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0. Introduction

The purpose of these notes is to give their readers some idea of Givental’s
axiomatic Gromov–Witten theory, and a few applications. Due to the scope of
these notes, some statements are not precisely formulated and almost all proofs are
omitted. However, we try to point out some subtleties, and to give references for
further reading whenever desirable. The readers are assumed to be familiar with
the rudiments of geometric Gromov–Witten theory.

We start with a very brief review of geometric Gromov–Witten theory in Sec-
tion 1, mainly to fix the necessary notations. In Section 2 the genus zero axiomatic
Gromov–Witten theory is introduced. Among the important properties of the ax-
iomatic theory is the following theorem: The “moduli space” of the genus zero
axiomatic theories of a fixed rank is acted upon by the twisted loop group. Fur-
thermore, the subspace of semisimple theories is a homogeneous space of the twisted
loop group. Then, in Section 3, the semisimple genus zero theories are quantized
to obtain the higher genus theories. Here, the above theorem of genus zero the-
ories plays an important role. The implications of the axiomatic formulation to
Virasoro constraints are discussed in Section 4. Finally, the notion of invariance of
tautological equations and its applications are briefly discussed in Section 5.

Warning: This article does not aim to give a historical account of Gromov–
Witten theory, which is preferably left to other experts. It rather emphasizes upon
some highlights centered at the axiomatic theory which captures our imagination.
Therefore, the choice of the topics is entirely personal, and some important progress
is completely left out when its intersection with axiomatic theory is minimal.

Acknowledgments. I wish to thank all my collaborators on this subject, D. Ar-
cara, A. Givental, R. Pandharipande, for many discussions. This research is par-
tially supported by NSF and an AMS Centennial Fellowship.

1. Review of geometric Gromov–Witten theory

Gromov–Witten theory studies the tautological intersection theory onMg,n(X, β),
the moduli stacks of stable maps from curves C of genus g with n marked points
to a smooth projective variety X . The intersection numbers, or Gromov–Witten
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2 Y.-P. LEE

invariants, are integrals of tautological classes over the virtual fundamental classes
of Mg,n(X, β)

∫

[Mg,n(X,β)]vir

n∏

i=1

ev∗i (γi)ψ
ki

i .

Here γi ∈ H∗(X) and ψi are the cotangent classes (gravitational descendents).
For the sake of the later reference, let us fix some notations.

(i) H := H∗(X,Q) is a Q-vector space, assumed of rank N . Let {φµ}Nµ=1 be
a basis of H .

(ii) H carries a symmetric bilinear form, Poincaré pairing,

〈·, ·〉 : H ⊗H → Q.

Define

gµν := 〈φµ, φν〉
and gµν to be the inverse matrix.

(iii) Let Ht := ⊕∞
k=0H be the infinite dimensional complex vector space with

basis {φµψk}. Ht has a natural Q-algebra structure:

φµψ
k1 ⊗ φνψ

k2 7→ (φµ · φν)ψk1+k2 ,

where φµ · φν is the cup product in H .
(iv) Let {tµk}, µ = 1, . . . , N , k = 0, . . . ,∞, be the dual coordinates of the basis

{φµψk}.
We note that at each marked point, the insertion is Ht-valued. Let

t :=
∑

k,µ

tµkφµψ
k

denote a general element in the vector space Ht.

(v) Define

〈∂µ1

k1
. . . ∂µn

kn
〉g,n,β :=

∫

[Mg,n(X,β)]vir

n∏

i=1

ev∗i (φµi
)ψki

i

and define

〈tn〉g,n,β = 〈t . . . t〉g,n,β
by multi-linearity.

(vi) Let

FX
g (t) :=

∑

n,β

1

n!
〈tn〉g,n,β

be the generating function of all genus g Gromov–Witten invariants. 1

The τ-function of X is the formal expression

(1) τXGW := e
P

∞

g=0
~g−1FX

g .

1In Gromov–Witten theory, one usually has to deal with the coefficients in the Novikov ring,
due to some convergence issues. We shall not touch upon this subtleties here but refer the readers
to [33].
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2. Genus zero axiomatic Gromov–Witten theory

Let H be a Q-vector space of dimension N with a distinguished element 1. Let
{φµ} be a basis of H and φ1 = 1. Assume that H is endowed with a nondegenerate
symmetric Q-bilinear form, or metric, 〈·, ·〉. Let H denote the infinite dimensional
vector space H [z, z−1] consisting of Laurent polynomials with coefficients in H . 2

Introduce a symplectic form Ω on H:

Ω(f(z), g(z)) := Resz=0〈f(−z), g(z)〉,

where the symbol Resz=0 means to take the residue at z = 0.
There is a natural polarization H = Hq ⊕ Hp by the Lagrangian subspaces

Hq := H [z] and Hp := z−1H [z−1] which provides a symplectic identification of
(H,Ω) with the cotangent bundle T ∗Hq with the natural symplectic structure. Hq

has a basis

{φµzk}, 1 ≤ µ ≤ N, 0 ≤ k

with dual coordinates {qkµ}. The corresponding basis for Hp is

{φµz−k−1}, 1 ≤ µ ≤ N, 0 ≤ k

with dual coordinates {pkµ}.
For example, let {φi} be an orthonormal basis of H . An H-valued Laurent

formal series can be written in this basis as

. . .+ (p11, . . . , p
N
1 )

1

(−z)2 + (p10, . . . , p
N
0 )

1

(−z)
+ (q10 , . . . , q

N
0 ) + (q11 , . . . , q

N
1 )z + . . . .

In fact, {pik, qik} for k = 0, 1, 2, . . . and i = 1, . . . , N are the Darboux coordinates
compatible with this polarization in the sense that

Ω =
∑

i,k

dpik ∧ dqik.

The parallel between Hq and Ht is evident, and is in fact given by the following
affine coordinate transformation, called the dilaton shift,

tµk = qµk + δµ1δk1.

Definition 1. Let G0(t) be a (formal) function on Ht. The pair T := (H, G0) is
called a g = 0 axiomatic theory if G0 satisfies three sets of genus zero tautological
equations: the Dilaton Equation (2), the String Equation (3) and the Topological
Recursion Relations (TRR) (4).

2Different completions of H are used in different places. Although there is not a single
completion which works for all theorems quoted in this context, the final results nonetheless make
sense as a coherent theory. This subtlety will be not be discussed in the present article. See [33]
for the details.
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∂G0(t)

∂t11
(t) =

∞∑

k=0

∑

µ

tµk
∂G0(t)

∂tµk
− 2G0(t),(2)

∂G0(t)

∂t10
=

1

2
〈t0, t0〉+

∞∑

k=0

∑

ν

tνk+1

∂G0(t)

∂tνk
,(3)

∂3G0(t)

∂tαk+1∂t
β
l ∂t

γ
m

=
∑

µν

∂2G0(t)

∂tαk∂t
µ
0

gµν
∂3G0(t)

∂tν0∂t
β
l ∂t

γ
m

, ∀α, β, γ, k, l,m.(4)

To simplify the notations, pk will stand for the vector (p1k, . . . , p
N
k ) and pµ for

(pµ0 , p
µ
1 , . . .). Similarly for q, t.

In the case of geometric theory, G0 = FX
0 It is well known that FX

0 satisfies the
above three sets of equations (2) (3) (4). The main advantage of viewing the genus
zero theory through this formulation, seems to us, is to replace Ht by H where a
symplectic structure is available. Therefore many properties can be reformulated
in terms of the symplectic structure Ω and hence independent of the choice of
the polarization. This suggests that the space of genus zero axiomatic Gromov–
Witten theories, i.e. the space of functions G0 satisfying the string equation, dilaton
equation and TRRs, has a huge symmetry group.

Definition 2. Let L(2)GL(H) denote the twisted loop group which consists of
End(H)-valued formal Laurent series M(z) in the indeterminate z−1 satisfying
M∗(−z)M(z) = I. Here ∗ denotes the adjoint with respect to (·, ·).

The condition M∗(−z)M(z) = I means that M(z) is a symplectic transforma-
tion on H.

Theorem 1. [21] The twisted loop group acts on the space of axiomatic genus zero
theories. Furthermore, the action is transitive on the semisimple theories of a fixed
rank N .

Remarks. (i) In the geometric theory, FX
0 (t) is usually a formal function in t.

Therefore, the corresponding function in q would be formal at q = −1z. Further-
more, the Novikov rings are usually needed to ensure the well-definedness of FX

0 (t).
(cf. Footnote 1.)

(ii) It can be shown that the axiomatic genus zero theory over complex num-
bers is equivalent to the definition of abstract (formal) Frobenius manifolds, not
necessarily conformal. The coordinates on the corresponding Frobenius manifold is
given by the following map [9]

(5) sµ :=
∂

∂tµ0

∂

∂t10
G0(t).

From now on, the term “genus zero axiomatic theory” is identified with “Frobenius
manifold”.

(iii) The above formulation (or the Frobenius manifold formulation) does not
include the divisor axiom, which is true for any geometric theory.

(iv) Coates–Givental [8] and Givental [21] gave a beautiful geometric refor-
mation of the genus axiomatic theory in terms of Lagrangian cones in H. When
viewed in the Lagrangian cone formulation, Theorem 1 becomes transparent and a
proof is almost unnecessary.
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Roughly, the descendent Lagrangian cones are constucted in the following way.
Denote by L the graph of the differential dG0:

L = {(p, q) ∈ T ∗Hq : pµk =
∂

∂qµk
G0}.

It is considered as a formal germ at q = −z (i.e. t = 0) of a Lagrangian section
of the cotangent bundle T ∗Hq = H, due to the convergence issues of G0. L is
therefore considered as a formal germ of a Lagrangian submanifold in the space
(H,Ω).

Theorem. (H, G0) defines an axiomatic theory if the corresponding Lagrangian
cone L ⊂ H satisfies the following properties: L is a Lagrangian cone with the
vertex at the origin of q such that its tangent spaces L are tangent to L exactly
along zL.

A Lagrangian cone with the above property is also called over-ruled (descen-
dent) Lagrangian cones.

3. Quantization and higher genus axiomatic theory

3.1. Preliminaries on quantization. To quantize an infinitesimal symplec-
tic transformation, or its corresponding quadratic hamiltonians, we recall the stan-
dard Weyl quantization. A polarization H = T ∗Hq on the symplectic vector space
H (the phase space) defines a configuration space Hq. The quantum “Fock space”
will be a certain class of functions f(~, q) on Hq (containing at least polynomial
functions), with additional formal variable ~ (“Planck’s constant”). The classical
observables are certain functions of p, q. The quantization process is to find for
the classical mechanical system on H a “quantum mechanical” system on the Fock
space such that the classical observables, like the hamiltonians h(q, p) on H, are

quantized to become operators ĥ(q,
∂

∂q
) on the Fock space.

Let A(z) be an End(H)-valued Laurent formal series in z satisfying

(A(−z)f(−z), g(z)) + (f(−z), A(z)g(z)) = 0,

then A(z) defines an infinitesimal symplectic transformation

Ω(Af, g) + Ω(f,Ag) = 0.

An infinitesimal symplectic transformation A of H corresponds to a quadratic poly-
nomial 3 P (A) in p, q

P (A)(f) :=
1

2
Ω(Af, f).

3Due to the nature of the infinite dimensional vector spaces involved, the “polynomials” here
might have infinite many terms, but the degrees remain finite.
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Choose a Darboux coordinate system {qik, pik}. The quantization P 7→ P̂ assigns

1̂ = 1, p̂ik =
√
~
∂

∂qik
, q̂ik = qik/

√
~,

p̂ikp
j
l = p̂ikp̂

j
l = ~

∂

∂qik

∂

∂qjl
,

p̂ikq
j
l = qjl

∂

∂qik
,

q̂ikq
j
l = qikq

j
l /~,

(6)

In summary, the quantization is the process

A 7→ P (A) 7→ P̂ (A)
inf. sympl. transf. 7→ quadr. hamilt. 7→ operator on Fock sp..

It can be readily checked that the first map is a Lie algebra isomorphism: The Lie
bracket on the left is defined by [A1, A2] = A1A2 − A2A1 and the Lie bracket in
the middle is defined by Poisson bracket

{P1(p, q), P2(p, q)} =
∑

k,i

∂P1

∂pik

∂P2

∂qik
− ∂P2

∂pik

∂P1

∂qik
.

The second map is not a Lie algebra homomorphism, but is very close to being one.

Lemma 1.
[P̂1, P̂2] = ̂{P1, P2}+ C(P1, P2),

where the cocycle C, in orthonormal coordinates, vanishes except

C(pikpjl , qikq
j
l ) = −C(qikqjl , pikp

j
l ) = 1 + δijδkl.

Example. Let dimH = 1 and A(z) be multiplication by z−1. It is easy to see that
A(z) is infinitesimally symplectic.

P (z−1) =− q20
2

−
∞∑

m=0

qm+1pm

P̂ (z−1) =− q20
2

−
∞∑

m=0

qm+1
∂

∂qm
.

(7)

Note that one often has to quantize the symplectic instead of the infinitesimal
symplectic transformations. Following the common practice in physics, define

(8) êA(z) := eÂ(z),

for eA(z) an element in the twisted loop group.

3.2. τ-function for the axiomatic theory. Let X be the space of N points
and HNpt := H∗(X). Let φi be the delta-function at the i-th point. Then {φi}Ni=1

form an orthonormal basis and are the idempotents of the quantum product

φi ∗ φj = δijφi.

The genus zero potential for N points is nothing but a sum of genus zero potentials
of a point

FNpt
0 (t1, . . . , tN ) = F pt

0 (t1) + . . .+ F pt
0 (tN ).

In particular, the genus zero theory of N points is semisimple.
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By Theorem 1, any semisimple genus zero axiomatic theory T of rank N can
be obtained from HNpt by action of an element OT in the twisted loop group.
By Birkhoff factorization, OT = ST (z−1)RT (z), where S(z−1) (resp. R(z)) is a
matrix-valued function in z−1 (resp. z).

In order to define the axiomatic higher genus potentials GT
g for the semisimple

theory T , one first introduces the “τ -function of T ”.

Definition 3. [19] Define the axiomatic τ-function as

(9) τTG := ŜT (R̂T τNpt
GW ),

where τNpt
GW is defined in (1). Define the axiomatic genus g potential GT

g via the
formula (cf. (1))

(10) τTG =: e
P

∞

g=0
~g−1GT

g .

Remarks. (i) It is not obvious that the above definitions make sense. The function

ŜT (R̂T τNpt) is well-defined, due to some finiteness properties of τpt, called the (3g−
2)-jet properties [19][17]. The fact that log τTG can be written as

∑∞

g=0 ~
g−1(formal function in t)

is also nontrivial. The interested readers are referred to the original article [19] or
[33] for details.

(ii) What makes Givental’s axiomatic theory especially attractive are the facts
that

(a) It works for any semisimple Frobenius manifolds, not necessarily coming
from geometry.

(b) It enjoys properties often complementary to the geometric theory.

These will be put into use in the following sections.

4. Virasoro constraints

4.1. Virasoro operators for points via quantization. Let HNpt be the
genus zero theory for X being N points. Define the differential operators D on the
corresponding H = HNpt((z−1))

D := z(
d

dz
)z = z2

d

dz
+ z.

Define the operators {Lm} for m = −1, 0, 1, 2, . . .

Lm := −z−1/2Dm+1z−1/2.

The operators Lm have only integer exponents of z.

Lemma 2. (i)

(11) [Lm, Ln] = (m− n)Lm+n.

(ii) Lm are infinitesimal symplectic transformations.

Proof. Part (i) can be proved in the following way. First perform a change
of variables w = 1/z. Then

z1/2Lmz
−1/2 = (−1)mw

dm+1

dwm+1
.

The RHS has a Fourier transform to the standard vector fields on the disk (−1)mwm+1 d
dw ,

which obviously satisfies the Virasoro relations of (i).
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Part (i) implies that the Lie algebra spanned by Lm is generated by L2 and
L−1. These two operators can be verified to satisfy (ii). �

Due to Lemma 2 (ii), Lm can be quantized to L̂m. The Lie algebra generated by

{L̂m}m≥−1 satisfies the Virasoro relations due to Lemma 1. The Virasoro operators

{L̂m}m≥−1 constructed above are the same as N copies of those used in Witten’s
conjecture in relation to KdV hierarchies [39].

4.2. Virasoro operators for semisimple axiomatic theories. Now for
any axiomatic theory of rank N , one may define the Virasoro operators. The
notations in Definition 3 will be followed.

Definition 4. [19]

(12) L̂T
m := ŜT

(
R̂T L̂HNpt

m R̂T
−1)

ŜT
−1
.

Lemma 3. (i) {L̂T
m}m≥−1 satisfy the Virasoro relations (11).

(ii) L̂T
mτ

T
G = 0.

Proof. (i) is obviously true as the conjugation does not change the commu-

tation relations. (ii) follows from the fact that L̂HNpt

m τH
Npt

= 0, which is N copies
of Witten’s conjecture. �

4.3. Virasoro constraints.

Virasoro Conjecture. [12] For any projective manifold X, there exist “Virasoro

operators” {L̂X
m}m≥−1, satisfying the relations (11), such that

L̂X
mτ

X
GW = 0, ∀m ≥ −1.

A good reference for a precise statement can be found in [16].
With Lemma 3, a clear path to prove Virasoro conjecture would be to show,

when TX , the genus zero Gromov–Witten theory of X , is semisimple, the following
two statements.

(a) Definition 4 of Virasoro operators coincide with the definition of Eguchi–
Hori–Xiong [12] in the semisimple case.

(b) τXGW = τT
X

G .

Remarks. (i) (a) can be proved with some efforts. See [19] and [33]. In fact, the
operators defined by (12) are also equivalent to those defined by Dubrovin–Zhang
[10].

(ii) Givental uses the axiomatic framework and a clever observation to give a
one-line proof of genus zero Virasoro Conjecture [18].

(b) will be called Givental’s Conjecture. The proof of (b) is more complicated.
Assume that X has a torus action. Then the equivariant Gromov–Witten

invariants are defined and hence the τ -function τXeGW for the equivariant Gromov–
Witten theory of X . Suppose furthermore that the torus action has isolated fixed
points and one-dimensional orbits. It is not hard to see that the genus zero equi-
variant Gromov–Witten invariants define a semisimple axiomatic theory TX

e [33].
Therefore the above formulation works in this case and

Theorem 2. [18, 19] Givental’s Conjecture holds in the above (equivariant) case.
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Givental’s proof of this theorem is a tour de force and involves deep theory of
Frobenius manifolds and localization. See [33] for details.

If the non-equivariant genus zero Gromov–Witten theory TX is semisimple,
then it is reasonable to expect that non-equivariant limit of TX

e exists and equals
TX . This will prove (non-equivariant) Virasoro Conjecture in a great deal of ex-
amples. Unfortunately, this proves harder than one expects. Givental provided a
key reduction to a much simpler statement of the existence of the non-equivariant

limit of a certain RTX
e restricted to the “small quantum cohomology”, which we

will not state but refer the interested readers to [19]. This last statement has been
proved for the toric Fano manifolds [19], for general toric manifolds [24], and for
some classical flag varieties [26] [3] [4].

Another approach to Givental’s conjecture is through the invariance of the
tautological equations. See Section 5 for an explanation of the following result.

Theorem 3. [22, 30, 31] Givental’s Conjecture holds for genus one and two.

In 2005, C. Teleman announces a very strong classification theorem of all
semisimple Frobenius manifolds. This is a very exciting progress as Givental’s
Conjecture follows as a corollary.

Theorem 4. [36] Givental’s Conjecture is true. Therefore, Virasoro constraints
also holds for semisimple Gromov–Witten theory. Furthermore, the equality holds
at the level of cycles.

5. Invariance of tautological relations

5.1. Tautological rings. A basic reference for tautological rings is [38], where
the history of the subject is explained.

The tautological rings R∗(Mg,n) are subrings of A∗(Mg,n)Q, or subrings of

H2∗(Mg,n) via cycle maps, generated by some “geometric classes” which will be
described below.

There are two types of natural morphisms between moduli stacks of curves.
The forgetful morphisms

(13) fti : Mg,n+1 →Mg,n

forget one of the n+ 1 marked points. The gluing morphisms

(14) Mg1,n1+1 ×Mg2,n2+1 → Mg1+g2,n1+n2
, Mg−1,n+2 → Mg,n,

glue two marked points to form a curve with a new node. Note that the boundary
strata are the images (of the repeated applications) of the gluing morphisms, up to
factors in Q due to automorphisms.

Definition 5. The system of tautological rings {R∗(Mg,n)}g,n is the smallest sys-
tem of Q-unital subalgebra closed under the forgetful and gluing morphisms.

As it contains the units, the fundamental classes of the boundary strata are
contained in R∗(Mg,n). From some elementary manipulations, one can also produce
Chern classes of certain tautological vector bundles: ψ-classes, λ-classes and κ-
classes.
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5.2. Invariance constraints. Due to the existence of natural stabilization
morphisms

(15) st :Mg,n(X, β) →Mg,n

defined by forgetting morphisms toX and stabilizing the domain curves if necessary,
any relations inH∗(Mg,n)Q can be pull-backed toH∗(Mg,n(X, β))Q. Therefore, the
induced equation will hold for any geometric Gromov–Witten theory. It is natural
to expect that the same is true for any axiomatic theory.

For any axiomatic theory T , τ -function can be obtained as τTG = ŜT (R̂T τNpt
GW ).

The τ -function of N points certainly satisfies any induced equations. Therefore,
in order to show that the induced tautological relations hold for T , it is enough to

show that these relations are invariant under the action of R̂T and ŜT .

Theorem 5. [30, 31, 14] The tautological relations are invariant under the action
of twisted loop groups.

Since the twisted loop groups can be (Birkhoff) factorized into Ŝ and R̂, one

can prove Theorem 5 by proving invariance individually. The Ŝ invariance was
shown in [30, 31] to be a consequence of geometry on moduli of stable maps. The

proof of R̂ invariance was originally given in [30], using Theorem 4. 4 It was later
independently discovered by Faber–Shadrin–Zvonkine, and R. Pandharipande and

the author, that the R̂ invariance is a simple consequence of geometry on moduli
of curves. See Section 3 of [14] for details.

Remark. The invariance under the action of Ŝ imposes little restriction. It is a
consequence of the fact that there is an accountable difference [27] [19] between
ψ-classes defined on Mg,n(X, β) and the pull-backs of ψ-classes from Mg,n via the
stabilization morphism (15). On the other hand, the invariance under the action

of R̂ imposes very strong constraints on the structure of tautological relations, and
hence can be used to derive many tautological relations.

5.3. Application I: Virasoro constraints. As alluded in Theorem 3, the
invariance conjecture can be used to prove Givental’s Conjecture for g ≤ 2. The
idea is to first show some uniqueness theorem: If two genus g potentials Fg and
Gg satisfy enough tautological relations, then they are identical up to some initial
conditions. For g = 1 and 2, this has been done in [10] and [34]. Therefore, Given-
tal’s conjecture would follow from the statement that Gg satisfy those tautological
relations. As explained above, that in turns follows from the invariance of the tau-

tological relations under the action of R̂. That is how Theorem 3 is proved. One
immediate corollary of Theorem 3 is Virasoro conjecture in g ≤ 2 in the semisimple
cases.

5.4. Application II: Witten’s (generalized) conjecture. Another con-
sequence, which seems less obvious but more interesting to us, is the following
conjecture of Witten.

Witten has proposed a conjectural relation between invariants on the moduli
space of higher spin curves and the Gelfand–Dickey hierarchies [40], generalizing his

4In fact, only the “cycle-form” of Theorem 4 for X = P1 was used. The X = P1 case can be
proved via localization and clever resummation trick of Givental [19], without Teleman’s result.
However, a localization proof does not yet exist in the literature. (It is part of project [33].)
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previous conjecture [39]. It turns out that the genus zero case defines a semisimple
theory, which is isomorphic to the Frobenius structure of the miniversal deformation
of Ar-singularities. The axiomatic theory built on that satisfies the Gelfand–Dickey
hierarchies [20]. Although the “geometric” theory defined by the invariants on the
moduli space of higher spin curves is, strictly speaking, not a geometric Gromov–
Witten theory, it also fit into the framework of the axiomatic theory. Therefore the
uniqueness theorems apply and one has the following corollary.

Theorem 6. [14] Witten’s generalized conjecture is true.

This would be a simple consequence of Theorem 4, combined with an earlier
result by Givental [20]. However, the proof in [14] is independent of Teleman’s
results. It uses the ingredients outlined in [28, 31], while expertly combining with
ingredients from well-known results in tautological rings, which we failed to see four
years ago.

5.5. Application III: Finding tautological relations. Another applica-
tion is going the opposite direction: a feedback from Gromov–Witten theory to
tautological rings on moduli of curves. Using Theorem 5, all the known tautologi-

cal relations are obtained by requiring invariance under R̂. It seems plausible that

R̂ invariance can be used to derive many tautological relations. In fact, combining
Theorem 5 with some known results (e.g. Betti number calculation of Getzler in
[15]), all known tautological relations can be proved uniformly within this frame-
work. See [29] [1] [2] [22] for discussions and computations.

6. Other applications

6.1. Twisted Gromov–Witten invariants. In the axiomatic theory, Coates
and Givental [8] was able to find the right framework to express the twisted
Gromov–Witten invariants in terms of the untwisted Gromov–Witten invariants.

Given a vector bundle E on X , one can define a element R in the K-theory
of M := Mg,n(X, β) in the following way. Let π : C → M be the universal curve
and f : C → X be the universal morphism. R := R0π∗f

∗E → R1π∗f
∗E is then

an element in the K-theory of M . The twisted Gromov–Witten invariants are
the integration, over the virtual fundamental classes [M ]vir of the usual insertions
H∗(X) and descendents, but “twisted” with certain multiplicative characteristic
classes of the virtual vector bundle R.

It is known in [13] that these twisted classes can be expressed in terms of un-
twisted classes in the case E = O. The underlying geometry was the Grothendieck–
Riemann–Roch calculation in [35]. The case E being any virtual bundle proceed
similarly without difficulty. However, there was no “closed form” to express this
relation. The axiomatic framework made this possible. Of course, it is a truly tour
de force to carry out this program even within the axiomatic framework.

6.2. Crepant resolution conjecture. In another direction, this framework
is applied to formulate a precise conjecture regarding the relations between the
Gromov–Witten invaraiants of an orbifold and those of its crepant resolutions. A
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recent preprint [7] gives an excellent account of this conjecture, so we will be very
brief. 5

A morphism f : Y → X is called a crepant resolution, if Y is smooth and X
is Q-Gorenstein (e.g. an orbifold) such that f∗(KX ) = KY . In the case X is an
orbifold, there is a well-defined orbifold Gromov–Witten theory due to Chen–Ruan
[5]. The crepant resolution conjecture asserts a close relation between the Gromov–
Witten theory of Y and that of X . Under suitable conditions (e.g. hard Lefschetz),
the conjecture asserts that the Gromov–Witten theory of Y and X are identified,
up to analytic continuation on the Novikov variables. When the orbifold X does
not satisfy the hard Lefschetz condition, it is speculated that a very weak relation
still hold. Coates–Corti–Iritani–Tseng and Ruan believe that this weak relation
could and should only be formulated in terms of a symplectic transformation of the
special type. The interested readers might consult [7, 6] and references therein, as
well as the next subsection, for more information.

6.3. Invariance of Gromov–Witten theory under simple flops. Crepant
resolution is a special case of K-equivalence. X and X ′ are called K-equivalent if
there is a common resolution Y such that KX and KX′ are equal after pulling back
to Y . In [32], the case when X and X ′ are smooth and related by a simple flop is
studied. It was shown that the big quantum rings are isomorphic after an analytic
continuation in the quantum variables.

In [25], axiomatic framework is used to generalize this result to higher genus.
It is first shown, by degeneration to the normal cone, that the statement can be
reduced to the a statement about toric varieities and toric flops. Then the quantiza-
tion formulation reduces the higher genus statement to a genus zero statement. An
explicit calculation was carried out in genus zero to show the invariance of ances-
tor invariants, after analytic continuation. In fact, results in [25] suggest that the
ancestor formulation is the right framework to study crepant resolution conjecture.

7. Final remarks

7.1. Orbits of twisted loop group action on the moduli spaces of
Frobenius manifolds. We learned from Theorem 1 that the twisted loop groups
acts on the space of all Frobenius manifolds of a given rank. Furthermore, the
semisimple theories lie in a single orbit. It is obvious that the group action has to
preserve the “degree of diagonizability” (or degree of semisimplicity) of the theories.
However, it is not known (to me) how many orbits one is to have with a fixed degree
of diagonizability. It would be very interesting to investigate the orbit structure of
the twisted loop group action.

7.2. Integrable hierarchies. In the proof of the Virasoro conjecture, a basic

trick is to move L̂Npt
m to the left of ŜT R̂T and to identity it as the L̂T

m. In the same
spirit, since the τNpt satisfies the Hirota equations of KdV hierarchies, one may try

to commute Hirota operators of KdV hierarchies with ŜT R̂T . The result could be
some yet unknown integrable hierarchies. This would realize Dubrovin’s program
of finding a correspondence between certain classes of integrable hierarchies and

5The only difference of our points of view lies on the our choices of the (over-rulded) La-
grangian cones. While the authors of [7] insists in using descendent cones, we think the ancestor
cones would make the statement a lot cleaner.
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the Gromov–Witten theory. However, the task of commuting operators are rather
difficult, due to some convergence issues. Successful examples include [20] and [23].

7.3. Axiomatic relative/orbifold/open-string theory. Givental’s theory
has so far been developed upon the “original” Gromov–Witten theory. It is reason-
able to ask whether this theory can be generalized to cover some ramifications of
the original Gromov–Witten theory, such as relative Gromov–Witten theory or orb-
ifold Gromov–Witten theory. My personal guess is that orbifold theory is probably
easier. Indeed, it is not very difficult to see that Givental’s theory of quantization
should work for orbifold theory as well. At least in the equivariant context, the
original localization scheme seems to work. See Tseng’s work [37] for some progress
along this direction.

In a proper sense that the orbifold compactification is a “minimal” one inside
the relative compactification, which involves bubbling off the target spaces and is
more complicated. 6 Therefore, one expects that the axiomatization of relative
theory will be harder.

Furthermore, Gromov–Witten theory is considered as a topological field theory
associated to closed strings. There is an open string analogue. It is also reasonable
to ponder the possibility of an open-string axiomatic theory, whose geometric theory
has not been successfully constructed. This might further our understanding of the
open-string GW theory.
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