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Abstract: We study certain natural differential forms�[∗] and theirG equivariant ex-
tensions on the space of connections. These forms are defined using the family local
index theorem. When the base manifold is symplectic, they define a family of sym-
plectic forms on the space of connections. We will explain their relationships with the
Einstein metric and the stability of vector bundles. These forms also determine primary
and secondary characteristic forms (and their higher level generalizations).
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1. Introduction

In this paper, we study natural differential forms�[2k] on the space of connectionsA
on a vector bundleE overX,

�[2k] (A)(B1, B2, . . . , B2k) =
∫

X

Tr[e
i

2π FAB1B2 · · ·B2k]symÂ(X).

They areG invariant closed differential forms onA. They are introduced as the
family local index for universal family of operators.

? This research is supported by NSF grant number: DMS-9114456
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We use them to define higher Chern-Simons forms ofE:

ch(E;A0, . . . , Al) = �
[∗]
l ◦ Ll(A0, . . . , Al),

and discuss their properties. Whenl = 0 and 1, they are just the ordinary Chern character
and Chern-Simons forms ofE. The usual properties of Chern-Simons forms are now
generalized to

(1) ch(E) ◦ ∂A = d ◦ ch(E),

(2) ch(E; s · α) = (−1)|s|ch(E;α).

When we restrict our attention to the case whenX is a symplectic manifold (or
a Kahler manifold) with integral symplectic formω, [ω] = c1(L). We study�[2] on
A(E⊗Lk) for largek. Asymptotically, they define the symplectic form onA(E⊗Lk).
Using a connectionDL onL, we can identify all theseA’s with A(E) and get a one
parameter family of symplectic forms�k onA(E),

�k(DA)(B1, B2) =
∫

X

Tr [e
i

2π FA+kωIEB1B2]symÂ(X).

TheirG-moment maps are

8k(A) = [e
i

2π FA+kωIE Â(X)](2n).

When we let the parameterk go to infinity, we will obtain the standard symplectic
form � onA(E):

�(A)(B1, B2) =
∫

X

TrB1B2 ∧ ωn−1

(n− 1)!
.

Notice that� is an affine constant form in the sense that it is independent of the
pointA ∈ A. The moment map equation associated to� is

FA ∧ ωn−1

(n− 1)!
= µE

ωn

n!
IE ,

which is equivalent to the Hermitian Einstein equation (a semi-linear system of partial
differential equations) ∧

FA = µEIE .

Nevertheless, the moment map equation for8k is a fully non-linear system of equa-
tions (of Monge-Ampere type) which are closely related to stability ofE as will be
explained in Sect. 4.

Then we explain how to remove the assumption of integrality ofω in Sect. 5. More-
over, all A’s will be canonically embedded inside a larger spaceÃ[E] , the space of
generalized connections. Generalized connections satisfy a weaker constraint:

Aj = g−1
ij Aigij + g−1

ij dgij + dθij .

However, they share many properties of an ordinary connection. The first Chern
class defines a surjective affine homomorphism

c1 : Ã[E] → H2(X,C),
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and�[2] gives a relative symplectic form on it. We define the notion of extended moduli
space and polarization which links to our previous picture on stability.

In Sect 6, we will generalize the moment map construction. We study equivariant ex-
tensions of all�[2k] and their properties. They are�[2i,2j] ∈ �2i(A, Symmj(Lie G)∗)G
given by

�[2i,2j] (DA)(B1, . . . , B2i)(φ1, . . . , φj)

=
∫

X

Tr [e
i

2π FAB1 · · ·B2iφ1 · · ·φj ]symÂ(X)

In the last section, we will briefly explain how these higher�[2i,2j] are related to
family stability. We need to look at all connections on the universal bundle which induces
the canonical relative universal connectionDrel. Let D + S be such a connection, then
its curvature is given by:

F2,0 (x,A) = FA atx,

F1,1 (x,A)(v,B) = B(v) +DA,v(S(A)(B)) atx,

F0,2 = dAS + S2.

By twisted transgression of�[∗] (defined usingD+S), we getMap(M,G)-invariant
closed forms onMap(M,A), namely,�[∗]

M . We will explain how these forms are related
to stability for a family of bundles overX parametrized byM when bothX andM are
symplectic manifolds.

2. Higher Index of the Universal Family

In this section we consider the universal connection and the universal curvature. They
induce canonical differential forms�[∗] on the space of connections which are important
for our later discussions.

These forms are closely tied with the local index theorem for the universal family
of certain operators. We shall discuss the Dirac operator and the∂ operator in detail.

Let X be a compact smooth manifold of dimension 2n andE be a rankr unitary
vector bundle overX. We denote the space of connections onE by A and the space of
automorphisms ofE by G, which is also called the group of Gauge transformations on
E. The tangent space ofA at a pointA ∈ A is canonically isomorphic to the space of
one forms onX with End(E) valued, that is,

TAA = �1(X,End(E)).

In particular,A is an affine space. (Later in this paper, we shall construct a natural
affine extension ofA by an one dimensional affine space.)G is an infinite dimensional
Lie Group with Lie algebra being the space of sections of End(E) overX, that is,

Lie G = �0(X,End E).

The center ofG can be identified as the space of non-vanishing functions onX and
hence the center of its Lie algebra can be identified as the space of all functions onX,
C(X), or the space of zero forms onX, �0(X). By integrating overX, we can identify
the dual ofLie G as the space of 2n forms onX with End(E) valued in the sense of
distributions

(Lie G)∗ = �2n(X,End(E))dist.
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It has a dense subspace�2n(X,End(E)) consisting of smooth 2n forms which are
enough in most purposes. The above identification follows from the fact that

�0(X,End E) ⊗ �2n(X,End E)dist −→ C,

φ⊗ α −→
∫

X

Tr φα

is a perfect pairing.
By putting all connections together, one can form a universal connection as follow:

Let E = π∗
1E be the universal bundle, whereπ1 : X × A −→ X is the projection to the

first factor. Then we can patch up all connections onE to form a partial connection on
E and since the bundleE is trivial alongA, we get a (universal) connectionD onE.

To be more precise, let us describeD in terms of horizontal subspaces. A connection
A on E is given by aU (r) equivariant subbundleH of TE overE such thatTE is
isomorphic toTvE

⊕
H. HereTvE is the vertical tangent bundle ofE with respect to

E −→ X. Now, lete ∈ E be a point on the fiber ofE over (x,A) ∈ X×A. ThenTeE is
canonically isomorphic toTeE

⊕
TAA and we can chooseH

⊕
TAA as a horizontal

bundle ofTE (whereH is the horizontal subbundle ofTE defined byA). This horizontal
subspace defines our universal connectionD.

The curvatureF of D will be called the universal curvature, it is a End(E) valued
two form onX×A. With respect to the natural decomposition of two forms onX×A:

�2(X × A) = �2(X)
⊕

�1(X)
⊗

�1(A)
⊕

�2(A),

we decomposeF into corresponding three components,

F = F2,0 + F1,1 + F0,2.

They are given explicitly by

F2,0 (x,A) = FA atx,

F1,1 (x,A)(v,B) = B(v) atx,

F0,2 = 0.

where (x,A) ∈ X × A, v ∈ TxX andB ∈ �1(X,End(E)).
Now, we want to useA to parametrize certain families of first order elliptic operators

onX by coupling different connections with a fixed differential operator. The following
three situations are of most interest to us.

2.1. Dirac operators.Let X be a spin manifold of even dimensionm = 2n. For any
Riemannian metricg onX, we get a Dirac operatorD onX. By couplingD with a
connection onE, A ∈ A, we get a twisted Dirac operatorDA onX. Varying these
connections, we then get a family of Dirac operators parametrized byA.

The index ofDA (IndexDA = dimKerDA − dimCokerDA) can be computed by
the Atiyah-Singer Index theorem:

IndexDA =
∫

X

ch(E)Â(X),

which can be expressed in terms of curvature ofE via the Chern-Weil theory:
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IndexDA =
∫

X

Tr e
i

2π FAÂ(X).

The virtual vector space (the formal difference of two vector spaces)KerDA −
CokerDA varies continuously with respect toA and forms a virtual vector bundle over
A (despite the fact thatKerDA or CokerDA might jump in dimensions separately).
This is called the index bundle overA, Ind (D). We could formally regarded Ind (D) as
an element in theK group ofA, K(A), even thoughA is of infinite dimension. This
can be interpreted as Ind (D) giving an element inK(Y ) for any compact subfamily
Y ⊂ A. Although Ind (D) is only a virtual bundle, its determinant is an honest complex
line bundle overA, called the determinant line bundle for Dirac operators, Det (D).

By the family index theorem of Atiyah and Singer, we have (for any compact sub-
family Y ⊂ A)

ch(Ind (D)) =
∫

X

Tr e
i

2π FÂ(X)

as cohomology classes.
Bismut and Freed [B+F] strengthens this result to the level of differential forms

and give the local family index theorem. They introduce superconnectionAt on the
infinite dimensional bundleπ∗E and they proved the following equality on the level of
differential forms:

lim
t↘0

ch(At) =
∫

X

Tr e
i

2π FÂ(X).

We decompose this differential form into a sum according to their different degrees
�[0] + �[2] + · · ·, where�[2k] ∈ �2k(A).

Proposition 1.

�[2k] (A)(B1, B2, . . . , B2k) = (
i

2π
)2k

∫
X

Tr[e
i

2π FAB1B2 · · ·B2k]symÂ(X),

whereA ∈ A andBi ∈ TAA = �1(X,End (E)).

The notation [···]sym denotes the graded symmetric product of those elements inside.

Proof of Proposition.

�[2k] (A)(B1, B2, . . . , B2k)

=
∫

X

Tr [e
i

2π (F2,0+F1,1)(x,A)](B1, B2, . . . , B2k)Â(X)

=
∫

X

Tr [e
i

2π FA (
i

2π
)2k (F1,1)2k

(2k)!
(B1, B2, . . . , B2k)]symÂ(X)

= (
i

2π
)2k

∫
X

Tr [e
i

2π FAB1B2 · · ·B2k]symÂ(X).

For the second equality, we used the fact thatF2,0 has no effect on theBi’s and
the last equality holds sinceF1,1 is the tautological element which can be described as
below. Under the following relations:
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�1(X) ⊗ �1(A) ⊗ End(E)
∼= Hom(TA,�1(X,End (E)))

⊃ Hom(TAA,�1(X,End (E)))

= Hom(�1(X,End (E)),�1(X,End (E))),

F1,1 comes from the identity endomorphism of�1(X,End (E)). Hence we have proved
the proposition. �

Corollary 1. �[2k] is aG invariant closed form onA and such that�[2k] = 0 if k > n.

Proof of Corollary.Both �[2k] = 0 for k > n and the invariance of�[2k] with respect
to G action are clear from the above proposition. We will use the Bianchi identity and
the simple fact that the antisymmetrization of a symmetric expression is always zero to
show the closedness of�[2k] . Consider

d�[2k] (A)(B0, . . . , B2k) =
2k∑
i=0

(−1)iBi

(
�[2k] (A)(B0, . . . , B̂i, . . . , B2k)

)
+
∑
i<j

(−1)i+j�[2k] (A)([Bi, Bj ], B0, . . . , B̂i, . . . , B̂j , . . . , B2k).

Here, we have extended eachBi ∈ TAA to a vector field onA by transporting it
using the affine structure onA. To put it another way,Bi is always the same element in
�1(X,End (E)) regardless of differentA ∈ A. Hence, we have [Bi, Bj ] ≡ 0 for anyi
andj.

We shall show that
∑2k

i=0(−1)iBi�
[2k] (A)(B0, . . . , B̂i, . . . , B2k) is zero. In order to

simplify the notation, let us assume temporary thatÂ(X) = 1. Then

Bi�
[2k] (A)(B0, . . . , B̂i, . . . , B2k)

= (
i

2π
)2n(n− k)

∫
X

Tr[Fn−k−1
A (DABi)B0 · ·B̂i · ·B2k]sym.

because allBi’s are independent of the connectionA ∈ A. Hence,

2k∑
i=0

(−1)iBi�
[2k] (A)(B0, . . . , B̂i, . . . , B2k)

= (
i

2π
)2n(n− k)

∫
X

d Tr[Fn−k−1
A B0 · · ·B2k]sym

Here, we have used the Bianchi identityDAFA = 0 and the fact thatd Tr = Tr DA.
Now the vanishing of the above expression follows from the Stokes’s theorem. Hence
we have showed that�[2k] is closed. An alternative way to prove the closedness is by
observing that these forms come from the pushed forward of certain closed differential
forms onX × A. �

2.2. ∂-operator. The second case is whenX is a compact complex manifold. Then
(complexified) differential forms onX can be decomposed into holomorphic and anti-
holomorphic components:
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�l(X) ⊗ C =
∑
i+j=l

�i,j(X).

As an End(E)-valued two form onX, the curvature form of a Hermitian connection
can be decomposed accordingly:FA = F 2,0

A +F 1,1
A +F 0,2

A . One should not confuse this
decomposition ofFA with the previous decomposition ofF. If F 0,2

A = 0, then the (0, 1)
part ofDA defines a differential complex on�0,∗(X,E). Let us denotep ◦DA by ∂A,
wherep : �1(X,E) ⊗ C −→ �0,1(X,E) is the projection to the anti-holomorphic

part.∂A gives a complex becauseF 0,2
A = ∂

2
A.

Let Ahol = {DA ∈ A| F 0,2
A = 0}, thenAhol parametrizes a family of elliptic com-

plexes overX. Now, A is the space of connections onE, not necessary Hermitian.
However, in order for it to parametrize elliptic complexes, we need to choose a com-
patible Hermitian metric onE (which in fact exists and is unique up to unitary gauge
transformations) and a Hermitian metric on the base manifoldX. Such a metric induces
a Todd form onX representing the Todd class ofX. As in the case of Dirac operators,
we get a sequence of differential forms onAhol:∫

X

Tr e
i

2π FTdX = �[0] + �[2] + �[4] + · · · .

Here the only difference is the replacement ofÂ(X) by the Todd form onX, TdX .
Notice that the odd class and̂A class are closely related to each other:Td = ec1Â.

If X is Spin Kahler manifold then this equality holds on the level of differential forms.

In this case, the∂ operator onX is equal to the Dirac operator onX twisted byK
− 1

2
X ,

where the canonical line bundleKX is determined by the (almost) complex structure on
X and its square root is given by the chosen spin structure onX. In this identification,
Kahlerian is important, which ensures that the complex structure and the metric structure
onX are compatible to each other.

Later on, we shall explain that asymptotic behaviors of�[2] are closely related to
stability in Mumford’s Geometric Invariant theory [M+F]. The importance of higher
�[2k] will be briefly discussed in the last section.

3. Moment Map and Stable Bundles

In this section, we will explain the relationship between the form�[2] we found earlier
and stability properties of the bundleE. This relation is originally discovered in the
author’s thesis [Le1] and explained in [Le2]. Here, we shall give a global picture in this
section and the next one. Then we shall also discuss higher�[2k] later in this paper.

Now, we supposeX is a symplectic manifold with symplectic formω. We also
assumeω is integral which means [ω] represents an integer cohomology class inX,
[ω] ∈ H2(X,Z). The general case will be treated in the next session.H2(X,Z) classifies
complex line bundles overX up to isomorphisms, that is, [ω] = c1(L) for someL over
X. In fact, we can find a Hermitian connectionDL onL such that the last equality holds
on the level of forms, that isω = i

2πFL, whereFL is the curvature form of a certain
connectionDL onL.

We are interested in the behaviors of�[2] on the space of connections onE
⊗
Lk for

largek. In order to distinguish connections on different bundles, we writeA(E
⊗
Lk)
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for the space of connections onE
⊗
Lk. However, by tensoring withDL, we can identify

differentA(E
⊗
Lk),

A(E) −→ A(E ⊗ Lk),

DA 7→ DA ⊗DLk .

Under this identification, the curvaturei2πFA of DA will be sent to i
2πFA + kωIE .

We shall denote the corresponding�0 = �[2] by �k. We therefore have

�k(DA)(B1, B2) =
∫

X

Tr [e
i

2π FA+kωIEB1B2]symÂ(X)

in the spin case (and similarly formula for other cases by replacing theÂ by suitable
characteristic classes). Notice that, at a general pointDA ∈ A, �k may be degenerated.
However, it will become non-degenerate ifk is chosen large enough and therefore, in a
suitable sense,�k is asymptotically symplectic form onA. (For the rest of this paper,
a symplectic form may possobly degenerate but this deficiancy can usually be rescued
by asymptotic non-degeneracy.)

Moment maps.For anyk, �k is always aG an invariant form and a moment map exists.
That is,�k can be extended to aG equivariant closed form onA.

Lemma 1. The moment map for theG action onA with symplectic form�k is given by
8k : A −→ �2n(X,End(E)),

8k(A) = [e
i

2π FA+kωIE Â(X)](2n).

Proof of Lemma.First, we need to show that8k is aG equivariant map, but this is clear
from the definition of8k.

Next, we want to show that�k + 8k is a G equivariant form. That is, for any
φ ∈ Lie G = �0(X,End(E)),

ιφ�k = d(8k(φ))

as an ordinary one form onA, or,

�k(A)(DAφ,B) = d(
∫

X

Tr 8k(A) · φ)(B)

for anyA ∈ A andB ∈ TAA = �1(X,End(E)),

d(
∫

X

Tr 8k(DA)φ)(B)

=
d

dt
|t=0

∫
X

Tr e
i

2π (FA+tDAB+t2B2)+kωIEφÂ(X)

=
i

2π

∫
X

Tr[e
i

2π FA+kωIEDAB]symφÂ(X)

=
i

2π

∫
X

Tr[e
i

2π FA+kωIEDABφ]symÂ(X)

=
i

2π

∫
X

Tr[e
i

2π FA+kωIEDAφB]symÂ(X)

= �k(DA)(DAφ,B)
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Hence,�k + 8k is aG equivariant closed form and8k is the moment map for the
gauge group action onA with the symplectic structure given by�k. �

Remark .For each k, we obtain aG equivariant closed form onA, namely�k + 8k.
It depends only on the choice of a connectionDL on L. Neverthless, the equivariant
cohomology class it represents, [�k + 8k] ∈ H2

G(A), is independent of such a choice.

Proposition 2. [�k + 8k] ∈ H2
G(A) is independent of the choice of the Hermitian

connectionDL onL.

Proof of Proposition.If DL andD′
L are two connections onL, so they differ by a one

form onX, sayα. They induce�k + 8k and�′
k + 8′

k onA. Their difference is aG
equivariant exact form onA which can be written down explicitly (like the Chern-Simons
construction). More precisely,

(�′
k + 8′

k) − (�k + 8k) = dG2k,DL,D′
L
,

where

2k,DL,D′
L

(A)(B) = k
∫ 1

0
dt

∫
X

α Tr e
i

2π FA+k(ω+tdα)IEBÂ(X).

Hence, the cohomology classes they represented are the same.�

Largek limit of �k + 8k. We now consider�k and8k for largek. If we expand�k

in powers ofk, we have

�k(A)(B1, B2) = kn−1 ·
∫

X

TrB1B2 ∧ ωn−1

(n− 1)!
+O(kn−2).

The leading order term of it defines a (everywhere non-degenerate) symplectic form�

on A, moreover, it is a constant form onA in the sense that there is no dependence of
A in its expression. The moment map defined by this constant symplectic form� is

8(A) = FA ∧ ωn−1

(n− 1)!
.

If we expand8k for largek , we have

8k(A) = knω
n

n!
IE + kn−18(A) +O(kn−2).

The first term is a constant term and can be absorbed in the definition of8k (since
the moment map is uniquely determined only up to addition of any constant central
element) and therefore, the leading (non-trivial) term for8k becomes8 for largek.

We now look at the symplectic quotient ofA by HamiltonianG actions with respect
to different�k. First choose a coadjoint orbitO ⊂ (LieG)∗, the inverse image8−1(O)
of O under the moment map8 isG invariant. Then one can show that8−1(O)/G inherits
a natural symplectic form (on the smooth points) from the original symplectic space.
We can now apply this procedure to any of these�k or � since they are allG invariant
symplectic forms onA.

The simplest choice of the coadjoint orbit would be 0, however,8−1(0) may not be
non-empty in general. We would choose those coadjoint orbits which consist of a single
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point only. The set of all these coadjoint orbits can be identified with the space of 2n
forms onX (in the sense of distributions).

Hermitian Einstein metrics.We first consider8 which depends onA is a (semi-)linear
fashion. Letζ ∈ �2n(X), thenDA ∈ 8−1(ζ) if and only if

FA ∧ ωn−1

(n− 1)!
= ζIE .

By taking the trace and integrating it overX, we get a necessary condition for8−1(ζ)
being non-empty which is ∫

X

ζ = µE ,

whereµE = 1
rk(E) < c1(E) ∪ c1(L)n−1

(n−1)! , [X] > is the slope ofE with respect to the
polarizationL. For simplicity, we normalize the (symplectic) volume ofX to be one.
When we chooseζ to be a multuple of the symplectic volume formω

n

n! , then the equation
defined by the connection being laid on the inverse image ofζ would be:

FA ∧ ωn−1

(n− 1)!
= µE

ωn

n!
IE .

Using ωn

n! and a metric onX, we can convert this equation into an equation of zero
forms, it reads as: ∧

FA = µEIE ,

where
∧

is the adjoint to the multiplication operatorL = ω ∧ ( ) (a metric onX is used
to define the adjoint of an operator). In local coordinates, the equation is

gαβF i
jαβ

= µEδ
i
j ,

where
√−1gαβdz

α ∧ dzβ is the Kahler formω onX and (gαβ) is the inverse matrix to
(gαβ) providedX is Kahler andz’s are local holomorphic coordinates onX. Suppose this
is the case andE is an irreducible holomorphic vector bundle over it, then this equation
is called the Hermitian Einstein equations or the Hermitian Yang Mills equations. It
is called Einstein because

∧
FA is a Ricci curvature ofE. (On a vector bundle, there

is another kind of Ricci curvature on it, namely TrE FA ∈ �2(X). This latter Ricci
curature is a closed two form onX and the cohomology class it defined is the first Chern
class ofE.

If we consider only those connections whose (0,2) part of its curvature vanished,
that isA ∈ Ahol as in the discussion of last section. Then we have∫

X

|FA|2ω
n

n!
−
∫

X

|
∧
FA|2ω

n

n!
= −8π2

∫
X

ch2(E) ∧ ωn−2

(n− 2)!
.

SinceX is Kahler,ω
n

n! is the volume form ofX and the functional
∫

X
|FA|2 ωn

n! is the
standard Yang-Mills functional in Gauge theory. By the above equality, it is equivalent
to the functional

∫
X

|∧FA|2 ωn

n! up to a topological constant (when we restrict our
attention toAhol). Now, the Euler-Lagrange equation for the functional

∫
X

|∧FA|2 ωn

n!
isDA(

∧
FA) = 0. It can be reduced to

∧
FA = µEIE if E is irrreducible. It is because
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the Euler-Lagrange equation implies that
∧
FA is a parallel endomorphism and therefore

their eigenspaces are all holomorphic subbundles ofE. WhenE is irreducible,E itself
is the only non-trivial subbundle. So, the endomorphism

∧
FA has to be constant which

is fixed by the topology of the bundle.
From another point of view, the Yang-Mills equation onE (that is the Euler-Lagrange

equation of the functional
∫

X
|FA|2 ωn

n! ) isD∗
AFA = 0. WhenX is Kahler andA ∈ Ahol,

we haveD∗
A = [DA,

∧
]. So,

0 =D∗
AF = DA(

∧
FA) −

∧
(DAFA) = DA(

∧
FA)

by the Bianchi identity. Hence, the two equations are equivalent.

Stability. Existence of solutions to
∧
FA = µIE on E can be rephased in algebraic

geometric languages. By [N+S],[Do] and [U+Y], there exists a Hermitian Einstein metric
onE if and only if E is a Mumford stable bundle. In such a case, the metric is also
unique up to scaling by a global constant. (WhenE is not irreducible, then existence of
the Hermitian Einstein metric onE is equivalent toE being a direct sum of irreducible
Mumford stable bundles overX with the sum slope, we called such a bundleE a
Mumford poly-stable bundle.)

Mumford stability is only the “linearization” of stability in studying moduli spaces
of vector bundles using Mumford’s Geometric Invariant theory. In geometric invariant
theory of vector bundles, Gieseker [Gi] found the correct notion of stability and stated
them in geometric terms. In the thesis, the author found that stability is in fact equivalent
to existence of solutions to moment map equations for8k with k large (and control
of the curvature of the solutions ask goes to infinity). To solve that (fully-nonlinear)
equation, the author used a very involved singular perturbation method which identified
the obstruction for perturbations is precisely the unstability [Le1, Le2]. The basic idea
is whenk goes to infinity, we expected the family of solutions will blow up (provided
it exists). Different directions will blow up according to different rates. However, this
information can be captured from algebraic geometry. Then we try to perturb the singular
solution (whose existence can be proved by using a theorem of Uhlenbeck and Yau) to
finite k; there will be numerous obstructions.

We can identify all these obstructions. In fact, obstructions vanish precisely when
the bundle is Gieseker (poly-)stable. Instead of trying to solve the equations, we shall
discuss the geometry underlying these�k ’s, 8k ’s and their higher degree cousins.

First we want to set8k equal to a constant multiple ofω
n

n! IE . The constant has to
be 1

rk(E)χ(X,E ⊗ Lk), whereχ is the index of the corresponding operator given by
the Atiyah-Singer index theorem. Therefore, the equations defined by the moment map
would become

[e
i

2π FA+kωIETd(X)](2n) =
1

rk(E)
χ(X,E ⊗ Lk)

ωn

n!
IE .

These equations describe the stability properties of the hlomorphic bundles. Unlike
the Hermitian Einstein equations, this system of equations is fully nonlinear unlessn = 1.
Instead of∂̄ operator, we can use the Dirac operator and replaceTd form by Â forms.
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4. Space of Generalized Connections

In this section, we shall explain a setting which is more suitable for studying the symplec-
tic quotient ofA (or Ahol) by G with respect to�[2] . All the proofs here are elementary
and sometimes we only sketch the reasonings. From the last section, we know that it is
natural to putA(E⊗Lk)’s together for largek. Stability depends only on the ‘direction’
L and one should not distinguishE amongE ⊗ Lk ’s. We are going to explain how to
achieve these in a natural manner by allowingk to be any complex number. Moreover,
in this approach, we do not need to assume that the symplectic formω is an integral
form. To do this, we need to define generalized connections onE.

Review of connections.Let us first recall the definition of connections inČech languages.
Let U be a good cover ofX. That is, for anyUi, Uj , . . . , Uk ∈ U ,Ui,j,...,k ≡ Ui ∩Uj ∩
· · · ∩ Uk is a contractible set. Then the bundleE is determined by a collection of
gluing functions:{gij : Uij → GL(r)} which satisfiesgij = g−1

ji andgijgjkgki = 1.
Two collectionsg andg′ are equivalent if there exists{hi : Ui → GL(r)} satisfying
g′

ij = h−1
i gijhj .

A connectionDA is a collection of matrix-valued one form onU , {Ai ∈ �1(Ui, gl(r))}.
OnUij , they satisfy

Aj = g−1
ij Aigij + g−1

ij dgij .

Now, a generalized connectionDA is essentially the same thing except that we relax
the last equality to

Aj = g−1
ij Aigij + g−1

ij dgij + dθij

for some collection{θij : Uij → C} which satisfiesθij = −θji andd(θij +θjk+θki) = 0.
The definition of gauge equivalent for two generalized connections are the same as
ordinary connections:A′

i = g−1
i Aigi + g−1

i dgi for some automorphism{gi : Ui →
GL(r)}.

Let Fi = dAi +Ai ∧Ai, then one can prove that we still haveFj = g−1
ij Figij . That

is F ∈ �2(X,End (E)). One can also verify that the notion of generalized connections
is well-defined and independent of the choice of good coverU or the gluing functions
{gij} of E.

Generalized connections.

Definition 1. A collectionDA = {Ai ∈ �1(Ui, gl(r))} is called a generalized connec-
tion if

Aj = g−1
ij Aigij + g−1

ij dgij + dθij

for some collection{θij} as before.
The curvatureFA ∈ �2(X,End (E)) ofDA is defined to be

Fi = dAi +Ai ∧Ai

onUi. Ã[E] denotes the space of all generalized connections onE.

We collect some basic facts aboutÃ[E] in the following lemma.

Lemma 2. (1) A(E) ⊂ Ã[E] .

(2) Ã[E] ≡ Ã[E⊗L] for any line bundleL.
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(3) Ã[E] has a natural affine structure such thatA(E) is an affine subspace of it of
codimensionb2(X).

In a sense,Ã[E] should be regarded as
⋃

L,k A(E ⊗Lk) where theL’s forms a base
of H2(X,Z)/Tor andk ∈ C. Previously, in order to identifyA(E) andA(E ⊗ L),
we have to pick a connection onL. But now,Ã[E] andÃ[E⊗L] are always canonically
isomorphic to each other. So it is natural to consider equivalent classes of vector bundles
which are isomorphic to each other modulo tensoring with line bundles. We denote the
equivalent class ofE by [E]. That is [E ⊗ L] = [E] for any line bundleL.

Notice thatEnd([E]) is a well-defined bundle onX and the groupG of all gauge
transformations of [E] is also a well-defined notion for the equivalent class.

Let c1([E], DA) = i
2πTr FA be the first Chern form of any generalized connection

DA ∈ Ã[E] . It is always a closed two form onX. However, its cohomology class is not
determined by [E]. In fact, it induces a surjective affine homomorphism

c1 : Ã[E] → H2(X,C)

andG acts onÃ[E] preserving the fiber ofc1.
Now, � ≡ �[2] can be naturally extended to aG invariant relative closed two form

on Ã[E] .

Relative forms.Let us first define the relative notion which will also be used in later
sections. Suppose thatX → P

π→ M is a fiber bundle overM . We have a canonical
exact sequence of vector bundles overP :

0 −→ TvertP −→ TP −→ π∗TM −→ 0,

whereTvertP denote the vertical tangent bundle (or the relative tangent bundle). In fact,
we can regard this exact sequence as the definition ofTvertP . Recall that ak-form is a
section of

∧k(TP ) overP .

Definition 2. A relative k-form is a section of
∧k(TvP ) overP .

A relative connectionDrel
A on a bundleE overP is a first order relative differential

operator
Drel

A : 0(P,E) −→ 0(P, T ∗
vertP ⊗ E),

that is,
Drel

A (fs)(v) = v(f )s + f (Drel
A s)(v)

for anyf ∈ C∞(P ), s ∈ 0(P,E) andv ∈ TvertP .
Thecurvature ofDrel

A is F rel
A = (Drel

A )2.

An ordinaryk-form (resp. connection ofE) onP induces a relativek-form (resp.
relative connection ofE). Notice that the curvature of a relative connection is a relative
two form onP with End(E)-valued.

If we are given a splitting ofTP as a direct sum ofTvertP andπ∗TM then a relative
form can be extended to a form onP by assigning zero toπ∗TM . For example, whenP
has a Riemannian metric orP is a product ofX andM , thenTP ≡ TvertP ⊕ π∗TM .

Extended moduli space.Now,� is aG invariant relative closed two form oñA[E] . (The
theory of deRham model of equivariant cohomology can be extended to the relative
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case.) Then� admits aG-equivariant closed extension� + 8. Just as before, for any
DA ∈ Ã[E] andφ ∈ �0(X,End([E])), 8 is given by

8(DA)(φ) =
∫

X

Tr e
i

2π FAφ Â(X).

For any non-vanishing top formµ onX, 8−1(C · µIE) would be preserved byG.

Definition 3. M̃µ := 8−1(C · µIE)/G is called the extended moduli space.

Now, c1 descends to give a mapc1 : M̃µ → H2(X,C).
To study the stability problem, we have to introduce polarization to specify a partic-

ular direction inÃ[E] .

Definition 4. A polarizationP is a line field inÃ[E] which is invariant under affine
translations.P is called regular if it is transverse to the fiber ofc1. Two regular polar-
izations are equivalent to each other if they induce the same line field inH2(X,C).

It is easy to see that given a line bundleL and a connectionDL on it. They induce
a regular polarization inÃ[E] . Different choices of connections always give equivalent
polarizations.

Remark .The word polarizatioon we used here comes from algebraic geometry which
means a choice of an ample line bundle up to numerical equivalency. This should not
be confused with the notion of polarizations used in geometric quantization. We fix a
line bundleL onX and choose a connectionDL onL. Letω = i

2πFL be its curvature.
Then the top formµ = ωn

n! is non-vanishing if and only ifω is a symplectic form. We
are interested in the ends ofMµ. It being non-empty near the +∞ ends is related to
stability properties ofE as explained in the last section. However, now the picture we
have here is more geometric. All the symplectic quotientsA(E ⊗ Lk)//G’s (k ∈ Z)
are embedded inside a bigger continuous family which is the symplectic quotient of
the space of generalized connections. Moreover, “Mµ|c1=+∞” should be regarded as the
moduli space of Hermitian Einstein connections onE. Loosely speaking, asymptotically
nearc1 = +∞, �[2] defines a Poisson structure oñA[E] and restricting to each fiber on
c1, it is a symplectic form.

5. Higer Level Chern–Simons Forms

In this section, we shall show that these�∗ deteremine Chern character and Chern–
Simons forms ofE. t the sma time, we define higher level generalzytions of ern–Simons
forms. In order to simplify the diskussion below, we shall assume that the characteristic
form of X is one. The author would like to thank the referee who pointed ot that this
section is closely related to earlier work of Gefand and Wang. In fact, the author found
out later that this is also related to certain previous work of BOtt.

InsideA, there is a canonical affine foliation such that any two connectionsDA and
D′

A are in the dame leaf if and only ifD′
A = DA + αIE for some one formα onX.

Interm of an (integrable) subbundle of A, it is given by�1(X) ⊂ (�1 End(E)
)

= TAA.
We restrict�[∗] to a differential form along the foliation (see relative forms in Sect. 3).

We shall still denote this relative differential form an (A) by�[∗] . We are going to see that
�[∗] is equivalent to the operation of taking the Chern character form of any connection.
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For exaple,ω[2k] ⊂ 0
(A,∧ 2kT ∗A) now gives a homomorphism:

A × �2k ↪→ γ(A,
2k∧

(TcalA))
�[2k]

−→ C

By abuse of languages, we also denote this homomorphism by�[2k] . The we have

�[2k] (DA, γ) =
∫

x

Tr e
i

2π FAγ.

If we regard�[2k] as a mapA → �2n−2k(X)dist, the the image ofDA is just given
by then− kth Chern character form ofDA. Therefore, taking the Chern character form
of any connection is equivalent to the restriction of the differential form�[∗] to the above
foliation of A.

To recover secondary (or higher level generalized) characteristic forms onE, we
look at the chain complex ofA, S∗(A) and�[∗] defines a chain homomorphism

�[∗] : S(A) → �[∗] (X).

Recall that an element inSl(A) (a singular chain) is a finite linear combination of
singularl-simplexesσ’s on A with complex coefficient. Where a singularl-simplex is
a smooth map from the standardl-simplex1l to A, σ : 1l → A. There is a boundary
homomorphism∂ : Sl(A) → Sl−1(A) with ∂2 = 0 and its homology is called the
singular homology ofA, H∗

sin(A). For completeness, let us recall the notations:

1L =


l∑

j=0

tjPj |suml
j=jtj = 1

 .

whereP0 is the origin ofR∞ andPi in theith standard basis vector inR∞. To define∂,
it is sufficient to know its effect on a singularl-simplexσ : 1l → A. We have:

∂σ =
l∑

i=0

(−1)iσ ◦ ∂i
l ,

where∂i
l : δl−i → 1l is teith face map given by

∂i
l

( ′∑
j = 0tjPj

)
=

i=1∑
j=0

+
l∑

j=i+1

tj−1Pj .

Now we will imitate the previous constructions to obtain characteristic forms for
any singular chain inA,

ω[∗]
l : Sl → �∗(X)dist.

We no longer nedd to assume thatX is even dimensional. It is enough for us to construct
it for a single singularl-simplexσ : 1l → A ansd extend it by linearity.

For any suchσ, we get a connectionAσ on π∗
1E → X × 1l by pulling back the

universal connectionA overE → X ×A. We denote its curvature byFσ.
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Definition 5. We define�[∗]
l : Sl(A) → �∗(X)dist by

�
[∗]
l (σ)(γ) =

∫
X×1L

Tr e
1
2 Fαγ.

Lemma 3. �[∗]
∗ commute with the (co-)boundary operators of both complexes. That is,

d ◦ �
[∗]
l = �

[∗]
l−1 ◦ ∂.

This lemma follows from the Stokes’s theorem. Next, we shall use�
[∗]
l define secondary

characteristic forms (Chern–Simons forms) and their higher level generalizations. We
first define a mapLwhich is similar to the homotopy operatorK : S : ∗(A) → S ′ ∗ (A)
defined by one construction. (since [K, ∂] = 1 or −1, this was used to prove that the
singular homology of an affine space is trivial.) Now,

Ll :
l+1∏

A → SL(A).

Roughly speaking,Ll is given by the complex polyhedron spanned byl + 1 points
in A. Notice that bothK andL use strongly the affine structure onA. Let us write
σ = Ll(DA0, . . . , DAl

), thenL is defined by as

σ

(
l∑

i=0

tjPj

)
=

l∑
j=o

tjDAj .

Here,
∑l

j=o tjDAj is a well-defined element inA because of
∑l

j=0 tj = 1.
We can extendLl by linearity to the free Abelian groupAl generated by elements

in
∏l+1 A, that is,

Ll : A := Z

[
l+1∏

A
]

→ Sl(A)

OnA∗, there is also a boundary operator∂A : AL → Al−1 defined by

∂A(A0, . . . , A : l) =
l∑

i=0

(−1)i(A0, . . . , Âi, . . . , Al)

on any generator (A0, . . . , Al) in AL. The proof of the following lemma is straightfor-
ward.

Lemma 4. (1) ∂2
A ==,

(2)L ◦ ∂A = ∂ ◦ L.

Now we can define a higher Chern–Simons form as follow:

Definition 6. The higher Chern–Simons is the linear homomorphism

ch(E) = �[∗]
∗ ◦ L∗ : A∗ → �∗(X)dist

such that on any generator(A0, . . . , Al) in Al, it is given by

ch(E;A0, . . . , A : l) = �
[∗]
L circLL(A0, . . . , Al).
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In fact, ch(E;A0, . . . , Al) i always a smooth diffrential form onX. Noticce that
ch(E;A=) is just the ordinary Chern character form ofA0 and ch(E;A0, A1) is the
ordinary Chern–Simons form of the pairA0 andA1.

Proposition 3. ch(E) ◦ ∂A = d ◦ ch(E).

This proposition follows from the previous two lemmas. Whenl = 0, this proposition
implies that the ordinary Chern character form is always a closed differential form. When
L = 1, the proposition says that

ch/E;A1) − ch(E;A0) = d?, ch(E; , A0, A1)

, which is the most important property of Chern–Simons forms as the image underd of
a canonical diffferential form (by the proposition forl = 2:

ch(E;A1, A2) − ch(E;A0, A2) + ch(E;A0, A1) = d ch(E;A0, A1, A2).

Using Stokes’ theorem we have∫
X

ch(E;A1, A2) −
∫

X

ch(E;A0, A2) +
∫

X

ch(E;A0, A1) = 0,

which is useful when we use
∫

X
ch(E;A1, A2) as an action functional. For instance, the

Chern–Simons theory over a three manifold uses such a functional and has important
impacts on knot theory and three dimensional topology in recent years.

Thesech(E)’s have another symmetry property. The symmetry group ofl+1 elements
Sl+1, acts onAl and we have the following proposition.

Proposition 4. For anys ∈ Sl+1 andα ∈ Al, we have

ch(E; s · α) = (−1)|s|ch(E;α).

The proof of this proposition is left to the readers. When we look at the case for
l = 1, we get

ch(E;A0, A1) = −ch(E;A1, A0),

which is a well-known property for Chern–Simons forms.
Hence, we have finished constructing higher Chern–Simons forms ofE usingω[∗] ’s.

6. Equivariant Extensions of�[∗]

In the last section, we analyze�[2] (= �) and itsG-moment map8. We showed that how
they are related to the Hermitian Einstein metric and stability whenX is a symplectic
manifold. In this section, we first generalize the moment map construction to all�[∗] ’s
and study their equivariant extensions�[∗,∗] .

Let us first review some basic materials about equivariant cohomology. (See, for
example [A+B] [M+Q] for details.) We shall decribe the Cartan model here. WhenM
admits aG (compact connected Lie Group) action, then the equivariant cohomology of
M is defined as

H∗
G(M ) = H∗(EG×G M ),

whereEG is the Universal space forG. It can be computed as the cohomology of the
following differential complex on (�∗(M )⊗Symm∗(Lie G)∗)G. Choose any baseφi’s
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of Lie G and letφi’s be its dual base. For anyα⊗ψ ∈ �∗(M ) ⊗Symm∗(Lie G)∗, we
define the differentialD to be

D(α⊗ ψ) = dα⊗ ψ −
∑

i

ιφi
α⊗ (φiψ).

It is not difficult to check thatD2 vanishes onG invariant elements in�∗(M ) ⊗
Symm∗(Lie G)∗. Therefore, it defines a differential complex on (�∗(M )⊗
Symm∗(Lie G)∗)G whose cohomology can be proved to beH∗

G(M ). Although, in
our situation, the groupG is not a compact finite dimensional Lie Group, we shall
still consider the same complex and call it the equivariant complex. Elements that are
D-closed (-exact) are called equivariant closed (exact) forms.

Equivariant extensions of�[∗] . Now, we want to extend each�[2k] as aG equivariant
closed form onA for anyk. That is, we should have

∑
i+j=k �[2i,2j] , where

�[2i,2j] ∈ �2i(A, Symmj(Lie G)∗)G ,

such that�[2k,0] = �[2k] and for anyφ ∈ Lie G = �0(X,End (E)), we have

ιφ�[2i,2j] = d(�[2i−2,2j+2](φ)).

Theorem 1.
�[2i,2j] (DA)(B1, . . . , B2i)(φ1, . . . , φj)

=
∫

X

Tr [e
i

2π FAB1 · · ·B2iφ1 · · ·φj ]symÂ(X),

whereDA ∈ A,B ∈ TAA = �1(X,End (E)), φ ∈ Lie G = �0(X,End (E)).

Proof of Theorem.Before proving the theorem, let us first explain some notations.�[2i,2j]

is a 2i-form onA valued in thejth symmetric power of the dual of Lie algebra ofG and
it is alsoG-invariant. At a pointDA ∈ A and 2i tangent vectorB’s atDA, �[2i,2j] gives
an element inSymmj(Lie G)∗. Evaluating it on thej element ofLieG, then it gives us
a number which we claimed to be given by the above formula.

First,G invariancy of�[2i,2j] is clear from the formula.�[2k,0] = �[2k] can also be
seen directly. It remains to verify that

j∑
l=0

ιφl
�[2i,2j] (φ0, . . . , φ̂l, . . . , φj) = d(�[2i−2,2j+2](φ0, . . . , φj)),

where eachφl ∈ Lie G = �0(X,End (E)). Now, we take anyB1, . . . , B2i−1 ∈ TAA =
�1(X,End (E)) and extend it to vector fields over all ofA by parallel transport. Then
[Bi, Bj ] is always a zero vector field onA. (Here, [, ] means the bracket of two vector
fields on the spaceA.) Therefore,

d(�[2i−2,2j+2](φ0, . . . , φj))(B1, . . . , B2i−1)

=
2i−1∑
l=1

(−1)l+1Bl(�
[2i−2,2j+2](φ0, . . . , φj)(B1, . . . , B̂l, . . . , B2i−1))

=
2i−1∑
l=1

(−1)l+1
∫

X

Tr[e
i

2π FA (DABl)B1 · ·B̂l · ·B2i−1φ0 · ·φj ]symÂ(X)
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On the other hand,

ιφl
�[2i,2j] (φ0, . . . , φ̂l, . . . , φj)(B1, . . . , B2i−1)

=
∫

X

Tr[e
i

2π FA (DAφl)B1 · ·B2i−1φ0 · ·φ̂l · ·φj ]symÂ(X)

Hence,( j∑
l=0

ιφl
�[2i,2j] (φ0, . . . , φ̂l, . . . , φj) − d(�[2i−2,2j+2](φ0, . . . , φj))

)
(B1, . . . , B2i−1)

=
∫

X

Tr[e
i

2π FADA(B1 · ·B2i−1φ0 · ·φj)]symÂ(X)

=
∫

X

d Tr[e
i

2π FAB1 · ·B2i−1φ0 · ·φj ]symÂ(X)

= 0

by the Stokes’s theorem. So we have proved the theorem.�
In particular, when we look at�[2] = �0, we recover the moment map80 as

�[0,2]. The extension of the total�[∗] asG equivariant closed form onA would be∑
i+j≤n �[2i,2j] since the highest degree form in�[∗] is of degree 2n. We can relax the

restrictioni+j ≤ n and obtain an equivariant closed form of arbitrart large total degree,
we shall denote it by�[∗,∗] .

�[∗,∗] as equivariant pushforwards.From previous section, we know that�[∗] occurred
as the Chern character of the virtual bundle by the family local theorem. Recall that

�[∗] =
∫

X

Tr e
i

2π FÂ(X).

and weextended�[∗] as aG equivariant closed form onA. Now, we are going to
extend the results in section two. So we want to extendTr e

i
2π FÂ(X) to aG equivariant

closed form onX × A such that we get�[∗,∗] by integrating it overX.
Let us first consider an example where we want to find an element in�2n(X ×

A, (Lie G)∗)G such that it gives usφ by integrating it overX. This is clear that this is
given by the 2n-form Tr[e

i
2π FAφ](2n)(x) at a point (x,DA) ∈ X × A when evaluating

it on φ ∈ Lie G = �0(X,End (E)). To generalize it to other�[∗,∗] ’s, we introduce1
and such thatTr e

i
2π F+1Â(X) would be ourG equivariant form onX × A.

Definition 7. Let1 ∈ �0(X × A, End(E))(Lie G)∗ be given by

1(x,DA)(φ) = φx,

where(x,DA) ∈ X × A andφ ∈ Lie G = �0(X,End (E)).

By evaluating1 onφ at (x,DA), we should arrive at an element in (EndE)(x,A) =
EndEx, and1 is defined such that this element is just given byφ atx. Therefore,1 is
an tautological element and independent of the variableDA ∈ A. Put it another way,1
is the pullback from the identity element in

�0(X,End (E))(Lie G)∗ ≡ Map(�0(X,End (E)),�0(X,End (E))).
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Now we considerTrE e
i

2π F+1Â(X). In the exponential sums, we multiple forms on
X × A by exterior product and elements in (Lie G)∗ by symmetric product. Therefore,
we have

TrE e
i

2π F+1Â(X) ∈ �∗(X × A, End(E))(Symm∗(Lie G)∗).

Theorem 2. TrE e
i

2π F+1Â(X) is aG equivariant closed form onX × A.

Proof of Theorem.To prove the theorem, we can forget theÂ(X) term. It is rather straight
forward to check thatTrE e

i
2π F+1 isG equivariant. To prove that it is equivariantly closed,

we choose anyφ ∈ Lie G = �0(X,End (E)). Then, by Bianchi identityDF = 0, we
have

d(Tr e
i

2π F+1(φ)) = Tr [e
i

2π F+1D(1φ)]sym,

whereD is the universal connection onE.
On the other hand, we have

ιφTr e
i

2π F+1 = Tr [e
i

2π F+1ιφF]sym.

Therefore, in order to prove thatTr e
i

2π F+1 is equivariantly closed, it is enough to
check that

ιφF = D(1φ).

At a point (x,DA) ∈ X×A,φ induces the vector field (0, DAφ) ∈ T(x,DA)(X×A)
= TxX × TDA

A = TxX × �1(X,End (E)). If we choose any other vector (v,B) ∈
T(x,DA)(X × A), then

ιφF(x,DA)(v,B)

= F(x,DA)((v,B), (0, DAφ))

= (F2,0 + F1,1)(x,DA)((v,B), (0, DAφ))

= FA(x)(v, 0) + (DAφ)(x, v)

= (DAφ)(x, v).

ForD(1φ), we have

D(1φ)(x,A)(v,B)

= (DA,xφ)(x)

= (DAφ)(x, v).

Therefore, we haveιφF = D(1φ) andTrE e
i

2π F+1 is aG equivariantly closed form
onA. �

Next, we shall show that the pushforward of this form gives�[∗,∗] on A which
generalizes

∫
X
TrE e

i
2π FÂ(X) = �[∗] .

Theorem 3. ∫
X

TrE e
i

2π F+1Â(X) = �[∗,∗] .
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Proof of Theorem.For simplicity, we shall omit some factors of the power ofi
2π in the

calculation below. We consider the component of
∫

X
TrE e

i
2π F+1 in �2i(A, Symmj

(Lie G)∗). We evaluate it on 2i tangent vectorsB’s onA andj elementsφ’s in LieG at
a pointA ∈ A,( ∫

X

TrE e
i

2π F+1Â(X)
)
(DA)(B1, . . . , B2i)(φ1, . . . , φj)

=
∫

X

Tr e( i
2π (F2,0+F1,1)+1)(x,DA)(B1, . . . , B2i)(φ1, . . . , φj)Â(X)

=
∫

X

Tr [e
i

2π FA
(F1,1)2k

(2k)!
(B1, . . . , B2i)

12j(x,DA)
(2j)!

(φ1, . . . , φj)]symÂ(X)

=
∫

X

Tr [e
i

2π FAB1 · ·B2iφ1 · ·φj ]symÂ(X)

= �[2i,2j] (DA)(B1, . . . , B2i)(φ1, . . . , φj).

Hence the theorem. �
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