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1 Introduction 

Recently, Seiberg and Witten introduced new coupled equations on any compact 
smooth four dimensional oriented manifold X. In [W], Witten studied the space 
of solutions of these equations and defined differentiable invariants for X when 
b~(X) > 2. He also identifies these invariants when X is a K/ihler manifold and 
proves a vanishing theorem for manifolds admitting Riemannian metric with 
positive scalar curvature. In ILl, LeBrun studied these equations and generalized 
the (four dimensional) Miyaoka-Yau inequality to Einstein manifolds with non- 
vanishing Seiberg Witten invariants. He gives a new characterization of Einstein 
four manifolds which can be uniformized by the complex two dimensional ball 
B z = { ( z , , z2 )  E r = + Iz212 < 1}. 

In this paper, we shall use the Seiberg Witten equations to study uni- 
formization problems. In the first part, we assume that X is a K/ihler surface 
and examine when X can be uniformized by the product of two unit disks, 
D j • O 1 = {(z,w) E •llzl < 1, lwl < 1}. We shall study the Seiberg Witten 
equations for the reversed orientation of X. Instead of changing the complex 
orientation, we will keep the orientation of X and change the equations to 

F 2  = , 

Dar 
where DA is a connection on a line bundle L and ~ is a section on S L. We 
call these equations the negative Seiberg Witten equations. In section two, we 
will show that the invariant defined by these equations is non-trivial (in fact, 
the invafiant is one) for surfaces which can be uniformized By product of two 
unit disks. 

Then we study the negative Seiberg Witten invafiants for algebraic surfaces 
with K~hler-Einstein metric of negative type. (By Yau's theorem, such a metric 
exists and is unique on any algebraic surface whose canonical line bundle is 
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positive/ample). This in turn gives a characterization of surfaces which can be 
uniformized by the product of two disks. We show in section three, 

Theorem 1. I f  X is an ah.lebraic surface with ample canonical line bundle and 
its negative Seiberq-Witten invariant is non-zero, then X has non-negative 
index, a(X ) >= O. 

Moreover, the i~dex of X is zero if and only if X is un([brmized by the 
product oJ two unit discs. 

Algebraic manifolds which can be unifomaized by product of unit disks 
were investigated by Simpson [S] in the compact case and Yau [Y2] in the 
noncompact case. In those characterizations, we usually assume that the tan- 
gent bundle of X splits holomorphically into a direct sum of holomorphic line 
bundles. Instead of a holomorphic splitting, we assume the non-triviality of the 
negative Seiberg Witten invariants. This then implies the following (weaker 
version of) a result of Jost and Yau [J+Y]: 

Corollary. Let X be an algebraic surjace with ample canonical line bundle. 
I f  X is diffeomorphic to an algebraic surface which can be unijbrmized by 
the product of" two disks. Then X can be uniJbrmized by the product of two 
disks. (B. Wong brought to my attention the conjugate complex structures) 

Remark. When both X and its complex conjugate admit complex structures, 
then by classification theory, their canonical line bundles must be numerically 
effective. If moreover, they are ample, then from the above result, we know 
that the universal cover of X must be the product of two unit disks. 

The studies of the negative Seiberg Witten invariants are in some sense 
parallel to LeBrun's paper [L] where his main interest are manifolds which 
can be uniformized by the complex two ball. 

In the second part of this paper, we shall study non-unitary U(2, 1) con- 
nections and their relation to Seiberg Witten equations. First, a K~ihler Einstein 
metric of negative type is in particular a Hermitian Einstein metric on the 
tangent bundle TX. In fact, it induces a Hermitian Einstein Higgs structure 
on TX | (gx which can be regarded as a U(2, 1) Einstein metric on TX @ (gx. 
These ideas were introduced by Hitchin [Hi] on Riemann surfaces and general- 
ized by Simpson [S] to higher dimensional X to study uniformization problems. 

In our discussion here, X is always of four real dimensions. Going from TX 
to TX | Cx gives us a bundle interpretation of the Chern number inequality 

c~(x) <= 3c2~x) 

on a Kahler Einstein manifold. 
When X is a real four dimensional spin Einstein manifold, the bundle of 

negative spinors S_ is anti-self-dual with respect to the induced metric [AHS]. 
When X is also a K~ihler manifold, then we have the identification TX = S e_ or 

TX = S _  @Kx 1/2 when X is spin. We shall imitate the Kahler case and study 
U(2, 1 ) connection on S_ r @ (gx. We will show that the perturbed anti-self-dual 
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equation on S_ ~ @ (gx decouples into two sets of equations. One is the Einstein 
equation on X and the second one is precisely the Seiberg Witten equations. 

From these, we can give a geometric interpretation of LeBrun's version 
[L] of the Miyaoka-Yau inequality for Einstein four-manifolds with non-trivial 
Selberg-Witten invariants. 

Theorem 2. (I)  IJ' X is a jbur  maniJbM with Riemannian metric ,q. Suppose 
that Jbr some ahnost complex structure on X, there is' a solution to the Seiberg 

( DA ~o 
�9 Ttten equation, (DA, q)). Then ~)(A,~,)= I -* is a U(2, 1) con- 

nection on E = S r @ (9 x with s e l f  dual part o f  its curvature equals 

( ~;+ Rc o I + 
= | + �9 

(A,~) 0 - 3  

(2) When X is' an Einstein metric, then D(A,~) is a perturbed Anti-Sel f -Dual  
U(2, 1) connection on E. We have the Chern number inequality 

c,2(E) < 3c2(E) 

which is equivalent to 
3,r(X) 5 x ( X ) .  

(3) Moreover, equality holds' i f  and only i f  the above U(2, 1) connection is 
projective/), f iat  and X is a Kdhler maniJbld which can be unijbrmized by r  
or the complex two ball B 2. 

In the last section, we study dimensional reduction for perturbed Anti-Self- 
Dual U(2, 1 ) equations. We show that Y2 2 - invariancy will decouple the equation 
into two sets of equations: Seiberg-Witten equations and Einstein equations. 
More precisely, 

Theorem 3, Let  D be any U(2, 1 ) perturbed Anti-Self-Dual connection on 
E = S [  | L -  i ~ (gx. Then D is 02_ invariant i f  and only i f  the Riemannian 
metric is Einstein and the Seiberg-Wit ten equations are satisfied That is, 

Rc = 0 

F + = 6~p~p 

Oq~ = 0 

2 Seiberg-Witten invariants 

The Seiberg-Witten invariants are introduced and studied by Witten [W]. Let L 
be a complex line bundle over (X,g) with 2z(X ) + 3~r(X) = c l (L)  2 and S{ be 
the corresponding complex spinor bundles over X with spin" structure induced 
by L. Notice that the numerical condition on L implies that there exists an 
almost complex structure on X such that cl (L)  equals to its first Chern class 
of X. (Locally, S~ is isomorphic to S+ | L 1/2. Even though S+ and L 1/2 do not 
make sense separately, their tensor products do. See [L+M] for clarifications). 
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The Seiberg Witten equations are 

F = 

~A~o = 0 ' 

where Da is a connection on L and q~ is a section on Sff. A solution for these 
equations is a pair (D~, q)). When 2)~(X)+ 3 a ( X ) =  cl (L)  2, then the expected 
dimension of the moduli space of solutions of  the Seiberg Witten equations 
up to gauge transformations will be zero. (Here x ( X )  and a(X)  are the Euler 
characteristic and index of X). From now on, we shall only consider those 
cases where the formal dimension of the moduli space of solutions is zero. 

When b ~ ( X )  => 2 or ( b + ( X ) = l  and 2 )~(X)+3a(X)  > 0), then for a 
generic choice of  metric .,7 on X, the number of solutions (up to gauge) counted 
with sign will be a differentiable invariant for X. That is, it is independent of  
choices of y. This is called the Seiberg Witten invariant and it is denoted by 
SWL(X).  For more details, readers can refer to following papers: [W], [K+M] 
and [L]. 

If  we reverse the orientation of X, then the corresponding invariant will be 
called the negative Seiberg Witten invariant, S W [ ( X ) .  Put another way, we 
can keep the original orientation but change the equations to 

F 2  = 

~ = 0  ' 

where DA is still a connection on L but ~ is a section on S i -  
It is observed by Witten that for a metric with positive scalar curvature 

R > 0, there is no solution to the Seiberg Witten equation. However, the 
story is very different for a metric with negative scalar curvature. In [L], 
LeBrun showed that for K~ihler metrics with constant negative scalar curva- 
ture, S W g ( X )  = 1 where K is the canonical line bundle for X. 

Instead, we are going to study the negative Seiberg Witten invariant on 
K~ihler manifold X. Suppose that X is covered by product of  two unit discs 
D l x D l . Then (possibly, up to double covering) the holomorphic tangent bun- 
dle TX of X has a holomorphic splitting into a direct sum of two holomorphic 
line subbundles, TX = Lt ~ L2. Let L = L'( l | then we have 

s/- = ~x ~ L ,  

where Ox is the trivial line bundle on X. For simplicity, if TX does not split 
holomorphically, we automatically replace X by its two-fold cover where its 
tangent bundle splits holomorphically. 

Lemma. 2x(X) - 3a(X)  = - e l ( L )  z. 

Proo f  o f  Lemma.  

- ct(L) ~ 

= - ( - - c l (L i )  + cl(L2))  2 

= -- (c t (Ll)  + cx(L2)) 2 + 4cl(Lt)  �9 c1(L2) 

= - cl(Ll |  2 + 4cl(Li ) . ci(L2). 
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Since TX = L1 | L2, by Whitney's  formula, we have 

- -  c l ( L )  2 

= - c l (X)  2 + 4c2(X) 

= 2 c 2 ( X )  - ( e l ( X )  2 - 2 c 2 ( X ) )  

= 2 z ( x )  - 3 r  

Hence the lemma. 

We want to solve equations 

g a A = 0  ' 

where Da is a connection on L and { is a section on S i = (9 x @L. By the 
Atiyah-Singer index theorem and the above lemma, the expected dimension of  
the moduli space of  solutions is zero. 

In fact, if  we choose y to be the unique K/ihler Einstein metric on X, 
then the Levi-Civita connection on TX induces a connection DA on L. Let 

= (1,0)  E (9x ~ L, then (DA,~) gives an irreducible solution to the negative 
Seiberg Witten equations. One can also show that this solution is transverse. 

We are going to show that this is in fact the only solution (up to gauge 
transformations}. 

Let co be the K/ihler form associated to the Kghler Einstein metric on 
X. Then o2 = (or + o)2 where both ~ot and o~2 are covariantly constant and 
coi= -cffLi). By using Weitzenb6ck formula for the Dirac operators 

R 
GOA = v~vA + ~ + G �9 r 

we have [W] a C ~ norm estimate for any solution (DA,~,) to the negative 
Seiberg-Witten equations: 

lr 2 < - R .  

Here R is the scalar curvature which is - 1  in our case and therefore ]{[2 < 1. 
Using the equation F~- = {~, we have 

f lF2J  2 < f lRcx l  2 = f l c o ,  + co:l  2 
x x x 

= f l c o ,  - co2l = .  
x 

The last inequality holds since col and 002 are perpendicular forms (point- 
wisely). Now col - o ) 2  is a parallel form, (in particular, it is harmonic) and 
the cohomology class it represented is -cl(L). Moreover, col - ~o2 is an anti- 
self-dual form, we have 

lxf 12 flo)l - coz[ 2 < - 2 z ? c f f L )  2 + ~ lEA = f l f j - ]  2 
x x 

by the Chem-Weil formula. 
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Therefore, all inequality signs must be equal signs. By I ( [  2 ~--- 1 and the 
l 

Weitzenb6ck formula, we have ra f t  = 0. We also have -~nFA = 0~2- 0.)2. 

These implies ff = (1,0) E (gx @L and DA is induced from the Levi-Civita 
connection from the K~ihler Einstein metric. Hence, the solution to the nega- 
tive Seiberg Witten equation is unique (up to gauge transformation). One can 
also show that this solution is transverse as in [L]. We therefore have the 
following theorem. 

Theorem. l f  X is an algebraic surfitce which can be uniJbrmized by product 
of  two discs. Then ]'or the line bundle L as bejbre, its negative Seiberg Witten 
invariant is i l .  

We should notice that the above arguments are very similar to LeBrun [L] 
where he studied the self-dual Seiberg Witten invariant and proved that 

Theorem (LeBrun). Let X be a Kgihler surface with constant negative scalar 
curvature, then SWK(X)=  1. 

3 Uniformization 

In [Y], Yau proved that any algebraic surface X with ample canonical class 
admits a unique K~ihler-Einstein metric whose scalar curvature is negative. A 
direct consequence of this is a Chern number inequality 

c2(X) <= 3c2(X). 

Moreover. when the equality sign holds, X can be unifomlized by the com- 
plex two dmaensional ball B e =  SU(2,1)/U(2). In [L], LeBrun generalized 
this result to Einstein four manifold with non-zero Seiberg Witten invariant, 
SWr~(Y)4:0. 

in complex two dimension, there are only two Herrnitian symmetric do- 
mains. One is B z = SU(2, I) /U(2) and the other one is the product of  two 
unit discs, D I x D l = SU(1, 1) x SU(I,  I ) /U( I )  x U(1). We will give a char- 
acterization of algebraic surfaces which can be uniformized by D 1 x D ! using 
negative Seiberg Witten invariants. The idea is for algebraic surfaces with am- 
ple canonical bundle which support solutions to the negative Seiberg Witten 
equation, then certain Chern number inequality must hold. Moreover, this Chem 
number inequality can be achieved only for those that can be uniformized by 
the product of two unit disks. 

Notice that, by the Hirzebmch proportionality principle, any such surface 
has zero index, a(X)  = 0. Since 3q(X) = c~(X) - 2c2(X), we have 

c~(X) = 2 c 2 ( X ) .  

Theorem I. l f  X is an algebraic surface with ample canonical line bundle and 
its negative Seiberg Witten invariant is non-zero, then X has non-negative 
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index, ~r(X) >__ O, or equivalently, 

c~(X) > 2c2(X).  

Moreover, the index of  X is zero i f  and only i f  X can be unijbrmized by 
product of  two unit discs D l x D 1. 

Proof of  Theorem 1. By [Y], X admits an unique Kghler Einstein metric 
co, Rcx = -co. Suppose that L is a complex line bundle on X for which 
SWz-(X)+O, then there exists solution (DA,~) to the negative Seiberg 
Witten equations. As before, we have Ill a _< - R  = l by using the Weitzenb6ck 
formula. Using the equation, we get IF2 [2 < R2/8. Because we assume the 
formal dimension of  the moduli space o f  solutions to the Seiberg Witten equa- 
tions is zero, we obtain 2 1 ( ( X ) -  3 a ( X ) +  cl(L)2 = 0 by the Atiyah Singer 
index theorem. 

We therefore have 
2z(X)  - 3 a (X)  

= _ c l (L)  2 

1 
= 4n: f (  IFA 12 - IF+ Iz) 

< 1 n f l f f f [  2 = 4  2 

< 1 
32nz f R3 

= c ~ ( x ) .  

The last equality follows from X being Kghler Einstein. However, e~(X) = 
3a(X)  + 2X(X), we get 

~ ( X )  > 0 

which is equivalent to 

c~(X) >= 2c2(X) .  

Now we suppose a(X) = 0. We then have F + = 0 and [~l 2 = 1. By the same 
argument as in the last section, we have V ,~  = 0 and VAF~- = 0. 

Using r we can split S~- into a direct sum of  two holomorphic subbundles 
for which one o f  them is a trivial holomorphic line bundle (gx. This in turn 
decomposes TX into LI @Lz and L can be identified as L -~ | ~ is the 
constant one section of  (9 x inside S~- = t~ x (9 L. 

Since FA is the curvature for L~- 1 | L2 and Rcx is the curvature for Li | L2, 
we get col = �89 FA) and o)2 = � 8 9  +FA) curvatures for line bundles 
Lt and L2 which are both parallel because Rcx = - c o  and VAFA = 0. So, 
co = col + o)2. By a standard holonomy argument, the universal cover of  X is 
the product o f  two unit discs, D 1 x D ~ which proved theorem one. 

Remark. Simpson [S] and Yau [Y2] gave certain characterizations o f  algebraic 
manifolds which can be uniformized by the product o f  unit discs. In those 
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characterizations, TX is usually assumed to split into direct sum of line bundles 
holomorphically. 

Because both the index and the negative Seiberg Witten invariants, are 
differentiable invariants, we obtain the following result immediately. 

Corollary. Let X be an algebraic suJface with ample canonical line bundle. 
l f  X is diffeomorphic to an algebraic supJ'ace which can be unijbrmized by 
tke product of  two disks, then X itself can be uniJbrmized by the product of  
two disks. 

In fact, a stronger result is proved by Jost and Yau [J+Y] by using a 
harmonic mapping method where instead of diffeomorphic, they only need to 
assume homotopic equivalency. 

4 Anti-self-dual U(2, 1) connections 

In this section, we shall discuss the relationship between solutions of Seiberg 
Witten equations and U(2, 1 ) anti-self-dual connections. 

We first explain the case when X carries a K/ihler Einstein metric with nega- 
tive scalar curvature. By Yau's theorem, such a metric always exists whenever 
the canonical line bundle Kx of X is ample. From the existence of K~ihler 
Einstein metric on X, one has a Chem number inequality: c~(X) < 3c2(X). 

Since X is K~ihler Einstein, in particular, its tangent bundle TX carries 
a Hermitian Einstein metric, AF = I d. By Narashima-Seshadra, Donaldson, 
Uhlenbeck-Yau, it is equivalent to say that TX is a poly-stable bundle over X. 
Recall that a holomorphic bundle E over X is called a (Mumford) stable bundle 
if for any non-trivial torsion-free subsheaf 5 e of  E, we have #(SQ < It(E) 
where p(Se), It(E) are slopes of corresponding torsion-free sheaves: 

1 
�9 f c l ( E ) "  ~), 

/~(E) = rank(E) x 

where oJ is the K~ihler form on X. And a holomorphic bundle is called poly- 
stable if  it is the direct sum of stable bundles of  the same slope. For a poly- 
stable/Hermitian-Einstein bundle of rank r, we have a Chern number inequality 

2r 
c~(E) < r - - ~ c 2 ( E ) .  

When we let E = TX, we have, 

e2(X) <= 4c2(X) 

which is weaker than cZ(X) < 3c2(X). 
Nevertheless, we are saved by the fact that the Hermitian Einstein connec- 

tion on TX is torsion-free in our situation. From this, we have a Hermitian- 
Einstein-Higgs bundle TX (9 Cgx as follows: On the trivial factor 0x, we put 
the minus of  the standard metric and the trivial connection d on it. On TX, 
we use the K~.hler Einstein metric o9. 
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We construct a U(2, l) connection on TX @ (gx by 

D A =  q~, 

where ~7 z.c is the Levi-Civita connection of co and the second fundamental 
form ~9 r f21(Hom ((gx, T X ) )  = f21(TX) is the tautological one, ~0 = ~ dz i | 

~z--- S locally. The curvature of DA is 

where Rm is the curvature tensor for co. Next, we are going to look at the 
endomorphism 

FA Aco " - l  
AFA = �9 n 

09 n 

0 A(o*cp " 

It is easy to see that Aq~9* = I r x  and A~p*q~ = 2 .  Moreover, A R m  can be 
identified with the usual Ricci curvature because of Kiihler identity. But co is 
K~ihler Einstein, Rc = -o~', we have A R m  = - I r x .  Therefore, we have AF~ = 

--21TX~C9 x . 

Notice that Hermitian-Einstein-Higgs bundles are in one to one correspon- 
dence to Higgs poly-stable holomorphic bundles ([H], [S]) which generalized 
the previous stated correspondence between Hermitian Einstein and poly-stable 
bundles. In our situation, the bundle is E = TX | Cgx and the Higgs field is 

where clearly satisfies 4~A 4~ = 0 E ~22(EndE) and ~4~ = 0. (See [H], [S] for 
more details). Recall that a pair (E, ~ )  is called Higgs stable if for any nontriv- 
iat torsion-free subsheaf ~ of  E which is ~-invariant (i.e. ~ ( J )  C_ ~ i ( ~ ) ) ,  
we have 

#(5 ~) < /~(E). 

For Hemfitian-Einstein-Higgs/Higgs-poly-stable bundle, we still have Chern 
number inequality 

c~(E) < 2r 
r -  I c 2 ( E )  " 

Looking at our situation where E = T X  ~ (gx, we therefore obtain 

= 

2 . 3  
< I c2(E) 
= 3 -  

= 3 c z ( X ) .  
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The strong form of Chern number inequality. From this approach, one can also 
get uniformation by the unit ball 132 when the equality sign holds. 

Now, let (X,g) be a Riemannian four manifold with an almost complex 
structure J and Kx = A2T*X be the canonical line bundle associated to J .  
Suppose that there exists a connection DA on Kx and a section q~ on S+ C = 

S+ | Kx ~/2 which satisfies the Seiberg Witten equations 

DA+ = 0.  

Using q~, we shall construct a connection on E =Sr174174 
(gx. Via Clifford multiplication, there is ahomomorphism F(S+ ~) --~ 121(S_ r  = 
~2J(Hom(@x,S_~)). We call the image of O under this homomorphism by 0. 
On the other hand, from the Riemannian metric g on X, we have a Levi-Civita 
connection of Tx and it induces a connection on S+. Combining it with DA on 
Kx, we obtain a connection on Sr = S+ | Kx 1/2 which we call it DA again. 
Because of q~ is a harmonic spinor, we have the following lemma. 

Lemma. P_ (DA 0)  = 0. 

Here P_ is the orthogonal projection of a two form to its anti-self-dual 
part. 

Proof of Lemrna. We shall consider the following diagram: (For simplicity, 

we have not included the twisting Kx U2 here). 

D cl 
S+ , Ol(S+) , S_ 

o,l i 
D P- 

h i ( s _ )  , n 2 ( s _ )  , n2_(s_) 

The composite of the two maps on the upper row is the Dirac operator DA = 
cl o D : F(S+ ) ---+ F(S_ ). The Clifford multiplication follows by the two maps 
on the bottom row on q~ is our element P_(DO). 

The homomorphism in the right column S_ -+ f22(S_ ) is defined as fol- 
lows: There is a canonical isomorphism of f2~ with trace-free endomorphisms 
of S_; that is, 0 2  = su(S_). Therefore, by projecting to the trace-free part, 
u(S_) ~ su(S_), we get the homomorphism S_ ~ f22(S_ ) in the right col- 
umn of the above diagram. This is an injective homomorphism. In fact, we can 
obtain this homomorphism directly from representation theory of sl2(V). As 
a representation of sl2(V), sl2(V)| V splits into two irreducible components, 
one is S 3 V and the other is V itself which corresponds to our factor S_ inside 
f~2(s_ ). 

Now, the lemma will follow from the commutativity of  the above diagram. 
For the box on the left, the commutativity is clear from the compatibility 

of  the connection D and the metric g on X. For the box on the right, we shall 
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first complexify each term. Notice that I21 | �9 = S+ | S_ and S+ are both 
SU(2)-bundles. In particular, S~: = S+. Moreover, f2 z | CE = sl(S+) | sl(S_ ). 

Now f21(S+)r + g22(S_)c is given by first taking trace of S+ in S+ | 
(S+ | S_ ) and then mapping S_ to f2~(S_ )r via the homomorphism we have 
above. This concludes the proof of the lemma. 

Nevertheless, it is also interesting to see the other projection I2 ~ (S+)r ---+ 
OZ+(S-)c. This one is induced from the projection of an endomorphism of S+ 
to its trace-free part: 

fa ~(s+ )r ' f~2 (s-  )c 

II II 
s+ | |  , st(S+)| 

Next, we shall compare q~q3 with Oq3* and ~*~. Since qb is in I21(S_), we 
can define its adjoint r in fal(Hom(S_, (gx)). By taking wedge product, we 
have ~ *  in O2(End(S_)) and qS*~ in I22. By projecting to the self-dual two 
form part, we 

P+(qS(~* ) = ~oqSI, 

P+( r  = -2~0,~. 

To prove these two equalities, one can trace all identifications via representa- 
tions of Spin(4). 

Now we define a connection D(n,e~ on E = S_ ~ | (9 x by 

]O(A,q0 = 1 ~* ~ o  d 

Notice that ID(A,~} is not a Hermitian connection on E with respect to the 
direct sum Hermitian metric hs~ + htrivial on  E. Here hs~ is the induced metric 

on S_ e from .q and htrivial is the trivial product metric on COx. 
Instead, we are interested in the Hermitian form hE = hsc - htrivial, which 

is a semi-Hermitian metric of signature (2,1). IDCA,~, ) preserves this Hermitian 
fore1 hE. Therefore, we call D(A,~) an U(2, 1) connection. 

By coupling with he, we can decompose I22(X, EndE)  into self-dual and 
anti-self-dual parts as follows: Let �9 : 12a(x) --+ I22(X) be the Hodge star op- 
erator on X defined using g. Let r : End(E) ---+ End(E) he the parity operator 
on End(E). In essence, z equals identity on diagonal block endomorphisms and 
equals minus identity on off-diagonal block endomorphisms. The best way to 
rephrase these are in terms of the 'super' (or Z2 graded) language. 

By composing , and z, we get 

*E : fl2(X, End E)  --~ ~r~2(.~ End E) 
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with .2 = Id. In terms of the block decomposition of matrix of two forms, we 
have, 

( )( A B *A 
*e C D = - * C  *D 

Hence, Dz(X, EndE)  is decomposed into direct sum of self-dual and anti-self- 
dual components. 

We shall denote the self-dual component of an element F E Dz(x, End E) 
by F +. By a simple calculation, we have the following result. 

Proposition. IfD(A,~) is as before with (A, q~) a solution to the Seiberg-Witten 
equation. Let ~(A,~o) be the curvature of  D(A,r on E = S ~_ @ (gx, then 

F+ ( Rc" - ! F+ " t O a 
-~"  1 + " (A,~,) 0 - ~F~ 

Proof' of" Proposition. The curvature of D(,~,~ is 

t 1~~* t ~ Fsr + ~q~(p -~DA~o ~ 
F ( ~ , ~  = - '  " *  Fp* + ) " " 

-~  D r 

When we project F to its self-dual part, the off-diagonal term is P_(DA(o) 
which becomes zero by the above lemma. 

Now, Fsr = Fs_ - �89 �9 Is_ since S r = S_ | Kx lie and FA is the cur- 

vature of DA on Kx. We have 

g + r  A 

= Re" - � 8 9  

It is because F~_ = Rc ~ for the connection on S_ which is induced from 
the Levi-Civita connection on X [AHS]. Here Rc ~ denotes the trace-free part 
of the Ricci curvature of g. We have also used the Seiberg Witten equation 
F~- = tp~ in the above equality. 

Using equalities P+(r = ~p~l and P+(~*~)  = -2r we get 

Fsr + -~(~*)+ = Rc ~ - �89 + ~p(pI 

= R ~  ~ - ~ e ~ I  

and 

Therefore, we have 

-~(r = -~ x ( -2~or  = - � 8 9 1 6 2  

F +  (Rc~189 ~ 1 7 6  ) 

( R c ~  + ) = -~F~ .1 0 + 
0 -~F~ " 
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Corollary. lJ~ moreover, g is an Einstein metric, then ID(A,~} is a perturbed 
Anti-Sel f  Dual U(2, 1 ) connection on E = S ~_ @ (gx. 

Recall that an anti-self-dual connection means a connection whose curvature 
is anti-self-dual and a perturbed anti-self-dual connection means a connection 
such that the self-dual part of its curvature is central, that is of the form ~I~ 
for some two form ~ on X. In holomorphic category, a perturbed anti-self-dual 
Hermitian connection is related to a Hermitian Einstein metric on the bundle. 

We can generalized Chem number inequality for perturbed Anti-Self-Dual 
U(2, 1 ) connection. In general, we have, 

Proposition. Let E be any rcmk r complex vector bundle over X with a 
U(p ,q)  Hermitian form on E. Let ID be an U(p ,q)  connection on E such 
that it curvature F satisfies 

F + = ~IE 

jor some two Jorm o~, that is, ID is a perturbed anti-self dual connection 
on E. 

I f  some multiple oJ'~ is the selj=dual part o f  certain integral two form, 
then we have 

2r 
c~(B) <= ~_ l c2(E). 

Moreover, equality sign holds i f  and only i f D  is a projectively.flat U(p ,q )  
connection on E. 

Combining these results, we obtain 

Theorem 2. l f  X is' a J our maniJbld with Riemannian metric g. Suppose that 
Jor some almost complex structure on X, there is a solution to the Seiberg 

DA 
Witten equation, (DA, q~). Then D(A,~)= 1 ~. is a U(2,1) con- 

nection on E = S ~_ | (9 x with se~:dual part of  its curvature equals 

F + R c  o I + 

When X is an Einstein metric, then D(A,r is a perturbed Anti-Se[J=Dual 
U(2, 1) connection on E. We have Chern number inequality 

c~(E) <= 3c2(E) 

which is equivalent to 

3a(X) __< z (X) .  

Moreover, equality holds if" and only i f  the above U(2, 1 ) connection is 
proyectively.fiat and X is a KfJhler mani~6ld which can be uni~brmized by G 2 
or the complex two bah B 2. 

In general, it would be interesting to know when an Einstein metric is 
actually a K~ihler Einstein metric. We shall give one such criterion in terms of 
the self-dual Weyl tensor. 
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Proposition. Let X be a Jour maniJbld with non-trivial Seiberg Witten invari- 
ant. I f  X carries an Emste#7 metric y, then we have 

4rt z3 [IW+[2 =< 2x(X)+3cr (X)  

Moreover, the equality sign hoM if  and only i.]g is' a Kiihler Einstein metric. 

Proof o f  Proposition. From the existence of solution to the Seiberg Wit-ten 
equation with respect to some line bundle L, one applies the Weitzenb6ck 
formula and get 191 z __< R 2. We have 

2Z(X) + 3a(X) 

= q ( L )  2 

= 1 f ( I F ~ I 2 _ I F A I 2 )  
4g 2 

I 
< f l f ~ I  = = 4rC2 

1 
=32~2 f t~014 

1 
< f R 2 
= 32rc2 

However, when g is an Einstein metric, we have 

2 z ( x )  + 3~(x)  = gh-r f 

Putting these together, we obtain 

3 
47r2 f IW+l 2 =< 2z (x )  + 3 0 ( 2 ) .  

When the equality sign holds, we have F A - 0, DAq~ -- 0 and I~12 - R 2. In 
particular, F~ is a parallel self-dual two form which will reduce the holonomy 
group of  g from SO(4) to U(2). Hence, we have a K~ihler Einstein metric 
y. The converse is easy by observing that W+ is proportional to the scalar 
curvature for any K~ihler metric and 2x(X) + 3a(X) = c~(X). Hence we have 
the proposition. 

5 Dimension reduction 

In this section, we shall study Anti-Self-Dual equation for U(2, 1) connections. 
By imposing certain symmetry constraints, this equation will be decoupled 
into two independent sets of equations. One of  them gives the Seiberg Witten 
equations. The other one is the Einstein equation for the Riemannian metric. 

We let E be the bundle S~- | L -I  @ Ox with a hermitian form of signa- 
ture (2.1) on it (as in the last section). Let d ( E )  be the space of U(2, 1) 
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connections on E. An element in ~r can be decomposed as 

D : ( D s ;  | 5 
\ 5* d + a  J 

where c~ is an ordinary one form on X and ~b E I21 (S L | L - l ) .  We can write 
a connection on SL- | L -1 as the tensor product of  a SU(2)  connection on S_ 
and a U(1)  connection on L. On S_, we have a canonical connection induced 
from the Levi-Civita connection on X. Therefore, any other connection on S_ 
is of  the form V Lc' + B for some su(S_ ) valued one foma on X. We can regard 
B as an element in f21 | 0 2 by our previous identification, I2 2 = su(S_ ). 

Moreover, we have a Lie algebra bundle structure on 0 2 via this identifica- 
tion. Using this and the wedge product on one forms, we get [B, B] in (2 2 | ~2_. 
s 2_ also acts on f2 t via interior multiplication. If  q E 0 2 and 5 E f2 l, then 

where v is a vector dual to 5 using the metric y and tv is the interior 
multiplication. 

Now the U(2, l ) perturbed Anti-Self-Dual equations for O can be written 
as 

R c " + ( d B +  �89 + - I + 2F~ . I + ( 5 5 " )  + = d + ~ . I + ( 5 " 5 )  + . I  

P_(D~o) = 0 

where DA is a connection on L. 
If we assume that ~ is f22-invariant, then the first equation will be decou- 

pied and the second equation can also be simplified. Here 02 _ acts on 5 via 
the action of  f22 on f2' and S_. 

For smlplicity, we shall assume ~ is zero since, by gauge transformation, 
we can absorb d.~ inside FA. 

Proposition. IJ'(o is Oz__-invariant, then the above U(2, 1 ) perturbed Anti-Self- 
Dual equations are equivalent to the Seiberg-Witten equations and Rc ~ = 
-(dB + �89 

Proof o f  Proposition. (9 being ~2-invariant will imply that (~qS*)+ lies in the 
center (or the trace part) of  End(S~-). Therefore, the first equation will be de- 
coupled into two parts: one involving the trace part and the other involving the 
trace-free part which is Rc ~ + (dB + �89 + = 0 via Clifford multiplication. 
From the discussion in last section, we have 

(q~*)+ = r  

and ( 5 * 5 )  + = - 2 q ~ .  
Therefore, the trace part o f  the first equation becomes 

1 + -~F~ + ~o~ = -2~,~ 
or 

Fff = 6q~q3. 
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Again, from the lemma in the last section, we know that P-(DO) = 0 is 
equivalent to the Dirac equation D q~ = 0 where 0 is 122-invariant. 

Hence, we have our proposition. 

In addition, i f  we assume both /3 and 0 are f~2-invariant, then the above 
equations will be equivalent to the Seiberg-Witten equations for (DA, ~p) and 
Einstein equation for the Riemannanian metric g. 

Notice that B is in f 2 ~ |  2 and 122_ acts on both f21 and f22. After 
complexification, we have f21 | g22 = S+ | S_ | sl(S_ ). As a representation 
of  sl(S_ ) = f2~, we have S+ | S_ | sl(S_ ) ~ S+ | (S_ @ SiS_ ), which con- 
tains no trivial summand. Therefore, i f  B is sl(S_)-invariant element, it must 
be zero. Putting these together, we have 

Theorem 3. Let D be an), U(2, 1) perturbed Anti-SelJ-Duat connection on 
E = S~ | L - 1 0  (gx. Then D is f2~-invariant if  and only if the Riemannian 
metric is Einstein and the Seiberg-Witten equations are satisfied. That is, 

Re = 0 

F~ = 6q~O 

g~q~ = 0 
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