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Abstract

We exhibit a transformation taking special Lagrangian submanifolds
of a Calabi-Yau together with local systems to vector bundles over the
mirror manifold with connections obeying deformed Hermitian-Yang-Mills
equations. That is, the transformation relates supersymmetric A- and B-
cycles. In this paper, we assume that the mirror pair are dual torus
fibrations with flat tori and that the A-cycle is a section.

We also show that this transformation preserves the (holomorphic)
Chern-Simons functional for all connections. Furthermore, on correspond-
ing moduli spaces of supersymmetric cycles it identifies the graded tan-
gent spaces and the holomorphic m-forms. In particular, we verify Vafa’s
mirror conjecture with bundles in this special case.
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1 Introduction

In this note we argue that a real version of the Fourier-Mukai transform would
carry supersymmetric A-cycles to B-cycles. Roughly, special Lagrangian sub-
manifolds (plus local systems) will be mapped to holomorphic submanifolds
(plus bundles over them). The approach is similar to the one in [1], though
our emphasis is geometric, as we focus on the differential equations defining
D-branes.

Our goal is to provide the basis for a geometric functor relating the categories
of D-branes on opposite mirror sides: the derived category of coherent sheaves on
one hand, and Fukaya’s category of Lagrangian submanifolds with local systems
on the other. (In fact, we consider special Lagrangians as objects.1) At this
point, providing a physical interpretation of the derived category is premature
– even though recent discussions of the role of the brane-anti-brane tachyon
offer glimpses – so we content ourselves with thinking of D-branes as vector
bundles over holomorphic submanifolds, where “submanifold” may mean the
entire space.

We assume, following [14], that the mirror manifold has a description as a
dual torus fibration, blithely ignoring singular fibers for now. The procedure is
now quite simple [1][2][4]: a point on a torus determines a line bundle on a dual
torus. A section of a torus fibration then determines a family of line bundles
on the mirror side. These can fit together to define a bundle. We will show
how, in this idealized situation, the differential equations on the two sides are
related under this transformation. We also show that the Chern-Simons action
of an A-cycle equals the holomorphic Chern-Simons action of its transform, even
off-shell. Vafa’s version of mirror symmetry with bundles is then verified in this
setting.

It will be interesting, though perhaps quite formidable, to generalize this
procedure by relaxing some of our assumptions and extending the setting to
include singular fibers and more general objects in the derived category.

Acknowledgements: We gratefully acknowledge helpful conversations with
Richard Thomas, who has also obtained similar structures for moduli spaces of
supersymmetric cycles in his recent preprint (which he has kindly shared with
us). N.C. Leung is supported by NSF grant DMS-9803616 and S.-T. Yau is
supported by NSF grant DMS-9803347.

1One can’t yet say which formulation of these categories will best fit the physics. The
Donaldson-Uhlenbeck-Yau theorem relates stable bundles to solutions of the Hermitian-Yang-
Mills equations. Analogously, one hopes that Lagrangians are equivalent to special La-
grangians up to Hamiltonian deformations. We are a long way away from proving such
theorems, however. The recent preprint of R. Thomas investigates these two issues as mo-
ment map problems related by mirror symmetry.
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2 Supersymmetric A- and B-cycles

The authors of [11] consider the supersymmetric p-brane action and determine
the conditions for preserving supersymmetry (BPS).2 They show that there are
two kinds of supersymmetric cycles (C, L) on a Calabi-Yau threefold M where
C is a (possibly singular and with multiplicity) submanifold of M and L is a
complex line bundle over C together with a U (1) connection DA. Let us denote
the Kähler form (resp. holomorphic volume form) on the Calabi-Yau threefold
by ω (resp. Ω).

The type-A supersymmetric cycle is when C is a special Lagrangian sub-
manifold of M and the curvature FA of DA vanishes,

FA = 0,

namely DA is a unitary flat connection. In the presence of a background B-field
(an element of H2(M,R/Z)), FA should be replaced by FA − B, where B is
understood to be pulled back to the submanifold. We take B = 0 in this paper.
Recall that a Lagrangian submanifold C is called “special” if when restricting
to C we have

ImΩ = tan θ Re Ω,

for some constant θ. Or equivalently, Im eiθΩ = 0.
The type-B cycle is when C is a complex submanifold of M of dimension n

and the curvature two form FA of DA satisfies following conditions:

F 0,2
A = 0,

Im eiθ (ω + FA)n = 0.

The first equation says that the (0,1) component of the connection determines
a holomorphic structure on L. The second equation is called the deformed
Hermitian-Yang-Mills equation and it is equivalent to the following equation,

Im (ω + FA)
n

= tan θ Re (ω + FA)
n

.

For example when C is the whole Calabi-Yau manifold M of dimension three
then the second equation says F ∧ ω2/2 − F 3/6 = tan θ

[
ω3/6 −

(
F 2/2

)
∧ ω

]
.

3 Fourier-Mukai Transform of A- and B-cycles

In this section we explain the Fourier-Mukai transform of supersymmetric cycles.
The gist of the story is that, assuming mirror pairs are mirror torus fibrations,

2In this section, we follow what has become standard notation. Let us remark, how-
ever, that the IIA string theory, on which one normally considers the A-model, naturally has
even-dimensional (hence type-B) branes, so-named because their compositions depend on the
complex structure. IIB string theory has odd-dimensional (type-A) branes, whose composition
depends only on the symplectic structure.
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each point of a Lagrangian submanifold lies in some fiber – hence defines a
bundle over the dual fiber. When done in families and with connections, we get
a bundle with connection on the mirror, and the differential equations defining
A-cycles map to those which define B-cycles on the mirror. Recall that the
base of the fibration itself – the zero graph – should be dual to the six-brane
with zero connection. Multi-sections are dual to higher-rank bundles, and are
discussed in section 3.2. Other cases appear in 3.3.

We assume that the m dimensional Calabi-Yau mirror pair M and W have
dual torus fibrations. To avoid the difficulties of singular fibers and unknown
Calabi-Yau metrics, we will only consider a neighborhood of a smooth special
Lagrangian torus and also assume the Kähler potential φ on M to be T m-
invariant (see for example p.20 of [7]). This is the semi-flat assumption of [14].
Notice that the Lagrangian fibrations on M and W are in fact special.

Therefore, let φ
(
xj , yj

)
= φ

(
xj

)
. (y is the coordinate for the fiber and

x for the base B of the fibration on M . The holomorphic coordinates on M
are zj = xj + iyj’s.) As studied by Calabi, the Ricci tensor vanishes and
Ω = dz1 ∧ ....∧ dzm is covariant constant if and only if φ satisfies a real Monge-
Ampère equation

det
∂2φ

∂xi∂xj
= const.

The Ricci-flat Kähler metric and form are

g =
∑

i,j

∂2φ

∂xi∂xj

(
dxidxj + dyidyj

)
,

ω =
i

2

∑

i,j

∂2φ

∂xi∂xj
dzi ∧ dzj ,

(henceforth we sum over repeated indices). Notice that Ω ∧ Ω̄ is a constant
mulitple of ωm and it is direct consequence of the real Monge-Ampère equation.

Also note from the form of the metric g that M is locally isometric to the

tangent bundle of B with its metric induced from the metric
∑

i,j
∂2φ

∂xi∂xj dxidxj

on B. If we use the metric on B to identify its tangent bundle with its cotangent
bundle, then the above symplectic form ω is just the canonical symplectic form
dp ∧ dq on the cotangent bundle.

We can view the universal cover of M either as TB with the standard com-
plex structure, or as T ∗B with the standard symplectic structure. A solution of
the real Monge-Ampère equation is used to determine the symplectic structure
in the former case and to determine the metric structure, and therefore the
complex structure in the latter case.

3.1 Transformation of a section

We will construct the transform for a special Lagrangian exhibited as a section
of the fibration, i.e. a graph over the base.
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Recall that a section of T ∗B is Lagrangian with respect to the standard
symplectic form if and only if it is a closed one form, and hence locally exact.
Therefore (or by calculation), a graph y(x) in M is Lagrangian with respect to

ω if and only if ∂
∂xj (ylφlk) = ∂

∂xk (φljy
l), where φij = ∂2φ

∂xi∂xj , from which we get

yj = φjk ∂f

∂xk

for some function f (locally), where φjk is the inverse matrix of φjk.

Now dzj = dxj+idyj and on C we have dyj = φjl
(

∂2f
∂xl∂xk − φpqφlkp

∂f
∂xq

)
dxk.

Therefore dzj =
(
δjk + iφjl

(
∂2f

∂xl∂xk − φpqφlkp
∂f
∂xq

))
dxk over C. Notice that

if we write g = φjkdxjdxk as the Riemannian metric on the base, then the
Christoffel symbol for the Levi-Civita connection is Γq

lk = φpqφlkp. Therefore

Hess (f) =
(

∂2f
∂xl∂xk − φpqφlkp

∂f
∂xq

)
dxldxk. Hence

dz1 ∧ ... ∧ dzm|C = det
(
I + ig−1Hess (f)

)
dx1 ∧ ... ∧ dxm

= det (g)
−1

det (g + iHess (f)) dx1 ∧ ... ∧ dxm,

so the special Lagrangian condition (with phase) Im
(
dz1 ∧ .... ∧ dzm

)
|C =

tan θ · Re
(
dz1 ∧ .... ∧ dzm

)
|C becomes

Imdet (g + iHess (f)) = (tan θ)Re det (g + iHess (f)) .

From these data, we want to construct a U (1) connection over the mirror
manifold W which satisfies the deformed Hermitian-Yang-Mills equation. The
dual manifold W is constructed by replacing each torus fiber T in M by the
dual torus T̃ = Hom

(
T, S1

)
. If we write the dual coordinates to y1, ..., ym as

ỹ1, ..., ỹm, then the dual Riemannian metric on W is obtained by taking the
dual metric on each dual torus fiber T̃ :

g̃ =
∑

i,j

(
φijdxidxj + φijdỹidỹj

)
.

We need to understand the complex structure and the symplectic structure on
W (see for example [14] and [7]). First we rewrite g̃ as follows,

g̃ =
∑

i,j

φij
((

Σkφikdxk
) (

Σlφjldxl
)

+ dỹidỹj

)
.

Notice that d
(
Σkφjkdxk

)
= 0 because φjkl is symmetric with respect to inter-

changing the indexes. Therefore there exist functions x̃j = x̃j (x)’s such that

dx̃j = Σkφjkdxk locally – then
∂x̃j

∂xk = φjk – and we obtain

g̃ =
∑

i,j

φij (dx̃idx̃j + dỹidỹj) .
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So we can use z̃j = x̃j + iỹj’s as complex coordinates on W . It is easy to check
that the corresponding symplectic form is given by

ω̃ =
i

2

∑

i,j

φijdz̃i ∧ dz̃j .

Moreover the covariant constant holomorphic m-form on W is given by

Ω̃ = dz̃1 ∧ ... ∧ dz̃m.

Again, as a direct consequence of φ being a solution of the real Monge-Ampère

equation, Ω̃ ∧ Ω̃ is a constant multiple of ω̃m.

Remark 1 The mirror manifold W can be interpreted as the moduli space of
special Lagrangian tori together with flat U(1) connections over them (see [14]).
It is because the dual torus parametrizes isomorphism classes of flat U(1) con-
nections on the original torus. It can be checked directly that the L2 metric, i.e.
the Weil-Petersson metric, on this moduli space W coincides with our g̃ above.

In general, the relevent metric on the moduli space W is given by a two-point
function computed via a path integral, wihch includes instanton contributions
from holomorphic disks bounding the special Lagrangian torus fibers. However,
for our local Calabi-Yau M such holomorphic disks do not exist. This is because
M is homotopic to any one of its fibers; but any such holomorphic disk would
define a non-trivial relative homology class. Therefore our metric g̃ coincides
with the physical metric on the moduli space W .

Remark 2 We note the symmetry between g (resp. ω) and g̃ (resp. ω̃). For

one can write φij as the second derivative of some function φ̃ with respect to the

x̃j’s. Simply write xj = xj (x̃), then ∂xj

∂x̃k
= φjk = ∂xk

∂x̃j
and therefore xj = ∂Φ

∂x̃j

for some function, Φ, and it is easy to check that φ̃ = Φ.

On each torus fiber, we have canonical isomorphisms T = Hom(T̃ , S1) =

Hom(π1(T̃ ), S1), therefore a point y =
(
y1, ..., ym

)
in T defines a flat connection

Dy on its dual T̃ . This is the real Fourier-Mukai transform. Explicitly, we have

gy : T̃ → i (R/Z) = S1

ỹ 7→ i
∑m

j=1 yj ỹj ,

and Dy = d + A = d + idgy = d + iΣyjdỹj .
In fact we get a torus family of one-forms, since y (hence A) has x- (or x̃-)

dependence. Namely, we obtain a U (1) connection on W ,

DA = d + i
∑

j

yjdỹj .
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Its curvature two form is given by,

FA = dA =
∑

k,j

i
∂yj

∂x̃k

dx̃k ∧ dỹj.

In particular

F 2,0
A =

1

2

∑

j,k

(
∂yk

∂x̃j

−
∂yj

∂x̃k

)
dz̃j ∧ dz̃k.

Therefore, that DA is integrable, i.e. F 0,2
A = 0, is equivalent to the existence of

f = f (x̃) such that yj = ∂f
∂x̃j

= φjk ∂f
∂xj because of dx̃j = Σkφjkdxk. Namely,

the cycle C ⊂ M must be Lagrangian. Now

∂yj

∂x̃k

=
∂2f

∂x̃j∂x̃k

.

In terms of the x variable, this is precisely the Hessian of f, as discussed above.
Therefore the cycle C ⊂ M being special is equivalent to

Im (ω̃ + FA)m = (tan θ)Re (ω̃ + FA)m .

For a general type-A supersymmetric cycle in M , we have a special La-
grangian C in M together with a flat U (1) connection on it. Since as before, C
is expressed as a section of π : M → B and is given by yj = φjk ∂f

∂xk , a flat U (1)

connection on C can be written in the form d + ide = d + iΣ ∂e
∂xk dxk for some

function e = e (x). Recall that the transformation of C alone is the connection
d + iΣyjdỹj over W . When the flat connection on C is also taken into account,
then the total transformation becomes

DA = d + iΣyjdỹj + ide

= d + iΣφjk ∂f

∂xk
dỹj + iΣ

∂e

∂x̃j
dx̃j .

Here we have composed the function e (x) with the coordinate transformation
x = x (x̃) . Notice that the added term Σ ∂e

∂x̃j dx̃j is exact and therefore the
curvature form of this new connection is the same as the old one. In particular
DA satisfies

F 0,2
A = 0,

Im eiθ (ω + F )
m

= 0,

so is a supersymmetric cycle of type-B in W . By the same reasoning, we can
couple with C a flat connection on it of any rank and we would still obtain a
non-Abelian connection DA on W satisfying the above equations.

In conclusion, the transform of a type-A supersymmetric section in M is a
type-B supersymmetric 2m-cycle in W .
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Remark 3 The real Fourier-Mukai transform we discussed above exchanges the
symplectic and complex aspects of the two theories.

On the A-cycle side, Donaldson and Hitchin [7] introduce a symplectic form
on the space of of maps Map (C, M) as follows. If υ is a fixed volume form on
a three manifold C, then

∫
C

ev∗ω ∧ υ is a symplectic form on Map (C, M) and
it equips with a Hamiltonian action by the group of volume preserving diffeo-
morphisms of C. The zero of the corresponding moment map is precisely the
Lagrangian condition on f ∈ Map (C, M).

If one restricts to the infinite-dimensional complex submanifold of Map (C, M)
consisting of those f which satisfy f∗Ω = v, then the symplectic quotient is the
moduli space of A-cycles.

On the B-cycle side, we consider the pre-symplectic form Im
[∫

W
(ω̃ + F)m][2]

on the space of connections A (W ) (see section 4.3 or compare [10]). This form
is preserved by the group of gauge transformations and the corresponding mo-
ment map equation is the deformed Hermitian-Yang-Mills equations.

If one restricts to the complex submanifold of A (W ) consisting of those con-
nections which define a holomorphic structure on the bundle, then the symplectic
quotient is the moduli space of B-cycles.

Notice that the above real Fourier-Mukai transform exchanges the moment
map condition on one side to the complex condition on the other side. Such
exchanges of symplectic and complex aspects are typical in mirror symmetry. We
expect this continues to hold true in general and not just for special Lagrangian
sections in the semi-flat case.

Remark 4 Unlike the Hermitian-Yang-Mills equation, solutions to the fully
nonlinear deformed equations may not be elliptic. On the other hand, the special
Lagrangian equation is always elliptic since its solutions are calibrated subman-
ifolds. Nevertheless, deformed Hermitian-Yang-Mills connections obtained from
the real Fourier-Mukai transformation as above are always elliptic.

3.2 Transformation of a multi-section

When C is a multi-section of π : M → B, the situation is more complicated. For
one thing, holomorphic disks may bound C – a situation which cannot occur
in the section case (see section 4.2). Here we propose to look at a line bundle
on finite cover of W as the transform B-cycle. To begin we assume that C is
smooth, π : C → B is a branched cover of degree r (as in algebraic geometry)
and ∇j∇kφ = δjk for simplicity. Away from ramification locus, C determines
r unitary connections on W locally, and each satisfies the above equation. One
might be tempted to take the diagonal connection on their direct sum, so that
this U (r) connection satisfies a non-Abelian analogue of the equation. However,
such a connection cannot be defined across ramification locus because of mon-
odromy, which can interchange different summands of the diagonal connection.

In fact, as mentioned in [11], it is still open (even in physics) to find or
derive a non-Abelian analogue of the deformed Hermitian-Yang-Mills equations
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via string theory (though there are some natural guesses). To remedy this
problem, we would instead construct a U (1) connection over a degree r cover

of W . This finite cover π̂ : Ŵ → W is constructed via the following Cartesian
product diagram

Ŵ = C ×B W
π̂

−→ W
↓ ↓

C
π

−→ B.

Notice that Ŵ is a smooth manifold because C is smooth and π : C → B
is a branched cover. Moreover, the construction as before determines a smooth
unitary connection over Ŵ satisfying the above equation (with ω replaced by
π̂∗ω).

We remark that employing this construction is similar to the use of isogenies
needed to define the categorical isomorphism which proves Kontsevich’s con-
jecture in the case of the elliptic curve [13]. The point is that multi-sections
transforming to higher-rank can be handled via single sections giving line bun-
dles, by imposing functoriality after pushing forward under finite covers.

Even though this connection over Ŵ satisfies F 0,2 = 0 in a suitable sense,
Ŵ is not a complex manifold.

3.3 Transformation for more general cycles

In the previous sections, we considered only sections or multi-sections on M
and obtain holomorphic bundles on W which satisfied the deformed Hermitian-
Yang-Mills equation. Notice that, for a Calabi-Yau threefold M , a multi-section
of π : M → B can be characterized as special Lagrangian cycle C whose image
under π is of dimension three – namely, the whole B. If the image has dimension
zero, then the Lagrangian is a torus fiber plus bundle and its dual is the point
(0-brane) it represents on the corresponding dual torus. This is the basis for
the conjecture of [14]. Here we are going to look at the other cases, that is the
dimension of the image of C under π is either (i) one or (ii) two. For simplicity
we shall only look at the flat case, namely M = T 6 = B ×F where both B and
F are flat three dimensional Lagrangian tori.

Case (i), when dim π (C) = 1. The restriction of π to C express C as the
total space of an one-parameter family of surfaces. In fact we will see that this
is a product family of an affine T 1 in B with an affine T 2 in F .

As before we denote the coordinates of B (resp. F ) by x1, x2, x3 (resp.
y1, y2, y3). Without loss of generality, we can assume that π (C) is locally given
by x2 = f

(
x1

)
and x3 = g

(
x1

)
. Moreover the surface in C over any such point

is determined by y3 = h
(
x1, y1, y2

)
. In particular, C is parametrized by x1, y1

and y2 locally.
The special condition Im

(
dz1 ∧ dz2 ∧ dz3

)
|C = 0 implies that h is inde-

pendent of x1. Namely the surface family C is indeed a product subfamily of

9



M = F × B. Now the Lagrangian conditions read as follow:

1 +
dg

dx1

∂h

∂y1
= 0,

df

dx1
+

dg

dx1

∂h

∂y2
= 0.

These imply that,

f = x2 = ax1 + α

g = x3 = bx1 + β

h = y3 = −
1

b
y1 −

a

b
y2 +

γ

b
.

By analyticity of special Lagrangians, these parametrizations hold true on the
whole C. We can therefore express C as the product CB × CF with CF ⊂ F
being a two torus and CB ⊂ B being a circle. Here

CB =
{(

x1, x2, x3
)

= (1, a, b)x1 + (0, α, β)
}

,

CF =
{(

y1, y2, y3
)

:
(
y1, y2, y3

)
· (1, a, b) = γ

}
.

Since our primary interest is when C is a closed subspace of M , this implies
that both a and b are rational numbers and C is a three torus which sits in
M = T 6 as a totally geodesic flat torus. To describe a supersymmetric cycle, we
also need a U (1) flat connection DA over C. If we parametrize C by coordinate
functions x1, y2 and y3 as above, then we have

DA = d + i
(
γ̃dx1 + α̃dy2 + β̃dy3

)
,

for some real numbers α̃, β̃ and γ̃.
Now let us define the transformation of (C, L). First, the mirror of M =

B × F equals W = B × F̃ where F̃ is the dual three torus to F . A point
(x1, x2, x3, ỹ1, ỹ2, ỹ3) = (x, ỹ) ∈ W (note x = x̃ here, by flatness of the metric)

lies in the mirror
(
C̃, L̃

)
of the SUSY cycle (C, L) if and only if the flat con-

nection which is obtained by the restriction of DA to x×CF twisted by the one
form i

∑
ỹjdyj is in fact trivial. That is, α̃dy2 + β̃dy3 +

∑
ỹjdyj = 0. Using the

equation
(
y1, y2, y3

)
· (1, a, b) = γ, we obtain that

ỹ2 = aỹ1 − α̃,

ỹ3 = bỹ1 − β̃.

Or equivalently, C̃ = CB×C
F̃

with C
F̃

=
{
(ỹ1, ỹ2, ỹ3) = (1, a, b) ỹ1 −

(
0, α̃, β̃

)}

and CB = {(x1, x2, x3) = (1, a, b)x1 + (0, α, β)}. In particular C̃ is a holomor-
phic curve in W . The last step would be to determine the U (1) connection D

Ã

10



on C̃. By essentially the same argument as above and the fact that there is no
transformation along the base direction, we obtain

D
Ã

= d + i (γ̃dx1 − γdỹ1) .

Now the deformed Hermitian-Yang-Mills equation Im
(
ω + F

Ã

)n
= 0 is equiva-

lent to F
Ã

= 0, which is obviously true for the above connection D
Ã

on C̃.
Case (ii), when dimπ (C) = 2. The restriction of π to C express C as the

total space of a two-parameter family of circles. As before, let us write the
parametrizing surface S in B as x3 = f

(
x1, x2

)
and the one dimensional fiber

over any point of it by y2 = g
(
x1, x2, y1

)
and y3 = h

(
x1, x2, y1

)
. Namely C is

parametrized by x1, x2 and y1 locally.
Now the Lagrangian condition would imply that each fiber is an affine circle

in T 3 = F , among other things. On the other hand, the special condition
Im

(
dz1 ∧ dz2 ∧ dz3

)
|C = 0 implies that the surface S ⊂ T 3 = B satisfies a

Monge-Ampère equation:

det
(
∇2f

)
= 0.

We would like to perform a transformation on C which would produce a com-
plex surface in W together with a holomorphic bundle on it with a Hermitian-
Yang-Mills connection. Notice that the deformed Hermitian-Yang-Mills equa-
tion in complex dimension two is the same as the Hermitian-Yang-Mills equa-
tion. To transform C in this case is not as straight forward as before because
the equation governing the family of affine circles is more complicated. However
the above equation should imply that f is an affine function which would then
simplify the situation a lot.

4 Correspondence of Moduli Spaces

Vafa [15] has argued that the topological open string theory describing strings
ending on an A-cycle is equivalent to the topological closed-string model on a
Calabi-Yau with a bundle.3 Equating the effective string-field theories leads
to the conjecture that the ordinary Chern-Simons theory on an A-cycle be
equivalent to the holomorphic Chern-Simons theory on the transform B-cycle.
Gopakumar and Vafa have verified equality of the partition functions for the
dual resolutions of the conifold [5]. Further, all structures on the moduli spaces
of branes must be equivalent.

In the previous section, we used the Fourier-Mukai transform in the semi-flat
case to identify moduli spaces of A- and B-cycles as a set. In this section, we
extend our analysis to the Chern-Simons functional for connections which are
not necessarily flat or integrable. Then we study and relate various geometric
objects on the moduli spaces related by the transform. In particular, we verify
Vafa’s conjecture in this case.

3In order to get a bundle, we consider only sections or multi-sections.
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4.1 Chern-Simons functionals

In this section, we show the equivalence of the relevant Chern-Simons functionals
for corresponding pairs of supersymmetric cycles in our semi-flat case. In fact,
we will do this “off-shell,” meaning that the equivalence holds even for connec-
tions which do not satisfy the flatness or integrability conditions, respectively.
The argument is essentially the one given on pp. 4-5 of [6].

So, instead of flat connections, we consider a general U (1) connection d +
A on the special Lagrangian section C in M , then the above transform will
still produce a connection on W which might no longer be integrable. In real
dimension three, flat connections of any rank can be characterized as those
connections which are critical points of the Chern-Simons functional,

CS (A) =

∫

C

Tr

(
AdA +

2

3
A3

)
.

To be precise, one would need to impose boundary condition or growth condition
for A because C is not a closed manifold.

There is also a complexified version of Chern-Simons for any holomorphic
bundle E on a Calabi-Yau threefold W with holomorphic three form Ω̃ ([3] [16]).
Namely, if A is a Hermitian connection on E which might not be integrable,
then the holomorphic Chern-Simons functional is given by

CShol (A) =

∫

W

TrΩ̃ ∧

(
A∂̄A +

2

3
(A)3

)
.

Notice that CShol (A) depends only on the (0, 1) component of A. As in the
real case, A is a critical point for the holomorphic Chern-Simons if and only if
F 0,2
A = 0, that is an integrable connection.

As argued in [15][16], the holomorphic Chern-Simons theory on W is conjec-
tured to be mirror to the usual Chern-Simons theory on C ⊂ M, with instanton
corrections given by holomorphic disks on M with boundary lying on C (as we
will see in the next section, there are no such instantons in our setting). In
fact, we can directly check that the Fourier-Mukai transform not only sends flat
connections on C to integrable connections on W , but it preserves the Chern-
Simons functional for an arbitrary connection on C which is not necessarily flat.
Moreover, this holds true for connections of any rank over C.

We consider C =
{
yj = φjk ∂f

∂xk

}
⊂ M as in section 3.1, and now d +

A = d + iek (x) dxk is an arbitrary rank r unitary connection on C. The real
Fourier-Mukai transform of C alone (resp. C with the above connection) is the

connection A0 = d + iφjk ∂f
∂xk dỹj (resp. A = d + i

(
φjk ∂f

∂xk dỹj + ekφjkdx̃j

)
) on

W .
Recall that (A0)

0,1
determines a holomorphic structure on a bundle over W,

which we use as the background ∂̄ operator in defining the holomorphic Chern-
Simons functional. That is, CShol (A) = CShol (A,A0). In fact if we vary ∂̄
continuously among holomorphic bundles, the holomorphic Chern-Simons func-
tional remains the same.
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Now,

CShol (A,A0) =

∫

W

TrΩ̃ ∧

(
B

(
∂̄ −

1

2
φjk ∂f

∂xk
dz̃j

)
B +

2

3
(B)

3

)
,

where B = (A−A0)
0,1 = i

2ekφjkdz̃j . Now

∫

W

TrΩ̃Bφjk ∂f

∂xk
dz̃jB = (const)

∫

W

TrΩ̃B
∂f

∂x̃j
dz̃jB

= − (const)

∫
Tr

(
ε2

)
dfdỹ1dỹ2dỹ3

= 0.

Here ε = i
2ekφjkdx̃k is a matrix-valued one form, and therefore Tr

(
ε2

)
= 0.

Using the fact that ∂̄B = i
2

∂
∂x̃l

(
ekφjk

)
dz̃ldz̃j, we have

CShol (A,A0) = (const)

∫

W

TrΩ̃ ∧

(
B∂̄B +

2

3
(B)3

)

= (const)

∫

W

Tr

(
εdε +

2

3
ε3

)
dỹ1dỹ2dỹ3

= (const)

∫

x

Tr

(
AdA +

2

3
A3

)

= (const)CS (A) . �

When the dimension of M is odd but bigger than three, the Fourier-Mukai
transform still preserves the (holomorphic) Chern-Simons functional even though
their critical points are no longer flat (or integrable) connection. Instead the

Euler-Lagrange equation is (FA)n = 0 (or
(
F 0,2
A

)n

= 0) where dimC M = m =

2n + 1.

4.2 Graded tangent spaces

Transforming A-cycles to B-cycles is only the first step in understanding mirror
symmetry with branes [15]. The next step would be to analyze the correspon-
dence between the moduli spaces of cycles (branes). In the next two sections,
we identify the graded tangent spaces and the holomorphic m forms on the two
moduli spaces of supersymmetric cycles. Generally, this would involve holo-
morphic disk instanton contributions for the A-cycles (analgously to the usual
mirror symmetry A-model), but in our simplified setting we now show these are
absent.4

Let D be a holomorphic disk whose boundary lies in the special Lagrangian
section C. Since we are in the local case, C is homeomorphic to a ball and we
can find a closed disk D′ ⊂ C with ∂D = ∂D′. Now using the assumption that

4The following argument is a variation of the one given on pp. 25-26 of [16].
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C is a section and π2 (T m) = 0, the closed surface D ∪D′ is contractible in M .
Therefore

∫
D∪D′

ω = 0 by Stokes theorem. Now
∫

D′
ω = 0 because D′ lies inside

a Lagrangian and
∫

D
ω > 0 because it is the area of D. This is a contradiction.

Hence there are no such holomorphic disks on M .
First we discuss the graded tangent spaces of the moduli of A- and B- cycles.

After that we verify that the real Fourier-Mukai transform does preserve them
in the semi-flat case.

For the A side, the tangent space to the moduli of special Lagrangians can be
identified with the space of closed and co-closed one forms (we called such forms
harmonic). This is proved by McLean [12]. We denote it by H1 (C, R). If DA

is a flat U (r) connection on a bundle E over C, then the tangent space of the
moduli of such connections at DA can be identified with the space of harmonic
one forms with valued in ad (E). We denote it by H1 (C, ad (E)). When r = 1
the spaces H1 (C, ad (E)) and iH1 (C, R) are the same. For r bigger than one, it
is expected that H1 (C, ad (E)) is the tangent space at the non-reduced point rC:
If there is a family of special Lagrangians in M converging to C with multiplicity
r, then it should determine a flat U (r) connection on an open dense set in C.
This connection would extend to the whole C if those special Lagrangians in
the family are branched covers of C in T ∗C. Then the tangent of this moduli
space at rC should be H1 (C, ad (E)). It is useful to verify this statement.

The graded tangent spaces are defined to be ⊕kHk (C, R) ⊗ C, or more
generally ⊕kHk (C, ad (E)) ⊗ C, the space of harmonic k forms and those with
coefficient in ad (E).

On the B side, a cycle is a U (r) connection DA on a bundle E over W
whose curvature FA satisfies F0,2

A = 0 and Im eiθ (ω̃ + FA)
m

= 0. If we replace
the deformed Hermitian-Yang-Mills equation by the non-deformed one, then
a tangent vector to this moduli space can be identified with an element B in
Ω0,1 (W, ad (E)) satisfying ∂̄B = 0 and ω̃m−1 ∧ ∂B = 0. The second equation
is equivalent to ∂̄∗B = 0. That is B is a ∂̄-harmonic form of type (0, 1) on
W with valued in ad (E). The space of such B equals the sheaf cohomology
H1 (W, End (E)) by Dolbeault theorem, provided W is compact.

It is not difficult to see that a tangent vector B to the moduli of B-cycles is
a deformed ∂̄-harmonic form in the following sense:5

∂̄B = 0,

Im eiθ (ω̃ + FA)
m−1

∧ ∂B = 0.

In general a differential form B of type (0, q) is called a deformed ∂̄-harmonic
form (compare [10]) if it satisfies

∂̄B = 0,

Im eiθ (ω̃ + FA)m−q ∧ ∂B = 0.

We denote this space as H̃q (W, End (E)). When the connection DA and the
phase angle θ are both trivial, a deformed ∂̄-harmonic form is just an ordinary

5If the rank of E is bigger than one, then we need to symmetrize the product in the second
equation, as done in [10].
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∂̄-harmonic form. It is useful to know if there is always a unique deformed ∂̄-
harmonic representative for each coholomology class in Hq (W, End (E)). One
might want to require that ω̃+FA is positive to ensure ellipticity of the equation.

As argued in [15], mirror symmetry with bundles leads to an identification

between Hq (C, ad (E))⊗C and H̃q (W, End (E)) for each q.6 This can be verified
in our situation as follows. For simplicity we assume that the phase angle θ is
zero and E is a line bundle.

First we need to define the transformation from a degree q form on C ⊂ M
to one on W . We need one transformation Φ corresponding to deformations
of special Lagrangians and another Ψ corresponding to deformations of its flat
unitary bundle.

Ωq (C, ad (E)) ⊗ C → Ω0,q (W, End (E))

B1 + iB2 7→ Φ (B1) + iΨ (B2)

If B is a q-form on the section C ⊂ M , in the coordinate system of x’s
we write B = Σbj1...jq

(x) dxj1 · · · dxjq . It suffices to define the transformations
for B = dxj , by naturality. The first (resp. second) transformation of dxj is

given by Φ (B) =
(
φjkdỹk

)0,1

(resp. Ψ (B) =
(
dxj

)0,1
=

(
φjkdx̃k

)0,1

). When

q equals one, these transformations are compatible with our identification of
moduli spaces of A- and B-cycles.

Now let B = Σbj (x) dxj be any one-form on C ⊂ M . Then we have B =

Φ (B) =
(
Σbjφ

jkdỹk

)0,1

= i
2Σbj (x̃)φjkdz̃k. Therefore ∂̄B = i

2Σ ∂
∂x̃l

(
bj (x̃)φjk

)
dz̃ldz̃k

and its vanishing is clearly equivalent to dB = 0 under the coordinate change
∂

∂x̃l
= φlk ∂

∂xk . It is also easy to see that this equivalence between dB = 0 and

∂̄B = 0 holds true for any degree q form too.
Our main task is to show that d∗B = 0 if and only if Im (ω̃ + FA)m−q∧∂B =

0 for any degree q form B on C ⊂ M and B = Φ (B). Notice that, by type

considerations, the latter condition is the same as Im d
[
(ω̃ + FA)

m−q
B

]
= 0.

Let B be any degree q form on the special Lagrangian C. Using the sym-
plectic form ω, we obtain a q-vector field vB, i.e. a section of Λq (TM ). Then
using arguments as in [12] or [7], we have

∗B = ±ιvB
ImΩ.

Therefore d∗B = 0 if and only if Im d (ιvB
Ω) = 0 on C. If we write B =

Σbj1...jq
(x) dxj1 · · · dxjq then vB = Σbj1...jq

φj1k1 · · ·φjqkq ∂
∂yk1

· · · ∂

∂ykq
. So on C,

we have

ιvB
Ω = ιvB

(
dx1 + idy1

)
∧ · · · ∧ (dxm + idym)

= ±Σbj1...jq
φj1k1 · · ·φjqkq iq

∏

l 6=ki

(
dxl + idyl

)

= ±Σbj1...jq
φj1k1 · · ·φjqkq iq

∏

l 6=ki

(
dxl + i

∂

∂xp

(
φlk ∂f

∂xk

)
dxp

)
.

6In [15], the author uses Hk (W, End (E)) instead of H̃k (W, End (E)).
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Now we consider the corresponding B = Φ (B) over W . Explicitly we have

B = iqΣbj1...jq
φj1k1 · · ·φjqkqdz̃

k1
· · ·dz̃

kq
.

Therefore we consider the form (ω̃ + FA)m−q B of type (m − q, m) on W :

(ω̃ + FA)
m−q

B

=

(
Σ

(
φjk + i

∂2f

∂x̃j∂x̃k

)
dz̃j ∧ dz̃k

)m−q (
iqΣbj1...jq

φj1k1 · · ·φjqkq dz̃
k1

· · · dz̃
kq

)
.

After the coordinate transformation ∂
∂x̃l

= φlk ∂
∂xk , it is now easy to see that

Im d
[
(ω̃ + FA)

m−q
B

]
= 0 if and only if Im d (ιvB

Ω) = 0. That is, B is a

co-closed form on C of degree q. So Φ carries a harmonic q-form on C to a
deformed harmonic (0, q)-form on W . Now if E is a higher rank vector bundle
over C, then the only changes we need in the proof are B and vB now have
valued in ad (E) and we would replace the exterior differentiation by covariant
differentiation and also we need to symmetrize the product in the ∂̄-harmonic
equation. The proof of the equivalence for Ψ is similar, and we omit it.

Therefore, we have proved that B1 + iB2 is a harmonic form of degree q over
C if and only if Φ (B1) + iΨ (B2) is a ∂̄-harmonic form of degree (0, q) over W .

In particular Φ + iΨ maps Hq (C, ad (E)) ⊗ C to H̃q (W, End (E)).

4.3 Holomorphic m-forms on moduli spaces

The moduli spaces of A-cycles and B-cycles on a Calabi-Yau m-fold have nat-
ural holomorphic m-forms. As explained in [15], these m-forms, which inclde
holomorphic disk instanton corrections on the A-cycle side, can be identified
with physical correlation functions derived from the Chern-Simons partition
function. Under Vafa’s version of the mirror conjecture with bundles, these
partition functions and correlators should be the same for any mirror pair M
and W , at least in dimension three. In this section we recall the definitions of
the holomorphic m-forms and verify this equality our semi-flat case.

First we define a degree-m closed form on Map (C, M) by
∫

C
ev∗ωm where ω

is the Kähler form on M and C×Map (C, M)
ev
−→ M is the evaluation map. For

simplicity we will pretend C is a closed manifold, otherwise suitable boundary
condition is required. If v is a normal vector field along a Lagrangian immersion
f ∈ Map (C, M), then v determines an one form ηv on C . At f ∈ Map (C, M)
we have

∫
C

ev∗ωm (v1, ..., vm) =
∫

C
ηv1

∧ ... ∧ ηvm
...

Next we need to incorporate flat connections on C into the picture. We
denote A (C) the affine space of connections on C. On C × A (C) there is a
naturally defined universal connection D and curvature F (see for example [10]).
With respect to the decomposition of two forms on C × A (C) as Ω2 (C) +
Ω1 (C) ⊗ Ω1 (A) + Ω2 (A) , we write F = F

2,0 + F1,1 + F0,2. Then for (x, A) ∈
C × A (C) and u ∈ TxC, B ∈ Ω1 (C, End (E)) , we have F2,0 (x, A) = FA,
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F1,1 (x, A) (u, B) = B (u) and F0,2 = 0. We consider the following complex
valued closed m form on Map (C, M) ×A (C),

AΩ =

∫

C

Tr (ev∗ω + F)
m

.

Since the tangent spaces of the moduli of special Lagrangian and the moduli
of flat U (1) connections can both be identified with the space of harmonic one
forms7. A tangent vector of the moduli space AM (M) is a complex harmonic
one form η + iµ. Then AΩ is given explicitly as follows

AΩ (η1 + iµ1, ..., ηm + iµm) =

∫

C

Tr (η1 + iµ1) ∧ ... ∧ (ηm + iµm) .

On the W side we have universal connection and curvature on the space of
connections A (W ) as before and we have the following complex valued closed
m form on A (W ),

BΩ =

∫

W

Ω̃ ∧ TrF
m.

As before, BΩ descends to a closed m form on BM (W ), the moduli space of
holomorphic bundles, or equivalently B-cycles, on W . It is conjectured by Vafa
([15]) that under mirror symmetry, these two forms AΩ and BΩ are equivalent
after instanton correction by holomorphic disks.

In our case, where M is semi-flat and C is a section, there is no holomorphic
disk. Also the real Fourier-Mukai transform gives mirror cycle. Now we can
verify Vafa’s conjecture in this situation. Namely AΩ and BΩ are preserved
under the real Fourier-Mukai transform.

For a closed one form on C which represents an infinitesimal variation of a
A-cycle in M , we can write it as dη+idµ for some function η and µ in x variables.
Under the above real Fourier-Mukai transform, the corresponding infinitesimal

variation of the mirror B-cycle is δA = i
(

∂η
∂x̃j

dx̃j + ∂µ
∂x̃j

dỹj

)
. Therefore its (0, 1)

component is (δA)0,1 = i
2

(
∂η
∂x̃j

+ i ∂µ
∂x̃j

)
(dx̃j − idỹj). So

BΩ (δA1, ..., δAm) =

∫

W

Ω̃ ∧ TrF
m (δA1, ..., δAm)

=

∫

W

Ω̃ ∧ [δA1 ∧ · · · ∧ δAm]sym

= (const)

∫

W

Πj

(
dηj + idµj

)
dỹ1 · · ·dỹm

= (const)
′

∫

C

Πj

(
dηj + idµj

)

= (const)
′
A Ω (dη1 + idµ1, ..., dηm + idµm) .

7If the rank is greater than one, these harmonic forms will take values in the corresponding
local system.
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Hence we are done. Note that the same argument also work for higher-rank
flat unitary bundles over C.

5 B-cycles in M are A-cycles in T
∗
M

We now show that a B-cycle in M can also be treated as a special Lagrangian
cycle in the cotangent bundle X = T ∗M

π
→ M . We include this observation for

its possible relevance to the recovery of “classical” mirror symmetry from the
version with branes, as outlined briefly in [8]. The reader is be warned that the
2n-form that we use for the special condition on X may not be the most natural
one.

Recall that cotangent bundle of M , or any manifold, carries a natural sym-
plectic form ϑ = Σdxk∧duk +Σdyk∧dvk where x’s and y’s are local coordinates
on M and u’s and v’s are the dual coordinates in T ∗M . Moreover the conormal
bundle of submanifold C in M is a Lagrangian submanifold with respect to this
symplectic form on X . There are a couple other natural closed two-forms on
X : (i) the pullback of Kähler form from M , namely π∗ω and (ii) the canoni-
cal holomorphic symplectic form ϑhol via the identification between T ∗M and
(T ∗M ⊗ C)

1,0
. In term of local holomorphic coordinates z1, ..., zn on M we have

π∗ω = iΣgjk̄dzj ∧ dz̄k,

ϑhol = Σdzj ∧ dwj .

Here zj = xj + iyj and wj = uj + ivj . We define the 2n form Θ on X using a
combination of π∗ω and ϑhol:

Θ = (π∗ω + Im ϑhol)
n

.

Notice that ΘΘ̄ = ϑ2n and the restriction of Θ to the zero section is a constant
multiple of the volume form on M ...

A Lagrangian submanifold S in X is called special Lagrangian if the restric-
tion of Θ to S satisfies ImΘ = tan θ Re Θ for some phase angle θ. Equivalently
Im eiθΘ vanishes on S.

Next we consider a Hermitian line bundle L over M . Let DA be a Her-
mitian integrable connection on L, that is F 2,0

A = 0. With respect to a holo-
morphic trivialization of L, we can write DA = ∂ + ∂̄ + ∂φ locally for some
real valued function φ (z, z̄). This determines a Lagrangian submanifold S ={
wj = ∂φ

∂zj : j = 1, ..., n
}

in X with respect to ϑ. Notice that the definition of S

depends on the holomorphic trivialization of L. The restriction ϑhol to S equals

ϑhol|S = Σdzj ∧ d

(
∂φ

∂zj

)

= Σdzj ∧

(
∂2φ

∂zj∂zk
dzk +

∂2φ

∂zj∂z̄k
dz̄k

)

= Σ
∂2φ

∂zj∂z̄k
dzj ∧ dz̄k.
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This form is pure imaginary because φ is a real valued function. Therefore the
restriction of Θ to S equals

Θ|S =

[
Σ

(
igjk̄ +

∂2φ

∂zj∂z̄k

)
dzj ∧ dz̄k

]n

= (ω + F )n .

Therefore S is a special Lagrangian in X if and only if (L, DA) satisfies the
deformed Hermitian-Yang-Mills equation on M .

References

[1] D. Arinkin and A. Polishchuk, “Fukaya Category and Fourier Transform,”
math.AG/9811023.

[2] R. Donagi, “Principal Bundles on Elliptic Fibrations”, Asian J. Math., 1
(2) 214-223 (1997).

[3] S. K. Donaldson and R. P. Thomas, “Gauge Theory in Higher Dimen-
sions,” The Geometric Universe (Oxford, 1996), Oxford Univ. Press, Ox-
ford (1998) pp. 31-47.

[4] R. Friedman, J. Morgan, and E. Witten, “Vector Bundles and F Theory,”
Commun. Math. Phys. 187 (1997) 679-743; hep-th/9701162.

[5] R. Gopakumar and C. Vafa, “On the Gauge Theory-Geometry Correspon-
dence,” hep-th/9811131; and “M-theory and Topological Strings-I,” hep-
th/9809187.

[6] R. Gopakumar and C. Vafa “Topological Gravity as Large N Topological
Gauge Theory,” hep-th/9802016.

[7] N. Hitchin, “Lectures on Special Lagrangian Submanifolds,”
math.DG/9907034.

[8] M. Kontsevich, “Homological Algebra of Mirror Symmetry,” Proceedings
of the 1994 International Congress of Mathematicians I, Birkäuser, Zürich
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