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EULER CHARACTERISTICS OF

UNIVERSAL COTANGENT LINE BUNDLES ON M1,n

Y.P. LEE AND F. QU

Abstract. We give an effective algorithm to compute the Euler characteris-

tics χ(M1,n,⊗
n
i=1

L
di
i ). This work is a sequel to [8].

In addition, we give a simple proof of Pandharipande’s vanishing theorem

Hj(M0,n,⊗
n
i=1

L
di
i ) = 0 for j ≥ 1, di ≥ 0.

0. Introduction

Let M1,n be the moduli stack of n-pointed genus 1 stable curves, O its structure
sheaf, H the Hodge bundle, and Li the universal cotangent line bundles at the i-th
marked point, 1 ≤ i ≤ n. The main result of this paper is the following theorem.

Theorem 0.1. There is an effective algorithm of computing the Euler character-
istics

χd,d1,...,dn := χ(M1,n,H−d ⊗
n⊗

i=1

Ldi

i ), d, di ≥ 0.

The details of this algorithm are presented in Section 2.

This work is a sequel to [8], where we calculated the Euler characteristics

χ(M0,n,⊗iL
di

i )

at genus zero. These are our preliminary attempts in search of a K-theoretic ver-
sion of Witten–Kontsevich’s theory of two-dimensional topological gravity. In the
Witten-Kontsevich theory, the correlators are the intersection numbers of tautolog-
ical classes on the moduli spaces of stable curves

(0.1)

∫

Mg,n

ψd1

1 . . . ψdn
n .

The naturalK-theoretic version of intersection numbers (i.e. pushforward to a point
in cohomology theory) are the Euler characteristics (i.e. pushforward to a point in
K-theory). As Witten–Kontsevich theory states that a generating function of (0.1)
is the τ -function of the KdV hierarchy, it is reasonable to surmise that a similar
generating function inK-theory could be a τ -function of a version of a discreteKdV
hierarchy. Note that the phenomenon of replacing differential equations in quantum
cohomology by finite difference equations in quantum K-theory were observed in
earlier examples [3] and only very recently demonstrated to hold in general [4].
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Furthermore, since Witten–Kontsevich theory is the Gromov–Witten theory for
the target space being a point, it is natural to consider these calculations as basic
ingredients for the quantum K-theory developed in [2] and [9]. In the calculation of
quantum K-invariants at genus one via localization, the Hodge bundle will appear
naturally. It is therefore reasonable to consider slightly more general correlators,
which have the additional benefits of facilitating the induction process of our algo-
rithm.

Our strategy of proving Theorem 0.1 is to apply the orbifold Riemann-Roch
theorem to

χ′ := χ

(
M1,n,H−d

n⊗

i=1

(Ldi

i −O)

)
, d, di ≥ 0.

We were able to determine χ′ by carefully examining and performing computa-
tions on the twisted sectors of M1,n. In doing so, we find the use of generating
functions essential. These functions can be found in Section 2, starting with Equa-
tion (2.1). It is then not difficult to see that one can determine χ on M1,n by

χ′ and χ on M1,n−1. Hence, we can reduce all calculations to M1,1, whose gen-
erating function is calculated explicitly in Lemma 2.8 and Proposition 2.9. Note
that when n = 1 the generating function is a rational function, as in the case of
genus zero case. We expect the generating function of χd,d1,...,dn to be rational as
well, but are not able to find the correct closed form. We did, however, perform a
consistency check: Our algorithm produces χd,d1,...,dn as integers, even though the
intermediate steps require rational numbers, which arise as a consequence of the
orbifold Riemann–Roch formula and the stack structure of M1,n.

Indeed, the n = 1 case is closely related to the theory of modular forms. Theo-
rem 0.1 can be considered as a generalization of the following well-known fact.

Proposition 0.2 (See Lemma 2.8 and Proposition 2.9).

χ

(
M1,1,

1

1− qL1

)
=

1

(1− q4)(1 − q6)
.

Since M1,1 is the moduli stack of elliptic curves, and sections of Lk
1 are the

modular forms of weight 2k, Proposition 0.2 can be considered as a rephrase of the
classical result that the space of the modular forms is generated by a weight four
and a weight six modular forms.

Another result included in this paper, in Appendix A, is a new proof of Pand-
haripande’s vanishing theorem [11] at genus zero.

Theorem 0.3 ([11]).

Hj(M0,n,⊗n
i=1L

di

i ) = 0

for j ≥ 1 and di ≥ 0.

Our proof is comparably simpler and shorter, and does not use M. Kapranov’s
results on M0,n [5]. Only basic definitions and elementary manipulation of spectral
sequences are used.

This paper is organized as follows. In Section 1 we recall the necessary back-
ground. We then formulate a more precise version of the reduction algorithm in
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Section 2, and prove Theorem 0.1 there. In Appendix A the (new) proof of Theo-
rem 0.3 is given.

1. Preliminaries

We work over the ground field C.

1.1. Twisted sectors of M1,n. We summarize the results we need concerning the

inertia stack of M1,n in [10, section 3.b].
For a DM stack X , recall a SpecC point of its inertia stack IX is given by a pair

(x, g) with x ∈ X (SpecC) and g ∈ AutX (x). X is naturally viewed as a component
of IX consists of point (x, g) with g trivial, and we denote this component by
(X , Id). A twisted sector is a connected component of IX disjoint from (X , Id).
Theorem 1.1 ([10] Theorem 3.22, 3.24). The twisted sectors of IM1,n come from
either of the following two sources:

(1) the closure of a twisted sector of IM1,n in IM1,n,

(2) a twisted sector of I(M0,K∪• ×M1,Kc∪•) via I∆K .

Here ∆K : M0,K∪• ×M1,Kc∪• → M1,n is the closed immersion gluing the marked
points •, K is a subset of [n] with |K| ≥ 2, and Kc its complement. I∆K :
I(M0,K∪• ×M1,Kc∪•) → IM1,n is the induced closed immersion between the cor-
responding inertia stacks.

As I(M0,K∪• ×M1,Kc∪•) ≃ M0,K∪• × IM1,Kc∪•, type (2) twisted sectors are
built up from type (1) twisted sectors.

The analysis of type (1) twisted sectors in [10] starts with the following descrip-
tion of M1,1.

Proposition 1.2. M1,1 is equivalent to the weighted projective space P(4, 6).

We briefly recall the equivalence appeared in [10, Theorem 3.8], as we will need
it to do explicit calculations on M1,1, and it also serves to motivate the notations
used in [10](Notation 3.9, 3.12; Definition 3.13, 3.16) that we follow.

Let U = A2 − (0, 0) with C∗ action: λ · (a, b) = (λ4a, λ6b), where λ ∈ C∗,
(a, b) ∈ U . The equivalence from P(4, 6) := [U/C∗] to M1,1 is induced from a
C∗-equivariant family of 1 pointed genus one stable curves C → U . where

C = {(a, b)× [x : y : z] ∈ U × P
2| y2z = x3 + axz2 + bz3},

with the section

s : U → U × [0, 1, 0] ⊂ C,

the C∗ action is given by

λ · ((a, b)× [x : y : z]) = (λ4a, λ6b)× [λ2x : λ3y : z].

Denote by

• Ak: the component of IM1,k consisting of pairs (x, g) with g of order 2,
here 1 ≤ k ≤ 4.

• C4: the 1-pointed curve {[x : y : z] ∈ P2| y2z = x3 + xz2} with [0 : 1 : 0]
marked. Its automorphism group is generated by i =

√
−1.

• C6: 1-pointed curve {[x : y : z] ∈ P2| y2z = x3+ z3} with [0 : 1 : 0] marked.
Its automorphism group is generated by ǫ = exp (2πi/6).

• C′
4: C4 with a 2nd marked point [0 : 0 : 1].
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• C′
6: C6 with a 2nd marked point [0 : 1 : 1].

• C′′
6 : C

′
6 with a 3rd marked point [0 : −1 : 1].

Theorem 1.3 ([10] Corollary 3.14).

(1) IM1,5 = (M1,5, Id), n ≥ 5.
(2) For k ≤ 4, the twisted sectors of IM1,k are of dimension 1 or 0. Ak is the

only 1 dimensional twisted sector. Zero dimensional twisted sectors are of
the form Bµr, and they are determined by

• (C4, i), (C4,−i), (C6, ǫ), (C6, ǫ
2), (C6, ǫ

4), (C6, ǫ
5) for M1,1.

• (C′
4, i), (C

′
4,−i), (C′

6, ǫ
2), (C′

6, ǫ
4) for M1,2.

• (C′′
6 , ǫ

2), (C′′
6 , ǫ

4) for M1,3.

Remark 1.4. Given x ∈ X (SpecC) and an order r element g ∈ AutX (x), the pair
(x, g) determines a representable morphism from Bµr to X . (see [1] 3.2) As Bµr

is proper, it is closed in IM1,k.

Theorem 1.5 ([10] Corollary 3.11, lemma 3.17).
Let Ak be the closure of Ak in IM1,k, then

(1) • A1 is isomorphic to M1,1.

• A2 ⊂ IM1,2 is isomorphic to P(2, 4).

• A3 ⊂ IM1,3 is isomorphic to P(2, 2).

• A4 ⊂ IM1,4 is isomorphic to P(2, 2).

(2) When viewed as a closed substack of M1,k , Ak does not intersect with the
boundary divisors ∆K for any K ⊂ [k], here 2 ≤ k ≤ 4.

1.2. Riemann-Roch formula for Stacks. We recall the Riemann-Roch formula
in a version needed for this paper, adopted from Appendix A of [13].

Theorem 1.6 ([6],[12] Corollary 4.13). Let X be a smooth, proper Deligne-Mumford
stack with quasi-projective coarse moduli space, E a vector bundle on X . Assume
X has the resolution property, i.e. every coherent sheaf is a quotient of a vector
bundle, then we have the following formula for the Euler characteristics of E :

χ(X , E) =

∫

IX

C̃h(E)T̃ d(X ).

Here

• IX is the inertial stack of X , with projection pX : IX → X .

• C̃h(E) ∈ H∗(IX ) is the Chern character of the bundle ρ(p∗XE).

• ρ(F ) :=
∑

ζ ζF
(ζ) ∈ K0(IX ), if F = ⊕F (ζ) with F (ζ) being the eigenbundle

of F with eigenvalue ζ.

• T̃ d(X ) = Td(IX )
Ch(ρ◦λ−1(N∨

IX/X
)) , where Td and Ch are the usual Todd class and

Chern character. NIX/X is the normal bundle for p, and N∨ is the dual of
N .

• λ−1(V ) :=
∑

a≥0(−1)aΛaV is the λ−1 operation in K-theory. If V = ⊕iVi
is direct sum of line bundles Vi, then λ−1(V ) =

∏
i(1− Vi).

Remark 1.7. M1,n satisfies the resolution property. See, e.g. [7] Proposition 5.1.

Remark 1.8. For a vector bundle F over Y and a map f : X → Y inducing
If : IX → IY, it is easy to see ρ(p∗X f

∗(F )) = If∗(ρ(p∗YF )) in K
0(IX ).



EULER CHARACTERISTICS OF COTANGENT LINE BUNDLES 5

1.3. String Equation.

Proposition 1.9 ([9] Section 4.4). Let π : Mg,n → Mg,n−1 be the forgetful map
forgetting the n-th marked point, then in terms of generating functions with variables
q, qi, 1 ≤ i < n, we have, when g = 0,

π∗(
∏

i<n

1

1− qiLi
) =

∏

i<n

1

1− qiLi
· (1 +

∑

i<n

qi
1− qi

),

and when g > 0,

π∗(
1

1− qH−1

∏

i<n

1

1− qiLi
) =

1

1− qH−1

∏

i<n

1

1− qiLi
· (1 −H−1 +

∑

i<n

qi
1− qi

).

Here π∗ is the K-theoretic pushforward.

2. Euler characteristics of universal cotangent line bundles

In this section, we give an algorithm to compute

χ

(
M1,n,H−d

n⊗

i=1

Ldi

i

)
, d, di ≥ 0.

It is more efficient to encode these numbers into a generating function

Xn :=χ

(
M1,n,

1

1− qH−1

n∏

i=1

1

1− qiLi

)

=
∑

d,di≥0

qd
n∏

i=1

qdi

i χ

(
M1,n,H−d

n⊗

i=1

Ldi

i

)
.

(2.1)

We will first show that the calculation of Xn can be reduced to that of Xn−1

if another generating function Φn in (2.2) can be calculated. We then explicitly
determine Φn and X1.

2.1. Reduction from M1,n to M1,n−1. Let Φn be the generating function

(2.2) Φn := χ

(
M1,n,

1

1− qH−1

n∏

i=1

(
1

1− qiLi
− 1

1− qiO

))

Lemma 2.1. When n > 1, Xn is determined by Φn and Xn−1. More precisely, we
have

Xn(q, q1, · · · , qn) =Φn(q, q1, · · · , qn) +
∑

I⊂[n],I 6=∅

(−1)|I|+1
∏

i∈I

1

1− qi
·

(
Xn−1(q, {qj , j /∈ I}, 0, · · · , 0︸ ︷︷ ︸

|I|−1

)(1 − 1

q
+
∑

j /∈I

qj
1− qj

)

+
1

q
Xn−1(0, {qj , j /∈ I}, 0, · · · , 0︸ ︷︷ ︸

|I|−1

)
)
.

For the last line, note that Xn−1(q, q1, · · · , qn−1) is a symmetric function of the
variables q1, q2, · · · , qn−1, and it is evaluated at {qj , j /∈ I} and |I| − 1 zeros.
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Proof. This follows directly from the definition and the string equation. Expand
the product

∏n
i=1(

1
1−qiLi

− 1
1−qiO

) in Φn we have

Φn = Xn +
∑

I⊂[n],I 6=∅

(−1)|I|
∏

i∈I

1

1− qi
· χ


M1,n,

1

1− qH−1

∏

j /∈I

1

1− qjLj


 .

By the string equation

χ


M1,n,

1

1− qH−1

∏

j /∈I

1

1− qjLj




= χ


M1,n−1,

1

1− qH−1

∏

j /∈I

1

1− qjLj
· (1−H−1 +

∑

j /∈I

qj
1− qj

)


 ,

which is

Xn−1(q, {qj, j /∈ I}, 0, · · · , 0︸ ︷︷ ︸
|I|−1

)(1 − 1

q
+
∑

j /∈I

qj
1− qj

)

+
1

q
Xn−1(0, {qj, j /∈ I}, 0, · · · , 0︸ ︷︷ ︸

|I|−1

).

From here it is easy to see the lemma holds. �

2.2. Calculation of Φn. By the Riemann-Roch formula (Theorem 1.6), we have

Φn =

∫

IM1,n

C̃h(
1

1− qH−1

n∏

i=1

(
1

1− qiLi
− 1

1− qiO
))T̃ d(M1,n).

As the inertia stack IM1,n is the disjoint union of the distinguished component

(M1,n, Id) and its twisted sectors, the integral is the sum of the contributions from
these components.

Proposition 2.2. The contribution to Φn from (M1,n, Id) is

(n− 1)!

24(1− q)

n∏

i=1

qi
(1− qi)2

.

Proof. On (M1,n, Id), C̃h and T̃ d are the same as Ch and Td respectively,

Ch(
1

1− qH−1

n∏

i=1

(
1

1 − qiLi
− 1

1− qiO
)

=
1

1− q

n∏

i=1

qi
(1− qi)2

n∏

i=1

c1(Li) + higher degree terms.

Applying the dilaton equation
∫

M1,n

c1(L1) · · · c1(Ln) = (n− 1)

∫

M1,n−1

c1(L1) · · · c1(Ln−1),
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and
∫

M1,1

c1(L1) =
1

24
,

we find that

∫

M1,n

Ch

(
1

1− qH−1

n∏

i=1

(
1

1 − qiLi
− 1

1− qiO
)

)
Td(M1,n)

=
(n− 1)!

24(1− q)

n∏

i=1

qi
(1− qi)2

.

�

Proposition 2.3. The contribution to Φn from a twisted sector of type (2) in
Theorem 1.1, i.e. from I∆K , is zero.

Proof. Recall such a twisted sector is the product of M0,K∪• and a twisted sector

I of M1,Kc∪•. The natural map M0,K∪• × I → M1,n factors through

∆K : M0,K∪• ×M1,Kc∪• → M1,n.

We quote some known results :

• The dual of the normal bundle for ∆K is pr∗1(L•) ⊗ pr∗2(L•). Here pri is
the projection of M0,K∪• ×M1,Kc∪• onto its i-th factor.

• ∆∗
K(Li) is pr

∗
1(Li) for i ∈ K, and is pr∗2(Li) for i /∈ K.

• ∆∗
K(H) = pr∗2(H).

Using these results, it is then straightforward to see that pushing forward the inte-
grand

C̃h(
1

1 − qH−1

n∏

i=1

(
1

1− qiLi
− 1

1− qiO
))T̃ d(M1,n)

toM0,K∪• gives us a class which has a factor
∏

i∈K c1(Li) coming from C̃h(
∏

i∈K( 1
1−qiLi

−
1

1−qiO
)). As the degree of

∏
i∈K c1(Li) exceeds the dimension of M0,K∪•, the con-

tribution is zero. �

Proposition 2.4. For 2 ≤ k ≤ 4, the contribution from Ak is

(−1)k
1

24(1 + q)

k∏

i=1

qi
1− q2i

· (11 + 2q

1 + q
−

n∑

i=1

2qi
1 + qi

) · dk,

where dk is 6, 6, 3 for k = 4, 3, 2, respectively. The number dk is the degree of a
maps Ak → M1,1 forgetting all but one marked point.
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Proof. On Ak, we have

C̃h(
1

1− qH−1

k∏

i=1

(
1

1− qiLi
− 1

1− qiO
))

=
1

1 + qec1(H−1)

k∏

i=1

(
1

1 + qiec1(Li)
− 1

1− qi
)

= (−2)k
1

1 + q

k∏

i=1

qi
1− q2i

(
1 +

q

1 + q
c1(H) +

k∑

i=1

1− qi
2(1 + qi)

c1(Li)
)
,

and

Ch
(
ρ ◦ (Λ−1(N

∨
Ak/M1,k

)
))

= 2k−1
(
1 +

1

2
c1(N

∨
Ak/M1,k

)
)
.

For the above equations, note that over Ak the eigenvalues involved in C̃h must
be −1 as the nontrivial automorphism is of order 2, also there is no higher degree
terms as Ak is 1 dimensional.

Thus
∫

Ak

C̃h(
1

1− qH−1

k∏

i=1

(
1

1 − qiLi
− 1

1− qiO
))T̃ d(M1,k))

= (−1)k
1

1 + q

k∏

i=1

qi
1− q2i

·

·
( 2q

1 + q

∫

Ak

c1(H) +

k∑

i=1

1− qi
1 + qi

∫

Ak

c1(Li) +

∫

Ak

c1(TM1,k)
)
.

It is easy to see ∫

Ak

c1(H) = dk

∫

M1,1

c1(H) =
dk
24
,

by considering a map Ak ⊂ M1,k → M1,1 forgetting all but one marked point,
∫

Ak

c1(Li), 1 ≤ i ≤ k, and

∫

Ak

c1(TM1,k).

are determined by Corollary 2.6.
�

Lemma 2.5. Let π : M1,n+1 → M1,n be the forgetful map forgetting the (n+1)-th
marked point, then

c1(Lj) = π∗c1(Lj) + ∆{j,n+1}, 1 ≤ j ≤ n;

c1(TM1,n+1) = π∗c1(TM1,n)− c1(Ln+1) +
∑

1≤j≤n

∆{j,n+1}.

Proof. Recall for π : M1,n+1 → M1,n we have

Lj = π∗Lj

(
∆{j,n+1}

)
, 1 ≤ j ≤ n; Ln+1 = ωπ

( ∑

1≤j≤n

∆{j,n+1}

)
,
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where ωπ = ωM1,n+1
⊗ π∗ω −1

M1,n
is the relative dualizing sheaf for π. Taking the

first Chern class of these equations proves the lemma. �

Corollary 2.6.
∫

Ak

c1(Lj) =
dk
24
, 1 ≤ j ≤ k.

∫

Ak

c1(TM1,k) =
(11− k)dk

24
.

Proof. This can be easily proved by applying the above lemma and Theorem 1.5
(2) to a forgetful map Ak → M1,1.

�

Proposition 2.7. Over the zero dimensional twisted sectors, the contribution to
Φn are:

• the contribution from (C′
4, i) ⊔ (C′

4,−i) is
1

4

∏

j=1,2

qj
(1− qj)

· 1− q + q1 + q2 − q1q2 + qq1 + qq2 + qq1q2
(1 + q2)(1 + q21)(1 + q22)

;

• the contribution from (C′
6, ǫ

2) ⊔ (C′
6, ǫ

4) is

1

3

∏

j=1,2

qj
(1− qj)

· 1− q + (q + 2)(q1 + q2) + (2q + 1)q1q2
(1 + q + q2)(1 + q1 + q21)(1 + q2 + q22)

;

• the contribution from (C′′
6 , ǫ

2) ⊔ (C′′
6 , ǫ

4) is

−1

3

∏

j=1,2,3

qj
(1− qj)

·

1− q + (q + 2)(q1 + q2 + q3) + (2q + 1)(q1q2 + q1q3 + q2q3) + (q − 1)q1q2q3
(1 + q + q2)(1 + q1 + q21)(1 + q2 + q22)(1 + q3 + q23)

.

Proof. To simplify the notation, we will use (C, λ) to denote a twisted sector.
The integrand are determined by the eigenvalues of the bundles involved in the

Riemann Roch formula.
For (C4, λ), (C6, λ) of IM1,1, explicit calculation will show that the eigenvalues

of L1, H and ΩM1,1
are λ, λ, λ2 respectively. Consider the forgetful map π :

M1,k → M1,k−1, as Li = π∗Li, i < k and H = π∗H , remark 1.8 implies that
the eigenvalues of Li or H is λ for (C, λ). As π is smooth, we have a short exact
sequence 0 → π∗ΩM1,k−1

→ ΩM1,k
→ ωπ → 0 , and ωπ can be identified with Lk.

It is then easy to see that the eigenvalues of ΩM1,2
are λ, λ2 for (C′

4, λ) or (C
′
6, λ),

and the eigenvalues of ΩM1,3
are λ, λ, λ2 for (C′′

6 , λ).

From the analysis above, on the twisted sector (C, λ) of M1,n we have

C̃h(
1

1− qH−1

n∏

i=1

(
1

1− qiLi
− 1

1− qiO
)) =

(λ− 1)n

1− qλ−1

n∏

i=1

qi
(1− qi)(1− qiλ)

,

and

T̃ d(M1,n) =
1

(1− λ2)(1− λ)n−1
=

1

(1 + λ)(1 − λ)n
.
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The sum of the integral on (C′
4, i) ⊔ (C4,−i) is then

1

4

∑

λ=i,−i

1

(1 − qλ−1)(1 + λ)

∏

i=1,2

qi
(1− qi)(1− qiλ)

,

which equals

1

4

∏

j=1,2

qj
(1− qj)

· 1− q + q1 + q2 − q1q2 + qq1 + qq2 + qq1q2
(1 + q2)(1 + q21)(1 + q22)

.

The remaining cases also follow directly from our formula of C̃h, T̃ d. �

2.3. Calculation for X1. Under the isomorphismM1,1 ≃ P(4, 6), the line bundles
H and L1 all correspond to O(1), hence

χ(M1,1,H−d ⊗ Ld1

1 ) = χ(P(4, 6),O(d1 − d)),

and X1 is determined by χ(P(4, 6),O(k)), k ∈ Z.

Lemma 2.8. Let h0(O(k)) = dimCH
0(P(4, 6),O(k)), then

∞∑

k=0

h0(O(k))qk =
1

(1− q4)(1− q6)
,

and h0(O(k)) = 0 if k < 0.

Proof. As a section ofO(k) on P(4, 6) corresponds to a polynomial f(x, y) satisfying
f(λ4x, λ6y) = λkf(x, y) for any λ ∈ C∗, monomials xayb such that 4a + 6b = k
form a basis of H0(P(4, 6),O(k)). Therefore, h0(O(k)) is given by the coefficient of

qk in the power series
1

(1− q4)(1 − q6)
. �

Proposition 2.9.

χ(M1,1,
1

1− qH−1

1

1− q1L1
) =

(1− qq1)(1 − q4 − q6 − q21q
6 − q21q

8 − q41q
8 + q2q21 + q4q41 + q6q61 + q8q81)

(1− q4)(1 − q6)(1 − q41)(1 − q61)
.

Proof. We have H1(P(4, 6),O(k)) ≃ H0(P(4, 6),O(−10− k))
∨

by Serre duality, so
χ(P(4, 6),O(k)) = h0(O(k)) − h0(O(−k − 10)), and the proposition now follows
from the previous lemma.

�

Appendix A. A simple proof of Pandharipande’s vanishing theorem

The purpose of this appendix is to give a very simple and self-contained proof
of Theorem 0.3, first proved in [11]. Recall that the theorem states that at genus
zero

(A.1) Hj(M0,n,⊗n
i=1L

di

i ) = 0

for j ≥ 1 and di ≥ 0. 1

We will prove (A.1) by induction on n. Note that (A.1) holds for n = 3 as M0,3

is a point.

1The method presented in this appendix can also be used to compute H0(M0,n,⊗L
di
i ). It

is also hoped that this method can help to produce an Sn-equivariant version of our genus zero
formula [8], which is needed in the quantum K-theory [9] computation of general target spaces.
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For n > 3, we first treat the special case that one of the di is zero, then reduce
the case that all di > 0 to that special case.

If one of the di is zero, up to permutation of the marked points we can assume
dn = 0. Consider the forgetful map π : M0,n → M0,n−1, as R

1π∗(⊗n−1
i=1 L

di

i ) = 0
by cohomology and base change (for C rational and degree of OC(D) positive,
H1(C,OC(D)) = 0), we have a degenerated Leray spectral sequence which gives

Hj(M0,n,⊗n−1
i=1 L

di

i ) = Hj(M0,n−1, R
0π∗(⊗n−1

i=1 L
di

i ))

=Hj
(
M0,n−1, (⊗n−1

i=1 L
di

i )⊗ (O +
∑

i,di 6=0

di∑

m=1

L−m
i )

)
,

and this is zero by induction. Here we used the string equation (Prop. 1.9) that
K-theoretically

π∗(⊗n−1
i=1 L

di

i ) = (⊗n−1
i=1 L

di

i )⊗ (O +
∑

i,di 6=0

di∑

m=1

L−m
i ).

If all di > 0, consider V := ⊕n
i=1L

di

i , note that
∧n

V is ⊗n
i=1Li

di . Choose

sections si of Li such that the zero locus of the section ⊕n
i=1s

⊗di

i of V is empty.(See
the remark below.) Then the Koszul complex

0→O d→ V
d→

2∧
V → · · · d→

n∧
V → 0,

is exact, and we can compute H∗(M0,n,⊗Li
di) from this resolution.

Form the double complex (Cp(U,Kq); δ, d){p≥0,0≤q≤n−1}, where U is an affine

covering of M0,n, Kq =
∧q

V , Cp are the Čech cochain groups, δ is the Čech
differential.

d d

dd

δ

δδ

δ

q

p

C0(U,O) C1(U,O)

C0(U,O(V )) C1(U,O(V ))

Using two canonical filtrations (by p and q respectively), we obtain two spectral
sequences ′Ep,q

r and ′′Ep,q
r with

′Ep,q
1 = Hp(M0,n,Kq),

′′Ep,q
2 = Hp(M0,n,Hq

d(K∗)).

These two spectral sequences abut to the same hyper-cohomology H
∗(M0,n,K∗).
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By induction, ′Ep,q
1 = 0 if p 6= 0, since Kq is the direct sum of ⊗Ld′

i

i ’s with some

d′i = 0 . So ′Ep,q
r degenerates at r = 1, and by our construction Hq(M0,n,K∗) =

′E0,q
1 = 0 when q ≥ n.
Note that ′′Ep,q

2 = 0 if q 6= n − 1, therefore ′′Ep,q
r degenerates at r = 2, and we

have Hp(M0,n,⊗Ldi

i ) = ′′Ep,n−1
2 = Hp+n−1(M0,n,K∗) = 0 when p ≥ 1.

Remark A.1. The zero locus of the section ⊕n
i=1s

⊗di

i is contained in the zero locus

of the section ⊕n−2
i=1 si of the vector bundle

⊕n−2
i=1 Li. Since having empty zero locus

is an open property for sections, it is easy to show that a generic section of
⊕n−2

i=1 Li

on M0,n has empty zero locus inductively using a forgetful map as follows.
The statement holds for n = 3, 4 obviously. For n > 4, consider the forgetful

map π : M0,n → M0,n−1. Since Li = π∗Li(Di), 1 ≤ i ≤ n − 2, where Di is the

image of the i-th section of π, a section ti of Li on M0,n−1 would induce a section

si of Li on M0,n with support Supp si = π−1(Supp ti) ∪ Di. It is straightforward

to check ∩n−2
i=1 Supp si = ∅ iff for all 1 ≤ j ≤ n− 2,∩n−2

i=1,i6=j Supp ti = ∅, and these
conditions hold for generic ti by induction.
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