
Bando Futaki Invariants and Kähler Einstein metricNaichung Conan Leung9/30/96Abstract. We show that on a Kähler Einstein manifold, existence ofalmost Kähler Einstein metrics if and only if Futaki Bando invariants are allzero. We also discuss their relationships with the supertrace of heat kernel.Contents1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Bando Futaki Invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Proof of the theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Relation to the supertrace of heat kernel . . . . . . . . . . . . . . . . . . . 61. IntroductionNarasiham and Seshadri, Donaldson, Uhlenbeck and Yau proved that an irreducibleholomorphic vector bundle E over a Kähler manifoldX is Mumford stable if and onlyif there exists a Hermitian Einstein metric. In order to uncover stability from geo-metric invariant theory point of view, we need to study Gieseker stability (Mumfordstability is only a linearized version of Gieseker stability in some suitable sense.)In [Leung], the author discovered the following equation�ek!+F TdX (!)�(n;n) = �k !nn! IEwhich explains Gieseker stability in term of di�erential geometry. Solutions to theabove equations are called almost Hermitian Einstein metrics.For Kähler Einstein manifold, we shall study a similar equation:�ek!TdX (!)�(n;n)=� �X;OX(Lk)� !nn!As we shall see in later section that this expression is related to the super-traceof heat kernel that appeared in the Atiyah-Singer local index theorem.The main result of this paper is to prove that the existence of solution to thisequation for large value of k is equivalent to vanishing of certain Bando Futaki in-variants.More generally, one can look at equation of the following form: For any charac-teristic class A [X] = A0 [X] + A2 [X] + ::: + A2n [X] with Al [X] 2 H2l (X;R) of X1



Bando Futaki Invariants and Kähler Einstein metric 2satisfying (i) A0 [X] 6= 0 and (ii) A1 [X] = Cc1 (M) for some nonzero constant C: Weconsider the following equation:�ek!A (X;!)�(n;n) = Ck !nn!where A (X;!) being the characteristic form of X representing A [X] de�ned using! via the Chern Weil theory and Ck is a suitable constant. Examples of such A [X]include the Todd class TdX and the bA� class of X, bA [X] : Our methods in this papercan be used to deal with any equation of this form.For simplicity, we choose A [X] to be the full Chern character class of X; ch (X) :Then we have �ek!ch (X;!)�(n;n) = Tr �k! + i2�F �n =n! and we call the correspondingequation the almost Kähler Einstein equation:Tr�k! + i2�F �n =Ck !nn!or equivalently �! + i�2�F �n = ��ITX !nn!where � = 1k :The goal is to understand its relation with stability of the manifoldX itself. How-ever, in this case, there are new obstructions to the existence of solutions which comesup even when X carries a Kähler Einstein metric. We identify those obstructions pre-cisely as Bando Futaki invariants. Recently, Tian has some important progress onthis problem of relating manifold stability and existence of canonical metric.To begin with, we suppose that X is a compact Kähler manifold of dimensionn whose �rst Chern class has a de�nite sign. We shall assume the Kähler class isproportional to the �rst Chern class. The Kähler Einstein equation of X is as follow:Rc��� = Cg���where Rc��� is the Ricci curvature form and the constant C (after the metric beingnormalized) is 1; 0 or �1 according to the sign of c1 (X). We can also rewrite thisequation in an equivalent form: i2�F ^ !n�1(n�1)! = C !nn! ITXwhere F 2 
1;1 (X;End (TX)) is the full curvature tensor of X with respect to theKähler form !. Motivated from [Leung]. we look at the following perturbed equation:�! + i�2�F �n = ��ITX !nn!As � goes to zero, then we will recover the Kähler Einstein equation from theseequations.



Bando Futaki Invariants and Kähler Einstein metric 3We would be interested in elliptic solutions of these equations for small positive�. Here, �� is a topological constant given by�� = 1n � vol (X) nXj=0 ZX �jchj (X)^ 
n�j(n�j)!where chj (X) is the jth Chern character of X and 
 is the Kähler class.Because of Kählerian, to solve the Kähler Einstein equation, we only need tosolve the trace of the equation. To be precise, it is the equation of constant scalarcurvature: Tr F ^ !n�1 = C!nSimilarly, we will be interested to the trace of the perturbed equation, that isTr �! + i�2�F �n = �� !n(n�1)!Solutions to this equation will be called almost Kähler Einstein metrics.This is a fully non-linear fourth order equation in the Kähler potential. To solveit in general would be very di�cult. In this paper, we shall show that the existenceof solutions to these equations is closely related to the vanishing of Bando-Futakiinvariants. 2. Bando Futaki InvariantsIn [Futaki], Futaki introduced an invariant on any Kähler manifold with positive�rst Chern class (that is Fano manifolds). This invariant is an obstruction for theexistence of Kähler Einstein metric. By viewing the Einstein condition as harmonicityof the �rst Chern form, Bando [Bando] generalized Futaki invariant to obstructionfor harmonicity of higher Chern forms of X.Let ! be a Kähler form in the (given) Kähler class 
. Let chj (!) = Tr � i2�F �jdenotes the jth Chern character form of X, where F is the curvature tensor of X withrespect to the Kähler metric de�ned by !. We denote the harmonic part of chj (!)by Hchj (!) as in the Hodge decomposition. Since both chj (!) and Hchj (!) are inthe same cohomology class, there exists a (real) form bj (!) such thatchj (!)�Hchj (!) = i2�@ �@bj (!)Such a bj (!) is unique up to addition of a @ �@-closed form.De�nition 1 [Bando-Futaki Invariants]. fj : H0 (X; TX)! Cfj (V ) = ZX LV bj (!) ^ !n�j+1



Bando Futaki Invariants and Kähler Einstein metric 4Each fj is a well-de�ned Lie algebra homomorphism independent of the particularchoice of the Kähler metric ! in the Kähler class 
. Moreover, if chj (!) is harmonicfor some Kähler form ! 2 
, then fj will be identically zero.In general, it is rather rare for higher Chern character forms to be harmonicbecause the corresponding equations are overdetermined. However, these invariantsare useful for our almost Kähler Einstein equation as indicated in our theorem below:Theorem 1. LetX be a compact Kähler Einstein manifold. If c1 (X) is non-positive,then Tr �!ITX + � i2�F �n = �� !n(n�1)!have elliptic solutions for all su�ciently small positive �.If c1 (X) is positive, then it has elliptic solutions for all su�ciently small positive� if and only if all Bando-Futaki invariants fj 's are zero homomorphisms.3. Proof of the theoremSince X admits Kähler Einstein, which is the same as the existence of solution of ourequation for � = 0 after rewriting the equation fromTr �! + i�2�F �n = �� !n(n�1)!to Tr �F ^ !n�1(n�1)! + � F 2 ^ !n�2(n�2)! + ::::::� = ����1� � !n(n�1)!First, we suppose that the �rst Chern class of X is non-positive. In this case,by Yau's solution [Yau] to Calabi conjecture, there exists a unique Kähler Einsteinmetric in 
. A simple application of implicit function theorem on suitable Banachspace will show that the above almost Kähler Einstein equation can be solved forsu�ciently small positive �.Fix any background metric !0 2 
. For simplicity, we assume that !0 is a KählerEinstein metric. Let Bk+2;�+ be the Banach manifold of all Ck+2;� functions ' on Xsuch that RX ' = 0 and !0 + i@ �@' is a positive (1,1) form. Also, let Bk�2;� be theBanach space of all Ck�2;� functions ' on X with RX ' = 0. We consider a Fréchetcontinuously di�erentiable map �� :Bk+2;�+ ! Bk�2;� de�ned by�� (') !nn! = 1� hTr �!ITX + � i2�F �n � �� !n(n�1)!iwhere ! = !0 + i@ �@' and F is the curvature of X de�ned by !. Then, ��=0 (0) = 0.The di�erential of ��=0 at ' = 0 is given by d��=0 (0) : Bk+2;� ! Bk�2;�d��=0 (0) ( ) = 4 (�4 + C )



Bando Futaki Invariants and Kähler Einstein metric 5where 4 is the Laplacian operator.Since C is either 0 or �1, d��=0 (0) is invertible. Therefore, by implicit functiontheorem [G-T], d�� (') = 0 can be solved for small �.From now on, we assume c1 (X) is positive and 
 = c1 (X) :Second, we assume that our equation Tr �!ITX + � i2�F �n = �� !n(n�1)! have solu-tions for all su�ciently small � and we shall proves that Futaki-Bando invariants allvanish in this case. The proof of this part uses Bourguognon's arguments for Bando'sresults.Lemma 2. Under the above situation, we havenXj=0 �jfj (V ) = ZX  V (!) Tr �!ITX + � i2�F �nwhere  V (!) is the unique function on X determined by RX  V (!) !nn! = 0 and LV ! =i2�@ �@ V (!).From our assumption, Tr �!ITX + � i2�F �n = �� !n(n�1)! ; we haveRX  V (!)Tr �!ITX + � i2�F �n= �� RX  V (!) !n(n�1)!= 0from the de�nition of  V (!). So nPj=0 �jfj (V ) = 0 for all small �. It implies thatfj (V ) = 0 for all j and for all holomorphic vector �eld V 2 H0 (X; TX).Third, we are going to prove the converse. Suppose fj 's are all zero and !0 is aKähler Einstein metric of X. As in the �rst part of the proof, we haved��=0 (0) ( ) = 4 (�4 +  )However, d��=0 (0) is only invertible on the orthogonal complement to the eigenspaceof 4 with eigenvalue one, which we call B?. That is� � d��=0 (0) : Bk+2;�? ! Bk�2;�?is an invertible linear operator. Here � : B! B? is the orthogonal projectionoperator. We apply the implicit function theorem on B?,� �Tr �!ITX + � i2�F �n =!n� = ��(n� 1)!



Bando Futaki Invariants and Kähler Einstein metric 6can then be solved for all small �.Let !� be an analytic path (in �) of Kähler metrics which solve the above equationand let '� = Tr �!�ITX + � i2�F��n =!n � ��(n�1)!Suppose that @'�@� j�=0 6= 0, then0 = nXj=0 �jfj (V ) = ZX  V (!)'�!n�by our assumption on vanishing of Bando-Futaki invariants. This implies that0 = ZX  V (!0)�@'�@� j�=0�!n0Lemma 3. Under the above situation, we have�4  V (!0) +  V (!0) = 0and V 7!  V (!0) is an isomorphism from H0 (X; TX) to the eigenspace H�=1of 4with eigenvalue one.The previous equation shows that @'�@� j�=0 is perpendicular to every element inH�=1: One the other hand, @'�@� j�=0 2 H�=1. Therefore, @'�@� j�=0 is the zero elementwhich contradicts our assumption.In a similar fashion, we obtain that @r'�@�r j�=0 = 0 for all r > 0. This implies that'� � '0 = 0: That is, Tr �!ITX + � i2�F �n = �� !n(n�1)!can be solved for all su�ciently small positive �. Hence, we have our theorem.Remark 1. Most of the materials presented here can be generalized to Kähler metricwith constant scalar curvature easily.4. Relation to the supertrace of heat kernelNow we come back and look at equations corresponding to A [X] = TdX :�ek!TdX (!)�(n:n)=� �X;OX(Lk)� !nn!where TdX (!) is the Todd form of X written in terms of the Kähler form ! via ChernWeil theory and � �X;OX(Lk)� is the Hilbert polynomial of X with respect certainpolarization L:



Bando Futaki Invariants and Kähler Einstein metric 7As in the almost Kähler Einstein equation case, the limiting equation as k goes toin�nity becomes the Kähler Einstein equation Rc��� = Cg��� since the �rst Todd classis represented by the Ricci form of !: Moreover, over a Kähler Einstein manifold X;existence of solution to this equation for large value of k is equivalent to vanishing ofcertain Bando Futaki invariants (as readers can easily verify this using methods fromlast section).Let us now recall the heat kernel of the operator �@ on 
0;� �X;Lk� and the localAtiyah-Singer index theorem. The Dirac operator for Kähler manifolds can be iden-ti�ed as D = p2 ��@ + �@�� acting on 
0;� �X;Lk� : Let kt (x; x) denote the restrictionof heat kernel of D2 to the diagonal.. Then by the local Atiyah Singer index theorem(see [BGV, BGV] for more details), the limit to the supertrace of kt exists as t goesto zero. More precisely one has the formula:limt!0+ Trskt (x; x) jdxj = �ek!TdX (!)�(n:n)Combining with our earlier discussions, we know that for Kähler Einstein manifoldwith vanishing Bando Futaki invariants, we can �nd Kähler metric (depending on k)on it such that for large enough k; the supertrace of heat kernel of Dirac operator onLk will converge to a constant multiple of its volume form as t goes to zero.More generally, we can look at the twisted Dirac operator D on 
p;� �X;Lk�. Weobtain the following theorem:Theorem 4. LetM be a compact Kähler Einstein manifold with polarization L:Wedenote the twisted Dirac operator acting on 
p;� �X;Lk� by D:Suppose that Bando Futaki invariants of M all vanish. Then for k su�cientlylarge, there exists a canonical Kähler metric ! onM such that the limit of supertraceof the heat kernel of D as t goes to zero will exist and equal to a constant multipleof the volume form. That is limt!0+ Trskt (x; x) jdxj = C !nn!for some constant C depending on Todd class of M only.The proof of the theorem are similar to the untwisted case. First we need tochoose A [X] to be ch (�pT �X) ^ TdX : In the perturbation scheme that we used inearlier sections, we started with a Kähler Einstein metric on X: By applying themethod we used in previous sections, we know that as long as the Bando Futakiinvariants of M vanish, then we can �nd ! to solve the equation[ch (�pT �X ; !) TdX (!)](n;n) = �k !nn!for large enough value of k: Then we can apply the local Atiyah Singer index theoremand concludes our results.The author would like to thanks G.Tian and S.T.Yau for their help.
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