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COUNTING ELLIPTIC CURVES IN K3 SURFACES

JUNHO LEE AND NAICHUNG CONAN LEUNG

Abstract

We compute the genus g = 1 family GW-invariants of K3 surfaces
for non-primitive classes. These calculations verify the Göttsche-Yau-
Zaslow formula for non-primitive classes with index two. Our approach
is to use the genus two topological recursion formula and the symplectic
sum formula to establish relationships among various generating func-
tions.

The number of genus g curves in K3 surfaces X representing a homology
class A ∈ H2 (X, Z) and pass through a g generic point depends only on the
self-intersection number A·A = 2d−2 and the index1 r of the class A ([1], [2]).
We denote it as Ng (d, r) which is certain virtual counting of curves in X. The
conjectural formulas of Göttsche [4], which generalize the Yau-Zaslow formula
[14], then assert that the generating function for those numbers Ng(d, r)s is
given by

(0.1)
∑
d≥0

Ng(d, r) td = (t G′
2(t))

g
∏
d≥1

( 1
1 − td

)24

where G2(t) is the Eisenstein series of weight 2, i.e.,

G2(t) =
∑
d≥0

σ(d) td where σ(d) =
∑
k|d

k, d ≥ 1 and σ(0) = − 1
24 .

In particular, Ng (d, r) should be independent of the index of the homol-
ogy class. In [1, 8], this formula was verified for any genus and primitive
classes (r = 1). It was also verified for genus g = 0 and index r = 2 classes
[10]. In this article, we verify the formula (0.1) for genus g = 1 and index
r = 2 classes by computing the family GW-invariants defined in [7]. Our main
theorem is the following result.

Theorem 0.1. Let X be a K3 surface and A/2 ∈ H2

(
X; Z

)
be a primitive

class. Then, the genus g = 1 family GW-invariant of X for the class A is
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1The index of A is the largest positive integer r such that r−1A is integral. An index
one class is called primitive.
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592 JUNHO LEE AND NAICHUNG CONAN LEUNG

given by

(0.2) GWH
A,1(pt) = GWH

B,1(pt) + 2 GWH
A/2,1(pt)

where B is any primitive class with B2 = A2.
To explain the equivalence between the above theorem and the Göttsche-

Yau-Zaslow formula, we first notice that the family Gromov-Witten invariant
counts the number of J-holomorphic maps for any complex structure J in the
twistor family of the K3 surface X. As explained in [1], there is a unique J in
the twistor family which supports holomorphic curves representing A and this
justifies the use of our family invariant. An important issue is the distinction
between holomorphic maps to X and holomorphic curves in X. This is because
a multiple curve in X can be the image of different holomorphic maps. This
issue does not arise when the homology class A/2 they represent is primitive
and therefore N1 (d′, 1) = GWH

A/2,1(pt), where (A/2)2 = 2d′−2. Similarly, we
have N1(d, 1) = GWH

B,1(pt) where A2 = B2 = 2d − 2. The number of genus
one holomorphic maps covering a fixed elliptic curve with degree r equals
the sum of divisors σ (r), for instance σ (2) = 1 + 2 = 3. Each primitive
elliptic curve representing the class A/2 in X contributes 3 to GWH

A,1(pt),
which counts maps to X. On the other hand, the same curve contributes 1 to
N1(d, 2), which counts curves in X; that is, we have

GWH
A,1(pt) − N1(d, 2) = 2N1(d′, 1) = 2GWH

A/2,1(pt).

Therefore the above theorem is equivalent to,

N1(d, 2) = GWH
B,1(pt) = N1(d, 1).

Together with the validation of the formula for primitive classes, this im-
plies the Göttsche-Yau-Zaslow formula for the number of elliptic curves in K3
surfaces representing index two homology classes.

The organization of this paper is as follows: The construction of family
GW-invariants is briefly described in Section 1. This section also contains a
family version of composition law. In Section 2, using the composition law
and the genus g = 2 TRR (Topological Recursion Relation) formula [3] we
establish the g = 2 TRR formula for family GW-invariants. In Section 3, we
prove Theorem 0.1 by combining this TRR formula with the symplectic sum
formulas of [10].

1. Composition law for family GW-invariants

This section briefly describes family GW-invariants defined in [7]. Let X

be a Kähler surface with a Kähler structure (ω, J, g). For each 2-form α in
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COUNTING ELLIPTIC CURVES IN K3 SURFACES 593

the linear space
H = Re

(
H2,0 ⊕ H0,2

)
we define an endomorphism Kα of TX by the equation 〈u, Kαv〉 = α(u, v).
Since Id + JKα is invertible,

Jα = (Id + JKα)−1J (Id + JKα)

is an almost complex structure on X.
Denote by Fg,k(X, A) the space of all stable maps f : (C, j) → X of genus

g with k-marked points which represent homology class A. For each such
map, collapsing unstable components of the domain determines a point in the
Deligne-Mumford space Mg,k and evaluation of marked points determines a
point in Xk. Thus we have a map

(1.1) st × ev : Fg,k(X, A) → Mg,k × Xk

where st and ev denote the stabilization map and the evaluation map, re-
spectively. On the other hand, there is a generalized orbifold bundle E over
Fg,k(X, A) ×H whose fiber over

(
(f, j), α

)
is Ω0,1

jJα
(f∗TX). This bundle has

a section Φ defined by

Φ
(
f, j, α

)
= df + Jα df j .

When X is a K3 surface and A �= 0, the moduli space Φ−1(0) = MH
g,k

(
X, A

)
is

compact. By the same manner as in the theory of the ordinary GW-invariants
[11], this section then gives rise to a well-defined rational homology class

GWH
g,k(X, A) ∈ H2r

(
Fg,k(X, A); Q

)
where r = g + k.

The family of GW invariants of (X, J) are then defined by

GWH
g,k(X, A)

(
β; γ1, · · · , γk

)
= GWH

g,k(X, A) ∩
(
st∗(β∗) ∪ ev∗(γ∗

1 ∪· · ·∪γ∗
k)

)
where β∗ and γ∗

i are Poincaré dual of β ∈ H∗
(
Mg,k; Q

)
and γi ∈ H∗

(
Xk; Q

)
,

respectively.
In [7] the first author proved that the above family of GW-invariants of K3

surfaces are the same as the invariants defined by Bryan and Leung [1] using
the twistor family. In particular, they are independent of complex structures
and for any two classes A, B of the same index with A2 = B2, there exists an
orientation preserving diffeomorphism h : X → X such that h∗(A) = B and

(1.2) GWH
g,k(X, A)(β; γ) = GWH

g,k(X, B)(β; h∗γ).

Below we will often denote the above family of GW-invariants simply as
GWH

A,g.
The family of GW-invariants has a property analogous to the composition

law of ordinary GW-invariants (cf. [13]). Consider a node of a stable curve
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594 JUNHO LEE AND NAICHUNG CONAN LEUNG

C in the Deligne-Mumford space Mg,k. When the node is separating, the
normalization of C has two components. The genus and the number of marked
points decompose as g = g1 + g2 and k = k1 + k2 and there is a natural map

σ : Mg1,k1+1 ×Mg2,k2+1 → Mg,k

defined by identifying (k1 + 1)th marked points of the first component to
the first marked point of the second component. We denote by PD(σ) the
Poincaré dual of the image of this map σ. For the non-separating node, there
is another natural map

θ : Mg−1,k+2 → Mg,k

defined by identifying the last two marked points. We also write PD(θ) for
the Poincaré dual of the image of this map θ.

Recall that the ordinary GW-invariants of K3 surfaces are all zero except
for the trivial homology class. The proposition below thus follows from Propo-
sition 3.7 of [7].

Proposition 1.1. Let {Ha} and {Ha} be bases of H∗(X; Z) dual by the
intersection form.

(a) For the gluing map σ as above, we have

GWH
A,g(PD(σ); γ1, · · · , γk)

=
∑

a

GWH
A,g1

(γ1, · · · , γk1 , Ha) GW0,g2(H
a, γk1+1, · · · , γk)

+
∑

a

GW0,g1(γ1, · · · , γk1 , Ha) GWH
A,g2

(Ha, γk1+1, · · · , γk)

where GW0,g1 and GW0,g2 denotes the ordinary GW invariants of K3
surfaces.

(b) For the gluing map θ as above, we have

GWH
A,g(PD(θ); γ1, · · · , γk) =

∑
a

GWH
A,g−1(γ1, · · · , γk, Ha, Ha).

2. Topological recursion relations

The first composition law, Proposition 1.1(a) relates family invariants and
ordinary invariants (for trivial homology class) of K3 surfaces. In this section,
we first recall the ordinary GW-invariants of a closed symplectic 4-manifold for
trivial homology class. Similarly as in [8], we then combine the composition
law with the genus g = 2 TRR formula [3] to establish a family version of
g = 2 TRR formula.
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COUNTING ELLIPTIC CURVES IN K3 SURFACES 595

Let ψi be the first Chern class of the line bundle Li → Mg,k

(
X, A

)
whose

geometric fiber at the point
(
C; x1, · · · , xk, f

)
is T ∗

xi
C. One can use ψi to

impose constraints on the ordinary GW invariants as follows :

GWg,k(X, A)(τm1(γ1), · · · , τmk
(γk))

= GWg,k(X, A) ∩
(
ψm1

1 · · ·ψmk

k ∪ ev∗(γ1 ∪ · · · ∪ γk)
)

where GWg,k(X, A) is the rational homology class in H∗(Fg,k(X, A); Q) that
defines the ordinary GW invariants. We also denote by φi the first Chern
class of the line bundle Li → Mg,k whose geometric fiber at the point(
C; x1, · · · , xk

)
is T ∗

xi
C.

Lemma 2.1. Let X be a closed symplectic 4-manifold and c1 = c1(TX).

(a) GW0,0

(
γ1, · · · , γk

)
= 0 unless k = 3 and

∑
degαi = 4. In that case,

GW0,0

(
γ1, γ2, γ3

)
=

∫
X

γ∗
1 γ∗

2 γ∗
3 .

(b) GW0,1

(
γ1, · · · , γk

)
= 0 unless k = 1. In that case,

GW0,1

(
γ
)

= − 1
24 c1(γ) .

(c) GW0,2

(
τ (γ1), γ2

)
= 0. When c1 = 0, we also have GW0,2

(
τ (γ)

)
= 0.

Proof. (a) and (b) directly follow from Proposition 1.4.1 of [6]. On the
other hand, the formula (7) of [6] says that

GW0,2

(
τ (γ1), γ2

)
=

(
γ1 · γ2

) ∫
M2,2

λ2
2 φ1,

GW0,2

(
τ (γ)

)
= −c1(γ)

∫
M2,1

λ1 λ2 φ1,

where λi = ci(E) is the Chern class of the Hodge bundle E. Thus, the first
invariant in (c) is zero by Mumford’s relation λ2

2 = 0 (cf. [12]) and the second
vanishes when c1 = 0. �

Let ϕi be the first Chern class of the line bundle LH
i → MH

g,k

(
X, A

)
whose

geometric fiber at the point
(
C; x1, · · · , xk, f, α

)
is T ∗

xi
C. Similarly as for the

ordinary GW invariants, one can also use ϕi to impose constraints on GWH

invariants as follows :

GWH
g,k(X, A)(τm1(γ1), · · · , τmk

(γk))

= GWH
g,k(X, A) ∩

(
ϕm1

1 · · ·ϕmk

k ∪ ev∗(γ1 ∪ · · · ∪ γk)
)
.

Let E(2) → P1 be an elliptic K3 surface with a section of self-intersection
number −2. Denote by s and f the section class and the fiber class, respec-
tively.
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596 JUNHO LEE AND NAICHUNG CONAN LEUNG

Proposition 2.2. Let s and f be as above and (S, F ) denote either (2s, f)
or (s − 3f, 2f). Then, the family of GW invariants of an elliptic K3 surface
E(2) satisfies the following formula,

GWH
S+dF,2

(
τ (F ), τ (F )

)
= 1

9 d(d − 1) GWH
S+dF,0 − 1

3 dGWH
S+dF,0

+ 4
9 GWH

S+dF,0 − 2
3 GWH

S+dF,1

(
pt

)
.

Proof. Similarly as for the ordinary GW moduli spaces, the family of GW
moduli spaces can be stratified by the dual graph of the domain of maps. The
family of GW invariants with ϕ1ϕ2 constraint is then equal to the invariant
with the constraint φ1φ2 plus the contribution of some boundary strata of
MH

2,2(E(2), S + dF ). Those boundary strata consist of maps with domains
containing unstable genus 0 components and hence the dual graphs of them
correspond to the first three terms and the fifth term in (17) of [9]. Applying
Proposition 1.1 thus gives the contribution of the boundary strata correspond-
ing to ϕ1ϕ2 − st∗(φ1φ2) :

∑
a

2 GWH
S+dF,2

(
τ (F ), Ha

)
GW0,0

(
Ha, F

)

+
∑

a

2 GW0,2

(
τ (F ), Ha

)
GWH

S+dF,0

(
Ha, F

)

−
∑
a,b

GWH
S+dF,0

(
F, Ha

)
GW0,0

(
F, Hb

)
GW0,2

(
Ha, Hb

)

−
∑
a,b

GW0,0

(
F, Ha

)
GWH

S+dF,0

(
F, Hb

)
GW0,2

(
Ha, Hb

)

−
∑
a,b

GW0,0

(
F, Ha

)
GW0,0

(
F, Hb

)
GWH

S+dF,2

(
Ha, Hb

)

−
∑
a,b

3 GWH
S+dF,0

(
F, F, Ha

)
GW0,0

(
Ha, Hb

)
GW0,2

(
Hb

)

−
∑
a,b

3 GW0,0

(
F, F, Ha

)
GWH

S+dF,0

(
Ha, Hb

)
GW0,2

(
Hb

)

−
∑
a,b

3 GW0,0

(
F, F, Ha

)
GW0,0

(
Ha, Hb

)
GWH

S+dF,2

(
Hb

)

(2.1)

where {Ha} and {Ha} are bases of H∗(E(2); Z
)

dual by the intersection form.
By Lemma 2.1, this contribution (2.1) vanishes.

On the other hand, the class φ1φ2 is a boundary class in M2,2. One can thus
apply Proposition 1.1 and (5) of [3] together to compute the invariant with
φ1φ2 constraint — this computation is analogous to the case of the ordinary
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COUNTING ELLIPTIC CURVES IN K3 SURFACES 597

GW invariants (cf. (17) of [9]). Consequently, the family of GW invariants
with φ1φ2 constraint can be written as a sum of 24 terms each of which is a
product of ordinary GW invariants and family GW invariants. Among them
the following terms correspond to the fourth, sixth, seventh, eighth, ninth,
tenth, eleventh, and twelfth terms in (17) of [9] :

∑
a

3 GWH
S+dF,0

(
F, F, Ha

)
GW0,2

(
τ (Ha)

)

+
∑

a

3 GW0,0

(
F, F, Ha

)
GWH

S+dF,2

(
τ (Ha)

)

+
∑
a,b

13
10 GWH

S+dF,0

(
F, F, Ha, Hb

)
GW0,1

(
Ha

)
GW0,1

(
Hb

)

+
∑
a,b

13
10 GW0,0

(
F, F, Ha, Hb

)
GWH

S+dF,1

(
Ha

)
GW0,1

(
Hb

)

+
∑
a,b

13
10 GW0,0

(
F, F, Ha, Hb

)
GW0,1

(
Ha

)
GWH

S+dF,1

(
Hb

)

+
∑
a,b

8
5 GWH

S+dF,1

(
F, Ha

)
GW0,0

(
Ha, F, Hb

)
GW0,1

(
Hb

)

+
∑
a,b

8
5 GW0,1

(
F, Ha

)
GWH

S+dF,0

(
Ha, F, Hb

)
GW0,1

(
Hb

)

+
∑
a,b

8
5 GW0,1

(
F, Ha

)
GW0,0

(
Ha, F, Hb

)
GWH

S+dF,1

(
Hb

)

−
∑
a,b

4
5 GWH

S+dF,0

(
F, F, Ha

)
GW0,1

(
Ha, Hb

)
GW0,1

(
Hb

)

−
∑
a,b

4
5 GW0,0

(
F, F, Ha

)
GWH

S+dF,1

(
Ha, Hb

)
GW0,1

(
Hb

)

−
∑
a,b

4
5 GW0,0

(
F, F, Ha

)
GW0,1

(
Ha, Hb

)
GWH

S+dF,1

(
Hb

)

+
∑
a,b

23
240 GWH

S+dF,0

(
F, F, Ha, Ha, Hb

)
GW0,1

(
Hb

)

+
∑
a,b

23
240 GWH

S+dF,0

(
F, F, Ha, Ha, Hb

)
GW0,1

(
Hb

)

+
∑
a,b

2
48 GWH

S+dF,0

(
F, Ha, Ha, Hb

)
GW0,1

(
Hb, F

)

+
∑
a,b

2
48 GWH

S+dF,0

(
F, Ha, Ha, Hb

)
GW0,1

(
Hb, F

)
.
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598 JUNHO LEE AND NAICHUNG CONAN LEUNG

These terms all vanish by Lemma 2.1. The following terms correspond to the
fourteenth and seventeenth terms in (17) of [9] :

∑
a,b

7
30 GWH

S+dF,0

(
F, F, Ha, Hb

)
GW0,1

(
Ha, Hb

)

+
∑
a,b

7
30 GW0,0

(
F, F, Ha, Hb

)
GWH

S+dF,1

(
Ha, Hb

)

−
∑
a,b

1
30 GWH

S+dF,0

(
F, F, Ha

)
GW0,1

(
Ha, Hb, H

b
)

−
∑
a,b

1
30 GW0,0

(
F, F, Ha

)
GWH

S+dF,1

(
Ha, Hb, H

b
)
.

These terms also vanish by Lemma 2.1. Now, the remaining terms are :

−
∑
a,b

1
80 GWH

S+dF,1

(
F, F, Ha

)
GW0,0

(
Ha, Hb, H

b
)

−
∑
a,b

1
80 GW0,1

(
F, F, Ha

)
GWH

S+dF,0

(
Ha, Hb, H

b
)

+
∑
a,b

2
30 GWH

S+dF,0

(
F, Ha, Hb

)
GW0,1

(
Ha, Hb, F

)

+
∑
a,b

2
30 GW0,0

(
F, Ha, Hb

)
GWH

S+dF,1

(
Ha, Hb, F

)

+
∑
a,b

1
576 GWH

S+dF,0

(
F, F, Ha, Ha, Hb, H

b
)
.

(2.2)

Since the contribution of the boundary strata (2.1) vanishes, applying
Lemma 2.1 to (2.2) then gives

GWH
S+dF,2

(
τ (F ), τ (F )

)
=

∑
a,b

(
− 1

80

)
GWH

S+dF,1

(
F, F, Ha

)
GW0,0

(
Ha, Hb, H

b
)

+
∑
a,b

1
15 GW0,0

(
F, Ha, Hb

)
GWH

S+dF,1

(
Ha, Hb, F

)

+
∑
a,b

1
576 GWH

S+dF,0

(
F, F, Ha, Ha, Hb, H

b
)
.

(2.3)

This can be further simplified by using Lemma 2.1(a), Divisor Axiom, and
the facts
∑

b

GW0,0([E(2)], Hb, H
b) = 24 and

∑
a

(Ha · F )(Ha · (S + dF )) = 2.
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The right-hand side of (2.3) becomes

(2.4) −2
3 GWH

S+dF,1

(
pt

)
+

∑
a,b

1
576 GWH

S+dF,0

(
F, F, Ha, Ha, Hb, H

b
)
.

One the other hand, the genus g = 0 invariants with point constraint vanish by
dimensional reason. This observation combined with

∑
a (Ha ·A)(A·Ha) = A2

shows

(2.5)
∑
a,b

1
576 GWH

S+dF,0

(
F, F, Ha, Ha, Hb, H

b
)

= 4
576 (4d − 8)2 GWH

S+dF,0 .

Then, the proof follows from (2.3), (2.4) and (2.5). �

3. Proof of Theorem 0.1

Our goal is to compute the genus g = 1 family GW-invariants of K3 surfaces
for the classes A of index 2. By (1.2), it suffices to compute the family of
GW-invariants of E(2) for the classes 2(s + df). Introduce three generating
functions by the following formulas:

Mg(t) =
∑

GWH
2s+df,g

(
ptg

)
td,

Pg(t) =
∑

GWH
(s−3f)+d(2f),g

(
ptg

)
td,

Ng(t) =
∑

GWH
s+df,g

(
ptg

)
td.

Notice that the coefficients of the even terms of M1(t) give the invariants
GWH

A,1 for all index two classes. Therefore, Theorem 0.1 in the introduction
is equivalent to the following proposition by restricting only to even terms.

Proposition 3.1. The above generating functions satisfy the following re-
lation,

M1(t) = P1(t) + 2 N1(t2).

Proof. Introduce further generating functions by the formulas:

H2

(
τ (F ), τ (F )

)
(t) =

∑
GWH

S+dF,g

(
τ (F ), τ (F )

)
td,

Hg(t) =
∑

GWH
S+dF,g

(
ptg

)
td.

It then immediately follows from Proposition 2.2 that

(3.1) H2

(
τ (F ), τ (F )

)
(t) = 1

9 t2 H ′′
0 (t) − 1

3 t H ′
0(t) + 4

9 H0(t) − 2
3 H1(t).

In [10] we used the symplectic sum formula of [5] to show that

H2

(
τ (F ), τ (F )

)
(t) − 2 H1(t)

= 20
3 G2(t) t H ′

0(t) −
(
64 G2

2(t) + 40
3 G2(t) − 8 t G′

2(t)
)
H0(t).

(3.2)
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The equations (3.1) and (3.2) then yield
1
9 t2 H ′′

0 (t) − 1
3 t H ′

0(t) + 4
9 H0(t) − 8

3 H1(t)

= 20
3 G2(t) t H ′

0(t) −
(
64 G2

2(t) + 40
3 G2(t) − 8 t G′

2(t)
)
H0(t).

(3.3)

On the other hand, we have
1
8 N0(t2) = M0(t) − P0(t),(3.4)

t
d

dt
N0(t) = 24 G2(t) N0(t) + N0(t),(3.5)

N1(t) =
(
t

d

dt
G2(t)

)
N0(t)(3.6)

(cf. [10, 1, 8]). It then follows from (3.4) and (3.5) that

(3.7) t
d

dt

(
M0(t) − P0(t)

)
=

(
48 G2(t2) + 2

) (
M0(t) − P0(t)

)
.

Recalling (S, F ) is either (2s, f) or (s−3f, 2f), we combine (3.3) and (3.7) to
show

(3.8) M1(t) − P1(t) =
(
4 t2 G′

2(t
2) + 3 E(t)

)(
M0(t) − P0(t)

)
where E(t) = 32 G2

2(t2) − 40 G2(t2) G2(t) + 8 G2
2(t) − t G′

2(t). Then, we have

M1(t) − P1(t) = 16 t2 G′
2(t

2)
(
M0(t) − P0(t) )

= 2 t2 G′
2(t

2) N0(t2) = 2 N1(t2)

where the first equality follows from (3.8) and the fact E(t) = 4 t2 G′
2(t

2)
[10], the second equality follows from (3.4), and the last equality follows from
(3.6). �
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