Commun. Math. Phys. 193, 47 -67 (1998) Communications in

Mathematical
Physics
(© Springer-Verlag 1998

Symplectic Structures on Gauge Theory

Nai-Chung Conan Leung

School of Mathematics, 127 Vincent Hall, University of Minnesota, Minneapolis, MN 55455, USA

Received: 27 February 1996 / Accepted: 7 July 1997

Abstract: We study certain natural differential fornsd*! and theirG equivariant ex-
tensions on the space of connections. These forms are defined using the family local
index theorem. When the base manifold is symplectic, they define a family of sym-
plectic forms on the space of connections. We will explain their relationships with the
Einstein metric and the stability of vector bundles. These forms also determine primary
and secondary characteristic forms (and their higher level generalizations).
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1. Introduction

In this paper, we study natural differential forr?*! on the space of connections
on a vector bundlé’ over X,

Q[Zk](A)(BLBz7~~~,BZk):/ TV[G%F“Ble“'sz]symA(X)
X

They areG invariant closed differential forms od. They are introduced as the
family local index for universal family of operators.

* This research is supported by NSF grant number: DMS-9114456
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We use them to define higher Chern-Simons form&' of
Ch(E, Ag, . .. ,Al) = QE*] o Ll(Ao, ceey AZ),

and discuss their properties. Whien 0 and 1, they are just the ordinary Chern character
and Chern-Simons forms df. The usual properties of Chern-Simons forms are now
generalized to

(1) ch(E) 0 94 = d o ch(E),
(2) ch(E; s - a) = (~1)*lch(E; a).
When we restrict our attention to the case whéris a symplectic manifold (or
a Kahler manifold) with integral symplectic form, [w] = c1(L). We study(? on
A(E ® L*) for largek. Asymptotically, they define the symplectic form &tE © L*).

Using a connectiorDy, on L, we can identify all thesel’s with A(F) and get a one
parameter family of symplectic forn$3; on A(E),

Qu(D1)(By, By) = /X Tr [ Pahols B Bo). o A(X).

Their G-moment maps are
@y (A) = [ez Farhele A(X)) @,

When we let the parametérgo to infinity, we will obtain the standard symplectic
form Q on A(F):

n—1
(n— 1)

Notice thatQ2 is an affine constant form in the sense that it is independent of the
point A € A. The moment map equation associateftis

Q(A)(B1, B2) = / Tr B1By A
X

n—1 n

w
=pup—Ig,

F [
AN G D) nl

which is equivalent to the Hermitian Einstein equation (a semi-linear system of partial
differential equations)

/\FA =pelg.

Nevertheless, the moment map equationdgiis a fully non-linear system of equa-
tions (of Monge-Ampere type) which are closely related to stabilityzols will be
explained in Sect. 4.

Then we explain how to remove the assumption of integrality of Sect. 5. More-
over, all A's will be canonically embedded inside a larger spae;, the space of
generalized connections. Generalized connections satisfy a weaker constraint:

Aj =gt Asgis + g5 dgij + dOi;.

However, they share many properties of an ordinary connection. The first Chern
class defines a surjective affine homomorphism

ey JZ([E] — H*(X,C),
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andQ® gives a relative symplectic form on it. We define the notion of extended moduli
space and polarization which links to our previous picture on stability.
In Sect 6, we will generalize the moment map construction. We study equivariant ex-
tensions of alf21?*! and their properties. They as2?%! ¢ Q% (A, Symm/ (Lie G)*)9
given by
QP 2D A)(By,. .., Bai)(¢1. - .-, ;)

= [T B B0, A)
X

In the last section, we will briefly explain how these higlsgf%! are related to
family stability. We need to look at all connections on the universal bundle which induces
the canonical relative universal connectibrf’. LetD + .S be such a connection, then
its curvature is given by:

F20 (z, A) = F4 atz,
F4 (x, A)(v, B) = B(v) + Da(S(4)(B)) at,
FO2 = d4S +S2.

By twisted transgression 61! (defined usind) + S), we getM ap(M, G)-invariant
closed forms o/ ap(M, A), namely,QE\*}. We will explain how these forms are related
to stability for a family of bundles oveX parametrized by when bothX andM are
symplectic manifolds.

2. Higher Index of the Universal Family

In this section we consider the universal connection and the universal curvature. They
induce canonical differential forna!* on the space of connections which are important
for our later discussions.

These forms are closely tied with the local index theorem for the universal family
of certain operators. We shall discuss the Dirac operator and tiperator in detail.

Let X be a compact smooth manifold of dimensian @d E be a rank- unitary
vector bundle oveX . We denote the space of connectionsioby 4 and the space of
automorphisms of by G, which is also called the group of Gauge transformations on
E. The tangent space of at a point4 € A is canonically isomorphic to the space of
one forms onX with End(F) valued, that is,

Ty A = QY X, End(E)).

In particular, A is an affine space. (Later in this paper, we shall construct a natural
affine extension ofd by an one dimensional affine spacg.js an infinite dimensional
Lie Group with Lie algebra being the space of sections of ENdiver X, that is,

Lie G = Q°%X,End E).

The center ofG can be identified as the space of non-vanishing function& cend
hence the center of its Lie algebra can be identified as the space of all functighs on
C(X), or the space of zero forms on, Q°(X). By integrating overX, we can identify
the dual ofLie G as the space ofr2forms onX with End(E) valued in the sense of
distributions

(Lie G)* = Q*(X,End(E))aist-
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It has a dense subspa€¥"(X,End(E)) consisting of smooth 2 forms which are
enough in most purposes. The above identification follows from the fact that

QX ,End E) ® ?(X,End E)giss — C,

¢®a—>/XTr pa

is a perfect pairing.

By putting all connections together, one can form a universal connection as follow:
LetE = 7j E be the universal bundle, wherg : X x A — X is the projection to the
first factor. Then we can patch up all connectiongtto form a partial connection on
E and since the bundI® is trivial along.4, we get a (universal) connectidhon E.

To be more precise, let us describén terms of horizontal subspaces. A connection
A on E is given by aU(r) equivariant subbundlé/ of T'E over E such thatl'E is
isomorphic toT, E €@ H. HereT, E is the vertical tangent bundle &f with respect to
E — X.Now, lete € E be a point on the fiber & over (¢, A) € X x A. ThenT Eis
canonically isomorphic td. E @ T4.A and we can choosH € T'4.A as a horizontal
bundle ofT'E (whereH is the horizontal subbundle @£ defined byA). This horizontal
subspace defines our universal conneciion

The curvaturef of D will be called the universal curvature, it is a Efij(valued
two form onX x A. With respect to the natural decomposition of two formsom A:

QXX x A) = Q%(X) P (X)) @A) P Q%A
we decompos# into corresponding three components,
F = ]F2,0 + Fl’l + IFO,Z.
They are given explicitly by

F20 (z, A) = F, atz,
FL! (2, A)(v, B) = B(v) atz,
F%2 = Q.

where ¢, 4) € X x A, v € T, X andB € QY(X,End(F)).

Now, we want to usel to parametrize certain families of first order elliptic operators
on X by coupling different connections with a fixed differential operator. The following
three situations are of most interest to us.

2.1. Dirac operators.Let X be a spin manifold of even dimension = 2n. For any
Riemannian metrig on X, we get a Dirac operatab on X. By coupling D with a
connection on¥, A € A, we get a twisted Dirac operatd 4 on X. Varying these
connections, we then get a family of Dirac operators parametrizedl by

The index ofD 4 (IndexD 4 =dim KerD 4 — dim CokerD 4) can be computed by
the Atiyah-Singer Index theorem:

IndexD 4 = / ch(E)A(X),
X

which can be expressed in terms of curvaturé&ofia the Chern-Weil theory:
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IndexD 4 :/ Tr 2= 4 A(X).
X

The virtual vector space (the formal difference of two vector spad€sy D, —
CokerD 4 varies continuously with respect tband forms a virtual vector bundle over
A (despite the fact thak’er D 4 or CokerD 4 might jump in dimensions separately).
This is called the index bundle ovet, Ind (D). We could formally regarded Ind) as
an element in thé{ group of A, K(A), even though4 is of infinite dimension. This
can be interpreted as Inib) giving an element iK' (Y") for any compact subfamily
Y C A. Although Ind D) is only a virtual bundle, its determinant is an honest complex
line bundle over4, called the determinant line bundle for Dirac operators, Dt (

By the family index theorem of Atiyah and Singer, we have (for any compact sub-
family Y c A)

ch(Ind (D)) = / Tr ezF A(X)
X

as cohomology classes.

Bismut and Freed [B+F] strengthens this result to the level of differential forms
and give the local family index theorem. They introduce superconnedtjoon the
infinite dimensional bundle.E and they proved the following equality on the level of
differential forms:

. _ LF ~
lim ch(A) = /X Tr eZFA(X).

We decompose this differential form into a sum according to their different degrees
Q[O] + Q[Z] +oe WhereQ[Zk] c QZk(A)

Proposition 1.

QPH(A)(By1, By, ..., Bay) = (é)% /X Tr[e? "4 B, B, - - Baplsym A(X),
whered € AandB; € T4 A = QY(X,End (F)).
The notation{--],,,, denotes the graded symmetric product of those elements inside.
Proof of Proposition.
QPR(A)(By, B, . .., Ba)
= /X Tr [z & F @A By, By, ..., Ba)A(X)

v , 1,1y2k p
_ /X Tr [e2 7 () (Iizk;! (B, Bz, - Bai)lsym A(X)

= (L)Zk/ Tr[e? "4 BBy - - - Bat) sym A(X).
27T X
For the second equality, we used the fact tiaf has no effect on thé;’s and

the last equality holds sinde"! is the tautological element which can be described as
below. Under the following relations:
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QY(X) ® QY A) ® End(E)
~ Hom(T A, QY(X,End (£)))
D> Hom(T4 A, QY(X, End (£)))
= Hom(QY(X, End (F)), QY(X, End (£))),

F11 comes from the identity endomorphism@#(X, End (F)). Hence we have proved
the proposition. [

Corollary 1. Q" is ag invariant closed form ood and such tha2??*! = Qif k > n.

Proof of Corollary.Both Q¥ = 0 for & > n and the invariance aR?*! with respect

to G action are clear from the above proposition. We will use the Bianchi identity and
the simple fact that the antisymmetrization of a symmetric expression is always zero to
show the closedness of?*!. Consider

2k
AN (A)(Bo, ..., Ba) = Z(—l)iBz‘ (QPF(A)(Bo, ..., Bi, ..., Ba))
=0
+ Z(_l)ﬁ—]Q[Zk](A)([BH Bj]a BO7 ERE) Bi? oo 7-éj7 LR} BZk)'
i<j

Here, we have extended eath € T4.A to a vector field ond by transporting it
using the affine structure od. To put it another wayB; is always the same element in
QY(X,End (F)) regardless of differentt € .A. Hence, we haveR;, B;] = 0 for anyi
andj.

We shall show thal" % (~1): B; QR (A)(By, .. ., B;, . . ., Bay) is zero. In order to
simplify the notation, let us assume temporary théX) = 1. Then

BiQ[Zk] (A)(B()7 B Biv SRRE) BZk)

7: S A
=(50)""(n—k) | TIF}y " YDaB;)Bo- -B; - -Balsym-
27T X

because alB;’s are independent of the connectidne A. Hence,

2k

> (1B (A) (B, ... ,Bi,..., By
i=0

? —k—
= G- ) [ d THF B o,
4 X

Here, we have used the Bianchi identiyy 'y = 0 and the fact thad Tr = Tr D4.

Now the vanishing of the above expression follows from the Stokes’s theorem. Hence
we have showed tha??*! is closed. An alternative way to prove the closedness is by
observing that these forms come from the pushed forward of certain closed differential
forms onX x A. O

2.2. 0-operator. The second case is whe¥i is a compact complex manifold. Then
(complexified) differential forms oiX can be decomposed into holomorphic and anti-
holomorphic components:
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QX)eC=> Q"(X).

i+j=l

As an Endg)-valued two form onX, the curvature form of a Hermitian connection
can be decomposed accordingly; = F5° + F5' + F$2. One should not confuse this
decomposition of'4 with the previous decomposition &f If F}Z;Z =0, then the (01)

part of D 4 defines a differential complex d2%* (X, E). Let us denotg o D4 by d 4,
wherep : QYX,F) ® C — Q%Y(X, E) is the projection to the anti-holomorphic
part.94 gives a complex becauge)? = 3.

Let A" = {D4 € A| F}? = 0}, then A" parametrizes a family of elliptic com-
plexes overX. Now, A is the space of connections di not necessary Hermitian.
However, in order for it to parametrize elliptic complexes, we need to choose a com-
patible Hermitian metric oty (which in fact exists and is unique up to unitary gauge
transformations) and a Hermitian metric on the base maniXol8uch a metric induces
a Todd form onX representing the Todd class &f. As in the case of Dirac operators,
we get a sequence of differential forms df°’:

/ Tr e Tdx = Q@+ QP+ QM + ...
X

Here the only difference is the rgplacement&ﬁﬂ() by the Todd form onX, T'dx. A
Notice that the odd class anticlass are closely related to each othgd: = e+ A.
If X is Spin Kahler manifold then this equality holds on the level of differential forms.

—_ 1

In this case, thé operator onX is equal to the Dirac operator ot twisted by K, ?,
where the canonical line bundf€x is determined by the (almost) complex structure on
X and its square root is given by the chosen spin structur® oim this identification,
Kahlerian is important, which ensures that the complex structure and the metric structure
on X are compatible to each other.

Later on, we shall explain that asymptotic behavior$25f are closely related to
stability in Mumford’s Geometric Invariant theory [M+F]. The importance of higher
QP+ will be briefly discussed in the last section.

3. Moment Map and Stable Bundles

In this section, we will explain the relationship between the ferfl we found earlier
and stability properties of the bundlg. This relation is originally discovered in the
author’s thesis [Lel] and explained in [Le2]. Here, we shall give a global picture in this
section and the next one. Then we shall also discuss higl€rlater in this paper.

Now, we supposeX is a symplectic manifold with symplectic form. We also
assumev is integral which means.] represents an integer cohomology classXin
[w] € H?(X,Z). The general case will be treated in the next ses$iGhX, Z) classifies
complex line bundles oveX up to isomorphisms, that isy] = ¢1(L) for somelL over
X. Infact, we can find a Hermitian connectidh, on L such that the last equality holds
on the level of forms, that is = ﬁFL, whereF7y, is the curvature form of a certain
connectionD;, on L.

We are interested in the behavior<®f' on the space of connections &) L* for
largek. In order to distinguish connections on different bundles, we Wite & L*)
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for the space of connections 8h) L*. However, by tensoring with ;,, we can identify
different A(E ® L"),
A(E) — A(E ® L"),
DA (g DA ® DLk.
Under this identification, the curvatueg F4 of D4 will be sent tos= Fy + kwlp.
We shall denote the correspondiftg = Q2 by Q.. We therefore have

Qu(D.1)(By, B) = /X Tr [e2 P15 B, By), A(X)

in the spin case (and similarly formula for other cases by replacing@tby suitable
characteristic classes). Notice that, at a general goine A, Q; may be degenerated.
However, it will become non-degeneratéifs chosen large enough and therefore, in a
suitable sense, is asymptotically symplectic form ad. (For the rest of this paper,

a symplectic form may possobly degenerate but this deficiancy can usually be rescued
by asymptotic non-degeneracy.)

Moment mapsFor anyk, Q. is always & an invariant form and a moment map exists.
That is,2;, can be extended to@equivariant closed form ou.

Lemma 1. The moment map for thigaction onA with symplectic forn2,, is given by
@), A — Q2(X,End(E)),

Pi(A) = [eF Fartels A(x)] @),

Proof of LemmakFirst, we need to show thdty is ag equivariant map, but this is clear
from the definition ofd,,.
Next, we want to show tha®; + &, is a G equivariant form. That is, for any
¢ € Lie G = Q%(X, End(E)),
162 = d(Pr(0))

as an ordinary one form oA, or,
DANDA0, B) = d( | Tr u(4) - o)(B)
X
foranyA € AandB € T4 A = QY X, End(E)),
([ T @A)
X

d ; a
- %h:o/ Tr eﬁ(FA+tDAB+tzBZ)+kwIE¢A(X)
X

= 55 [ TeH I D4 Bl s ACX)
= 5 [ T D, By, AK)
= 5 [ TeF I D08, AX)

= Qk(DA)(DA¢a B)
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HenceQ; + @4 is ag equivariant closed form andl;, is the moment map for the
gauge group action ad with the symplectic structure given . O

Remark .For each k, we obtain @ equivariant closed form odl, namelyQ2;, + &y.
It depends only on the choice of a connectibp on L. Neverthless, the equivariant
cohomology class it represent® + &;] € Hé(A), is independent of such a choice.

Proposition 2. [Q2, + @] € Hé(A) is independent of the choice of the Hermitian
connectionDy, on L.

Proof of Propositionlf Dy, and D, are two connections oh, so they differ by a one
form on X, saya. They induce2;, + @, andQ), + @) on.A. Their difference is &
equivariant exact form ad which can be written down explicitly (like the Chern-Simons
construction). More precisely,

(Q + @) — (% + ®x)=dOup, 1,

where
1 ) .
®k.,DL,D'L(A)(B) = k/ dt/ a Tr eﬁFA+k(w+tda)IEBA(X).
0 X

Hence, the cohomology classes they represented are the sanie.

Largek limit of Q5 + ®;. We now considef2; and®; for largek. If we expand®y
in powers ofk, we have

n—1

Qr(A) (B, By) = k"1 / Tr B1Bs A | +O(k"2).
X .

e
(n—1)
The leading order term of it defines a (everywhere non-degenerate) symplectiform
on A, moreover, it is a constant form o# in the sense that there is no dependence of
Ain its expression. The moment map defined by this constant symplecticiasm

wn—l

(D(A):FA/\ (n—l)'

If we expand®d,, for largek , we have
O1(A) = k" I + KL (A) + O™ D).
n:

The first term is a constant term and can be absorbed in the definitibp ¢fince
the moment map is uniquely determined only up to addition of any constant central
element) and therefore, the leading (non-trivial) term&qrbecomesb for largek.

We now look at the symplectic quotient.dfby HamiltonianG actions with respect
to differents2;,. First choose a coadjoint orliit ¢ (LieG)*, the inverse image ~1(0)
of © under the moment map is G invariant. Then one can show that 1(0) /G inherits
a natural symplectic form (on the smooth points) from the original symplectic space.
We can now apply this procedure to any of th€seor Q2 since they are alfj invariant
symplectic forms om.

The simplest choice of the coadjoint orbit would be 0, howe®ert(0) may not be
non-empty in general. We would choose those coadjoint orbits which consist of a single
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point only. The set of all these coadjoint orbits can be identified with the space of 2n
forms onX (in the sense of distributions).

Hermitian Einstein metricsWe first consider® which depends od is a (semi-)linear
fashion. Let¢ € 22(X), thenD 4 € ®~1(¢) if and only if

wn—l

By taking the trace and integrating it ov&T, we get a necessary condition fdr 1(¢)
being non-empty which is
/ C=pp,

whereug = WlE) < a(E)U a2 [X] > is the slope ofE with respect to the

(n 1 [
polarizationL. For simplicity, we normalize the (symplectic) volume Xfto be one.
When we chooséto be a multuple of the symplectic volume fo#m, then the equation
defined by the connection being laid on the inverse ma@evmcﬁuld be:

wnfl wh

Fanz =reyrle

Using " and a metric onX, we can convert this equation into an equation of zero
forms, it reads as:

N\ Fa=neles,

where\ is the adjoint to the multiplication operatér= w A () (a metric onX is used
to define the adjoint of an operator). In local coordinates, the equation is

aﬁF;QB - E537
where\/—ilgoﬁdz‘Y A dzP is the Kahler formw on X and ®”) is the inverse matrix to
(gaB) providedX is Kahlerand:'s are local holomorphic coordinates &nh Suppose this
is the case and’ is an irreducible holomorphic vector bundle over it, then this equation
is called the Hermitian Einstein equations or the Hermitian Yang Mills equations. It
is called Einstein becaugk F'4 is a Ricci curvature of2. (On a vector bundle, there
is another kind of Ricci curvature on it, namelyZF, € Q2(X). This latter Ricci
curature is a closed two form oxi and the cohomology class it defined is the first Chern
class ofE.

If we consider only those connections whose (0,2) part of its curvature vanished,
thatisA € A" as in the discussion of last section. Then we have

n n n—2
29 _ 2Y _ _gr? v
S = NP = e [ et gy

SinceX is Kahler, is the volume form ofX’ and the functiona’, \FA|2 is the
standard Yang-Mills functlonal in Gauge theory. By the above equality, it |s equivalent
to the functional |y, | A F4|?<+ up to a topological constant (when we restrict our

nl

attention ta4"!). Now, the Euler-Lagrange equation for the functiofial| A Fia |27
is Da(/ Fa) = 0. It can be reduced t, F4 = pplg if E isirrreducible. Itis because
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the Euler-Lagrange equation implies tfaf’4 is a parallel endomorphism and therefore
their eigenspaces are all holomorphic subbundles.aivhenE is irreducible,F itself
is the only non-trivial subbundle. So, the endomorphjf§rfi4 has to be constant which
is fixed by the topology of the bundle.

From another point of view, the Yang-Mills equation Bifthat is the Euler-Lagrange
equation of the functiongf, |Fa|?<;)is DY, F4 = 0. WhenX is Kahler andd € A",
we haveD* = [Dy, Al. So,

0=D4F = Da(\ Fa) = \(DaFa) = Da(/\ Fa)
by the Bianchi identity. Hence, the two equations are equivalent.

Stability. Existence of solutions t@\ F4 = pIg on E can be rephased in algebraic
geometric languages. By [N+S],[Do] and [U+Y], there exists a Hermitian Einstein metric
on E if and only if £ is a Mumford stable bundle. In such a case, the metric is also
unique up to scaling by a global constant. (WHers not irreducible, then existence of
the Hermitian Einstein metric of is equivalent taF being a direct sum of irreducible
Mumford stable bundles ovek with the sum slope, we called such a bundiea
Mumford poly-stable bundle.)

Mumford stability is only the “linearization” of stability in studying moduli spaces
of vector bundles using Mumford’s Geometric Invariant theory. In geometric invariant
theory of vector bundles, Gieseker [Gi] found the correct notion of stability and stated
them in geometric terms. In the thesis, the author found that stability is in fact equivalent
to existence of solutions to moment map equationsdfgrwith & large (and control
of the curvature of the solutions &sgoes to infinity). To solve that (fully-nonlinear)
equation, the author used a very involved singular perturbation method which identified
the obstruction for perturbations is precisely the unstability [Lel, Le2]. The basic idea
is whenk goes to infinity, we expected the family of solutions will blow up (provided
it exists). Different directions will blow up according to different rates. However, this
information can be captured from algebraic geometry. Then we try to perturb the singular
solution (whose existence can be proved by using a theorem of Uhlenbeck and Yau) to
finite k; there will be numerous obstructions.

We can identify all these obstructions. In fact, obstructions vanish precisely when
the bundle is Gieseker (poly-)stable. Instead of trying to solve the equations, we shall
discuss the geometry underlying th&ggs, @, 's and their higher degree cousins.

First we want to setb, equal to a constant multiple GgIE. The constant has to
be ﬁx(X, E ® LF), wherey is the index of the corresponding operator given by

the Atiyah-Singer index theorem. Therefore, the equations defined by the moment map
would become

N

%FA'HCWIET X (27),):
& AN = s

n
XX, E © LX) I
n:

These equations describe the stability properties of the hlomorphic bundles. Unlike
the Hermitian Einstein equations, this system of equations is fully nonlinear untess
Instead of operator, we can use the Dirac operator and reglat®rm by A forms.
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4. Space of Generalized Connections

Inthis section, we shall explain a setting which is more suitable for studying the symplec-
tic quotient of A (or .A"°") by G with respect ta2?. All the proofs here are elementary

and sometimes we only sketch the reasonings. From the last section, we know that it is
natural to putd(E ® L*)’s together for largé. Stability depends only on the ‘direction’

L and one should not distinguish amongE ® L*'s. We are going to explain how to
achieve these in a natural manner by allowinip be any complex number. Moreover,

in this approach, we do not need to assume that the symplecticifasran integral

form. To do this, we need to define generalized connections.on

Review of connection&et us first recall the definition of connectiongiech languages.
LetY be a good cover oK. That s, foranyU;, U;, ..., Ux € U, U; ;. =U;NU; N
- - - N Uy is a contractible set. Then the bundieis determined by a collection of
gluing functions:{g;; : U;; — GL(r)} which satisfiegy;; = gj_il andg;; gk 9k = 1.
Two collectionsg andg’ are equivalent if there exists; : U; — GL(r)} satisfying
gi; = hitgijh;.
A connectionD 4 is a collection of matrix-valued one form of {A; € QY(U;, gl(r))}.
OnUj;, they satisfy
Aj= gi_leigij + gi}ldgij-

Now, a generalized connectidn, is essentially the same thing except that we relax

the last equality to . )
Aj =9, Aigij * 957 dgij + db;

for some collectioqd;; : U;; — C} which satisfie®;; = —6;; andd(;;+0,,+6x;) = 0.
The definition of gauge equivalent for two generalized connections are the same as
ordinary connectionsA; = gi_lAq;gi + gi_ldgi for some automorphisnfy; : U; —
GL(r)}.

Let F; = dA; + A; A A;, then one can prove that we still hag = giglFigij. That
is F' € Q%(X,End (E)). One can also verify that the notion of generalized connections
is well-defined and independent of the choice of good co#er the gluing functions

{gij} of E.
Generalized connections.
Definition 1. A collectionD 4 = {A; € QY(U;, gl(r))} is called a generalized connec-
tion if
Aj =gt Aigij + g;; dgiy + i

for some collectior{6;;} as before.
The curvatureF, € Q*(X,End (E)) of D4 is defined to be

F; :dAi+Ai /\Ai
onU;. Ajz denotes the space of all generalized connection&on
We collect some basic facts abo@gE] in the following lemma.

Lemma 2. (1) A(F) C fl[E].
(2) A = Aiger for any line bundlel.
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3 fl[E] has a natural affine structure such thai(E) is an affine subspace of it of
codimensiorb,(X).

Ina sense[l[E] should be regarded Q;L,k A(E ® L*) where thelL’s forms a base
of H%(X,Z)/Tor andk € C. Previously, in order to_identifyA(E) and A(E ® L),
we have to pick a connection dn But now, A;g) and Ajgg 1) are always canonically
isomorphic to each other. So itis natural to consider equivalent classes of vector bundles
which are isomorphic to each other modulo tensoring with line bundles. We denote the
equivalent class oF by [E]. Thatis [E' @ L] = [ E] for any line bundleL.

Notice thatEnd([ E]) is a well-defined bundle oX and the groug; of all gauge
transformations of] is also a well-defined notion for the equivalent class.

Letei([E], D4) = #Tr F4 be the first Chern form of any generalized connection
D4 € Ap. Itis always a closed two form i . However, its cohomology class is not
determined by F]. In fact, it induces a surjective affine homomorphism

cy. .,Z([E] — HZ(X,(C)

andg acts on[t[E] preserving the fiber of;.
Now, @ = Q% can be naturally extended taGainvariant relative closed two form
on .A[E].

Relative forms.Let us first define the relative notion which will also be used in later

sections. Suppose that — P 5 M is a fiber bundle ovei/. We have a canonical
exact sequence of vector bundles ofer

0— TyertP — TP — 7*TM — 0,

whereT,,... P denote the vertical tangent bundle (or the relative tangent bundle). In fact,
we can regard this exact sequence as the definitidn of P. Recall that &-form is a

section of\"(T'P) over P.

Definition 2. Arelative k-form is a section ot/\k(TvP) overpP.
Arelative connectionD’¢! on a bundleZ over P is a first order relative differential
operator
D7 T(P,E) — (P, T}.,,P ® E),

that is,
DTN (fs)(w) = v(f)s + F(Ds)(v)

forany f € C>*(P), s € I'(P, E) andv € Tyept P.
Thecurvature of D¢ is F4el = (D712,

An ordinary k-form (resp. connection aF) on P induces a relativé-form (resp.
relative connection of). Notice that the curvature of a relative connection is a relative
two form on P with End(FE)-valued.

If we are given a splitting of' P as a direct sum df,.... P and=x*T M then arelative
form can be extended to a form éhby assigning zero te* T M. For example, whei®
has a Riemannian metric étis a product ofX and M, thenT P = Tyye, P @ 7T M.

Extended moduli spac&low, 2 is ag invariant relative closed two form QA;z). (The
theory of deRham model of equivariant cohomology can be extended to the relative



60 N-C. C. Leung

case.) Them2 admits aG-equivariant closed extensida + ®. Just as before, for any
Da € A andg € QO(X, End([E])), @ is given by

S(DA)(0) = / Tr e Fag A(X).

For any non-vanishing top formon X, ®1(C - 1I) would be preserved bg.
Definition 3. /\71# = d7Y(C- ulg)/G is called the extended moduli space.

Now, ¢; descends to give a map : M,, — H*(X,C).
To study the stability problem, we have to introduce polarization to specify a partic-
ular direction inA;g;.

Definition 4. A polarization is a line field in.A; which is invariant under affine
translations.P is called regular if it is transverse to the fiber ef. Two regular polar-
izations are equivalent to each other if they induce the same line figiF (X, C).

It is easy to see that given a line bundleand a connectio®;, on it. They induce
a regular polarization itd;z;. Different choices of connections always give equivalent
polarizations.

Remark . The word polarizatioon we used here comes from algebraic geometry which

means a choice of an ample line bundle up to numerical equivalency. This should not
be confused with the notion of polarizations used in geometric quantization. We fix a

line bundleL on X and choose a connectidi;, on L. Letw = —'FL be its curvature.

Then the top fornu “~ is non-vanishing if and only i& is a symplectic form. We

are interested in the ends #1,,. It being non-empty near thext ends is related to
stability properties ofr as explamed in the last section. However, now the picture we
have here is more geometric. All the symplectic quotiett& © L*)//G’'s (k € 7Z)

are embedded inside a bigger continuous family which is the symplectic quotient of
the space of generalized connections. Moreovet, {.,=+" should be regarded as the
moduli space of Hermitian Einstein connectiongarn.oosely speaking, asymptotically
nearc; = +oo, Q1 defines a Poisson structure @iz and restricting to each fiber on

c1, itis a symplectic form.

5. Higer Level Chern—Simons Forms

In this section, we shall show that the®e deteremine Chern character and Chern—
Simons forms ofZ. t the sma time, we define higher level generalzytions of ern—Simons
forms. In order to simplify the diskussion below, we shall assume that the characteristic
form of X is one. The author would like to thank the referee who pointed ot that this
section is closely related to earlier work of Gefand and Wang. In fact, the author found
out later that this is also related to certain previous work of BOtt.

Inside A, there is a canonical affine foliation such that any two connectippsind
D', are in the dame leaf if and only B/, = D4 + alg for some one formy on X.
Interm of an (integrable) subbundle of A, itis given@y(X) C (Q'End(E)) = T4 A.

We restrict2!"! to a differential form along the foliation gsee relative formsin Sect. 3).
We shall still denote this relative differential form as)by Q). We are going to see that
Q[ is equivalent to the operation of taking the Chern character form of any connection.
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For exaplew®" C I" (A, A 2kT*A) now gives a homomorphism:

2k y
A x Q% < y(A, \(Teald)) 25 ©

By abuse of languages, we also denote this homomorphisfi®y; The we have
QEH(D 4, ) = /TreﬁFA’y.

If we regard?*! as a map4 — Q2"~%(X),;s, the the image oD 4 is just given
by then — k" Chern character form dp 4. Therefore, taking the Chern character form
of any connection is equivalent to the restriction of the differential f¥hto the above
foliation of A.

To recover secondary (or higher level %eneralized) characteristic fornig ore
look at the chain complex ofl, S, (A) and2l*! defines a chain homomorphism

ol s4) — Q(x).

Recall that an element i§;(A) (a singular chain) is a finite linear combination of
singulari-simplexess’s on A with complex coefficient. Where a singulasimplex is
a smooth map from the standdrdimplexA; to A, o : A; — A. There is a boundary
homomorphismd : S;(A) — S;-1(A) with 0% = 0 and its homology is called the
singular homology of4, H?, (A). For completeness, let us recall the notations:

sin

l
A = thpj \sumé—zjt]— =1
J=0

whereP, is the origin ofR> andP; in thei" standard basis vector &>. To defined,
it is sufficient to know its effect on a singul&simplexs : A; — A. We have:

l
00 =Y (-1)o o0},

=0

whereali 61—, — Ay is tei™ face map given by

’ i=1 l
8{ (Z] = Otij> = + Z tj—lpj-
0

7
j= J=i+l

Now we will imitate the previous constructions to obtain characteristic forms for
any singular chain it4,

WS — Q@ (X) dist-

We no longer nedd to assume ti}&ais even dimensional. It is enough for us to construct
it for a single singulat-simplexs : A; — A ansd extend it by linearity.

For any suchy, we get a connectionl, on7; E — X x A; by pulling back the
universal connectiof overE — X x A. We denote its curvature by, .
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Definition 5. We definel™ : §;(4) — Q*(X)aist by

* 1
(o)) = / TredFen,
XXAL

Lemma 3. Q) commute with the (co-)boundary operators of both complexes. That is,
do QE*] = Qg*jl 00.

This lemma follows from the Stokes's theorem. Next, we shalt}ékdefine secondary
characteristic forms (Chern—Simons forms) and their higher level generalizations. We
first define a mag which is similar to the homotopy operatéir: S : x(A) — S’ x(A)
defined by one construction. (sinck& [0] = 1 or —1, this was used to prove that the
singular homology of an affine space is trivial.) Now,

1+1

Li:[JA— Sc(A).

Roughly speaking[; is given by the complex polyhedron spannediby 1 points
in A. Notice that bothK" and L use strongly the affine structure oh Let us write
0=Li(Da,y,--.,Da,), thenL is defined by as

l l
o <Zt]P]> :thDAj-
=0 j=o

Here,Y"'_, t;D4; is a well-defined element il because of ' _o; = 1.
We can extend,; by linearity to the free Abelian groud; generated by elements

in [T"" A, that is,
I+1

LZ:A:=ZlHA

On A,, there is also a boundary operatyy : A;, — A;_; defined by

— Si(A)

l
Oa(Ag,. ., A D)= (1) (Ao, Ay AY)
=0

on any generator4y, . .., 4;) in Ar. The proof of the following lemma is straightfor-
ward.

Lemma4. (1) 045 ==,
(2)Lody =00 L.

Now we can define a higher Chern—Simons form as follow:
Definition 6. The higher Chern—Simons is the linear homomorphism
ch(B) =MoL, : A, — Q" (X)aist
such that on any generat¢do, ..., A4;) in A;, itis given by

ch(E; Ao, ..., A1) = QM circL (Ao, ..., A).
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In fact, ch(F; Ao, ..., 4;) i always a smooth diffrential form oX. Noticce that
ch(F; A:) is just the ordinary Chern character form 4§ and ch(E; Ag, A;) is the
ordinary Chern—Simons form of the palp and A;.

Proposition 3. ch(E) o 04 = d o ch(E).

This proposition follows from the previous two lemmas. When0, this proposition
implies that the ordinary Chern character formis always a closed differential form. When
L =1, the proposition says that

Ch/E; A]_) — Ch(E; Ao) = d'), Ch(E; ,Ao, A]_)

, which is the most important property of Chern—Simons forms as the image dinfler
a canonical diffferential form (by the proposition for 2:

ch(E; A1, Ap) — ch(E; Ao, Ag) + ch(E; Ao, A1) = d ch(E; Ao, Ay, Ap).

Using Stokes’ theorem we have
[ et s a0~ [ ehiido, A+ [ enEs o, a9 =0,
X X X

which is useful when we usg( ch(E; Ay, Ay) as an action functional. For instance, the
Chern—Simons theory over a three manifold uses such a functional and has important
impacts on knot theory and three dimensional topology in recent years.

These:h(FE)'s have another symmetry property. The symmetry groupbélements
Si+1, acts on4; and we have the following proposition.

Proposition 4. For anys € S;+1 anda € A;, we have
ch(E; s - ) = (=1)*Ich(E; a).

The proof of this proposition is left to the readers. When we look at the case for
=1, we get
Ch(E, 1407 A]_) = _Ch(E: Al» AO))

which is a well-known property for Chern—Simons forms.
Hence, we have finished constructing higher Chern—Simons forfsieingw!*!’s.

6. Equivariant Extensions of$2[*]

In the last section, we analy£¥? (= Q) and itsG-moment mapb. We showed that how
they are related to the Hermitian Einstein metric and stability wkieis a symplectic
manifold. In this section, we first generalize the moment map construction @44
and study their equivariant extensiaf& .

Let us first review some basic materials about equivariant cohomology. (See, for
example [A+B] [M+Q] for details.) We shall decribe the Cartan model here. W\ien
admits aGG (compact connected Lie Group) action, then the equivariant cohomology of
M is defined as

Hi (M) = H(EG xg M),

where EG is the Universal space fdr. It can be computed as the cohomology of the
following differential complex onQ* (M) ® Symm*(Lie G)*)“. Choose any basg’s
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of Lie G and letp®’s be its dual base. For any® 1) € Q*(M) @ Symm*(Lie G)*, we
define the differentiaD to be

De@y)=da@y =Y 1pa® ($:1).

It is not difficult to check thatD? vanishes orG invariant elements i2*(M) ®
Symm*(Lie G)*. Therefore, it defines a differential complex o®R*(M)®
Symm*(Lie G)*)¢ whose cohomology can be proved to B (M). Although, in
our situation, the grou is not a compact finite dimensional Lie Group, we shall
still consider the same complex and call it the equivariant complex. Elements that are
D-closed (-exact) are called equivariant closed (exact) forms.

Equivariant extensions @@l Now, we want to extend eadhl®*! as ag equivariant
closed form onA for anyk. That is, we should havg,, ., @%*"%/], where

Q22 e Q%(A, Symm/ (Lie G)*),
such tha?%% = Q" and for anyp € Lie G = Q°(X, End (E)), we have
L¢Q[2i,2j] — d(Q[Zi_2’2j+2](¢)),

Theorem 1. 02
QP PNDA) By, .., Bai)¢1, -, 6))

_ / Tr[eFABy - By 6] eymA(X),
X

whereD 4 € A, B € Ty A =QYX,End (E)), ¢ € Lie G = Q°(X,End (F)).

Proof of TheorenBefore proving the theorem, let us first explain some notatials?’!
is a 2-form on A valued in thej!* symmetric power of the dual of Lie algebra@find
itis alsoG-invariant. Ata pointD 4 € .4 and 2 tangent vectoB’s at D 4, Q%21 gives
an element irlSymm?(Lie G)*. Evaluating it on thg element ofLieG, then it gives us
a number which we claimed to be given by the above formula.

First, G invariancy ofQ?*%1 is clear from the formulaQ[?*:*!
seen directly. It remains to verify that

= Q¥ can also be

J
Z L, Q[Zi,Zj] (¢0a RS {Zglv RS qﬁj) = d(Q[2i7272j+2](¢0a ey ¢J))v

=0

where eachy; € Lie G = Q°(X,End (E)). Now, we take anyBy, ..., Boj_1 € Ty A=
QY(X,End (£)) and extend it to vector fields over all of by parallel transport. Then
[B;, B;] is always a zero vector field ad. (Here, [, ] means the bracket of two vector
fields on the spacd.) Therefore,

d(Q[Zi_272j+2](¢07 DR} ¢]))(Bl7 e 7B2i—l)

2i—1

=) (~1)MB(QP T2 g, ..., ¢,) (B, .., Biy. .., Baio1))
=1

2i—1
=y (- / Trlez "4 (DaB)By By - -Bai—160 - il sym A(X)
=1 X



Symplectic Structures on Gauge Theory 65

On the other hand,
1, 222 (g0 by, 05)(Bu, - . ., Bai1)
= / Tr[e# TA(Dagy)Bi - -Bai-160 - -1 - -6;]sym A(X)
X

Hence,
j . . ~ . .
(Z L¢LQ[21/72]](¢07 ey (bla R ¢j) - d(Q[ZZ_272]+2](¢01 DR (b]))) (Bla ey BZi*l)
=0

:/ Trlez=t4D 4(B; - ‘Boi—160 -+ 6j)]sym A(X)
X

= [ AT By Bacado - 0,1mACO)
X
=0
by the Stokes’s theorem. So we have proved the theorem[]

In particular, when we look a®? = Qo, we recover the moment map, as
Q%2 The extension of the totak*) asG equivariant closed form oM would be
Sivj<n QP"¥ since the highest degree form@t* is of degree 2. We can relax the
restriction; + 5 < n and obtain an equivariant closed form of arbitrart large total degree,
we shall denote it by2!**].

Ql**1 as equivariant pushforwards=rom previous section, we know th@at*! occurred
as the Chern character of the virtual bundle by the family local theorem. Recall that

Qi = / Tr ez=" A(X).
JX

and weextende@!"! as ag equivariant closed form onl. Now, we are going to
extend the results in section two. So we want to extEndﬁFfl(X ) to ag equivariant
closed form onX x A such that we ge2**} by integrating it overX..

Let us first consider an example where we want to find an elemeffHiX x
A, (Lie G)*)9 such that it gives ug by integrating it overX. This is clear that this is
given by the 2-form Tr[ez= 4 ¢]?")(z) at a point ¢, D4) € X x A when evaluating
iton ¢ € Lie G = Q°(X,End (E)). To generalize it to otheR!**'s, we introducen

and such thal'r ez="+2 A(X) would be ourg equivariant form on¥ x A.

Definition 7. LetA € Q%X x A, End(E))(Lie G)* be given by
A(vaA)(¢) = ¢.’E7

where(z, D) € X x Aand¢ € Lie G = Q°(X, End (E)).

By evaluatingA on¢ at (x, D 4), we should arrive at an element iB¢dE)(x, A) =
EndE,, andA is defined such that this element is just givengogt x. Therefore A is
an tautological element and independent of the variabjec A. Put it another wayA
is the pullback from the identity element in

QOX,End (B))(Lie G)* = Map(Q2°(X,End (F)), Q°(X, End (E))).
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Now we considefl'rg eiFJ'AA(X). In the exponential sums, we multiple forms on
X x A by exterior product and elements ihie G)* by symmetric product. Therefore,
we have

Trg e A(X) € Q*(X x A, End(E))(Symm*(Lie G)*).

Theorem 2. T'rg eiFJ'AA(X) is ag equivariant closed form oX x A.

Proof of Theoremilo prove the theorem, we can forget l;ﬁl(aX )term. Itis rather straight

forward to check thaf'rg e 2= F*2 is G equivariant. To prove that tis equivariantly closed,
we choose any € Lie G = Q% X, End (E)). Then, by Bianchi identityDF = 0, we
have

d(Tr e7752(¢)) = Tr [ A D(A)] aym,

whereD is the universal connection di
On the other hand, we have

teTr ez = Tr [ezn T2 T gy

Therefore, in order to prove thdtr ez=F+2 is equivariantly closed, it is enough to
check that

1oF = D(Ag).

Atapoint @z, D4) € X x A, ¢ induces the vector field (D 4¢) € T p (X x A)
=T,X x Tp, A=T,X x QYX,End (F)). If we choose any other vecton,(B)
Tw,0.4)(X x A), then

L¢F($, l)A)(U7 B)
=F(z, Da)((v, B), (0, Da¢))
= (F*°+ F*)(z, Da)((v, B), (0, Dag))
= Fa(2)(v,0) + (Dag)(z, v)
= (Dag)(x,v).
ForD(A¢), we have
D(A)(x, A)(v, B)
= (Da,z9)(x)
= (DAQs)(I? 1)).
Therefore, we haveyF = D(A¢) andT'rg ez 4 is ag equivariantly closed form
onA. O
Next, we shall show that the pushforward of this form gig@$*! on .4 which
generalize§, Trg e A(X) = Q.
Theorem 3.
/ Tre ez=F*A A(X) = QI*+.
X
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Proof of TheoremEor simplicity, we shall omit some factors of the powerégfin the

calculation below. We consider the component/QfTrg ez in Q% (A, Symmd
(Lie G)*). We evaluate it on 2i tangent vectdBss on.A andj elementsp’s in LieG at

apointd € A,

( /X Trg e 2 A(X))(Da)(By, - - -, Bai)(¢1, - - -, b5)

= / Tr e(ﬁ(wz’°+F“)+A>(%DA>(Bl,...,BZi)(qsl,...,gz)j)A(X)
X

n Fl,l 2k
:ATT [ez"FA%(B]_,...,BZi)

A% (z,D4)
(2j)!

= / Tr e FABy - -Byigy - 9] sym A(X)
X

= QP2 DA)(By, . .., Ba)(¢1, - - -, 6;)-

(@1, ) sym A

Hence the theorem. O
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