,2~z-l,k = h2tz-l ,2v,k -- h2tz,2v-l,k = --~8~vlm (d19(ek)) . 

So we conclude that h2u-l ,2v ,k  = h21z,2v-l,k if/z ~ v. Otherwise, we have 

h2u-l,2.,k = h2g,2g-l,k -- Im (d19(ek)) . 

This completes the proof of the first part. The second part follows immediately from the corre- 
sponding equation for qJ. [ ]  

Note that the formula for commuting i, j in hijk in this corollary can also be obtained from 
Proposition 2.1. 

It is interesting to compare the result in this corollary with the complete symmetry of all 
three indices of the second fundamental form of a special Lagrangian submanifold in a Calabi-Yau 
manifold. In our case, the second fundamental form of a hyper-Lagrangian does not have the 
complete symmetry in all three indices in general. However, the corollary shows that the second 
fundamental form has a lot of symmetry which is sufficient to implies the first-order equation on 
| relating 019 to the mean curvature vector H and the holomorphic symplectic form f2j. 

If we denote d19p(ek) = Pk -- i Qk,  then 

Pk = h l l k  + h22k = h33k + h44k . . . . .  h2n- l ,2n- l , k  + h2n,2n,k 

and 
Ok = h12k -- h21k = h34k -- h43k = . .  �9 = h2n-l,2n,k -- h2n,2n-l ,k 

for all k = 1 . . . . .  2n. And we have 

2n 

d |  = E ( P k  - i Qk) (k  �9 
k = l  

In terms of the forms ~bv and ~v, this is given by 

1 
d19p = ~ E [ ( P 2 v - l  - Q 2 v ) - i ( P 2 v  + Q 2 v - 1 ) ] ~ v  

p 

1 
+ 5 E [(P2v-1 + Q 2 v ) +  i ( P 2 v -  Q2v -1 ) ] -~v .  

P 

Hence, one concludes that 

1 
0| = ~ Z [ ( P 2 v _ I  - Q 2 v ) + i ( P 2 v  + Q2v-1)]q~v.  

p 

Now we can prove the following. 

T h e o r e m  4.5. L e t  L En be a hyper-Lagrangian submani fo ld  in a hyperMihler  mani fo ld  M 4n 

and for  any  p ~ L ,  J (p )  be the a lmost  c o mp lex  structure at p such that f2 j (p )[TpL = O. Then 

H ~ f 2 j  + 2 iOJ  = O,  
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where H is the mean curvature vector of  L in M. 

Proof. We continue to work on the local representation tO of  the map J : L ~ ~2. The mean 
curvature vector is 

Therefore, 

H ~ 2 j  = 

H = - hjkk f j  
j=l \k=l / 

n 2n 

= - - E  Z [  (h2tz-l'kk --ih2l~,kk)f~ + (h2l~-X,kk + ih2~,kk)f~r]. 
/z=l k=l 

n 

iH~ E q~u A 7tu 
/x=l 

n 2n 

= - i  E E q~tz(h2/z-l,kk -- ih2l~,kk) 
/z=l k=l 

n n 

= --i E Z dplz [(h2lz-l,2v-l,2v-1 + h2lz-l,2v,2v)-i(h2lz,2v-l,2v-1 + h2#,2v,2v)] �9 
tt=l v=l 

I f /z  # v, then by Corollary 4.4 and the symmetry of  the last two index, one has 

h21z-l,2v-l,2v-1 + h21z-l,2v,2v = h2lz,2v-l,2v-1 + h2#,2v,2v = 0 . 

Hence, all the cross terms in the sum vanish and we have 

n 

H2Qj  = - i  Z dp~t [(h2tt-l,2/z-l,2/z-1 + h2g-l,2t~,2/z) - i(h2tz,2#-l,2v-1 + h2/z,2/z,2t~)] �9 
tz=l 

Note that for any/z,  

P2u-1 - Q 2 .  = 

and 

P2/z + Q2/z-1 = 

Therefore, we have 

(h2/~-1,2#-1,2#-1 +- h2#,2/z,2/~-l) - (-h2/z-l,2u,2/z + h2#,2/z-l,2g,) 

h2tz-l,2/z-l,2#-I + h2g,-1,2/z,2/z, 

(h2tz-l,2tz-l,2/z + h21x,2tt,21z) + (h2/z,2/~-l,2/z-1 - h2t~-l,2#,2/z-1 

h2#,2#-l,2~t-1 + h2tz,2#,2/z �9 

Hz~2j + 2i0 |  = O. [ ]  

By the theorem, we immediately conclude the following. 

Corollary 4.6. Let L 2n be a hyper-Lagrangian submanifold in a hyperkiihler manifold M 4n 
and for any p ~ L, J(p)  be the almost complex structure at p such that ~J(P)ITpL = O. Then 
L is minimal i f  and only i f J  is anti-holomorphic. 



362 Naichung Conan Leung and Tom Y. H. Wan 

This corollary includes the case of  complex Lagrangian submanifolds. In this case, J is 
a constant. 

In the case that L is in fact a Lagrangian with respect to a fixed 0)Jo. We may choose J2 to 
be the fixed Jo. Then at the point p 6 L, there is a function ap : L ~ ]R with ~ ( p )  = zr/2 such 
that |  = sin ~P(x)J1 + cos ~(x)J3.  It follows immediately that d O  = -d~p at x = p. These 
imply that Q k = 0 for all k and dap = - Y~-k Pk (k. On the other hand, the holomorphic symplectic 
form at p is given by f2j = 0) 3 - -  i0)2. So H . J Q j  = H~0)3 -- i H J0)2 and by Theorem 4.5, we have 

-H-J0)3 + i (H~0)2) 

= 2i0|  

= i E ( P 2 v _ I  -- iP2v)dpv 
I) 

= i E ( P 2 v _ l  -- iP2v)(~2v-1 + i~2v) 
I) 

= E [(P2v~Zv-1 -- P2v-l~Zv) + i(P2v-l~2v-1 + P2v~Zv)] �9 
I) 

Therefore 
H J0)2 + dTt = 0 ,  

which implies that 7t is in fact the phase map up to a constant. Moreover, we have an addi- 
tional equation 

H J0)3 = E ( P 2 v - l ~ 2 v  -- P2v~2v-1) D 

p 

5. A remark on regularity 

Finally, we would like to make one remark about the regularity of  the mean curvature flow of  
hyper-Lagrangian submanifolds under a natural condition on the associated map J .  It was proved 
by M. T. Wang in [13] that a symplectic surface in a four-dimensional Kahler-Einstein manifold 
remains symplectic and does not develop any Type I singularity along the mean curvature flow. 
If  the Kahler-Einstein is in fact hyperk~hler, then a surface being symplectic is equivalent to the 
condition that the image of  the map J is contained in a hemisphere. To see this, we observe that 
any surface L in a four-dimensional hyperk'~hler manifold is always hyper-Lagrangian. Therefore, 
there is a J ( x )  = y~3_~a~(x)J~,_ with a = (al, a2, a3) E S 2 and an orthogonal set of  parallel 
complex structures {J~-}a=l such that J (TxL)  = TxL for all x e L. In a neighborhood of  any 
point x e L, we may choose an orthonormal frame for T L  of  the form {el, e2 = Jel} .  Then 

0)1,12 = g(J l e l ,  e2) = a l  V x  e L .  

Therefore, al > 0 if and only if L is symplectic with respect to O)1.  This shows the required 
equivalence. Therefore Wang's result can be rephrased as: If  the image of  the map J on L 
contained in a hemisphere, then the image J on Lt remains in the same hemisphere and does not 
develop any Type I singularity along the mean curvature flow. In the following, we will see that the 
proof in [13] actually can be applied to the higher dimensional hyper-Lagrangian submanifolds 
and gives the following. 

Theorem 5.1. Let  (M 4n , ~) be a hyperk~ le r  manifold. Let  Lt C M 4n, t e [0, T)  for some 
T > O, be a family o f  middle dimensional submanifolds given by the mean curvature flow. 
Suppose that Lo C M is hyper-Lagrangian and the image o f  the corresponding map J : Lo --+ S 2 
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is contained in a hemisphere. Then the image of J : [0, T) • Lo ~ S 2 is contained in the same 
hemisphere and the mean curvature flow does not develop any Type I singularity. 

Proof. By Theorems 3.4 and 3.6, Lt is hyper-Lagrangian for each t E [0, T) and J(t, x) 
satisfies the harmonic map heat flow which can be written as 

(a t -A)aa=lVal2aa ,  or=  1 , 2 , 3 ,  

where aa are components of J as a map into ~2 C ~3 .  If  J(Lo) is contained in a hemisphere 
which may be assumed to be {a 6 ~2 1 a l  > 0}. Then we have a l  (X) > 0 for all X ~ L0. 
Applying maximum principle to the harmonic map heat flow, we conclude that al (t, x) > 0 for 
all (t, x) ~ [0, T) x L0. This proves the first part of the theorem. 

To see the second part, we observed that Lt is hyper-Lagrangian for all t. Theorem 4.5 
implies that 

H .f2j + 2iaO = 0. 

Hence, 

This estimate implies 

[HI 2 = 21aOI 2 < 2[Val 2 . 

1 
(at - - A ) a l  >_ ~-[Hl2al  . 

z 

Then standard argument using al > 0 imply the nonexistence of Type I singularity, see, for 
example, [5], or the proof of Proposition 5.2 of [13]. [ ]  

The same argument is also applied to Lagrangian submanifold in a Calabi-Yau manifold 
(M, 09, f2) with ,Ref2 > 0. Firstly, it was proved by Smoczyk [11] that it remains Lagrangian 
along the mean curvature flow. Then Wang showed in [13], see also [14], that the condition 
,Ref2 > 0 is preserved and the flow does not develop any Type I singularity using the same ar- 
gument. 
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