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A PRODUCT FORMULA FOR LOG GROMOV–WITTEN INVARIANTS

YUAN-PIN LEE AND FENG QU

ABSTRACT. The purpose of this short article is to prove a product formula relating
the log Gromov–Witten invariants of V × W with those of V and W in the case the
log structure on V is trivial.

0. INTRODUCTION

Product formulas in the literature of Gromov–Witten (GW) theory started with
[15] for the genus zero Gromov–Witten invariants. It was soon generalized in [8]
to (absolute) GW invariants in any genus. There is also an orbifold version in [7].
In this paper, we extend the product formula to the setting of relative GW theory or
more generally log GW theory.

The absolute Gromov–Witten theory studies the intersection theory on the mod-

uli stacks of stable maps Mg,n(X, β) from an n-pointed curve with arithmetic
genus g to a fixed nonsingular projective variety X with a fixed degree β in the
Mori cone NE(X) of effective curves in X

f : (C, x1, x2, . . . , xn) → X, such that f∗([C]) = β.

For notational convenience, we denote such a class by [ f ]. Intuitively, GW invari-
ants count the numbers of curves passing through n fixed cycles α1, . . . , αn in X
with the above given conditions. To put it on a mathematically sound setting, one

defines the invariants as intersection numbers on Mg,n(X, β) in the following way.
By the functorial properties of the moduli stacks, there are the evaluation morphisms

evi : Mg,n(X, β) → X, i = 1, . . . , n,

and stabilization morphism

π : Mg,n(X, β) → Mg,n,

where Mg,n is the moduli stack of stable genus g, n-pointed curves and

evi([ f ]) = f (xi) ∈ X, π([ f ]) = [(C, x1, x2, . . . , xn)] ∈ Mg,n,

where C is the stabilization of the source curve C. The GW invariants can be de-
fined as ∫

[Mg,n(X,β)]vir
π∗(γ)∏

i

ev∗i (αi),

where [Mg,n(X, β)]vir is the virtual fundamental class. One can rephrase these in-
variants in terms of the cohomological field theory

RX
g,n,β : H∗(X)⊗n → H∗(Mg,n)
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via ∫

[Mg,n(X,β)]vir
π∗(γ)∏

i

ev∗i (αi) =
∫

Mg,n

γ.RX
g,n,β(∏

i

αi).

The details can be found in [8] and references therein.
Intuitively, the relative invariants as defined in [17] and [18] can be considered as

refined counting. Let (X, D) be a pair consisting of a nonsingular projective variety
X and a smooth divisor D in X. If the curve C does not lie in D, it intersects with
D at ρ points with multiplicities µ1, . . . , µρ such that

∑
j

µj =
∫

β
[D].

The refined counting is to fix the profile (µ1, . . . , µρ) and constraint the ρ points to
lie in chosen cycles {δj} in D. Similarly, one can define the relative invariants as
intersection numbers on relative moduli stacks as above. See [18] and [17] for de-
tails. There is also a similar reformulation in terms of cohomological field theory.
See Section 4.

The divisor D in X gives rise to a divisorial log structure on X. Recently relative
invariants have been generalize to the setting of log GW ([2, 9, 13]). See Section 1
for a brief summary of log geometry and log GW theory.

In a sense, the study of Gromov–Witten theory is the study of the virtual fun-
damental classes. The product formula is a statement that GW invariants of V and W
determine the invariants of V ×W. See Equation (3). It can be written in the form of
certain functorial properties of virtual classes. In [8], K. Behrend proves a product
formula for absolute GW invariants by first establishing a corresponding functo-
rial property of virtual fundamental classes. In this note, we approach the product
formula in the relative and log settings in a similar way. The main results are Theo-
rem 2.2 and Corollary 4.1, which expresses the log/relative invariants of X × (Y, D) by
invariants of X and of (Y, D). The logarithmic approach to relative GW invariants
of Abramovich-Chen and Gross-Siebert ([2, 9, 13]) avoids the expanded degen-
erations of Li ([18]) and allows us to adapt Behrend’s original proof, but it also
presents new technical difficulties. We were not able to prove the product formula
in the general log setting and we have to assume the log structure on one of the
factors to be trivial. For the general case, see Section 3 for some initial attempts
and speculations.

This product formula could be useful in the study of Gromov–Witten theory,
even when no explicit product or log geometry is involved in the statement. For
example, it plays a role in proving the crepant transformation conjecture for ordi-
nary flops with non-split vector bundles in [16]. There the degeneration technique
is extensively employed and the product formula is applied to treat fiber integrals
which naturally occur in the degeneration process.

1. PRELIMINARIES

1.1. Log geometry. We work over the base log scheme Spec C with the trivial log
structure. We refer to [14, Sections 1-4] for general background on log structures on
schemes, and [22, Section 5] for log stacks. For the reader’s convenience, we recall
the basic properties we need about Olsson’s Log stack and saturated morphisms.
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1.1.1. TorX . Denote by LogSt the category of fine saturated (fs) log algebraic stacks,

and St the category of algebraic stacks. 1

For a fs log stack X, TorX is introduced in [22, Remark 5.26] to parametrize all
fs log schemes over X. It follows from the definition of TorX that a map S → X
in LogSt factors as S → TorX → X. We can view X as an open substack of TorX

parametrizing strict maps S → X. Note that TorX has a natural fs log structure so
that the factorization S → TorX above is strict, and TorX → X is log étale.

It is easy to check when X is log smooth, it is open dense in TorX . In particular
if X is log smooth and irreducible, TorX is irreducible.

Remark 1.1. Let Sch be the category of schemes over C, Grpd the category of
(small) groupoids. Recall a stack is a functor Sch → Grpd that satisfies certain
’sheaf’ condition. A log stack is a stack with a log struture, and a log structure can
be understood as a map from the stack to Log

C
.

It is more natural to describe a fs log moduli stack X by its functor of points
than specifying its underlying stack and log structure. As the Yoneda embedding
for the (2,1) category LogSt is fully faithful, an object X in LogSt is uniquely de-
termined by:

homLogSt(−, X) : LogSch → Grpd.

Here the stack condition for X allows us to restrict homLogSt(−, X) from LogSt to
its full subcategory LogSch of fs log schemes.

Given a log moduli functor X : LogSch → Grpd such that it is isomorphic to
homLogSt(−, X) for some fs log stack X, one might recover X by considering the
stack TorX : Sch → Grpd which corresponds to TorX , then the underlying stack
X of X is the substack of TorX satisfying a minimal condition, and the log structure
of X is the restriction of the natural log structure on TorX. See [11] for details.

1.1.2. Saturated morphisms.

Definition 1.2. Let P, Q be saturated monoids, a map P → Q is saturated, if it is
integral and the push out of

P //

��

Q

R

is saturated when R is saturated.

Definition 1.3. Let (X, MX), (Y, MY) be fs log schemes, a map f : (X, MX) → (Y, MY)
is called saturated, if for any x ∈ X, y = f (x), the induced map between characteristics

MY,ȳ → MX,x̄ is saturated.

Remark 1.4. Given the above definition, a saturated morphism between fs log
stacks can be defined locally with respect to the lisse-étale topology.

It follows from the definition that saturated morphisms satisfy the following
properties:

• They are stable under composition and base change in LogSt.

1In a higher categorical sense. In other words, LogSt and St are 2-categories, or (2,1) categories.
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• For a cartesian square

(W, MW) //

��

(X, MX)

f

��

(Z, MZ) // (Y, MY)

in LogSt, when f is saturated, the underlying diagram of stacks

W //

��

X

��

Z // Y

is cartesian in St.

1.2. Log Gromov–Witten theory.

1.2.1. Log curves. LetMg,n (resp.Mg,n) be the algebraic stack of stable (resp. prestable)

curves of genus g with n marked points. The log structure of Mg,n is the divisorial
log structure associated with its boundary consisting of singular curves. The log

structure of Mg,n is determined from the smooth chart ⊔mMg,n+m → Mg,n, where

the map from Mg,n+m → Mg,n is forgetting the extra m marked points without

stabilizing. We view Mg,n and Mg,n as log stacks from now on using the same
notation.

Note that the forgetful map Mg,n+1 → Mg,n is saturated, as it can be identified

as the universal log curve. This implies the stabilization map Mg,n → Mg,n is
saturated.

1.2.2. Log stable maps. For a projective log smooth scheme V, let Mg,n(V) be the
fs log stack parameterizing stable log maps from log curves of genus g with n
marked points (see [2, 4, 9, 13] for more details). For a fs log scheme S, a log map
from S to Mg,n(V) corresponds to a stable log map:

(1) C //

��

V

S .

We note that the underlying map of the diagram is a usual stable map.
A log map V → W induces a stabilization map Mg,n(V) → Mg,n(W). Given

S → Mg,n(V) which corresponds to a diagram (1), the composition S → Mg,n(V) →
Mg,n(W) corresponds to

C //

��

W

S .

where the underlying map of C → W is the stabilization of the underlying map

C → V → W, and the log structure on C is the push forward of the log structure

on C with respect to the partial stabilization C → C. (See [5, appendix B].)
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1.2.3. Perfect obstruction theories. We have a natural log map Mg,n(V) → Mg,n for-
getting the map to V. As log deformations for Mg,n(V) → Mg,n is the same as
deformations for the underlying map of Mg,n(V) → TorMg,n , a (relative) perfect

obstruction theory for the log map Mg,n(V) → Mg,n is by definition a perfect
obstruction theory for the underlying map of Mg,n(V) → TorMg,n .

A perfect obstruction theory for Mg,n(V) → Mg,n is defined in [13, Section 5],
tangent space and obstruction space at [ f : C → V] ∈ Mg,n(V) are given by

H0( f ∗TV) and H1( f ∗TV) respectively, where TV is the log tangent bundle of V.
If we have a factorization Mg,n(V) → N → Mg,n, and N → Mg,n is log étale,

a perfect obstruction theory for Mg,n(V) → Mg,n induces a perfect obstruction
theory for Mg,n(V) → N since TorN → TorMg,n is étale.

2. PRODUCT FORMULA IN TERMS OF VIRTUAL CLASSES

2.1. Setup. We start by introducing relevant commutative diagrams, which are
the log enhancement of those in [8].

We define a fs log stack D by its functor of points. Given any fs log scheme S, a
map S → D corresponds to the data consisting of n-pointed prestable log curves
C, C′, C′′ of genus g over S, together with partial stabilizations p′ : C → C′ and
p′′ : C → C′′, such that no component of C is contracted by both p′, p′′. Note that
as log curves over S, the log structure of C′ resp. C′′ is given by the pushforward
of the log structure of C along p′ resp. p′′.

Define e : D → Mg,n as the forgetful morphism taking (p′, p′′) to C. It is proved
in [8, Lemma 4] that the underlying map of e is étale. As e is strict, it is log étale.

We claim that the following commutative diagram is cartesian in LogSt,

(2) Mg,n(V ×W) //

��

Mg,n(V)× Mg,n(W)

��

D // Mg,n ×Mg,n

Here the top horizontal arrow is determined by stabilization maps Mg,n(V ×W) →
Mg,n(V), Mg,n(V × W) → Mg,n(W) induced from the projections pr1 : V × W →
V, pr2 : V × W → W. The left vertical arrow is defined by retaining the curve
together with its partial stabilizations with respect to pr1, pr2.

The reason for the diagram being cartesian is essentially the same as that in [8,
Proposition 5]. For a fs log scheme S, a commutative diagram

S //

��

Mg,n(V)× Mg,n(W)

��

D // Mg,n ×Mg,n

corresponds to stable log maps C′ → V, C′′ → W over S, together with stabi-

lization between log curves C → C′, C → C′′. 2 This recovers a stable log map
C → C′ × C′′ → V ×W. Indeed, D is constructed to make (2) cartesian.

2Note that Mg,n(V)(S) → Mg,n(S) and Mg,n(W)(S)→ Mg,n(S) are iso-fibrations of groupoids.



6 Y.-P. LEE AND F. QU

We then extend the above cartesian diagram in LogSt to

Mg,n(V ×W)
h

//

c

��

P //

��

Mg,n(V)× Mg,n(W)

a

��

D
l

//

e

��

P
φ

//

��

Mg,n ×Mg,n

��

Mg,n Mg,n
∆

// Mg,n ×Mg,n .

Here all squares are constructed by taking fiber product. If V and W have trivial
log structures, this reduces to Diagram (2) of [8].

Definition 2.1. We say that the product formula (of virtual fundamental classes) holds
for V and W if

(3) h∗([Mg,n(V × W)]vir) = ∆!([Mg,n(V)]vir × [Mg,n(W)]vir).

In [8], Behrend showed that the product formula holds for V and W when V
and W are smooth projective schemes, or log smooth schemes with trivial log
structures, our goal of this paper is to extend his result to the case when W has
nontrivial log structure.

2.2. Product formula in log GW theory. When W has nontrivial log structure, we
factor

a : Mg,n(V)×Mg,n(W) → Mg,n ×Mg,n

into

Mg,n(V)× Mg,n(W)
a′→ Mg,n × TorMg,n → Mg,n ×Mg,n.

We then have the following commutative diagram in which all squares are carte-
sian in LogSt,

(4) Mg,n(V ×W)
h

//

c′

��

P //

��

Mg,n(V)× Mg,n(W)

a′

��

D′ l ′
//

��

P′ φ′
//

��

Mg,n × TorMg,n

��

D
l

//

��

P
φ

//

��

Mg,n ×Mg,n

��

Mg,n Mg,n
∆

// Mg,n ×Mg,n .

Main Lemma. (I) The underlying square diagrams in St are all cartesian.
(II) The relative perfect obstruction theories for a′ and c′ are compatible.

(III) D′,P′ are irreducible, and l′ is of degree 1.
(IV) φ′ is a l.c.i. and is compatible with ∆ in the sense that the cotangent complex L∆

pulls back to Lφ′ .
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Theorem 2.2. Using the notations in (4), we have

h∗([Mg,n(V ×W)]vir) = ∆!([Mg,n(V)]vir × [Mg,n(W)]vir)

in the log GW setting, assuming the trivial log structure on V.

Proof. We have virtual pullbacks c′!, a′!, φ′!, and ∆!. (See [19, Section 3.1])
For the upper left square of diagram (4), we have

h∗([Mg,n(V ×W)]vir) = a′![P′],

by (II), (III), and Costello’s pushforward theorem [10, Theorem 5.0.1].

For the upper right square of diagram (4), note that φ′!([Mg,n] × [TorMg,n ])

equals [P′], and a′!([Mg,n] × [TorMg,n ]) is [Mg,n(V)]vir × [Mg,n(W)]vir. By [19,

Theorem 4.3], we know that a′!φ′! = φ′!a′!, so

a′![P′] = φ′!([Mg,n(V)]vir × [Mg,n(W)]vir).

Now (IV) gives

φ′!([Mg,n(V)]vir × [Mg,n(W)]vir]) = ∆!([Mg,n(V)]vir × [Mg,n(W)]vir),

and we can complete the proof by combining these equations. �

2.3. Proof of Main Lemma.

(I). As a′ is strict, the first row of squares are cartesian. Since Mg,n → Mg,n is
saturated, the bottom square is cartesian.

For the second row, to prove the two squares are cartesian is the same as show-
ing the squares in the following diagram are cartesian in St.

(5) D′ l ′
//

��

P′ pr2◦φ′
//

��

TorMg,n

��

D
l

// P
pr2◦φ

// // Mg,n.

We claim that l ◦ pr2 ◦ φ and pr2 ◦ φ are both saturated. l ◦ pr2 ◦ φ is saturated
because a partial stabilization map locally is given by forgetting marked points.
(See the proof of [8, Proposition 3]. What we need is that Diagram (4) there to be

commutative.) pr2 ◦ φ is saturated as it is the base change by Mg.n → Mg,n

P
pr2◦φ

//

��

Mg,n

��

Mg.n
// Mg,n.

Thus, both squares in (5) are cartesian.

(II). We remark that as TorMg,n → Mg,n is log étale, D′ is log étale over D. Thus

the relative perfect obstruction theory for the log map Mg,n(V × W) → Mg,n can

be viewed as a relative perfect obstruction theory for the underlying map of c′.
Compatibility check is the same as in [8, Propsition 6].
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(III). Start with Diagram (5). The open embedding Mg,n → TorMg,n induces

(6) D
l

//

��

P
pr2◦φ

//

��

Mg,n

��

D′ l ′
//

��

P′ pr2◦φ′
//

��

TorMg,n

��

D
l

// P
pr2◦φ

// Mg,n .

Mg,n being log smooth, it is open and dense in TorMg,n . Note that both pr2 ◦ φ, l ◦
pr2 ◦ φ are flat surjective, we conclude D(resp. P) are open dense substacks of D′

(resp. P′). (III) then follows from properties of D,P and l. (See [8, Proposition 3]).

(IV). We factor Mg,n × TorMg,n → Mg,n ×Mg,n into

Mg,n × TorMg,n → Mg,n × TorMg,n → Mg,n × TorMg,n
→ Mg,n ×Mg,n.

First arrow is saturated and flat, and second arrow strict and smooth.
For the third arrow, note that

TorMg,n
//

��

Mg,n × TorMg,n

��

Mg,n
∆

// Mg,n ×Mg,n

is cartesian in LogSt as well as in St, and horizontal arrows are compatible l.c.i.
maps. It is then easy to see φ′ and ∆ are compatible.

2.4. Product formula for families. As we need the product formula for equivari-
ant invariants in [16], we will adapt the arguments above to families.

Let X → S and Y → T be two families of log smooth projective varieties over
log smooth and irreducible bases. We would like to relate GW invariants of the
family X ×Y → S × T to those of X → S and Y → T.

Denote by Mg,n(X/S), Mg,n(Y/T), Mg,n(X × Y/S × T) log stacks of stable log
maps from genus g curves with n marked points to these families.

Remark 2.3. Let X → S be a family of log smooth projective varieties over a log
stack S. As a cartesian digram

X′ //

��

X

��

S′ // S

in LogSt induces a cartesian diagram

Mg,n(X′/S′) //

��

Mg,n(X/S)

��

S′ // S
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in LogSt. It follows that Mg,n(X/S) is an algebraic stack locally of finite type over
S by [13, Theorem 0.1].

It is easy to see we have a cartesian diagram in LogSt

Mg,n(X ×Y/S × T) //

��

Mg,n(X/S)×Mg,n(Y/T)

��

D // Mg,n ×Mg,n ,

and we consider the diagram

Mg,n(X ×Y/S × T)
h

//

c

��

P //

��

Mg,n(X/S)×Mg,n(Y/T)

a

��

D
l

//

e

��

P
φ

//

��

Mg,n ×Mg,n

��

Mg,n Mg,n
∆

// Mg,n ×Mg,n .

as before.

Theorem 2.4. Let X → S be a family of smooth projective varieties over a smooth, pure
dimensional stack S, and Y → T a family of log smooth projective varieties over a stack T
which is log smooth and irreducible.

Then we have

h∗([Mg,n(X ×Y/S × T)]vir) = ∆!([Mg,n(X/S)]vir × [Mg,n(Y/T)]vir)

Proof. Consider the cartesian diagram in LogSt,

Mg,n(X ×Y/S × T) //

��

Mg,n(X/S)×Mg,n(Y/T)

��

D× (S × T) //

��

(Mg,n × S)× (Mg,n × T)

��

D // Mg,n ×Mg,n .

As T is log smooth, TorMg,n×T → TorMg,n is smooth, the perfect obstruction the-

ory for Mg,n(Y/T) → Mg,n × T then induces a perfect obstruction theory for the
composition

Mg,n(Y/T) → Mg,n × T → Mg,n

by the arguments in [12, Appendix B]. Similarly, we have a perfect obstruction
theory for

Mg,n(X/S) → Mg,n × S → Mg,n,

and

Mg,n(X ×Y/S × T) → D× (S × T) → D
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Now we are in the same situation as in Section 2.2, identical arguments finish the
proof. Note that (II) follows from standard properties of cotangent complexes of
algebraic stacks. �

3. REMARKS FOR THE GENERAL CASE

3.1. When V has nontrivial log structure, we might consider factoring a by

Mg,n(V)×Mg,n(W) → TorMg,n ×TorMg,n .

In this case, the underlying diagram of

TorMg,n
×Mg,n

TorMg,n
//

��

TorMg,n
×TorMg,n

��

Mg,n
∆

// Mg,n ×Mg,n

is no longer cartesian in St. If it is true that Mg,n(V) → Mg,n is saturated, we
can replace TorMg,n by its open substack parameterizing saturated maps and the

argument we used can be adapted to this more general setting.
However, the map Mg,n(V) → Mg,n is not even integral in general, and further

understanding concerning the log structure of Mg,n(V) seems necessary.

3.2. To prove the product formula holds for V and W, we can assume V and W
are smooth and log smooth. This is achieved by using desingularizations of log
smooth schemes and invariance of virtual classes under certain log modifications.

By [20, Theorem 5.10], for any log smooth variety X, there exists a log blow up
π : Y → X such that Y is smooth, log smooth and π is birational. In particular, π
is proper, birational, and log étale.

Lemma 3.1. Let Φ : Ṽ → V and Ψ : W̃ → W be proper, birational, log étale maps

between log smooth projective varities. If the product formula holds for Ṽ and W̃, then it
holds for V and W.

Proof. Consider the diagram

Mg,n(Ṽ × W̃)

h̃

((

M (Φ×Ψ)

$$

P̃ //

��

Mg,n(Ṽ)× Mg,n(W̃)

M (Φ)×M (Ψ)

��

Mg,n(V ×W)
h

// P //

��

Mg,n(V)× Mg,n(W)

��

Mg,n
∆

// Mg,n ×Mg,n ,

where
M (Φ) : Mg,n(Ṽ) → M (V),

M (Ψ) : Mg,n(W̃) → M (W),
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and

M (Ψ × Ψ) : Mg,n(Ṽ × W̃) → M (V ×W)

are maps between moduli stacks induced by Φ, Ψ and Φ × Ψ respectively.
As Φ is proper, birational, log étale, by [6, Theorem 1.1.1],

M (Φ)∗[Mg,n(Ṽ)]vir = [Mg,n(V)]vir.

Similarly, we have

M (Ψ)∗[Mg,n(W̃)]vir = [Mg,n(W)]vir,

and

M (Ψ × Ψ)∗[Mg,n(Ṽ × W̃)]vir = [M (V ×W)]vir.

Now pushforwarding the relation

h̃∗[Mg,n(Ṽ × W̃)]vir = ∆!([Mg,n(Ṽ)]vir × [Mg,n(W̃)]vir)

along P̃ → P gives

h∗([Mg,n(V × W)]vir) = ∆!([Mg,n(V)]vir × [Mg,n(W)]vir).

�

Remark 3.2. Let V be a smooth projective variety with log structure coming from
a simple normal crossing divisor ∪Di. Motivated by the results proved in [1, 5],
we expect that genus zero log GW invariants of V are related to orbifold GW in-
variants of root stacks V( r

√
Di). If this naive expectation is valid, then the product

formula for orbifolds proved in [7] would imply the product formula of log GW
invariants in genus zero.

4. APPLICATIONS TO RELATIVE GROMOV–WITTEN INVARIANTS

We apply this to the relative GW invariants as defined by A. Li and Y. Ruan [17],
and J. Li [18].

Let X and Y be nonsingular projective varieties, and D a a smooth divisor in Y.

We further assume H1(Y) = 0, so a curve class of X × Y is of the form (βX, βY)
where βX (resp. βY) is a curve class of X (resp. Y).

Let MΓY
(Y, D) be the relative moduli stack. Here ΓY = (g, n, βY, ρ, µ) encodes

the discrete data: g for the genus, n + ρ for the number of marked points, βY the
curve class, µ = (µ1, ...µρ) an ordered partition of

∫
βY
[D].

We have evaluation maps

evY : MΓY
(Y, D) → Yn, evD : MΓY

(Y, D) → Dρ

and the stabilization map

π : MΓY
(Y, D) → Mg,n+ρ.

Relative GW invariants can be viewed as the Gromov–Witten transformation

RΓY
: H∗(Y)⊗n ⊗ H∗(D)⊗ρ → H∗(Mg,n+ρ)

defined as

PD
(

π∗
(

ev∗Y(α)ev∗D(δ) ∩ [MΓY
(Y, D)]vir

))
,

where PD stands for the Poincaré duality.
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Let ΓX×Y = (g, n, (βX, βY), ρ, µ). Similarly we have

RΓX×Y
: H∗(X ×Y)⊗n ⊗ H∗(X × D)⊗ρ → H∗(Mg,n+ρ).

Let ΓX = (g, n + ρ, βX). The map

RΓX
: H∗(X)⊗(n+ρ) → H∗(Mg,n+ρ)

is the Gromov–Witten correspondence RX
g,n+ρ,βX

, defining a cohomological field

theory.

Corollary 4.1.

RΓX×Y
((α1 ⊗ α′1)⊗ ... ⊗ ((αn ⊗ α′n)); (αn+1 ⊗ δ1)⊗ ... ⊗ ((αn+ρ ⊗ δρ))

=RΓX
(α1 ⊗ ... ⊗ αn+ρ)RΓY

(α′1 ⊗ ... ⊗ α′n; δ1 ⊗ ... ⊗ δρ),

where αi ∈ H∗(X), α′i ∈ H∗(Y) and δj ∈ H∗(D).

Proof. This follows directly from Theorem 2.2 and the comparison result between
relative and log GW invariants in [5, Theorem 1.1, Section 2.3]. �
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