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1. Introduction

Let X be a K3 surface, and let C be a holomorphic curve in X representing a
primitive homology class. For any g and n satisfying C2/2 = g + n− 1, we define
an invariant Ng(n) which counts the number of curves of geometric genus g with n
nodes passing through g points in X in the linear system |C|. Ng(n) is well defined
for any (X,C) and is invariant under those deformations of the Kähler structure
on X that preserve the (1, 1)-type of the class [C]. For a generic X and generic
choices of the g points, Ng(n) is enumerative, i.e. it is precisely the number of
genus g curves passing through g points in the class [C] (Theorem 3.5). For each
g, consider the generating function

Fg (q) =
∞∑
n=0

Ng(n)qg+n−1.

Our main theorem gives explicit formulas for Fg in terms of quasi-modular forms:
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372 JIM BRYAN AND NAICHUNG CONAN LEUNG

Theorem 1.1 (Main Theorem). For any g, we have

Fg (q) =

 ∞∑
k=1

k(
∑
d|k

d)qk

g

q−1
∞∏
m=1

(1 − qm)−24

=
(DG2)g

∆
,

where D = q ddq is logarithmic differentiation, G2 is the Eisenstein series, and ∆ is
the discriminant.

So, for example, we have

F0 = q−1 + 24 + 324q1 + 3200q2 + · · · ,
F1 = 1 + 30q + 480q2 + 5460q3 + · · · ,
F2 = q + 36q2 + 672q3 + 8728q4 + · · · ,
F3 = q2 + 42q3 + 900q4 + 13220q5 + · · · .

If we write q = e2πiτ , then ∆ (τ) = q
∏∞
m=1 (1− qm)24 = η (τ)24 is a modular

form of weight 12 where η (τ) is the Dedekind η function. In particular, for any(
a b
c d

)
∈ SL (2,Z) and Im(τ) > 0, we have

∆
(
aτ + b

cτ + d

)
= (cτ + d)12 ∆ (τ) .

G2(q) is the Eisenstein series

G2(q) =
−1
24

+
∞∑
k=1

σ(k)qk

where σ(k) =
∑

d|k d. G2 and its D derivatives are quasi-modular forms [18]. Quasi-
modular forms are closed under multiplication and D, so, in particular, (DG2)g∆−1

is a quasi-modular form.
When g = 0, our main theorem proves the formula predicted by Yau and Zaslow

[37] for primitive classes. For g ≥ 0, Göttsche has recently conjectured a very gen-
eral set of formulas for the number of curves on algebraic surfaces [18] and Theorem
1.1 proves his conjecture for primitive classes in K3 surfaces. Yau and Zaslow give
a beautiful, though indirect, argument that was completed into proof for the g = 0
case by Beauville [3] under the assumption that all the curves in |C| are reduced
and irreducible and under the understanding that one should count curves with cer-
tain positive integral multiplicities. The precise nature of these multiplicities and
their relationship to stable maps was explained by Fantechi-Göttsche-van Straten
[15]. One expects that for generic choices, all the curves will be nodal and the
multiplicities will all be one; Chen [10] has partial results along this line.1

We shall use a completely different argument by studying Gromov-Witten in-
variants for the twistor family of symplectic structures on a K3 surface. We learned
the twistor family approach from Li and Liu [29] who studied the Seiberg-Witten
theory for families and obtained interesting results.

1As this paper was going through its final revisions, Chen completed his program; his paper
[11] shows that for a generic K3 all the rational curves in a primitive, ample linear system are
nodal.
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In the case of a hyperkähler K3, the twistor family is the unit sphere in the space
of self-dual harmonic 2-forms. The idea of extending the moduli space of pseudo-
holomorphic curves by including the family of non-degenerate, norm 1, self-dual,
harmonic 2-forms goes back to Donaldson [14]. He pointed out that in order to
have the theory of pseudo-holomorphic curves on a 4-manifold more closely mimic
the theory of divisors on a projective surface, one should include this family.

One key point in the proof of our main theorem is the use of the large diffeo-
morphism group of a K3 surface to move C to a particular class S + (g + n)F on
an elliptic K3 surface with section S and fiber F which has 24 nodal fibers. Inside
the linear system |S + (g + n)F |, we can completely understand the moduli space
of stable maps and directly compute the invariants Ng(n), reducing the calculation
to the computation of “local contributions” by multiple covers.

The contribution of multiple covers of the smooth fibers is responsible for the
DG2 term and the contribution from multiple covers of the nodal fibers is related
to the partition function p (d). The computation for the multiple covers of nodal
fibers requires a virtual class computation. This is done by first splitting the moduli
space into components and then identifying each component with product of moduli
spaces and show that the virtual class also splits as a product. Each factor is
then identified with a moduli-obstruction problem arising from the Gromov-Witten
invariants of a certain blow-up of P2. This “matching” technique allows us to use
known properties of the Gromov-Witten invariants of P2 blown up, specifically
their invariance under Cremona transformations, to show that the contribution of
each component is always 0 or 1. The partition function then arises combinatorially
in a somewhat unusual way (see Lemma 5.9). These computations occupy section
5.

We prove that the invariants Ng(n) are enumerative. Our proof shows that for
generic choices of X and the points, our invariant enumerates curves of geometric
genus g on X counting each curve with a positive integral multiplicity that is one
when all the singularities are nodal (Theorem 3.5). Utilizing Chen’s recent result
[11] we can further conclude that all the curves are in fact nodal and so the invariant
is enumerative in the strongest sense.

We can also apply our method to certain rational surfaces. We blow up P2 at
nine distinct points and call the resulting algebraic surface Y . We consider the
Gromov-Witten invariant NY

g (C) which counts the number of curves of geometric
genus g passing through g generic points in a fixed class C. We show that any
class C ∈ H2(Y ) whose genus g Gromov-Witten invariants require exactly g point
constraints is related to a class of the form Cn = (g + n)

[
3h−

∑9
i=1 ei

]
+ e9 by a

Cremona transform. Here h is the pullback to Y of the hyperplane class in P2 and
e1, ..., e9 are the exceptional curves in Y . We obtain the following:

Theorem 1.2. Let Y be P2 blown up at 9 points; for fixed g let Cn be any class
with C2

n = 2g + 2n− 1 and Cn ·K = −1. Let NY
g (Cn) denote the number of genus

g curves in the class of Cn passing through g generic points. Then

∞∑
n=0

NY
g (Cn)qC

2
n/2 =

 ∞∑
k=1

k(
∑
d|k

d)qk−1

g

q−1/2
∞∏
m=1

(1− qm)−12 =
(DG2)g√

∆
.

Note that the Euler characteristic of Y is 12 while the Euler characteristic of
K3 is 24. For us the relevant manifestation of this fact is that elliptically fibered
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374 JIM BRYAN AND NAICHUNG CONAN LEUNG

K3 surfaces have (generally) 24 nodal fibers while rational elliptic surfaces have
(generally) 12 nodal fibers.

Since NY
g (Cn) is an ordinary Gromov-Witten invariant (without family), it is an

invariant for the deformation class of the symplectic structure on Y . In particular,
NY
g (Cn) is independent of the locations of those blow-up points in P2 and it is

left invariant by Cremona transforms. For the genus zero case, the invariants were
obtained by Göttsche and Pandharipande [20] where they computed the quantum
cohomology for P2 blown up at an arbitrary number of points using the associativity
law. Their numbers are in terms of two complicated recursive formulas and it is
not obvious that the numbers that correspond to NY

0 (Cn) can be put together to
form modular forms, but Theorem 1.2 can be verified term by term for g = 0 using
their recursion relations.

The foundations on which our calculations rest have been developed by Li and
Tian ([26], [27], [28]) and also by Behrend-Fantechi and Siebert ([5], [6], [33], [34]).
They construct the virtual fundamental cycle of the moduli space of stable maps
both symplectically and algebraically and they show that the two constructions
coincide in the projective case. Ionel and Parker have a different approach to
computing NY

0 (Cn) that does not rely on [26].
Although our methods are completely different from those of Yau and Zaslow, for

the sake of completeness we outline their beautiful argument for counting rational
curves with n nodes. Choose a smooth curve C in the K3 surface X with C · C =
2n− 2. By the adjunction formula, the genus of C equals n. One can show that C
moves in a complete linear system of dimension n using the Riemann-Roch theorem
and a vanishing theorem. That is, |C| ∼= Pn.

Imposing a node will put one constraint on the linear system |C|. Therefore,
by imposing n nodes, one expects to see a finite number of rational curves with n
nodes. Define N0(n) to be this number. Now look at the compactified universal
Jacobian π : J̄ → |C| for this linear system (cf. Bershadsky, Sadov, and Vafa [8]).
If one assumes that all the curves in |C| are reduced and irreducible, then J̄ is a
smooth hyperkähler manifold of dimension 2n.

If one assumes that each member in the linear system |C| has at most nodal
singularities, then one can argue that for any C′ ∈ |C| the Euler characteristic of
π−1 (C′) is always zero unless C′ is a rational curve with n nodes. In the latter case,
the Euler characteristic of π−1 (C′) equals one. One concludes that χ

(
J̄
)

= N0(n).
On the other hand, J̄ is birational to the Hilbert scheme Hn of n points in X,

which is again another smooth hyperkähler manifold. Using a result of Batyrev [2]
(cf. Huybrechts [23]) which states that compact, birationally equivalent, projective,
Calabi-Yau manifolds have the same Betti numbers, one can conclude that N0(n) =
χ (Hn).

Then one uses the result of Göttsche [19], who used Deligne’s answer to the Weil
conjecture to compute (among other things) the Euler characteristic of Hn :

∞∑
n=0

χ (Hn) qn =
∞∏
m=1

(1− qm)−24 .

Finally, combining these results, one obtains

F0 =
∞∑
n=0

N0(n)qn−1 = q−1
∞∏
m=1

(1− qm)−24 = ∆−1.
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ENUMERATIVE GEOMETRY OF K3 375

Our method is more direct than the Yau-Zaslow argument using symplectic
geometry and Gromov-Witten invariants for families of symplectic structures, thus
avoiding the characteristic p methods employed by Göttsche and Batyrev. Our
method also works in arbitrary genus.

We end this introduction with some speculation into the meaning of our results.
Ordinary Gromov-Witten invariants give rise to the quantum cohomology ring.
There may be a corresponding structure in the context of Gromov-Witten invariants
for families. The computation of Theorem 1.1 shows that there is structure amongst
these invariants and suggests that there should be an interesting theory of quantum
cohomology that encodes it.

The ordinary quantum cohomology ring of X gives a Frobenius structure on
H∗(X ; C) and the (generalized) mirror conjecture states that this Frobenius struc-
ture is equivalent to a Frobenius structure arising from some sort of “mirror object”
(see [17] or [30] or [13]). In the case of a Calabi-Yau 3-fold, the mirror object is a
family of Calabi-Yau 3-folds and the Frobenius structure arises from its variation
of Hodge structure. Theorem 1.1 shows that the Gromov-Witten invariants for K3
with its twistor family can be expressed in terms of quasi-modular forms. If there
is a quantum cohomology theory associated to the Gromov-Witten invariants for
families such as the twistor family and a corresponding mirror conjecture, then our
theorem should provide clues as to what the “mirror object” of K3 with its twistor
family should be.

This paper is organized as follows. In section 2 we define invariants for families of
symplectic structures; in section 3 we discuss twistor families and define Ng(n); in
section 4 we compute Ng(n) and prove our main theorem; in section 5 we analyze
the moduli spaces and compute local contributions; and in section 6 we apply
similar techniques to P2 blown up at nine points. In Appendix A we prove some
general results about virtual classes and in Appendix B we prove a result about
infinitesimal deformations.

The authors are pleased to acknowledge helpful conversations with A. Bertram,
A. Givental, L. Göttsche, T. Graber, E. Ionel, A. Liu, P. Lu, D. Maclagan, D.
McKinnon, T. Parker, S. Schleimer, C. Taubes, A. Todorov, and S.-T. Yau. The
authors especially thank L. Göttsche for sharing early versions of his conjecture
with us and for providing many other valuable communications. We would like
to thank R. Pandharipande and L. Göttsche for sending us their Maple program
to verify our results. Additionally we thank the Park City Mathematics Institute
for support and providing a stimulating environment where part of this work was
carried out.

We also thank the referees for many valuable comments.

2. Invariants of families of symplectic structures

In this section, we introduce an invariant for a family of symplectic structures
ωB : B → Ω2

sympl (X) on a compact manifold X. Here B is an oriented, compact
manifold and ωB is a smooth map into the space of symplectic forms Ω2

sympl (X) .
This invariant is a direct generalization of the Gromov-Witten invariants. Roughly
speaking, it counts the number of maps u : Σ → X which are holomorphic with
respect to some almost complex structure in a generic family compatible with ωB.
Kronheimer [25] and Li and Liu [29] have also studied invariants for families of
symplectic structures and obtained interesting results.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
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In their paper on Gromov-Witten invariants for general symplectic manifolds,
Li and Tian [28] set up a general framework for constructing invariants (this is
also done by Siebert in [33]). Their results are easy to adapt to our setting but
we remark that, in the case of interest, the full Li-Tian machinery is not needed
and the techniques of Ruan-Tian [31] would suffice. This is because 2-dimension
families of symplectic structures on a 4-manifold behave like the semi-positive case
for the ordinary invariants, i.e. the (perturbed) moduli spaces are compactified by
strata of codimension at least 2. The definition of Gromov-Witten invariants for
families is also contained as part of the very general approach of Ruan [32]. We
employ the Li-Tian machinery because they are also able to relate their symplectic
constructions to their purely algebraic ones ([27] and [26]). In [34], Siebert relates
his symplectic invariants to the algebraic invariants of Behrend-Fantechi [6].

Let X be a compact smooth manifold. Suppose that ωB is a smooth family
of symplectic structures on X parameterized by an oriented, compact manifold
B. Let JB : B → J (X) be a smooth family of almost complex structures on X
such that Jt = JB (t) is compatible with ωt = ωB (t) for any t ∈ B. In particular,
gt = ωt (·, Jt·) is a family of Riemannian metrics on X. It is not difficult to see that
JB always exists and is unique up to homotopy. This follows from the fact that the
space of all almost complex structures compatible with a fixed symplectic form is
contractible.

Given X and ωB as above, we shall define Gromov-Witten invariants for families
as a homomorphism:

Ψ(X,ωB)
(A,g,k) :

k⊗
i=1

Hai (X,Q)⊗Hb
(
Mg,k,Q

)
→ Q,

with
k∑
i=1

ai + b = 2c1 (X) (A) + 2k + dimB + (dimX − 6) (1− g) .(1)

Here A ∈ H2 (X,Z) and Mg,k is the Deligne-Mumford compactification of the
moduli space of Riemann surfaces of genus g with k distinct marked points (define
Mg,k to be a point if 2g + k < 3).

For any particular symplectic structure ωt and the corresponding almost complex
structure Jt, Li and Tian define a section Φt of E → FA (X, g, k) (we recall the def-
inition below) which is equivalent to the Cauchy-Riemann operator. These sections
depend on t ∈ B smoothly so that we have a section Φ of E → FA (X, g, k)×B.

Let us first recall their notations:
A stable map with k marked points is a tuple (f,Σ;x1, ..., xk) satisfying:

(i) Σ =
m⋃
i=1

Σi is a connected normal crossing projective curve and the xi’s are

distinct smooth points on Σ,
(ii) f is continuous and f |Σi can be lifted to a smooth map on the normalization

of Σi, and
(iii) if Σi is a smooth rational curve such that f (Σi) represents a trivial homology

class in H2 (X,Q) , then the cardinality of Σi∩({x1, ..., xk} ∪ S (Σ)) is at least
three where S (Σ) is the singular set of Σ.

Two stable maps (f,Σ;x1, ..., xk) and (f ′,Σ;x′1, ..., x
′
k) are equivalent if there

is a biholomorphism σ : Σ → Σ′ such that σ (xi) = x′i for 1 ≤ i ≤ k and
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ENUMERATIVE GEOMETRY OF K3 377

f ′ = f ◦ σ. We denote the space of equivalent classes of stable maps of genus g
with k marked points and with total homology class A by FA (X, g, k) and the
subspace consisting of equivalent classes of stable maps with smooth domain by
FA (X, g, k) . The topology of FA (X, g, k) can be defined by sequential conver-
gence. Next they introduced a generalized bundle E over FA (X, g, k) as follows:
For any [(f,Σ;x1, ..., xk)] ∈ FA (X, g, k) , the fiber of E consists of all f∗TX-valued
(0, 1)-forms over the normalization of Σ. Equipped with the continuous topology,
E is a generalized bundle over FA (X, g, k) in the sense of Li and Tian.

For each t ∈ B, there is a section of E given by the Cauchy-Riemann oper-
ator defined by Jt : Namely, for any [(f,Σ;x1, ..., xk)] ∈ FA (X, g, k) , we have
Φt (f,Σ;x1, ..., xk) = df + Jt ◦ df ◦ jΣ where jΣ is the complex structure of Σ.
Putting different t ∈ B together, we have a section Φ of E over FA (X, g, k) × B
given by

Φ ([(f,Σ;x1, ..., xk)] , t) = df + Jt ◦ df ◦ jΣ.
The following theorems are easy adaptations of those in of Li and Tian found in

[28]:

Theorem 2.1. The section Φ gives rise to a generalized Fredholm orbifold bundle
with the natural orientation and of index

2c1(X) [A] + 2k + dimB + (dimX − 6) (1− g) .

Theorem 2.2. Let ωB and ω′B be two families of symplectic structures on X pa-
rameterized by B. Suppose that they are equivalent to each other under deforma-
tions for families. Let JB and J ′B be two families of almost complex structures on
X compatible with corresponding symplectic structures.

Suppose that Φ and Φ′ are the corresponding section of E over FA (X, g, k) ×
B. Then Φ and Φ′ are homotopic to each other as generalized Fredholm orbifold
bundles.

Using the main theorem of Li and Tian in their paper, there is an Euler class
e
([

Φ : FA (X, g, k)×B → E
])

in Hr

(
FA (X, g, k)×B,Q

)
with r = 2c1 (X) [A] +

2k+ dimB+ (dimX − 6) (1− g). This class is called the virtual fundamental cycle
of the moduli space of holomorphic stable maps Mg,k(X,B;A). We denote it by
[Mg,k(X,B;A)]vir .

To define the invariant for ωB, we consider the following two maps. First we
have the evaluation map e : FA (X, g, k)×B → Xk :

e ((f,Σ;x1, ..., xk) , t) = (f (x1) , ..., f (xk)) ,

and second we have the forgetful map πg,k : FA (X, g, k)×B →Mg,k :

πg,k ((f,Σ;x1, ..., xk) , t) = red (Σ;x1, ..., xk) .

Here red (Σ;x1, ..., xk) is the stable reduction of (Σ;x1, ..., xk) that is obtained by
contracting all of its non-stable irreducible components.

Now we can define the invariants

Ψ(X,B)
(A,g,k) : H∗ (X,Q)⊗k ⊗H∗

(
Mg,k,Q

)
→ Q

by

Ψ(X,B)
(A,g,k) (α1, ..., αk;β) =

(
e∗(α1 ⊗ · · · ⊗ αk) ∪ π∗g,k (β)

)
[Mg,k(X,B;A)]vir
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378 JIM BRYAN AND NAICHUNG CONAN LEUNG

for any α1, ..., αk ∈ H∗ (X,Q) and β ∈ H∗
(
Mg,k,Q

)
. We drop β from the notation

when β = 1.

Theorem 2.3. Ψ(X,B)
(A,g,k) is an invariant of the deformation class of the family of

symplectic structures ωB.

If (α̂1, . . . , α̂k) are geometric cycles in X that are Poincaré dual to (α1, . . . , αk)
and β̂ is a cycle inMg,k dual to β, then Ψ(X,B)

(A,g,k)(α1, . . . , αk;β) counts the number
of stable maps f : Σg → X so that

1. f(Σg) represents the class A,
2. f is Jt-holomorphic for some t ∈ B,
3. f(xi) lies on α̂i, and
4. the stable reduction of Σg lies in β̂ ⊂Mg,k.

One is usually interested in β̂ =Mg,k (i.e. β = 1), or sometimes β̂ = pt. ∈ Mg,k.

3. Twistor families of K3 surfaces and the definition of Ng(n)

In this section we collect some general facts about K3 surfaces and their twistor
families. We show that every twistor family is deformation equivalent and we define
Ng(n) in terms of the Gromov-Witten invariant for this family. We show that when
X is projective and |C| has only reduced and irreducible curves, Ng(n) coincides
with the enumerative count defined by algebraic geometers (see [15]). The results
of the section are summarized in Definition 3.4.

AK3 surface is a simply-connected, compact, complex surfaceX with c1(X) = 0.
For a general reference on K3 surfaces and twistor families we refer the reader to
[1] or [9]. Any pair of K3 surfaces is deformation equivalent and hence diffeomor-
phic. A marking of a K3 surface X is an identification of the intersection pairing
(H2(X ; Z), QX) with the fixed unimodular form Q = −2E8⊕ 3 ( 0 1

1 0 ). The space of
marked K3 surfaces forms a connected, 20 complex dimensional moduli space.

The complex structure on a marked K3 surface X is determined by how the line
H0,2(X) sits in Q⊗C. To make this precise, define the period ΩX of X to be the
element of the period domain

D = {Ω ∈ P(Q⊗C) :
〈
Ω,Ω

〉
= 0, 〈Ω,Ω〉 > 0}

given by the image of H0,2(X) under the marking.
The Torelli theorem states that D is the moduli space of marked K3 surfaces,

i.e. every marked K3 surface corresponds uniquely to its period point in D and
every Ω ∈ D is the period point of some K3 surface.

For a fixed K3 surfaceX with period ΩX , a class ωX ∈ Q⊗C is a Kähler class for
(X,ΩX) if and only if 〈ωX ,ΩX〉 = 0,

〈
ωX ,ΩX

〉
= 0, ωX = ωX , and 〈ωX , ωX〉 > 0.

For any Kähler K3 surface (X,ΩX , ωX) there is a unique hyperkähler metric by
Yau’s proof of the Calabi conjecture [36]. A hyperkähler metric g determines a 2-
sphere worth of Kähler structures, namely the unit sphere in the space H2

+,g of self-
dual harmonic forms. We can describe the corresponding 2-sphere of period points
as follows. Consider the projective plane spanned by

〈
ΩX ,ΩX , ωX

〉
in P(Q ⊗C).

Since
〈
ΩX ,ΩX , ωX

〉
spans H2

+,g ⊗C, the intersection of this projective plane and
the period domain is the quadric determined by

〈
Ω,Ω

〉
= 0. This is a smooth plane

quadric and hence a 2-sphere. This 2-sphere of complex structures together with
the corresponding 2-sphere of Kähler structures we call a twistor family. We will
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ENUMERATIVE GEOMETRY OF K3 379

use the notations (JT , ωT ) to refer to a twistor family and Jt, ωt for t ∈ T to refer
to individual members.

The following proposition was explained to us by Andrei Todorov:

Proposition 3.1. Let (X,ΩX , ωX) be a marked, Kähler K3 surface and (JT , ωT )
the corresponding twistor family. Let C ∈ H2(X ; Z) be a class of square C2 ≥ −2.
Then there is exactly one member t ∈ T for which there is a Jt-holomorphic curve
in the class of C.

Proof. A class C of square −2 or larger admits a holomorphic curve if and only
if C ∈ H1,1(X ; Z) and C pairs positively with the Kähler class. Since C is a real
class, C ∈ H1,1 if and only if 〈C,ΩX〉 = 0. This equation determines a hyperplane
in P(H2

+) and so meets the twistor space in 2 points ±Ω0 (since the twistor space
is a quadric). Then exactly one of ±Ω0 will have its corresponding Kähler class
pair positively with C.

We next show that every twistor family is the same up to deformation.

Proposition 3.2. Let X1 and X2 be two Kähler K3 surfaces. Then the corre-
sponding twistor families T0 and T1 are deformation equivalent.

Proof. The moduli space of K3 surfaces is connected and the space of hyperkähler
structures for a fixed K3 surface is contractible (it is the Kähler cone). Therefore,
the space parameterizing hyperkähler K3 surfaces (X,ΩX , ωX) is also connected.
We can thus find a path (Xs,Ωs, ωs), s ∈ [0, 1], connecting X0 to X1 where the
twistor family of ωi is Ti for i = 0, 1. By then associating to each hyperkähler
structure ωs its twistor family Ts, we obtain a continuous deformation of T0 to
T1.

From this proposition we see that the Gromov-Witten invariants for a twistor
family are independent of the choice of a twistor family. We can thus write unam-
biguously

Ψ(K3,T )
(C,g,k) : H∗(K3; Z)⊗k ⊗H∗(Mg,k)→ Q.

We are primarily interested in the invariants that count stable maps without
fixing the complex structure on the domain. That is, the invariants obtained using
the Poincaré dual of the fundamental class of Mg,k (i.e. β = 1). It is enough to
consider those constraints that come from the generator of H4(K3,Z); these count
curves passing through fixed generic points. The invariants with the constraint
that the kth point lies on a fixed generic cycle dual to an element β ∈ H2(K3) can
be computed in terms of the invariants for k − 1 constraints and the pairing β · C.
For this reason, constraining the invariants by elements of H2(K3) is uninteresting,
and of course elements of H0(K3) provide no constraints at all.

Thus the only possible invariant of interest is Ψ(K3,T )
(C,g,g)([p1]∨, . . . , [pg]∨) where

p1, . . . , pg are points in X and we use (·)∨ to denote the Poincáre dual of a homology
class.

An important observation about the twistor family is the following.

Proposition 3.3. If f : K3 → K3 is an orientation preserving diffeomorphism,
then the pullback family f∗(ωT ) is deformation equivalent to ωT ; thus

Ψ(K3,T )
C,g,g ([p1]∨, . . . , [pg]∨) = Ψ(K3,T )

f∗(C),g,g([p1]∨, . . . , [pg]∨).
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Proof. Let ωT be the twistor family associated to a hyperkähler metric g. Then
f∗(ωT ) is the twistor family associated to the hyperkähler metric f∗(g) and so
by Proposition 3.2 they are deformation equivalent. Of course we also have that
f∗([pi]∨) = [pi]∨, hence the proposition.

The K3 surface has a big diffeomorphism group in the sense of Friedman and
Morgan [16], which means that every automorphism of the lattice QX which pre-
serves spinor norm can be realized by an orientation preserving diffeomorphism. In
particular, one can take any primitive class C ∈ H2(K3; Z) to any other primitive
class with the same square via an orientation preserving diffeomorphism.

We are now in a position to define Ng(n). By the adjunction formula, a holomor-
phic curve of genus g with n nodes will be in a class C with square C2 = 2(g+n)−2.

Definition 3.4. Let C be any primitive class with C2 = 2(g + n) − 2. We define
the number Ng(n) by

Ng(n) = Ψ(K3,T )
(C,g,g)([p1]∨, . . . , [pg]∨).

By Proposition 3.3 , Ng(n) is independent of the choice of the primitive class C.
By Proposition 3.2, Ng(n) is independent of the choice of twistor family. Finally,
in the case of a projective K3 surface with an effective divisor in the class of C,
Proposition 3.1 shows that Ng(n) counts holomorphic maps f : D → X of genus g
curves to X with image in |C| and passing through g generic points.

Because the invariants Ng(n) count maps of genus g curves, they are a priori
different than the actual count of (geometric) genus g curves. In general, Gromov-
Witten type invariants may also count maps that collapse components of positive
genus to a point or multiply-covered components. Even if there are no multiply-
covered or collapsed components, one should assign multiplicities to curves with
singularities more complicated than nodes. A consistent way of doing this is con-
structed in [15] where they show that the multiplicities are positive, integral, and
coincide with the length of the (zero-dimensional) moduli space of genus g stable
maps to the curve.

If a Gromov-Witten type invariant counts only curves of geometric genus g,
possibly with positive, integral multiplicities for curves with singularities worse
than nodes, we will say that the invariant is weakly enumerative. If in addition, all
the curves are nodal so that each curve is counted exactly once, we say the invariant
is strongly enumerative or just enumerative.2

Theorem 3.5. If X is generic among those K3 surfaces admitting a curve in the
class [C], and the g points are chosen generically, then the invariant Ng(n) is
strongly enumerative, that is, Ng(n) is precisely the number of geometric genus g
curves in |C| passing through g generic points.

Proof. 3 The assumption that the K3 surface X is generic among those admitting
a curve in the class of C guarantees that the primitive class C generates the Picard
group. Suppose that the invariant Ng(n) differs from the actual count of curves
Σ ∈ |C| of genus g passing through g general points (curves possibly counted with

2For example, in [20] Göttsche and Pandharipande show that the genus 0 Gromov-Witten
invariants of P2 blown up at N points is strongly enumerative for N < 10 and their arguments
show additionally that the invariants are weakly enumerative for all N .

3This argument is due to Lothar Göttsche. We are grateful to him for showing it to us.
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multiplicities). Then there is an extra map D → X of a curve of arithmetic genus g
that has some contracted components and the rest of the map is generically injective
with irreducible image. Let C1 be a contracted component. Since the g marked
points have to go to g distinct points on X , C1 can have at most 1 marked point.
By stability then, either the geometric genus g(C1) is larger than 0 or C1 intersects
the rest of D in at least 2 points. Since the image of D is irreducible, the contracted
components cannot all be genus 0 unless the dual graph of D is not a tree. Thus
either D has a contracted component of genus greater than 0 or the dual graph of
D is not a tree. In either case, the geometric genus of the image is smaller than the
arithmetic genus of D and thus the image is a curve of genus less than g passing
through g points. This does not occur for g generic points by a dimension count.

This shows that Ng(n) is weakly enumerative; to get the strongly enumerative
result, we evoke the very recent proof of Chen that for a generic algebraic K3
surface with a primitive ample class [C], all the rational curves in |C| are nodal
[11]. A simple corollary of Chen’s result is that the generic genus g member of
|C| is also nodal [12]. Thus under this genericity assumption, Ng(n) always counts
nodal curves, hence with multiplicity 1.

Remark 3.6. The conjectured formula of Yau and Zaslow applies to non-primitive
classes as well. The above definition could be made for arbitrary classes C, but a
priori Ng(n) would also depend on the divisibility of C. Our method of computing
Ng(n) only applies to primitive classes, so the Yau-Zaslow conjecture remains open
for the non-primitive classes.

4. Computation of Ng(n)

To compute Ng(n) we are free to choose any family of symplectic structures
deformation equivalent to the twistor family and any primitive class C with C2 =
2(g+n)−2. Let X be an elliptically fibered K3 surface with a section and 24 nodal
singular fibers N1, . . . , N24. Endow X with a hyperkähler metric and let (ωT , JT )
be the corresponding twistor family. Let S denote the section and F the class of
the fiber so that F 2 = 0, F · S = 1, and S2 = −2. Let C be the class S + (n+ g)F
and fix g generic points p1, . . . , pg not on S that lie on g distinct smooth fibers
which we label F1, . . . , Fg. We denote the intersections of Ni and Fj with S by yi
and zj respectively (see Figure 1).

y1 y24· · ·z1 zg

p1 pg

N1 F1 Fg N24

X

P1

· · ·

S

Figure 1.
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Recall from Definition 3.4 that

Ng(n) = Ψ(K3,T )
C,g,g ([p1]∨, . . . , [pg]∨).

This is given as the evaluation of the class e∗([p1]∨ ⊗ · · · ⊗ [pg]∨) on the cycle
[Mg,g(X,T,C)]vir . We abbreviate Mg,g(X,T,C) by just Mg,g(X) and we let
M(X,p) ⊂ Mg,g(X) denote the subspace of maps which send the jth marked
point to pj . The invariant Ng(n) is also given directly as a 0-dimensional class on
Mg,g(X,p) (see Appendix A).

By Proposition 3.1, there is a unique t0 ∈ T so that there are Jt0 -holomorphic
curves in the class of C. This Jt0 must be the original elliptically fibered complex
structure. ThusM(X,p) consists of stable holomorphic maps whose images are in
the linear system |S + (n+ g)F | and contain the points p1, . . . , pg. Because of the
elliptic fibration, the linear system |C| is easy to analyze.

The dimension of |S + (n+ g)F | is n+ g and consists solely of reducible curves
which are each a union of the section and (n+ g) (not necessarily distinct) fibers.
Since the image contains the points p1, . . . , pg, it contains the corresponding smooth
fibers F1, . . . , Fg. The image of a map in M(X,p) must therefore be the union of
the section S, the g fibers F1, . . . , Fg, and some number of nodal fibers (possibly
counted with multiplicity). We summarize this discussion in the following

Proposition 4.1. Let M(X,p) be the moduli space of genus g, g-marked, stable
maps in the class of C = S + (g + n)F satisfying f(xj) = pj where xj is the
jth marked point. Let π : M(X,p) → P(H0(X,C)) be the natural projection
onto the linear system |C|. Then Im(π) is a finite number of points labeled by
the vectors a = (a1, . . . , a24) and b = (b1, . . . , bg) where ai ≥ 0, bj ≥ 1, and∑
ai +

∑
bj = n+ g. The corresponding divisor in |C| is

S +
g∑
j=1

bjFj +
24∑
i=1

aiNi

where Fj is the smooth fiber containing pj and N1, . . . , N24 are the nodal fibers.

The proposition implies thatM(X,p) is the disjoint union of componentsMa,b

labeled by the vectors a and b. In section 5 we analyze the moduli spacesMa,b in
detail. The main result of that section (Theorem 5.10) is that the contribution to
Ng(n) from Ma,b is the product of the local contributions:

g∏
j=1

bjσ(bj)
24∏
i=1

p (ai) .

Our main theorem follows from this and some manipulations with the generating
functions. Recall that the generating function of the partition function p(l) is∏∞
m=1(1 − qm)−1. Recall also that a is a 24-tuple of integers with ai ≥ 0, b is a

g-tuple of integers with bj ≥ 1, and |a| + |b| =
∑24

i=1 ai +
∑g

j=1 bj = n + g. We
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compute:

Ng(n)qn+g−1 =

 ∑
a,b

|a|+|b|=n+g

g∏
j=1

bjσ(bj)
24∏
i=1

p(ai)

 qn+g−1

= q−1
n∑
k=0

∑
|a|=n−k
|b|=g+k

g∏
j=1

bjσ(bj)qbj
24∏
i=1

p(ai)qai .

Summing over n:

∞∑
n=0

Ng(n)qn+g−1 = q−1
∞∑
n=0

n∑
k=0

 ∑
|b|=g+k

g∏
j=1

bjσ(bj)qbj

 ∑
|a|=n−k

24∏
i=1

p(ai)qai


= q−1

∑
|b|≥g

g∏
j=1

bjσ(bj)qbj

∑
|a|≥0

24∏
i=1

p(ai)qai


= q−1

g∏
j=1

 ∞∑
bj=1

bjσ(bj)qbj

 24∏
i=1

( ∞∑
ai=0

p(ai)qai
)

= q−1

( ∞∑
b=1

bσ(b)qb
)g ∞∏

m=1

(1− qm)−24

=
(DG2)g

∆
.

This proves our main theorem.

5. Analysis of moduli spaces and local contributions

The main goal of this section is to compute the contribution of the component
Ma,b to the invariant Ng(n). Our strategy is simple in essence. We show that the
moduli space can be written as a product of various other moduli spaces and that
the obstruction theory splits into factors that pull back from obstruction theories on
the other moduli spaces. We then show that those individual moduli-obstruction
problems have many components, each of which can be identified with moduli-
obstruction problems arising for the Gromov-Witten invariants of P2 blown up
multiple times. These contributions can then be determined by elementary prop-
erties of the Gromov-Witten invariants on blow ups of P2. Using Cremona trans-
formations, these contributions can be shown to all either vanish or be equivalent
to the number of straight lines between two points (one). The formula then follows
from straightforward combinatorics.

This section is somewhat notationally heavy so to help the reader navigate we
summarize the notation used. We use Mg,g(X) for the full moduli space of stable
maps of g-marked, genus g curves to X in the class of C; M(X,p) denotes the
subspace ofMg,g(X) where xj , the ith marked point, maps to pj . M(X,p) breaks
into components Ma,b indexed by vectors a = (a1, . . . , a24) and b = (b1, . . . , bg)
determining the image of the map. We will use the index i for things associated to
the nodal fibers, e.g. ai, Ni, and Di, and we will use the index j for those associated
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to the smooth fibers containing pj , e.g. bj , Fj , and Gj . The components Ma,b

break into further componentsMs,Λ indexed by “data” (s(a),Λ(b)) (Theorem 5.1).
To prove Theorem 5.1, it is convenient to introduce Ma which denotes the moduli
space of genus 0 stable maps to X with image S + aN where N is any fixed nodal
fiber. The moduli space Ma breaks into components because of the possibility of
“jumping” behavior at the node of N . This behavior is encoded by certain kinds of
sequences s(a) = {sn(a)} (we call admissible) and hence the components ofMa are
indexed by such sequences. We denote those components by Ms(a). We compute
the contribution ofMs(a) by “matching” its virtual class with the virtual class on a
moduli space of stable maps to a blow up of P2. This blow up is denoted P̃ and the

relevant moduli space is denotedMP̃

s(a). Ultimately, we show that the contribution
of each component to the invariant is either 0 or 1; those components that contribute
1 are those for which the relevant admissible sequences have a special property (we
call such sequences 1-admissible). The contribution of Ma,b is then obtained by
counting how many possibilities there are for the data (Λ(b), s(a)) that have only
1-admissible sequences.

In subsection 5.1 we identify the componentsMs(a),Λ(b) ofMa,b and show that
they are a product of spaces

∏
iMs(ai). In subsection 5.2 we deal with the technical

issue of showing that the virtual class ofMs,Λ splits as a product of virtual classes
defined on the factors. In subsection 5.3 we compute the virtual class ofMs(ai) by
our matching technique.

5.1. Components of Ma,b. We begin by identifying the connected components
of Ma,b. Call a sequence {sn} admissible if each sn is a positive integer and the
index n runs from some non-positive integer through some non-negative integer
(the sequence could consist solely of {s0} for example). Write |s| for

∑
n sn.

Theorem 5.1. The connected components ofMa,b are indexed by data (Λ(b),s(a)).
The data s(a) assigns for each ai ∈ a an admissible sequence {sn(ai)} such that
|s(ai)| = ai. The data Λ(b) assigns for each bj ∈ b a sublattice of Z⊕ Z of index
bj and an element of the set {1, 2, . . . , bj}. We write

Ma,b =
∐

(s(a),Λ(b))

M(s,Λ).

Remark 5.2. The number of sublattices of Z⊕Z of index b is classically known and
is given by σ(b) =

∑
d|b d. Thus we see that the number of possible choices of the

data Λ(b) is
∏g
j=1 bjσ(bj).

Let4 (f : C → X) ∈ Ma,b. Since the image of f : C → X is S +
∑

j bjFj +∑
i aiNi and is reducible, C must be reducible and its components must group

into the set of components mapping to S, F1, . . . , Fg, and N1, . . . , N24. Since the
components mapping to each Fj must have geometric genus at least 1 and the total
geometric genus of C is g, the components of C mapping to Fj must each be genus
1 and all other components of C are rational. Furthermore, the dual graph of C
is a tree and the g marked points are on the g elliptic components which we call
G1, . . . , Gg. Then since f is a stable map, the image of all collapsed components

4Notation: from here on out we use C to refer to the domain of a stable map instead of the
homology class C ∈ H2(X) that we have previously used. Since we will not need to refer to the
homology class much, this should not pose too much confusion.
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of C must lie in the nodal fibers N1, . . . , N24. We denote the component of C
mapping isomorphically onto S also by S.

So far then, we can describe the domain C as a rational curve S that has attached
to it g marked elliptic curves G1, . . . , Gg and 24 components D1, . . . , D24 that are
either empty (if ai = 0) or a tree of rational components. Furthermore, f |Gj : Gj →
Fj is a degree bj map preserving the intersection with S and sending the marked
point to pj and f |Di : Di → Ni has total degree ai.

Using the intersection with S as an origin for Gj and Fj , we can identify the
number of distinct possibilities for the map f : Gj → Fj with the number of degree
bj homomorphisms onto a fixed elliptic curve Fj . This is precisely the number of
index bj sublattices of Z ⊕ Z. Additionally, since pj has bj preimages under f
(the pj ’s are chosen generically), there are bj choices for the location of xj , the
marked point on Gj , for each homomorphism f : Gj → Fj . Thus the data Λ(b)
completely determines f restricted to G1, . . . , Gg. Now f |S is determined and so
we can reconstruct f completely from f |N1 , . . . , f |N24 and Λ(b). It follows that
the subset of Ma,b with fixed Λ(b) is isomorphic5 to the product of the moduli
spaces

∏24
i=1M[ai]i,0, where [c]i denotes the 24-tuple (0, . . . , c, . . . , 0) with c in the

ith slot and zeros elsewhere. The connected components ofMa,b are in one-to-one
correspondence with the data (Λ(b), s(a)) and Theorem 5.1 is proved provided we
can show that the connected components ofM[a],0 are in one-to-one correspondence
with admissible sequences s of magnitude |s| = a. We state this as

Lemma 5.3. Let Ma be the moduli space of stable, genus 0 maps to X with image
S + aN for any fixed nodal fiber N . Then Ma is a disjoint union

∐
s(a)Ms(a)

of spaces Ms(a) labeled by admissible sequences s(a) = {sn(a)} with |s(a)| =∑
n sn(a) = a.

Proof. Let Σ(a) be a genus 0 nodal curve consisting of a linear chain of 2a+1 smooth
components Σ−a, . . . ,Σa with an additional smooth component Σ∗ meeting Σ0 (so
Σn ∩ Σm = ∅ unless |n−m| = 1 and Σ∗ ∩ Σn = ∅ unless n = 0). Fix a map of

h : Σ(a)→ X

with image S ∪ N in the following way. Map Σ∗ to S with degree 1 and map
each Σn to N with degree one. Require that a neighborhood of each singular point
Σn ∩ Σn+1 is mapped biholomorphically onto its image with Σn ∩ Σn+1 mapping
to the nodal point of N so that h is a local embedding.

Let {sn(a)} be an admissible sequence with |s(a)| = a. Since the index n of the
sequence cannot be smaller than −a or larger than a, we can extend {sn(a)} to
a sequence s−a, . . . , sa by setting sn = 0 for those not previously defined. Define
Ms(a) to be the moduli space of genus 0 stable maps with Σ(a) as the target in the
class

Σ∗ +
a∑

n=−a
sn(a)Σn.

5Strictly speaking, we have only shown that the isomorphism is an isomorphism as coarse
moduli spaces. However, it follows from Theorem B.1 of Appendix B that we get an isomorphism
of schemes/stacks/moduli functors. This is discussed further in the next subsection.
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Figure 2.

By composition with the fixed map h from Σ(a) to X , we get a stable map in Ma

from each map in Ms(a). To prove the lemma we need to show6 that every map
in Ma factors uniquely in this way through a map in Ms(a) for some admissible
s(a) = {sn(a)}. Figure 2 illustrates some of the phenomena that can occur. The
numbers on components of C indicate the degree of f on that component. The A’s
and B’s indicate the local behavior of the map when a nodal point of C is mapped
to the nodal point in N .

Consider the dual graph of the domain C of a map f : C → X inMa. The graph
is a tree with one special vertex v∗ (the component mapping to S) whose valence
is 1. Every other vertex v is marked with a non-negative integer lv (the degree of
the component associated to v) such that the sum of the lv’s is a. Vertices with a
marking of 0 (collapsed components) must have valence at least three (stability).
We mark the edges in the following way. Each edge corresponds to a nodal singu-
larity in C and if the node is not mapped to the nodal point in N , we do not mark
the edge. The remaining edges are marked with either a pair of the letters A or B,
a single letter of A or B, or nothing as follows. Label the two branches near the
node in N by A and B. Three things can then happen for an edge corresponding
to a node in C that gets mapped to the node in N .

1. If the edge connects two collapsed components, do not mark the edge.
2. If the edge connects one collapsed component with one non-collapsed compo-

nent, mark the edge with an A or B depending on whether the non-collapsed
component is mapped (locally) to the A branch or the B branch.

3. Finally, if the edge connects two non-collapsed components, then mark the
edge with two of the letters A or B, one near each of the vertices, according
to which branch that corresponding component maps to (locally). Note that
all the combinations AB, BA, AA, and BB can occur.

6To prove the lemma as stated we also need to show that Ms(a) is connected. This is not

hard, but since we never actually use this part of the result, we will leave its proof to the reader.
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Figure 3.

The markings on our graph now tell us how and when the map “jumps” branches.
Jumping from A to B will correspond to moving from Σn to Σn+1 in the factored
map. To determine which component Σn a component of C gets mapped to, we
count how many “jumps” occur between the corresponding vertex v and the central
vertex v∗. For every non-collapsed component vertex v assign its index nv by
traveling from v∗ to v in the graph and counting +1 for each AB pair passed
through, −1 for each BA pair, and 0 for each AA or BB pair. We can now
uniquely factor f : C → X through the fixed map Σ(a)→ X . The component of C
corresponding to a vertex v gets mapped to Σnv . The factorization is unique since
away from the AB or BA jumps, f factors uniquely through the normalization of
N .

The marked dual graph for the previously illustrated example is given in Figure
3. Here we’ve marked the vertices with (lv, nv) so in this example s−1 = 4, s0 = 5,
and s1 = 3.

5.2. Obstruction theory and virtual classes. In this subsection we show that
the virtual class defining the contribution ofMs,Λ to Ng(n) is the product of virtual
classes defined on Ms(ai). This is the most technical subsection of the paper, but
it is essentially self-contained, and can be skipped by casual readers.

To compute the contribution of Ms,Λ to Ng(n), we recall the definition of the
invariant. LetMg,g(X,T ;C) be the moduli space of g-marked, genus g stable maps
to X (with its twistor family) in the class of C. Let M(X,p) ⊂ Mg,g(X,T ;C)
denote the restriction to those maps that send the jth marked point to the point
pj ∈ X ; the virtual dimension of M(X,p) is 0. By definition, Ng(n) is the evalua-
tion of e∗([p1]∨⊗· · ·⊗[pg]∨) on [Mg,g(X,T ;C)]vir. Alternatively, one can construct
a 0-dimensional virtual class directly on the cut-down moduli space [M(X,p)]vir,
which gives an invariant coinciding with the above definition (see Proposition A.4
in Appendix A); this is the tack we take.

Virtual classes in Gromov-Witten theory were constructed in the symplectic
category by Li-Tian [28] and Siebert [33] and in the algebraic category by Li-Tian
[27] and Behrend-Fantechi [5], [6]. The algebraic and symplectic versions were
shown to coincide by Li-Tian [26] and Siebert [34]. This enables us to compute
the invariant purely algebro-geometrically, although we need the machinery of the
symplectic category to define it.
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To understand the class [M(X,p)]vir in a purely algebraic way, we use the fact
that, although the twistor family is not algebraic, it is an analytic family. In his
proof that the algebraic and symplectic versions of Gromov-Witten invariants are
the same, Siebert constructs an analytic version of Behrend and Fantechi’s virtual
class. We can apply this construction directly to the twistor family. Let

π : Z → T

denote the twistor family. Topologically Z = X × T but we give the fibers Zt =
π−1(t) the Kähler structure (X, Jt, ωt). Let t0 be the unique member of T for
which (X, Jt0 , ωt0) admits a holomorphic curve in the class [C] and let X denote
the (algebraic) space Zt0 .
M(X,p) is a moduli space over Mg,g × T where Mg,g is the moduli stack of

g-marked genus g pre-stable curves. The virtual class [M(X,p)]vir is determined
as in Proposition A.4 by the perfect relative obstruction theory

[R•π∗f∗(TZ/T (−x))]∨ → L•M(X,p)/Mg,g×T .(2)

This requires some explanation. If Z/T were a family in the algebraic category
we would say the following: The above map is a morphism in the derived category
of coherent sheaves on M(X,p)/Mg,g × T and L•M(X,p)/Mg,g×T

is the cotangent

complex of M(X,p) relative to Mg,g × T . TZ/T is the relative tangent bundle of
Z/T and −x = −x1 − · · · − xg where xj is the divisor on the universal family over
Mg,g(X,T ;C) corresponding to the jth marked point. The term perfect means
that the induced map in cohomology is an isomorphism on h0 and surjective on
h−1. Furthermore, the left hand side of (2) should be equivalent in the derived
category to a two-term complex of bundles. Note that the moduli stack Mg,g of
pre-stable curves is an Artin stack (not of Deligne-Mumford or even finite type);
the Deligne-Mumford stack of stable curves Mg,g is an open substack. The map
from M(X,p) to Mg,g is given by (f : C → X) 7→ C (and not stabilizing C).

Since Z/T is not algebraic but analytic, we wish to use Siebert’s analytic refor-
mulation of the virtual class. Since the analogues of Artin stacks in the analytic
category are not well developed in the literature, Siebert avoids them by working
locally and then globalizing. Locally, there is a rigidification trick so that the map
(2) and resulting virtual class can be constructed using the derived category of co-
herent analytic orbi-sheaves on analytic orbi-spaces (see section 1.2 of [34]). Rather
than introduce excessive notation, we will write as if the constructions were already
global and T were algebraic as we have in Equation (2).

The object E• = [R•π∗f∗(TZ/T (−x))]∨ is the obstruction theory. It is repre-
sented by a two-term complex in degrees −1 and 0 whose cohomology gives sheaves
whose stalks over a map {f : (C,x) → X} are the duals to the deformation and
obstruction spaces:

H0(C, f∗(TX(−x)))∨,

H1(C, f∗(TX(−x)))∨.

The H0 space is the space of infinitesimal deformations of the map preserving
the condition that f(xj) = pj and the H1 space is the space of obstructions to
those deformations.

In the previous subsection we showed that the connected components of the
moduli space M(X,p) are indexed by the tuples (a,b) and the data (s(a),Λ(b)).

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



ENUMERATIVE GEOMETRY OF K3 389

Furthermore, we identified each component with a product:

M(X,p) ∼=
∐
a,b

∐
s,Λ

Ms(a),Λ(b)

∼=
∐
a,b

∐
s,Λ

(
24∏
i=1

Ms(ai)

) g∏
j=1

MΛ(bj)

 .

HereMΛ(bj) is just a point corresponding to the unique map f : S ∪Gj → X that
is the identity on S and the unique bj-fold cover of Fj corresponding to the data
Λ(bj).

Strictly speaking, we have only proven that the second isomorphism above is
an isomorphism of coarse moduli spaces. However, it follows from Theorem B.1 of
Appendix B that the isomorphism is an isomorphism of stacks.

We wish to show that the virtual class [Ms,Λ]vir is a product of virtual classes
coming from the factors Ms(ai) and MΛ(bj). To do this, we need to convert the
relative obstruction theory defining [Ms,Λ]vir into a relative theory that is compat-
ible with the product structure. Since we know that all the domains of the maps
in Ms,Λ have a particular degeneration type and we know that there is only one
member t0 ∈ T for which the corresponding moduli space is non-empty, we can
factor the map

τ :Ms,Λ →Mg,g × T
through a smooth local embedding iρ] :

Ms,Λ

τ
ρ]

��

τ

&&M
MM

MM
MM

MM
M

Mρ] × t0 � � i
ρ]

// Mg,g × T.

(3)

We define Mρ] as follows. First, there is a smooth stack Mρ and a local embed-
ding Mρ ↪→ Mg,g for every modular graph of genus g with g tails (see Behrend-
Manin [7] for the terminology). Let ρ be the graph with one central vertex S of
genus 0, 24 genus 0 vertices D1, . . . , D24 connected to S, and g genus 1 vertices
G1, . . . , Gg connected to S, each with one tail.7 Mρ ⊂ Mg,g is the local substack
of genus g, g-marked curves with degeneration type determined by ρ. Let σ be the
modular graph obtained by cutting all the edges of ρ. σ is a disconnected graph
with 24 components α1, . . . , α24 consisting of a genus 0 vertex with a tail, g com-
ponents β1, . . . , βg consisting of a genus 1 vertex with 2 tails, and one component
σS consisting of a genus zero vertex with 24 + g tails as in Figure 4.

It follows from the properties of modular graphs and their associated moduli
stacks (see [7]) that there are isomorphisms

Mρ
∼= Mσ

∼= MσS ×
24∏
i=1

Mαi

g∏
j=1

Mβj .

Note that MσS
∼= M0,24+g and let pS ∈M0,24+g be the point corresponding to

the fixed (marked) curve (S,y, z) = (S, y1, . . . , y24, z1, . . . , zg) ⊂ X . Let Mρ] ⊂Mρ

7If some of the ai are 0, then ρ should not have the corresponding vertices; those cases work
exactly the same in every other respect, so we will assume for notational convenience that all the
ai’s are non-zero.
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D1 D24

G1 Gg

ρ σ

Figure 4.

parameterize curves with the degeneration type ρ and with the curve corresponding
to the vertex S fixed to be the marked curve (S,y, z), i.e.

Mρ]
∼= pS ×

24∏
i=1

Mαi

g∏
j=1

Mβj .

Similarly, by gluing a rational curve with a fixed parameterization P1 → (S,y, z)
to the marked point of a curve in Mαi at the point yi we obtain isomorphisms

Mα]i
∼= Mαi

so that, by definition, Mα]i
parameterizes genus 0 curves with a component canon-

ically isomorphic to (S,y, z) and all other components attached to S at the fixed
point yi ∈ S. In a similar manner we get the stack Mβ]j

∼= Mβj .

Since the domain C of every map f : C → X in Ms,Λ lies in Mρ] and, by
Theorem B.1 of Appendix B, there are no infinitesimal deformations of f : C → X
that deform C out of Mρ] , the factorization given by diagram (3) exists.

We obtain similar factorizations for the moduli stacks Ms(ai) and MΛ(bj):

Ms(ai)

{{ww
ww
ww
ww
w

τ
α
]
i

��

M0,0 Mα]i
oo

MΛ(bj)

{{ww
ww
ww
ww
w

τ
β
]
j

��

M1,1 Mβ]j
oo

Let π : Cs,Λ →Ms,Λ be the universal curve and let f : Cs,Λ → X be the universal
map. Let S, Di, and Gj be the components of the universal curve corresponding
to the components S, Di, and Gj discussed in the previous subsection. Note that
S ∼= S ×Ms,Λ with π|S projection on the second factor and f |S projection on the
first factor followed by the inclusion S ⊂ X . The universal curve Cs,Λ has sections
yi and zj corresponding to the intersections S ∩ Di and S ∩ Gj respectively. Let p
denote the map from the disjoint union of S,D1, . . . ,D24,G1, . . . ,Gg to Cs,Λ obtained
by gluing along yi and zj . The inverse image of yi and zj under the gluing map p
are denoted y′i, y

′′
i and z′j, z

′′
j respectively where the double primed sections lie in

S and the single primed sections lie in Di and Gj . Let π′ denote the composition
π ◦ p.
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In summary, we get the following diagram:

S
∐
iDi

∐
j Gj

p
// S
⋃
iDi

⋃
j Gj Cs,Λ

f
//

π

��

X

∏
iMs(ai)

∏
jMΛ(bj)

y′i,y
′′
i ,z
′
j,z
′′
j

iiSSSSSSSSSSSSSS

uukk
kkk

kk
kkk

kk
kk

yi,zj

OO

∏
i τα]i

∏
j τβ]j

��

Ms,Λ

τ
ρ]

��

τ

$$I
II

II
II

II
I

∏
i M0,0

∏
j M1,1

∏
i Mα]i

∏
j Mβ]j

? _oo Mρ]
� � i

ρ]
// Mg,g × T

(4)

Recall that the virtual class [Ms,Λ]vir is determined by the perfect relative ob-
struction theory [R•π∗(f∗TX⊗O(−x))]∨ which we denote by E•. From Proposition
A.1 of Appendix A, we get an object F • fitting into a morphism of triangles

τ∗ρ]L
•
i
ρ]

θ // E• //

��

F • //

��

τ∗ρ]L
•
i
ρ]

[1]

τ∗ρ]L
•
i
ρ]

// L•τ // L•τ
ρ]

// τ∗ρ]L
•
i
ρ]

[1]

(5)

defining a perfect relative obstruction theory F • → L•τ
ρ]

determining the same
virtual class. We use the obstruction theory F • because it is more compatible with
the product structure of Ms,Λ.

Before we can make this more explicit, we need another exact triangle for E•

that arises from the component structure of Cs,Λ.
Let W be the bundle f∗(TX)⊗O(−x) on Cs,Λ. We apply p∗ to the morphisms

p∗W → y′i∗y
′∗
i p
∗W

and, noting that p ◦ y′i = yi, we obtain morphisms

ϕy′i : p∗p∗W → yi∗y
∗
iW.

Similarly, there are morphisms

ϕy′′i : p∗p∗W → yi∗y
∗
iW,

ϕz′j : p∗p∗W → zj∗z
∗
jW,

ϕz′′j : p∗p∗W → zj∗z
∗
jW.

Let ϕyi = ϕy′′i − ϕy′i and ϕzj = ϕz′′j − ϕz′j and then let

ϕ = ⊕iϕyi ⊕j ϕzj .

We then have an exact sequence of sheaves on Cs,Λ (cf. Behrend [5], pg. 608)

0 // W // p∗p
∗W

ϕ
// ⊕iyi∗y∗iW ⊕j zj∗z∗jW // 0.

Apply R•π∗ to this sequence and recall that π′ = π ◦ p and that yi and zj are
sections. We obtain a triangle

R•π∗(f∗TX(−x)) // R•π′∗p
∗(f∗TX(−x))

Rπ∗(ϕ)
// ⊕iy∗iW ⊕j z∗jW.
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We denote the restriction of f to the components of Cs,Λ by fS , fDi , and fGj
and we let E•S , E•Di , and E•Gj denote the objects [R•π∗f∗STX ]∨, [R•π∗f∗DiTX ]∨, and
[R•π∗(f∗GjTX(−xj))]∨ respectively. Dualizing the above triangle, we get

⊕iy∗iW∨ ⊕j z∗jW∨ // E•S ⊕i E•Di ⊕j E
•
Gj

// E•.(6)

Note that the induced long exact sequence in cohomology is an exact sequence of
sheaves on Ms,Λ which on the stalks over (f : C → X) is the long exact sequence
associated to the normalization of C at the points yi and zj .

Lemma 5.4. The exact triangles (5) and (6) fit into the following commuting di-
agram where the rows and columns are exact triangles and the objects F •Di and F •Gj
are pulled back from Ms(ai) and MΛ(bj) (the direct sums are over the indices i and
j).

τ∗ρ]L
•
i
ρ]

ηθ
//

θ

��

⊕y∗iW∨ ⊕ z∗jW∨[1] // A•[1]

��

E•
η

//

��

⊕y∗iW∨ ⊕ z∗jW∨[1] //

��

E•S ⊕ E•Di ⊕ E
•
Gj

[1]

��

F • // 0 // ⊕F •Di ⊕ F
•
Gj

[1]

In particular, the bottom row implies F • = ⊕F •Di ⊕ F
•
Gj

.

Proof. The morphisms θ and η come from the triangles (5) and (6) respectively and
they uniquely determine the triangles. The upper left square can then be uniquely
completely to the above diagram (Weibel [35], page 378).

To see that the object in the lower right corner of the diagram that we obtain
is a direct sum of the form ⊕F •Di ⊕ F

•
Gj

we need to understand a little about the
morphisms involved, in particular ηθ.

Roughly speaking, the main point is that everything in the above diagram splits
over i and j except E•S and corresponding pieces of τ∗ρ]L

•
i
ρ]

which then appear in
A• to cancel the E•S term.

In general, a morphism in the derived category is not determined by the induced
morphisms in cohomology. However, the objects τ∗ρ]L

•
i
ρ]

and ⊕y∗iW∨ ⊕ z∗jW∨[1]
have non-zero cohomology in only degree −1, and so they are determined by their
cohomology and the morphism ηθ is determined by the map in cohomology (Propo-
sition 4.3 of [22]). Thus, abbreviating y∗iW and z∗jW by Wi and Wj , we have

A• = [⊕Wi ⊕Wj → (τ∗ρ]L
−1
i
ρ]

)∨]∨

where the map is (h−1(ηθ))∨, the dual of the induced map in cohomology. Here
Wi, Wj , and τ∗ρ]L

−1
i
ρ]

are sheaves on Ms,Λ which are readily identified.

Wi is the trivial rank 2 bundle onMs,Λ whose fibers are canonically TyiX , and
Wj is the trivial rank 2 bundle whose fibers are canonically identified with TzjX .
In general, we denote trivial bundles on Ms,Λ by their fibers so that, for example,
we just write TyiX for Wi = TyiX ⊗OMs,Λ

. The bundle (τ∗ρ]L
−1
i
ρ]

)∨ is the pullback
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of Nρ] , the normal bundle of Mρ] × t0 ↪→Mg,g × T . It fits into an exact sequence
coming from Mρ] × t0 ↪→Mρ × T ↪→Mg,g × T , namely

0→ Def(S,y, z) ⊕ T 0 → Nρ] → Nρ → 0

where Def(S,y, z) = TpSM0,24+g is the tangent space to M0,24+g at the point pS
corresponding to (S,y, z) and T 0 denotes Tt0T , the tangent space to the twistor
family at t0. The bundle Nρ is the normal bundle of the local embedding Mρ ↪→
Mg,g. The fibers of the bundle Nρ classify infinitesimal smoothings of the nodes yi
and zj , i.e.

⊕i(TyiS ⊗ TyiDi)⊕j (TzjS ⊗ TzjGj).

The vector space Def(S,y, z) is naturally given as a quotient:

0→ AutS → ⊕TyiS ⊕ TzjS → Def(S,y, z)→ 0.

It can be seen that this, together with the previous exact sequence, combine to
express τ∗ρ]Nρ] as a quotient of the form

0→ AutS → T 0 ⊕Mi ⊕Mj → τ∗ρ]Nρ] → 0

where Mi and Mj are bundles pulled back from Ms(ai) and MΛ(bj) respectively.
The map

h−1(ηθ)∨ : ⊕Wi ⊕Wj → τ∗ρ]Nρ]

can be explicitly identified via geometry and obstruction theory (see Appendix B).
We only need to understand this map to the extent to which it is compatible with
the product structure. At the stalks over (f : C → X), the map h−1(ηθ)∨ is the
composition

⊕H0(yi, f∗TX)⊕H0(zj , f∗TX)→ H1(C, f∗TX ⊗O(−x))→ Nρ] |C .

Here the first map is the connecting homomorphism in the long exact sequence com-
ing from normalizing the double points yi and zj (i.e. it is the dual of the induced
map h−1(η)). The second map is the splitting of Theorem B.1 from Appendix B
(see Corollary B.2). From the proof of that theorem we see that the map h−1(ηθ)∨

lifts to a map ⊕Wi ⊕Wj → Mi ⊕Mj which is a product of maps Wi → Mi and
Wj →Mj . Thus we have a quasi-isomorphism:

AutS ⊕Wi ⊕Wj

��

// T 0 ⊕Mi ⊕Mj

��

⊕Wi ⊕Wj
h−1(ηθ)∨

// Nρ]

and so we see that

A• = [AutS ⊕Wi ⊕Wj → T 0 ⊕Mi ⊕Mj]∨.

Now consider the object E•S . Since S ∼= Ms,Λ × S and π is just projection
onto the first factor and f is just projection onto the second factor followed by
the inclusion S ↪→ X , the object E•S is just [H0(S, TX) 0→ H1(S, TX)]∨ where
H i(S, TX) denotes the trivial bundle with the corresponding fiber. Note that since
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TX |S = TS⊕NS ∼= OS(2)⊕OS(−2), we see that H0(S, TX) = H0(S, TS) = AutS
and H1(S, TX) = H1(S,NS). Thus we can express E•S as

E•S
∼= [AutS 0 // H1(S,NS)]∨.

Finally, to finish the proof of Lemma 5.4 we show that the mapping cone of the
morphism A• → E•S ⊕ E•Di ⊕ E

•
Gj

, i.e.

[AutS ⊕Wi ⊕Wj → T 0 ⊕Mi ⊕Mj]∨ → [AutS → H1(S,NS)]∨ ⊕ E•Di ⊕ E
•
Gj ,

is quasi-isomorphic to the direct sum of the mapping cones of morphisms [Wi →
Mi]∨ → E•Di and [Wj →Mj]∨ → E•Gj which we then denote by F •Di and F •Gj .

An explicit quasi-isomorphism for the dual mapping cones is given by the dia-
gram

⊕E0∨
Di
⊕ E0∨

Gj
//

��

⊕E−1∨
Di
⊕ E−1∨

Gj

⊕Wi ⊕Wj

//

��

⊕Mi ⊕Mj

��

AutS ⊕ E0∨
Di
⊕ E0∨

Gj
//
H1(S,NS)⊕ E−1∨

Di
⊕ E−1∨

Gj

⊕AutS ⊕Wi ⊕Wj

// T 0 ⊕Mi ⊕Mj

where the downward arrows are inclusions. Here we have chosen representatives of
the objects ES , EDi , and EGj by 2-term complexes of sheaves (this can be done,
e.g. as in [5]). The above diagram commutes because the only off diagonal map is
the one from AutS → ⊕Mi⊕Mj on the bottom row. The fact that the diagram is
a quasi-isomorphism follows because the maps on the bottom row are the identity
restricted to AutS → AutS and an isomorphism on H1(S,NS)→ T 0.

To see this last isomorphism, we first note that there is an identification of T 0 :=
Tt0T with H2(X,OX) as follows. For any K3 surface X the pairing Ω2

X⊗TX → Ω1
X

induces a non-degenerate pairing

H0(X,K)⊗H1(X,TX)→ H1(X,Ω1
X).

The deformation theoretic interpretation of this pairing is that a holomorphic 2-
form Ω is deformed under an infinitesimal deformation t ∈ H1(X,TX) in the
H1,1(X) direction given by the image of Ω ⊗ t under the above pairing. In the
case of the twistor family T determined by the Kähler structure ω ∈ H1(X,Ω1

X),
the infinitesimal change in a holomorphic 2-form under a twistor deformation is by
definition the Kähler form ω. Thus the above pairing restricts to the isomorphism

H0(X,K)⊗ T 0 → ωC

and so we see that T 0 ∼= H0(X,K)∨ ∼= H2(X,OX).
One can then examine the deformation theory of the triple S ⊂ X ⊂ Z (recall

that Z is the total space of the twistor family) to see that the map H1(S,NS)→
T 0 ∼= H2(X,O) is in fact given by the connecting homomorphism in the long exact
cohomology sequence associated to

0→ OX → OX(S)→ OS(S)→ 0.

It follows that the mapH1(S,NS)→H2(X,O) is an isomorphism sinceH1(X,O(S))
and H2(X,O(S)) are 0.
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Lemma 5.4 along with Proposition 7.4 of [6] shows that

[Ms,Λ]vir = [Ms,Λ, F
•] =

∏
i

[Ms(ai), F
•
Di ]
∏
j

[MΛ(bj), F
•
Gj ].(7)

We next describe the obstruction theories F •Di and F •Gj in a more useful way.
Note that in the construction of F •Di and F •Gj in Lemma 5.4, we assumed that all the
ai’s and bj’s were non-zero for notational convenience only. The same construction
applies to the case where ai = 0 for all i 6= i0 and g = 0.8 In this case the moduli
space Ms,Λ is just Ms(ai0 ) and thus its virtual class is given by F •Di0

. Similarly,
if ai = 0 for all i and g = 1, then Ms,Λ = MΛ(b) and its virtual class is given by
F •Gj . In this case,MΛ(b) is just a single reduced point (with a trivial automorphism
group) and so its virtual class [MΛ(b), F

•
G] = 1. Thus equation (7) reduces to

[Ms,Λ] =
∏
i

[Ms(ai), F
•
s(ai)

]

where we have changed notation from F •Di to the slightly more descriptive F •s(ai).
As we argued in the previous subsection, all the maps in Ms(a) factor through

the fixed local embedding h : Σ(a) → X . By definition Ms(a)
∼=M0,0(Σ(a), s(a))

(recall that the sequence s(a) = {. . . , s−1(a), s0(a), s1(a), . . . } determines the de-
gree of the maps on the various components of Σ(a)). The obstruction theory F •s(a)

is obtained (via the proof of Lemma 5.4) from the diagram:

Cs(a)
f

//

π

��

g

##F
FF

FF
FF

FF
X

Ms(a)

yytt
tt
tt
tt
t

τ
α]

��

Σ(a)

h

OO

M0,0 × T Mα]
oo

We see from the construction of F •s(a) that it does not depend on X , but only on
the bundle h∗TX on Σ(a). Furthermore, from the proof of Lemma 5.4, we see that
the only role that the twistor family played in F •s(a) was to cancel H1(S, TS), the
obstruction to deforming S. In the above notation, this obstruction isH1(Σ∗, h∗TX)
(recall from the previous subsection that Σ∗ ⊂ Σ(a) is the component mapped
isomorphically onto S). This discussion leads to the following characterization of
F •s(a):

Lemma 5.5. Let T → Σ(a) be a bundle on Σ(a) such that T is isomorphic to
h∗TX restricted to the union of all the components of Σ(a) except Σ∗ and T |Σ∗ ∼=

8The only real difference in this case that is worth noting is that the map Mα] → M0,0 is
not a local embedding. It is in fact a composition of a quotient and a local embedding: Mα] →
Mα′ ↪→ M0,0. Here α′ is the modular graph with 2 genus zero vertices and one edge connecting
them. The first map is the quotient which forgets the fixed parameterization of the S component.

The fiber is the group of automorphisms of S that fix the node. The second map is the usual local
embedding defined by the modular graph α′. Thus the only modification required for this case is
that we need to apply the two cases of Proposition A.1 in succession to get the analogue of the
triangles in equation (5).
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TΣ∗ ⊕OΣ∗(−1). Then

[R•π∗g∗T ]∨ → L•Ms(a)/M0,0

defines a relative obstruction theory whose virtual class is isomorphic to
[Ms(a), F

•
s(a)].

Proof. Running through the same procedure as in the proof of Lemma 5.4 but using
no twistor family and the bundle T instead of f∗TX⊗O(−x), we encounter identical
terms as we do for F •s(a), except the terms H1(S,NS) and T 0, which cancel in the
quasi-isomorphism.

Remark 5.6. If the section S ⊂ X had had self-intersection −1 to begin with, there
would have been no need for the twistor family and all other arguments would have
been the same. In particular, in the case of the rational elliptic surface, which is
CP2 blown-up at nine points, the methods of this section apply to the ordinary
Gromov-Witten invariants (i.e. no twistor family). This is carried out in Section
6.

The results of this subsection can be summarized by saying that

[Ms,Λ]vir =
∏
i

[Ms(ai), F
•
s(ai)

]

and F •s(ai) is characterized in Lemma 5.5.

5.3. Computations via blow-ups on P2. In the previous subsection, we showed
that the virtual fundamental cycle ofMs,Λ is given by the product of virtual funda-
mental cycles onMs(ai) defined by the obstruction theory F •s(ai). In this subsection,
we will realize the moduli space and its obstruction theory (Ms(ai), F

•
s(ai)

) as one
coming from P̃ , a certain blow-up of P2 at 2a+ 3 points.

The homology classes of P̃ will have a diagonal basis h, e−a−1, . . . , ea+1 where
h2 = 1 and e2

n = −1. We construct P̃ as follows. Begin with a linear C∗ action
on P2 fixing a line H and a point p. Choose three points p−, p0, and p+ on H
and blow them up to obtain three exceptional curves E−1, E0, and E1 representing
classes e−1, e0, and e1. The proper transform of H is a (−2)-curve Σ0 in the class
h − e−1 − e0 − e1. The C∗ action extends to this blow-up acting with two fixed
points on each of the curves E−1, E0, and E1, namely the intersection with Σ0 and
one other. Blow-up the fixed points on E−1 and E1 that are not the ones on Σ0

to obtain two new exceptional curves E−2 and E2 in the classes e−2 and e2. Let
Σ−1 and Σ1 be the proper transforms of E−1 and E1 and note that they are (−2)-
spheres in the classes e−1− e−2 and e1− e2 respectively. The C∗ action extends to
this blow-up and we can repeat the procedure a− 1 additional times to obtain P̃ .
P̃ contains 2a+ 1 (−2)-spheres, namely Σ−a, . . . ,Σa which represent the classes

[Σn] =


en − en+1 if 0 < n ≤ a,
h− e0 − e−1 − e1 if a = 0,
en − en−1 if −a ≤ n < 0.

We rename the (−1)-spheres E0, Ea+1, and E−a−1 by Σ∗, Σa+1, and Σ−a−1 and it
is a straightforward computation to check that the classes [Σ∗], [Σ−a−1], . . . , [Σa+1]
form an integral basis for H2(P̃ ; Z).
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Σt = h

Σ∗ = e0

Σa+1 = ea+1

Σa = ea − ea+1

Σa−1 = ea−1 − ea
.
.
.

Σ3 = e3 − e4

Σ2 = e2 − e3

Σ1 = e1 − e2
Σ−1 = e−1 − e−2

Σ−3 = e−3 − e−4

Σ−2 = e−2 − e−3

Σ−a+1 = e−a+1 − e−a

Σ−a = e−a − e−a−1

Σ−a−1 = e−a−1

.

.

.

Σ− = h− e−1 − · · · − e−a−1

Σ0 = h− e0

Σ+ = h− e1 − · · · − ea+1

p

Σ0 = h− e−1 − e0 − e1

Figure 5.

The configuration Σ∗+
∑a

n=−a Σn is (as our notation suggests) biholomorphic to
Σ(a). Furthermore, T P̃ |Σ(a) is isomorphic to the bundle T defining the obstruction
theory F •s(a) (see Lemma 5.5). This will allow us to realize our obstruction problem
as an ordinary Gromov-Witten invariant:

Lemma 5.7. [Ms(a)]vir := [Ms(a), F
•
s(a)]

vir is the same as the (ordinary) genus 0
Gromov-Witten invariant of P̃ in the class

[Σ∗] +
a∑

n=−a
sn[Σn].

Proof. This follows immediately from Lemma 5.5 if we can show that all the rational
curves in the above homology class lie in the configuration Σ(a).

Note that the curves Σ∗,Σ−a−1, . . . ,Σa+1 are preserved by the C∗ action and
the only other curves preserved are the proper transforms of lines through the fixed
point p. We call these additional lines Σ+, Σ−, Σ0, and Σt which are the proper
transforms of the lines pp+, pp−, pp0, and ppt where pt is any point on H that is
not p+, p−, or p0 (see Figure 5).

We express the classes of Σ+, Σ−, Σ0 and Σt in the two homology bases
{h, e−a−1, . . . , ea+1} and {[Σ∗], [Σ−a−1], . . . , [Σa+1]} as follows:

[
Σt
]

= h = [Σ∗] +
a+1∑

n=−a−1

[Σn] ,

[
Σ0
]

= h− e0 =
a+1∑

n=−a−1

[Σn] ,
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Σ+
]

= h− e1 − · · · − ea+1

= [Σ∗] +
a+1∑

n=−a−1

[Σn]−
a+1∑
n=1

n [Σn] ,[
Σ−
]

= h− e−1 − · · · − e−a−1

= [Σ∗] +
a+1∑

n=−a−1

[Σn]−
a+1∑
n=1

n [Σ−n] .

Since C∗ acts on P̃ we get a C∗ action on the moduli space MP̃

s(a) of genus 0
stable maps to P̃ in the class [Σ∗] +

∑a
n=−a sn[Σn]. We first show that the maps in

the fixed point set ofMP̃

s(a) must have image Σ∗+
∑a
n=−a snΣn. This is essentially

for homological reasons: the image of a map in the fixed point set of MP̃

s(a) must
be of the form

c∗Σ∗ +
a+1∑

n=−a−1

cnΣn +
∑
t

ctΣt + c+Σ+ + c−Σ− + c0Σ0

for non-negative coefficients given by the c’s. Since [Σ∗], [Σ−a−1], . . . , [Σa+1] form
a basis we have

c∗ +
∑
t

ct + c+ + c− = 1,

cn + c0 +
∑
t

ct + c+ + c− − |n|csign(n) =

{
sn, |n| ≤ a,
0, |n| = a+ 1.

The first equation implies that exactly one of c∗, ct, c+, or c− is 1 (for some
t) and the rest are 0. Suppose that c+ = 1; then c− = 0 and letting n = −a − 1
in the second equation leads to a contradiction and so we have c+ = 0. A similar
argument shows c− = 0 and then summing the second equation over n leads to(

a+1∑
n=−a−1

cn

)
+ (2a+ 3)(c0 +

∑
t

ct) = a

which implies that c0 = ct = 0. Thus c∗ = 1 and cn = sn.

Finally, suppose f ∈ MP̃

s(a) is not a fixed point of the C∗ action. Then the
limit of the action of λ ∈ C∗ on f as λ → 0 must be fixed and hence has image
Σ∗ +

∑a
n=−a snΣn. But then the limit of the action as λ→ ∞ must also be fixed

and its image must contain the point p, which is a contradiction. Hence every

f ∈ MP̃

s(a) is fixed by C∗ and so has image Σ∗ +
∑a
n=−a snΣn.

Now P̃ is deformation equivalent to the blow-up of P2 at 2a+ 3 generic points
and so the invariant for the class [Σ∗] +

∑a
n=−a sn[Σn] can be computed using

elementary properties of the invariants for blow-ups of P2.
We follow the notation of [20] and recall some of the properties of the invari-

ant. We write N(d;α1, . . . ) for the genus 0 Gromov-Witten invariant in the class
dh −

∑
i αiei . Here we are not being very picky about the indexing set for the

exceptional classes since the invariant is the same under reordering. In the nota-
tion N(d;α1, . . . ) it is implicit that if the moduli space of genus 0 maps in the class

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



ENUMERATIVE GEOMETRY OF K3 399

(d;α1, . . . ) is positive dimensional, then we impose the proper number of point con-
straints and if the dimension is negative the invariant is zero. Also, we drop any
α = 0 terms from the notation so that N(d;α1, . . . , αl, 0, . . . , 0) = N(d;α1, . . . , αl).
The invariants satisfy the following properties:

1. N(d;α1, . . . ) = 0 if any α < 0 unless d = 0, αi = 0 for all i except i0 and
αi0 = −1. In the latter case the invariant is 1.

2. N(d;α1, . . . , αl, 1) = N(d;α1, . . . , αl).
3. N(d;α1, . . . , αl) = N(d;ασ(1), . . . , ασ(l)) for any permutation σ.
4. N(d;α1, . . . , αl) is invariant under the Cremona transformation which takes

the class

(d;α1, α2, α3, . . . )

to the class

(2d− α1 − α2 − α3; d− α2 − α3, d− α1 − α3, d− α1 − α2, . . . ).

5. N(1) = 1.

Ordering the exceptional classes in P̃ by e0, e1, e−1, e2, e−2, . . . and rewriting the
class Σ∗ +

∑
snΣn in this basis, we can express the contribution ofMs(a) as

[Ms(a)]vir = N(s0; s0 − 1, s0 − s1, s0 − s−1, s1 − s2, s−1 − s−2, . . . , s−a+1 − s−a).

We call an admissible sequence {sn} 1-admissible if s±n±1 is either s±n or s±n−1
for all non-negative n.

Lemma 5.8. [Ms(a)]vir = 1 if s(a) is a 1-admissible sequence and [Ms(a)]vir = 0
otherwise.

Proof. Suppose that [Ms(a)]vir 6= 0. Since s0 > 0, all the other terms in (s0; s0 −
1, s0 − s1, . . . ) must be non-negative by property 1. Thus s±n±1 ≤ s±n for all n.
Now by permuting and performing the Cremona transformation, we get

[Ms(a)]vir = N(s0; s0 − 1, s0 − s1, s±n − s±n±1, . . . )
= N(1 + s1 + s±n±1 − s±n; s1 − s±n + s±n±1,

1 + s±n±1 − s±n, s1 + 1− s0, . . . ).

Now since s±n ≤ s1, we have 1 + s1 + s±n±1− s±n > 0 and so 1 + s±n±1− s±n ≥ 0
which combined with s±n±1 ≤ s±n yields

s±n±1 ≤ s±n ≤ s±n±1 + 1,

and so s is 1-admissible.
Suppose then that s is 1-admissible. Then except for the first two terms, the

class (s0; s0−1, s0−s1, . . . ) consists of 0’s and 1’s. Thus [Ms(a)]vir = N(s0; s0 − 1).
Finally, since N(s0; s0 − 1) = N(s0; s0 − 1, 1, 1) we can apply Cremona to get

N(s0; s0 − 1) = N(s0 − 1; s0 − 2)

and so by induction

[Ms(a)]vir = N(s0; s0 − 1) = N(1) = 1

and the lemma is proved.

Lemma 5.9. The number of 1-admissible sequences s with |s| = a is the number
of partitions of a, p(a).
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Proof. 9 The number of partitions, p(a), is given by the number of Young diagrams
of size a. There is a bijective correspondence between 1-admissible sequences and
Young diagrams. Given a Young diagram define a 1-admissible sequence {sn} by
setting s0 equal to the number of blocks on the diagonal, s1 equal to the number of
blocks on the first lower diagonal, s2 equal to the number of blocks on the second
lower diagonal, and so on, doing the same for s−1, s−2, . . . with the upper diagonals.
It is easily seen that this defines a bijection.

Summarizing the results of this section we have:

Theorem 5.10. Since every component ofMa,b contributes either 0 or 1 to Ng(n),
the overall contribution ofMa,b is the sum over all the connected components whose
contribution is 1. It is thus the sum of all choices of data (s(a),Λ(b)) such that all
the sequences of s(a) are 1-admissible. For each aj ∈ a we have p(aj) choices of
a 1-admissible sequence s(aj) and for each bi ∈ b we have bjσ(bi) choices for the
data Λ(bi). Thus the total contribution is:

[Ma,b]vir =
24∏
j=1

p(aj)
g∏
i=1

biσ(bi).

6. Counting curves on the rational elliptic surface

Let Y be the blow-up of P2 at nine distinct points. In this section we apply our
degeneration method and our local calculations to compute a certain set of Gro-
mov-Witten invariants of Y . We compute the genus g invariants for all classes such
that the invariants require exactly g constraints. There is a canonical symplectic
form ω (unique up to deformation equivalence) on Y determined by the blow up of
the Fubini-Study form on P2.

If we arrange these nine blow-up points lying on a pencil of cubic elliptic curves
in P2, then Y has the structure of an elliptic surface with fiber class F representing
these elliptic curves in H2 (Y,Z) and the nine exceptional curves e1, e2, ..., e9 are
all sections of this elliptic fibration. If h represents the homology class of the strict
transform of the hyperplane in P2, then we have F = 3h − e1 − · · · − e9. In fact
H2 (Y,Z) is generated by e1, ..., e9 and h. We abbreviate the class dh−a1e1−· · ·−
a9e9 by (d; a1, . . . , a9).

Now we pick any of these sections, e9 say, and consider the class Cn = e9 +
(g + n)F = (3(n + g); g + n, . . . , g + n, g + n − 1). It is easy to check that the
complete linear system |Cn| has dimension g+n. We write NY

g (C) for the Gromov-
Witten invariant for (Y, ω) which counts the number of curves of geometric genus
g representing the homology class C and passing through g points, i.e. we define

NY
g (C) = ΨY

(C,g,g)([p1], . . . , [pg]∨).

We show that the numbers NY
g (Cn) contain all the genus g Gromov-Witten

invariants that are constrained to exactly g points. This was observed by Göttsche
who explained the following argument to us:

For NY
g (C) to be well defined (see Equation (1)) we need 4g = 2c1(Y ) ·C+ 2g−

2(1 − g), i.e. F · C = 1. Now the Gromov-Witten invariants do not change when
C 7→ C ′ is induced by a permutation of the exceptional classes ei or a Cremona

9We are grateful to D. Maclagan and S. Schleimer for help with this and other combinatorial
difficulties.
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transform (see [20]). Recall that the Cremona transform takes a class (d; a1, . . . , a9)
to the class

(2d− a1 − a2 − a3; d− a2 − a3, d− a1 − a3, d− a1 − a2, a4, . . . , a9).

Lemma 6.1. Let C ∈ H2(Y ; Z) be a class so that the moduli space of genus g
maps has formal dimension g. Then the class C can be transformed by a sequence
of Cremona transforms and permutations of the ei’s to a class of the form e9 +
(g + n)F = Cn.

Proof. By permuting the Ei’s we may assume that a1 ≥ a2 ≥ · · · ≥ a9. Then
the condition F · C = 1 is equivalent to 3d − 1 =

∑
i ai so that a1 + a2 + a3 ≥ d

with equality if and only if C = (3i, i, i, i, i, i, i, i, i, i − 1) = e9 + iF for some
i = n + g. If the equality is strict, then we can apply a Cremona transform to
obtain C′ = (e, b1, . . . , b9) with e < d. The result follows by descending induction
on d.

The methods of sections 4 and 5 apply to these invariants (see Remark 5.6).
Note that the elliptic fibration of Y has (generically) 12 nodal fibers rather than
24. We get essentially the same formula as in the K3 case with the 24 replaced by
12.

Theorem 6.2. For any g ≥ 0, we have
∞∑
n=0

NY
g (Cn)qC

2
n/2 =

( ∞∑
b=1

bσ(b)qb
)g

q1/2
∞∏
m=1

(1− qm)−12

=
(DG2)g√

∆
.

When the genus g equals zero, these numbers are computed by Göttsche and
Pandharipande [20]. In fact, they obtain all genus zero Gromov-Witten invariants
for P2 blown up at an arbitrary number of points in terms of two rather complicated
recursive formulas. Theorem 6.2 can be verified term by term for g = 0 using the
recurrence relations, although the computer calculation becomes extremely lengthy
quickly. We know of no way of obtaining the genus 0 closed form of Theorem 6.2
directly from the recurrence relations.

Appendix A. Virtual classes, point constraints, and base changes

This appendix is concerned with proving some results about virtual classes.10

First we prove a general result about comparing the virtual classes given by perfect
relative obstruction theories related by a base change. Second we prove a result
well known to experts [4] but not present in the literature. Roughly, it says that,
at least for point constraints, one can compute the Gromov-Witten invariants by
either evaluating cohomology classes on the virtual class of the whole moduli space
of stable maps (this is the usual set-up), or by constructing a natural virtual cycle
directly on the “cut down” moduli space of maps which hit the prescribed points.
For this appendix we use the purely algebro-geometric notions of Gromov-Witten
theory as defined by Behrend-Fantechi ([6], [5]) and accordingly we will adjust our
notation to more closely match the algebraic geometry literature.

10 We would like to thank Tom Graber for his invaluable assistance in these matters.
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A.1. Base changes for perfect relative obstruction theories. Let σ : X → Y
be a morphism of stacks, and assume that Y is smooth and X is of Deligne-Mumford
type. Let f : Y → Z be a morphism, and let τ : X → Z be the composition:

X

σ

��

τ

  
@@

@@
@@

@

Y
f

// Z

Proposition A.1. (1) Suppose that f is smooth and that F • → L•σ is a perfect
relative obstruction theory (cf. [6]). Then there exists a perfect relative obstruction
theory E• → L•τ fitting into the following morphism of triangles:

σ∗L•f
θ // E• //

��

F • //

��

σ∗L•f [1]

σ∗L•f // L•τ // L•σ //// σ∗L•f [1]

such that the virtual classes [X,E•] and [X,F •] coincide.
(2) Suppose that f is a local embedding with X and Y smooth, and suppose that

E• → L•τ is a perfect relative obstruction theory. If the map h−1(σ∗L•f)→ h−1(L•τ )
factors through a map

h−1(σ∗L•f) θ // h−1(E•) // h−1(L•τ ),

then the previous diagram exists and F • is a perfect relative obstruction theory such
that the virtual classes [X,E•] and [X,F •] coincide.

Remark A.2. In the case that Z is a point, the proposition shows how to convert a
perfect relative obstruction theory into an equivalent non-relative theory. This was
employed in Gromov-Witten theory in [21], Appendix B.

Remark A.3. The case we are primarily interested in for this paper is when f :
Y → Z is a smooth local embedding. In Gromov-Witten theory, this arises if for
a priori reasons it is known that the moduli space of stable maps consists of maps
whose domains have some specified degeneration type ρ]. Then the usual relative
obstruction theory for τ : M(X) → M can be converted to a perfect relative
obstruction theory for σ : M(X) → Mρ] where Mρ] ⊂ M is the substack of the
moduli stack of prestable curves that parameterizes curves of degeneration type ρ].
For the existence of the map θ in this case, see Corollary B.2 of Appendix B.

Proof of Proposition A.1. In general, an obstruction theory does not depend on the
whole cotangent complex but only on the cut-off complex τ≥−1L

• and so we can
assume without loss of generality that L•τ and L•σ have no cohomology in degrees
less than −1. The condition that E• (resp. F •) is an obstruction theory implies
that the mapping cone of E• → Lτ (resp. F • → L•σ) has cohomology only in degree
−2. If the diagram in the theorem exists, then it can be completed to the diagram
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(see Weibel [35], page 378)

σ∗L•f
θ // E• //

��

F • //

��

σ∗L•f [1]

σ∗L•f //

��

L•τ //

��

L•σ //

��

σ∗L•f [1]

��

0 // K•τ // K•σ // 0

where the bottom row is an exact triangle and K•τ and K•σ are the mapping cones
of the vertical morphisms above them. This diagram implies that K•τ ∼= K•σ and
so if we know that E• (resp. F •) is a perfect obstruction theory, then F • (resp.
E•) must satisfy the cohomological conditions of an obstruction theory. In order
to then conclude that F • (resp. E•) is a perfect obstruction theory in the sense of
Behrend and Fantechi, we would need to prove that it has a global resolution by a
two-term complex of vector bundles. This technical condition is no longer necessary
due to recent work of Kresch ([24], Section 6.2), so we just need the existence of
the diagram in order to show that F • (resp. E•) is an obstruction theory. In case
(1), the diagram automatically exists by the mapping cone construction on the
composite morphism F • → L•σ → σ∗L•f [1] .

For case (2), the morphism θ (and hence the rest of the diagram) exists if and
only if the composition σ∗L•f → L•τ → K•τ is 0. σ∗L•f is supported in degree −1
since f is a smooth local embedding. Now since σ∗L•f and K• have cohomology in
one degree only, they are determined in the derived category by their cohomology
([22], Proposition 4.3); however, since they have cohomology in different degrees, it
is not the case that a morphism between them is determined by the induced map
on cohomology. The additional hypothesis in the theorem is needed. It provides
an obvious chain homotopy to 0 of the map of complexes (in degree [−2,−1]):

0 //

��

h−1(σ∗L•f )

��

h−1(E•) // h−1(L•τ ).

The above map of complexes represents the morphism σ∗L•f → K•τ and so it is 0
in the derived category and thus θ exists.

To finish the proof of the proposition, we need to show that given the existence
of the diagram in the theorem, the virtual classes [X,E•] and [X,F •] coincide. By
definition, [X,E•] (resp. [X,F •]) is the intersection of the relative intrinsic normal
cone stack CX/Z (resp. CX/Y ) with the 0 section of the vector bundle stack E (resp.
F). If E• and F • have global resolutions, then CX/Z ⊂ E and CX/Y ⊂ F induce
cones CX/Z ⊂ E1 and CX/Y ⊂ F1 (here E1 := E−1∨ and F1 := F−1∨). We can
then write

[X,E•] = 0!
E1

[CX/Z ],

[X,F •] = 0!
F1

[CX/Y ].
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Then the injection i : F1 → E1 fits into the diagram of fiber squares:

X //

��

CX/Y //

��

CX/Z

��

X
0F1 // F1

i // E1

with i ◦ 0F1 = 0E1. Thus we have

[X,E•] = 0!
E1

[CX/Z ]

= 0!
F1
i![CX/Z ]

= 0!
F1

[CX/Y ]

= [X,F •].

The fact that we assumed global resolutions is not really a restriction since Kresch’s
intersection theory for Artin stacks satisfies the same formal properties as ordinary
intersection theory.

A.2. Virtual classes and point constraints. Let X be a smooth projective
variety, let β ∈ H2(X,Z), and let

C(X)
f

//

π

��

X

Mg,n(X, β)

be the universal diagram for the moduli stack of genus g, n-marked stable maps
in the class β. In the sequel we will drop the β from the notation. The virtual
class [Mg,n(X)]vir is determined by a perfect relative obstruction theory which is
a morphism

[R•π∗f∗TX ]∨ → L•Mg,n(X)/Mg,n

in the derived category of OMg,n(X) modules and L•Mg,n(X)/Mg,n
is the relative

cotangent complex of Mg,n(X) over Mg,n, the Artin stack of prestable genus g,
n-marked curves.

There are n universal sections of the universal family xi : Mg,n(X) → C(X)
given by the marked points. Let

e :Mg,n(X)→ Xn

be the evaluation map defined by e = (f ◦ x1) ⊗ · · · ⊗ (f ◦ xn) and choose n
generic points p1, . . . , pn ∈ X . Define the substack Mg,n(X,p) ⊂Mg,n(X) by the
Cartesian square

Mg,n(X,p)
j

//

e′

��

Mg,n(X)

e

��

(p1, . . . , pn) i // Xn.

(8)
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Mg,n(X,p) is the cut down moduli stack parameterizing those maps where the
ith marked point maps to pi. We will abuse notation by using xi to refer to the
map and the divisor given by Im(xi).

Proposition A.4. There exists a relative perfect obstruction theory

j∗[R•π∗(f∗TX(−x1 − · · · − xn))]∨ → L•Mg,n(X,p)/Mg,n

defining a virtual class [Mg,n(X,p)]vir so that

[Mg,n(X,p)]vir = e∗(p∨) ∩ [Mg,n(X)]vir

where p∨ is the class Poincaré dual to a point in Xn. Note that the right hand
side is what appears in the usual definition of Gromov-Witten invariants (for point
constraints). The formula can be written equivalently as

[Mg,n(X,p)]vir = i![Mg,n(X)]vir .

Proof. We write O(−x) to denote O(−x1 − · · · − xn) and we will drop the g and n
from the notation for the moduli stacks. Tensoring the divisor sequence

0→ O(−x)→ O →
⊕
i

xi∗OM(X) → 0

by f∗TX we get

0→ f∗TX(−x)→ f∗TX →
⊕
i

xi∗OM(X) ⊗ f∗TX → 0.

Note that

xi∗OM(X) ⊗ f∗TX = xi∗(x∗i f
∗TX),⊕

i

x∗i f
∗TX = e∗TXn ,

and π ◦ xi = Id, so by applying R•π∗ we get an exact triangle

R•π∗(f∗TX(−x))→ R•π∗f
∗TX → e∗TXn → R•π∗(f∗TX(−x))[1].

Dualizing and pulling back by j we get the triangle:

j∗[R•π∗f∗TX ]∨ → j∗[R•π∗(f∗TX(−x))]∨ → j∗e∗(ΩXn)[1]→ j∗[R•π∗f∗TX ]∨[1].

Furthermore, we have j∗e∗ΩXn [1] ∼= e′∗i∗L•Xn [1] ∼= e′∗L•p/Xn . Then using the
isomorphism

e′∗L•p/Xn → L•M(X,p)/M(X)

and the perfect relative obstruction theory for M(X)/M we can complete the
following diagram to a morphism of triangles:

j∗[R•π∗f∗TX ]∨ //

��

j∗[R•π∗(f∗TX(−x))]∨ //

��

e′∗L•
p/Xn

//

��

j∗[R•π∗f∗TX ]∨[1]

��
j∗L•M(X)/M

// L•M(X,p)/M
// L•M(X,p)/M(X)

// j∗L•M(X)/M
[1]

By the above diagram, the relative obstruction theories

[R•π∗f∗TX ]∨ → L•M(X)/M
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and

[R•π∗(f∗TX(−x))]∨ → L•M(X,p)/M

are compatible in the sense of Behrend and Fantechi (cf. page 86 in [6]). Since
i : p→ Xn is a smooth embedding, Proposition 7.5 in [6] gives

i![M(X)]vir = [M(X,p)]vir,

which proves the proposition.

Remark A.5. For arbitrary cycles Γ1, . . . ,Γn one can form the analogous square to
(8) and the substack M(X,Γ). The perfect obstruction theory for M(X,Γ) can
then be obtained in a similar fashion as the mapping cone of the usual obstruction
theory for M(X) and e′∗L•Γ/Xn .

Appendix B. A deformation result

In this appendix we prove the deformation result needed in subsection 5.2 (cf.
Remark A.3). We use the notation of section 5.

Fixing a point (f : C → X) in the moduli spaceM(X,p)/Mg,g ×T , we have an
exact sequence for T 1 and T 2 which are respectively the infinitesimal deformations
of the map f (as a stable map) and the obstructions to the deformations. The
exact sequence is below:

0→ AutC → H0(C, f∗TX(−x))→ T 1 → Def C ⊕ T 0 → H1(C, f∗TX(−x))→ T 2

where (cf. subsection 5.2) T 0 := Tt0T is the space of infinitesimal deformations of
X in the direction of the twistor family.

Consider the diagram:

0

Nρ] |C

OO

i

((

H0(C, f∗TX(−x)) // T 1 //

γ
::uuuuuuuuuu

δ
$$

Def C ⊕ T 0 b //

OO

H1(C, f∗TX(−x)) // T 2

Defρ] C

OO

0

OO

(9)

Here Defρ] C are deformations of C preserving the type ρ], i.e. preserving the
24 + g nodes yi and zj and preserving the component (S,y, z) (see subsection 5.2
for notation). Nρ] |C is the fiber over C of the normal bundle of the embedding
Mρ] × t0 ↪→Mg,g × T .

Theorem B.1. The map i in the above diagram exists and is split injective. Thus
γ = 0 and so the map δ exists; in other words, all infinitesimal deformations of
f : C → X induce infinitesimal deformations of C that land in Defρ] C.
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Proof. We have an exact sequence for H1(C, f∗TX(−x)) coming from the decom-
position C = S ∪i Di ∪j Gj (cf. sequence (6)):

· · ·→⊕TyiX ⊕ TzjX→H1(C, f∗TX(−x))→H1(S,NS)
⊕H1(Di, f

∗(TX))
⊕H1(Gj , f∗TX(−xj))

→ 0.

There are splittings TyiX = TyiS ⊕ TyiNi, TzjX = TzjS ⊕ TzjFj and the image
of the previous term (i.e. H0(S, TS) ⊕ H0(Di, f

∗TX)) is easy to identify. The
H0(Di, f

∗TX) factors map onto the TyiNi factors and H0(S, TS) = AutS has its
image in ⊕TyiS ⊕ TzjS. Recall that Def(S,y, z) = ⊕TyiS ⊕ TzjS/AutS so we
obtain the short exact sequence:

0→ Def(S,y, z)→ H1(C, f∗TX(−x))→ H1(S,NS)
⊕H1(Di, f

∗(TX))
⊕H1(Gj , f∗TX(−xj))

→ 0.

On the other hand we have an exact sequence for Nρ] |C (cf. subsection 5.2)

0→ Def(S,y, z) ⊕ T 0 → Nρ]|C →
⊕(TyiS ⊗ TyiDi)
⊕(TzjS ⊗ TzjGj)

→ 0.

We can move the T 0 in this sequence from the second to the fourth term since the
bundle Nρ] →Mρ] splits off a trivial bundle with T 0 as the fiber. We then define
the split injection i using the diagram:

0 // Def(S,y, z) // H1(C, f∗TX(−x)) // H1(S,NS)
⊕H1(Di, f∗TX)
⊕H1(Gj , f∗TX(−xj))

// 0

0 // Def(S,y, z) //

Id

OO

Nρ] |C //

i

OO

T 0 ⊕(TyiS ⊗ TyiDi)
⊕(TzjS ⊗ TzjGj)

//

ψ

OO

0.

We will define ψ as the sum of split injections

ψ0 : T 0 → H1(S,NS),

ψj : TzjS ⊗ TzjGj → H1(Gj , f∗TX(−xj)),
ψi : TyiS ⊗ TyiDi → H1(Di, f

∗TX)

in such a way that the induced map i makes diagram (9) commute. The theorem
will then follow.

The map ψ0 is an isomorphism of lines (this is proven at the very end of the
proof of Lemma 5.4).

To define the maps ψi in a way compatible with diagram (9), we should recall
how the various maps and spaces involved are defined. The space TyiS ⊗ TyiDi

classifies infinitesimal deformations of the node at yi. We find that what we seek
is a split injection ψ making the following diagram commute (we’ve dropped the i
from the notation):

0 0

TyS ⊗ TyD ∼= H0(Ext
1(ΩC ,OC))

ψ
//

OO

H1(D, f∗TX)

OO

Def C ∼= Ext1(ΩC ,OC)
b //

a

OO

Ext1(f∗ΩX ,OC) ∼= H1(C, f∗TX)

c

OO
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where the map a comes from the local-to-global spectral sequence for Ext, b is
induced by f∗ΩX → ΩC , and c is induced by the restriction OC → OD.

The map ψ exists if and only if c ◦ b is 0 on Kera. This is true and follows from
stability of the map f : C → X .

The dual map

ψ∨ : H1(D, f∗TX)∨ ∼= H0(D, f∗ΩX ⊗ ωD)→ ΩyS ⊗ ΩyD

can be identified as follows. Since (f∗ΩX ⊗ ωD)|y = ΩyX ⊗ ΩyD and ΩyX =
ΩyS ⊕ ΩyN , we obtain ψ∨ by restriction and then projection onto the first factor.

The cohomology sequence associated to the short exact sequence

0→ f∗ΩX ⊗ ωD(−y)→ f∗ΩX ⊗ ωD → ΩyX ⊗ ΩyD → 0

has the terms

H0(D, f∗ΩX ⊗ ωD)→ (ΩyS ⊗ ΩyD)⊕ (ΩyN ⊗ ΩyD)→ H1(D, f∗ΩX ⊗ ωD(−y)),

so to see that ψ∨ is surjective we just need to show that

ΩyS ⊗ ΩyD → H1(D, f∗ΩX ⊗ ωD(−y))

is 0.
Recall that f |D∪S factors as g ◦ h where h is a local embedding h : Σ(a) →

N ∪ S ⊂ X and so f |D factors as g′ ◦ h′ where h′ : Σ′ → N ⊂ X and Σ′ is a linear
chain of rational curves. We will drop the primes from the sequel. Since h is a local
embedding of a local complete intersection, the conormal bundle to the map N∨h is
a line bundle. It fits into the exact sequence:

0→ N∨h → h∗ΩX → ΩΣ → 0.

The map ΩyS ⊗ ΩyD → H1(f∗ΩX ⊗ ωD(−y)) factors through the map

H1(g∗N∨h ⊗ ωD(−y))→ H1(f∗ΩX ⊗ ωD(−y))

since N∨h |y = ΩyS. But since N∨h is degree 2 restricted to each component of Σ,
the pull back of the dual g∗Nh is non-positive on each component and has degree
smaller than −2 on at least one component. Thus we have that

H1(D, g∗N∨h ⊗ ωD(−y)) = H0(D, g∗Nh(y))∨ = 0

and so ψ∨ is surjective.
To see that ψ∨ is split we need to exhibit a subline of H0(f∗ΩX ⊗ωD) mapping

onto ΩyS ⊗ ΩyD. Consider the map

df : f∗ΩX → ΩD

as an element of H0(f∗TX⊗ΩD). Since X is a K3 surface we have an isomorphism
ΩX ∼= TX and so df gives us an element of H0(f∗ΩX ⊗ ΩD) and consequently an
element of H0(f∗ΩX ⊗ωD) (which we still call df). Evaluation at y determines an
isomorphism of the line spanned by df with ΩyS ⊗ ΩyD and so ψ∨ splits.

The case of ψj can be handled in a similar (but easier) fashion.

Corollary B.2. The splitting H1(C, f∗TX(−x))→ Nρ] provides the map θ needed
in the hypothesis of Proposition A.1 of Appendix A in the setting of this paper (cf.
Remark A.3).
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