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6 INVARIANCE OF TAUTOLOGICAL EQUATIONS II:

GROMOV–WITTEN THEORY

Y.-P. LEE

Abstract. The aim of Part II is to explore the technique of in-
variance of tautological equations in the realm of Gromov–Witten
theory. The main result is a proof of Invariance Theorem (Invari-
ance Conjecture 1 in [14]), via the techniques from Gromov–Witten
theory. It establishes some general inductive structure of the tau-
tological rings, and provides a new tool to the study of this area.

0. Introduction

This work is a continuation of Part I of ITE [14]. The purpose of this
paper is to explore the technique of invariance of tautological equations
in the realm of Gromov–Witten theory.
In Part I, a set of three conjectures on the structure of the tautolog-

ical rings were proposed. The main focus there was to study the linear
invariance operators

(1) rl : R
k(M

•

g,n) → Rk+l−1(M
•

g−1,n+2)

between the tautological rings of moduli of curves, and their conjectural
implications. Here • stands for possibly disconnected curves. Note that
the arithmetic genus for disconnected curve is defined to be

g(C) :=

d∑

i=1

g(Ci)− d+ 1,

where Ci are connected components of C, C = ∐d
i=1Ci. By the defini-

tion given in [14], the curves in the image of rl have at most one more
connected components. Therefore, the connected components of the
image curves would have either smaller genus or the same genus but
less marked points than those of the domain curves. Furthermore, In-
variance Conjecture 2 asserts that the product of rl for finitely number
of l will be injective. This implies, conjecturally, that the tautological
rings have a previously unknown inductive structure.
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The definition of rl given in Part I is via operations on the decorated
graphs. Note that one class in Rk(M g,n) may have more than one
graphical presentations due to the existence of tautological relations.
It is highly nontrivial that certain combination of these graphical op-
erations would descend to operations on Rk(Mg,n). The main result
(Theorem 5) of this paper is to prove the the invariance operators rl

is well-defined on Rk(Mg,n). This will be called Invariance Theorem,
following [19]. The existence alone easily implies some new results in
tautological rings as well as simplified proofs of old ones. This will be
explained in Section 6.4.
The techniques for the proof comes from interactions of moduli of

curves and Gromov–Witten theory. The idea of using Gromov–Witten
theory to study tautological rings on moduli of curves is not new. The
fixed point loci of localizations on moduli of maps are moduli of curves,
and “trivial” identities on moduli of maps can produce non-trivial iden-
tities on their fixed point loci. See [19] for a nice survey of this sub-
ject. Here however Gromov–Witten theory is used in a different way.
Roughly, instead of localization, deformation theory of Gromov–Witten
theory is used. Along the way, some results in Gromov–Witten theory
are also proved.
Here is a summary of the content of this paper. Section 1 gives

a quick summary of geometric Gromov–Witten theory. As alluded in
Part I [14], the set of conjectures proposed there are motivated by study
of Givental’s axiomatic Gromov–Witten theory. In Sections 2 and 3,
we summarize Givental’s theory. Some geometric results on the tau-
tological classes, known to experts, are given in Section 4 for readers’
convenience. In Section 5, it is proved that each tautological class is
invariant under the quantized lower triangular loop groups. Thus the
invariance under lower triangular loop groups gives no constraints. In
Section 6, we study the invariance of tautological equations under the
quantized upper triangular loop groups. It turns out that this invari-
ance poses very strong constraints on possible forms of the tautological
equations. As a matter of fact, the invariance constraints are so strong
as to, conjecturally, uniquely determine the tautological equations. This
is the motivation of the three Invariance Conjectures advanced in [14].
The main result, Invariance Theorem (Theorem 5), is proved there.
At the end of the paper, we indicate a few applications of Invariance

Theorem, including a Faber type statement for the tautological rings [3]
and a uniform derivation of all known tautological equations [12, 1, 2].
An appendix (jointly with Y. Iwao) demonstrates some properties of
the upper triangular loop groups associated to P1.
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1. Geometric Gromov–Witten theory

1.1. Preliminaries of Gromov–Witten theory. Gromov–Witten
theory studies the tautological intersection theory on M g,n(X, β), the
moduli spaces of stable maps from curves C of genus g with n marked
points to a smooth projective variety X . The intersection numbers,
or Gromov–Witten invariants, are integrals of tautological classes over
the virtual fundamental classes of M g,n(X, β)

∫

[Mg,n(X,β)]vir

n∏

i=1

ev∗i (γi)ψ
ki
i .

Here γi ∈ H∗(X) and ψi are the cotangent classes (gravitational de-
scendents).
For the sake of the later reference, let us fix some notations.

(i) H := H∗(X,Q) is a Q-vector space, assumed of rank N . Let
{φµ}Nµ=1 be a basis of H .

(ii) H carries a symmetric bilinear form, Poincaré pairing,

〈·, ·〉 : H ⊗H → Q.

Define

gµν := 〈φµ, φν〉
and gµν to be the inverse matrix.

(iii) Let Ht := ⊕∞

k=0H be the infinite dimensional complex vector
space with basis {φµψ

k}. Ht has a natural Q-algebra structure:

φµψ
k1 ⊗ φνψ

k2 7→ (φµ · φν)ψ
k1+k2 ,

where φµ · φnu is the cup product in H .
(iv) Let {tµk}, µ = 1, . . . , N , k = 0, . . . ,∞, be the dual coordinates

of the basis {φµψ
k}.

We note that at each marked point, the insertion is Ht-valued. Let

t :=
∑

k,µ

tµkφµψ
k

denote a general element in the vector space Ht. To simplify the nota-
tions, tk will stand for the vector (t1k, . . . , t

N
k ) and t

µ for (tµ0 , t
µ
1 , . . .).
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(v) Define

〈∂µ1

k1
. . . ∂µn

kn
〉g,n,β :=

∫

[Mg,n(X,β)]vir

n∏

i=1

ev∗i (φµi
)ψki

i

and define

〈tn〉g,n,β = 〈t . . . t〉g,n,β
by multi-linearity.

(vi) Let

FX
g (t) :=

∑

n,β

1

n!
〈tn〉g,n,β

be the generating function of all genus g Gromov–Witten in-
variants. 1 The τ -function of X is the formal expression

(2) τXGW := e
∑

∞

g=0
~g−1FX

g .

1.2. Gravitational ancestors and the (3g−2)-jet properties. Let

(3) st :Mg,m+l(X, β) → Mg,m+l

be the stabilization morphism defined by forgetting the map and

ft :M g,m+l →M g,m

be the forgetful morphism defined by forgetting the last l points. The
gravitational ancestors are defined to be

(4) ψ̄i := (ft ◦ st)∗ψi

and genus g ancestor potential is defined by

F
X

g (t, s) :=
∑

m,l,β

Qβ

m!l!

∫

[Mg,m+l(X,β)]vir

m∏

i=1

∑

k

tµk(ψ̄i)
kev∗

i (φµ)
m+l∏

i=m+1

∑

µ

sµev∗i (φµ).

The following property is called the (3g − 2)-jet property [9]

(5)
∂m

∂tµ1

k1+1 . . . ∂t
µm

km+1

F
X

g (t, s)|t0=0 = 0 for
∑

ki ≥ 3g − 2.

This follows from the dimension counting

dimM g,n = 3g − 3 + n.

1In Gromov–Witten theory, one usually has to deal with the coefficients in the
Novikov ring. We shall not touch upon this subtleties here but refer the readers to
[17].
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The ancestors and descendents are different, but easy to compare.
Let Dj be the (virtual) divisor on M g,n+m(X, β) defined by the image
of the gluing morphism
∑

β′+β′′=β

∑

m′+m′′=m

M
(j)

0,2+m′(X, β ′)×X M g,n+m′′(X, β ′′) →M g,n+m(X, β),

where Mg,n+m′′(X, β ′′) carries all first n marked points except the j-th

one, which is carried by M
(j)

0,2+m′(X, β ′). It is proved in [13] that

(6) ψj − ψ̄j = [Dj]
vir.

2. Genus zero axiomatic Gromov–Witten theory

Let H be a Q-vector space of dimension N with a distinguished
element 1. Let {φµ} be a basis of H and φ1 = 1. Assume that H is
endowed with a nondegenerate symmetric Q-bilinear form, or metric,
〈·, ·〉. Let H denote the infinite dimensional vector space H [z, z−1]
consisting of Laurent polynomials with coefficients in H . 2 Introduce
a symplectic form Ω on H:

Ω(f(z), g(z)) := Resz=0〈f(−z), g(z)〉,
where the symbol Resz=0 means to take the residue at z = 0.
There is a natural polarization H = Hq ⊕ Hp by the Lagrangian

subspaces Hq := H [z] and Hp := z−1H [z−1] which provides a symplec-
tic identification of (H,Ω) with the cotangent bundle T ∗Hq with the
natural symplectic structure. Hq has a basis

{φµz
k}, 1 ≤ µ ≤ N, 0 ≤ k

with dual coordinates {qkµ}. The corresponding basis for Hp is

{φµz
−k−1}, 1 ≤ µ ≤ N, 0 ≤ k

with dual coordinates {pkµ}.
For example, let {φi} be an orthonormal basis of H . An H-valued

Laurent formal series can be written in this basis as

. . .+ (p11, . . . , p
N
1 )

1

(−z)2 + (p10, . . . , p
N
0 )

1

(−z)
+ (q10, . . . , q

N
0 ) + (q11, . . . , q

N
1 )z + . . . .

2Different completions of H are used in different places. This will be not be
discussed details in the present article. See [17] for the details.
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In fact, {pik, qik} for k = 0, 1, 2, . . . and i = 1, . . . , N are the Darboux
coordinates compatible with this polarization in the sense that

Ω =
∑

i,k

dpik ∧ dqik.

The parallel between Hq and Ht is evident, and is in fact given by
the following affine coordinate transformation, called the dilaton shift,

tµk = qµk + δµ1δk1.

Definition 1. Let G0(t) be a (formal) function on Ht. The pair T :=
(H, G0) is called a g = 0 axiomatic theory if G0 satisfies three sets of
genus zero tautological equations: the Dilaton Equation (7), the String
Equation (8) and the Topological Recursion Relations (TRR) (9).

∂G0(t)

∂t11
(t) =

∞∑

k=0

∑

µ

tµk
∂G0(t)

∂tµk
− 2G0(t),(7)

∂G0(t)

∂t10
=

1

2
〈t0, t0〉+

∞∑

k=0

∑

ν

tνk+1

∂G0(t)

∂tνk
,(8)

∂3G0(t)

∂tαk+1∂t
β
l ∂t

γ
m

=
∑

µν

∂2G0(t)

∂tαk∂t
µ
0

gµν
∂3G0(t)

∂tν0∂t
β
l ∂t

γ
m

, ∀α, β, γ, k, l,m.(9)

In the case of geometric theory, G0 = FX
0 It is well known that

FX
0 satisfies the above three sets of equations (7) (8) (9). The main

advantage of viewing the genus zero theory through this formulation,
seems to us, is to replace Ht by H where a symplectic structure is
available. Therefore many properties can be reformulated in terms
of the symplectic structure Ω and hence independent of the choice of
the polarization. This suggests that the space of genus zero axiomatic
Gromov–Witten theories, i.e. the space of functions G0 satisfying the
string equation, dilaton equation and TRRs, has a huge symmetry
group.

Definition 2. Let L(2)GL(H) denote the twisted loop group which con-
sists of End(H)-valued formal Laurent seriesM(z) in the indeterminate
z−1 satisfying M∗(−z)M(z) = I. Here ∗ denotes the adjoint with re-
spect to (·, ·).
The condition M∗(−z)M(z) = I means that M(z) is a symplectic

transformation on H.

Theorem 1. [11] The twisted loop group acts on the space of ax-
iomatic genus zero theories. Furthermore, the action is transitive on
the semisimple theories of a fixed rank N .
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Remarks. (i) In the geometric theory, FX
0 (t) is usually a formal function

in t. Therefore, the corresponding function in q would be formal at
q = −1z. Furthermore, the Novikov rings are usually needed to ensure
the well-definedness of FX

0 (t). (cf. Footnote 1.)
(ii) It can be shown that the axiomatic genus zero theory over com-

plex numbers is equivalent to the definition of abstract (formal) Frobe-
nius manifolds, not necessarily conformal. The coordinates on the cor-
responding Frobenius manifold is given by the following map [5]

(10) sµ :=
∂

∂tµ0

∂

∂t10
G0(t).

From now on, the term “genus zero axiomatic theory” is identified with
“Frobenius manifold”.
(iii) The above formulation (or the Frobenius manifold formulation)

does not include the divisor axiom, which is true for any geometric
theory.
(iv) Coates and Givental [4] (see also [11]) give a beautiful geometric

reformation of the genus zero axiomatic theory in terms of Lagrangian
cones in H. When viewed in the Lagrangian cone formulation, Theo-
rem 1 becomes transparent and a proof is almost immediate.

3. Quantization and higher genus axiomatic theory

3.1. Preliminaries on quantization. To quantize an infinitesimal
symplectic transformation, or its corresponding quadratic hamiltoni-
ans, we recall the standard Weyl quantization. A polarization H =
T ∗Hq on the symplectic vector space H (the phase space) defines a con-
figuration space Hq. The quantum “Fock space” will be a certain class
of functions f(~, q) on Hq (containing at least polynomial functions),
with additional formal variable ~ (“Planck’s constant”). The classical
observables are certain functions of p, q. The quantization process is to
find for the classical mechanical system on H a “quantum mechanical”
system on the Fock space such that the classical observables, like the

hamiltonians h(q, p) on H, are quantized to become operators ĥ(q,
∂

∂q
)

on the Fock space.
Let A(z) be an End(H)-valued Laurent formal series in z satisfying

(A(−z)f(−z), g(z)) + (f(−z), A(z)g(z)) = 0,

then A(z) defines an infinitesimal symplectic transformation

Ω(Af, g) + Ω(f, Ag) = 0.
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An infinitesimal symplectic transformation A of H corresponds to a
quadratic polynomial P (A) in p, q

P (A)(f) :=
1

2
Ω(Af, f).

Choose a Darboux coordinate system {qik, pik}. The quantization

P 7→ P̂ assigns

1̂ = 1, p̂ik =
√
~
∂

∂qik
, q̂ik = qik/

√
~,

p̂ikp
j
l = p̂ikp̂

j
l = ~

∂

∂qik

∂

∂qjl
,

p̂ikq
j
l = qjl

∂

∂qik
,

q̂ikq
j
l = qikq

j
l /~,

(11)

In summary, the quantization is the process

A 7→ P (A) 7→ P̂ (A)
inf. sympl. transf. 7→ quadr. hamilt. 7→ operator on Fock sp..

It can be readily checked that the first map is a Lie algebra isomor-
phism: The Lie bracket on the left is defined by [A1, A2] = A1A2−A2A1

and the Lie bracket in the middle is defined by Poisson bracket

{P1(p, q), P2(p, q)} =
∑

k,i

∂P1

∂pik

∂P2

∂qik
− ∂P2

∂pik

∂P1

∂qik
.

The second map is not a Lie algebra homomorphism, but is very close
to being one.

Lemma 1.

[P̂1, P̂2] = ̂{P1, P2}+ C(P1, P2),

where the cocycle C, in orthonormal coordinates, vanishes except

C(pikpjl , qikq
j
l ) = −C(qikqjl , pikp

j
l ) = 1 + δijδkl.

Example. Let dimH = 1 and A(z) be multiplication by z−1. It is easy
to see that A(z) is infinitesimally symplectic.

P (z−1) =− q20
2

−
∞∑

m=0

qm+1pm

P̂ (z−1) =− q20
2

−
∞∑

m=0

qm+1
∂

∂qm
.

(12)
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Note that one often has to quantize the symplectic instead of the in-
finitesimal symplectic transformations. Following the common practice
in physics, define

(13) êA(z) := eÂ(z),

for eA(z) an element in the twisted loop group.

3.2. τ-function for the axiomatic theory. Let X be the space of
N points and HNpt := H∗(X). Let φi be the delta-function at the i-th
point. Then {φi}Ni=1 form an orthonormal basis and are the idempotents
of the quantum product

φi ∗ φj = δijφi.

The genus zero potential for N points is nothing but a sum of genus
zero potentials of a point

FNpt
0 (t1, . . . , tN) = F pt

0 (t1) + . . .+ F pt
0 (tN).

In particular, the genus zero theory of N points is semisimple.
By Theorem 1, any semisimple genus zero axiomatic theory T of

rank N can be obtained from HNpt by action of an an element OT in
the twisted loop group. By Birkhoff factorization, OT = ST (z−1)RT (z),
where S(z−1) (resp. R(z)) is an matrix-valued functions in z−1 (resp. z).
In order to define the axiomatic higher genus potentials GT

g for the
semisimple theory T , one first introduces the “τ -function of T”.

Definition 3. [10] Define the axiomatic τ -function as

(14) τTG := ŜT (R̂T τNpt
GW ),

where τNpt
GW is defined in (2). Define the axiomatic genus g potential GT

g

via the formula (cf. (2))

(15) τTG =: e
∑

∞

g=0 ~
g−1GT

g .

Remark. (i) It is not obvious that the above definitions make sense.

The function ŜT (R̂T τNpt) is well-defined, due to the (3g − 2)-jet prop-
erties (5), proved in [9] for geometric Gromov–Witten theory and in
[10] in the axiomatic framework. The fact log τTG can be written as∑

∞

g=0 ~
g−1(formal function in t) is also nontrivial. The interested read-

ers are referred to the original article [10] or [17] for details.

An immediate question regarding Definition 3: When the axiomatic
semisimple theory actually comes from a projective variety X , is the
τ -function defined in the axiomatic theory the same as the τ -function
defined in the geometric Gromov–Witten theory? This is known as
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Givental’s conjecture. Givental himself establishes the special cases
when X is toric Fano. Recently, C. Teleman [18] has announced a
complete proof based on his classification of semisimple 2D cohomo-
logical field theories. 3

Theorem 2. ([10] [18]) Let X be a projective variety whose quantum
cohomology is semisimple, then

(16) τXG = τXGW .

4. Tautological equations in Gromov–Witten theory

As stated in the Introduction, the material here is known to experts,
and is included for lack of a good general reference (known to us).
Therefore, the discussions will be brief.
Due to the stabilization morphism (3), any tautological equation in

Mg,n can be pulled back and become an equation on tautological classes
on M g,n(X, β). The ψ-classes can be either transformed to ancestor
classes ψ̄ or to ψ-classes on the moduli spaces of stable maps. Due to
the functorial properties of the virtual fundamental classes, the pull-
backs of the tautological equations hold for Gromov–Witten theory of
any target space. The term tautological equations will also be used
for the corresponding equations in Gromov–Witten theory and in the
theory of spin curves. Equations in Gromov–Witten theory which are
valid for all target spaces are called the universal equations. Tautolog-
ical equations are universal equations.
However, these induced equations will produce relations among gen-

eralized Gromov–Witten invariants, which involves not only ψ-classes
but also κ-classes and boundary classes. Since the integration over
boundary classes can be written in terms of ordinary Gromov–Witten
invariants by the splitting axiom, what is really in question is the κ-
classes. We will start with some results in tautological classes on moduli
of curves.
Let

ftl :M g,n+l →M g,n

be the forgetful morphism, forgetting the last l marked points.

Lemma 2.

(ftl)∗(
n∏

i=1

(ψi)
ki

n+l∏

i+n+1

(ψi)
ki+1) = Kkn+1...kn+l

n∏

i=1

ψki
i ,

3Teleman also informed us that M. Kontsevich has a related result, which gives
a full description of the deformation theory of (semisimple) 2D cohomological field
theory.
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where Kkn+1...kn+l
is defined as follows. Let σ ∈ Sl be an element in the

symmetric group permuting the set {n+ 1, . . . n+ l}. σ can be written
as a product of disjoint cycles

σ = c1c2 . . . , where ci := (ci1 . . . c
i
ai)

with cij ∈ {n+ 1, . . . n + l}. Define

Kkn+1...kn+l
:=
∑

σ∈Sl

∏

i(σ=
∏

ci)

ai∑

j=1

κcij .

For example, when l = 2, the formula becomes

(ft2)∗

(
(

n∏

i=1

(ψi)
ki)(ψn+1)

kn+1+1(ψn+2)
kn+2+1

)

=(κkn+1
κkn+2

+ κkn+1+kn+2
)

n∏

i=1

(ψi)
ki.

Proof. The proof follows from induction on l and the following three
geometric ingredients, which are well-known in the theory of moduli of
curves.

• Let ft1 : M g,n+1 → M g,n be the forgetful morphism, forgetting
the last marked point and Di,n+1 be the boundary divisor in
M g,n+1 defined as the image of the section of ft1, considered as
the universal curve, by the i-th marked point. Then

(17) ft∗1(ψi) = ψi −Di,n+1.

• ψi for i ≤ n on Mg,n+1 vanishes when restricted to Di,n+1.
•

(18) ft∗1(κl) = κl − ψl
n+1.

�

The following result follows by combining the above ingredients and
induction on power of κ-classes.

Corollary 1. A tautological equations on M g,n involving κ-classes of
highest power less than l (e.g. κk1 . . . κkl) can be written as a pushfor-
ward, via forgetful morphism ftl, of a tautological equation on M g,n+l,
involving only boundary strata and ψ-classes.

By pulling-back to moduli of stable maps, one has the following
corollary.
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Corollary 2. (i) The system of generalized Gromov–Witten invariants
involving κ-classes and λ-classes is the same as the system of usual
Gromov–Witten invariants.
(ii) Any induced equation of generalized Gromov–Witten invariants

can be written as an equation of ordinary Gromov–Witten invariants.

Proof. The fact that the system of generalized GW invariants involving
λ-classes can be reduced to ordinary GW invariants follows from [6].
The part involving κ-classes follows from Lemma 2. �

With this Corollary, one can talk about the induced equations of
(ordinary) Gromov–Witten invariants from any tautological equations.

Remark 1. It is not difficult to see, from the above discussions (in
particular equations (17), (18) and Lemma 2), that the three graphi-
cal operations introduced in [14] (cutting edges, genus reduction, and
splitting vertices) are compatible with the pull-back operations.

5. Invariance under lower triangular subgroups

The twisted loop group is generated by “lower triangular subgroup”
and the “upper triangular subgroup”. The lower triangular subgroup
consists of End(H)-valued formal series S(z−1) = es(z

−1) in z−1 satisfy-
ing S∗(−z)S(z) = 1 or equivalently

s∗(−z−1) + s(z−1) = 0.

5.1. Quantization of lower triangular subgroups. The quadratic
hamiltonian of s(z−1) =

∑
∞

l=1 slz
−l is

∞∑

l=1

∞∑

n=0

∑

i,j

(sl)ijq
j
l+np

i
n +

∑ 1

2
(−1)n(sl)ijq

i
nq

j
l−n−1.

The fact that s(z−1) is a series in z−1 implies that the quadratic hamil-
tonian P (s) of s is of the form q2-term + qp-term where q in qp-term
does not contain q0. The quantization of the P (s)

ŝ =
∑

(sl)ijq
j
l+n∂qin +

1

2~

∑
(−1)n(sl)ijq

i
nq

j
l−n−1.

Here i, j are the indices of the orthonormal basis. (The indices µ, ν will
be reserved for the “gluing indices” at the nodes.) For simplicity of the
notation, we adopt the summation convention to sum over all repeated
indices.
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Let
dτG
dǫs

:= ŝ(z)τG. Then

dG0(ǫs)

dǫs
=

∞∑

l=1

∞∑

n=0

∑

i,j

(sl)ijq
j
l+n∂qinG0 +

1

2
(−1)n(sl+n+1)ijq

i
nq

j
l .

dGg(ǫs)

dǫs
=

∞∑

l=1

∞∑

n=0

∑

i,j

(sl)ijq
j
l+n∂qinGg, for g ≥ 1.

Define

〈∂i1k1∂
i2
k2
. . . ∂inkn〉g :=

∂nGg

∂ti1k1∂t
i2
k2
. . . ∂tinkn

,

and denote 〈. . .〉 := 〈. . .〉0. These functions 〈. . .〉g will be called ax-
iomatic Gromov–Witten invariants. Then

d

dǫs
〈∂i1k1∂

i2
k2
. . .〉

=
∑

(sl)ijq
j
l+n〈∂in∂i1k1 . . .〉+

∞∑

l=1

∑

i,a

(sl)iia〈∂ika−l∂
i1
k1
. . . ∂̂iaka . . .〉

+
δ

2

(
(−1)k1

∑
(sk1+k2+1)i1i2 + (−1)k2

∑
(sk1+k2+1)i2i1

)
,

(19)

where δ = 0 when there are more than 2 insertions and δ = 1 when
there are two insertions. The notation ∂̂ik means that ∂ik is omitted
from the summation. We assume that there are at least two insertions,
as this is the case in our application.
For g ≥ 1

d

dǫs
〈∂i1k1∂

i2
k2
. . .〉g

=
∑

(sl)ijq
j
l+n〈∂in∂i1k1 . . .〉g +

∑∑

a

(sl)iia〈∂ika−l∂
i1
k1
. . . ∂̂iaka . . .〉g

(20)

5.2. S-Invariance.

Theorem 3. (S-invariance theorem) All tautological equations are in-
variant under action of lower triangular subgroups of the twisted loop
groups.

Proof. Let E = 0 be a tautological equation of axiomatic Gromov–
Witten invariants. Suppose that this equation holds for a given semisim-
ple Frobenius manifold, e.g. HNpt ∼= CN . We will show that ŝE = 0.
This will prove the theorem.
ŝE = 0 follows from the following facts:
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(a) The combined effect of the first term in (19) (for genus zero
invariants) and in (20) (for g ≥ 1 invariants) vanishes.

(b) The combined effect of the remaining terms in (19) and in (20)
also vanishes.

(a) is due to the fact that the sum of the contributions from the first
term is a derivative of the original equation E = 0 with respect to q
variables. Therefore it vanishes.
It takes a little more work to show (b). Recall that all tautological

equations are induced from moduli spaces of curves. Therefore, any
relations of tautological classes on M g,n contain no genus zero compo-
nents of two or less marked points. However, when one writes down
the induced equation for (axiomatic) Gromov–Witten invariants, the
genus zero invariants with two insertions will appear. This is due to
the difference between the cotangent classes on M g,n+m(X, β) and the
pull-back classes from M g,n. Therefore the only contribution from the
third term of (19) comes from these terms. More precisely, let ψj (de-

scendents) denote the j-th cotangent class on M g,n+m(X, β) and ψ̄j

(ancestors) the pull-backs of cotangent classes from Mg,n by the com-
bination of the stabilization and forgetful morphisms (forgetting the
maps and extra marked points, and stabilizing if necessary).
Denote 〈∂µ

k,l̄
, . . .〉 the generalized (axiomatic) Gromov–Witten invari-

ants with ψk
1 ψ̄

l
1ev

∗

1(φµ) at the first marked point. The equation (6) can
be rephrased in terms of invariants as

〈∂i
k,l̄
. . .〉g = 〈∂i

k+1,l−1
. . .〉g − 〈∂ik∂µ〉gµµ′〈∂µ′

l−1
. . .〉g.

For simplicity, denote

〈. . . ∂µ〉〈∂µ . . .〉 := 〈. . . ∂µ〉gµµ′〈∂µ′

. . .〉.
Repeat this process of reducing l̄, one can show by induction that

〈∂ik,l̄ . . .〉g = 〈∂i
k+r,l−r

. . .〉g − 〈∂ik+r−1∂
µ1〉〈∂µ1

l−r
. . .〉g − . . .

− 〈∂ik∂µ1〉




r∑

p=1

(−1)p+1
∑

k1+...+kp=r−p

〈∂µ1

k1
∂µ2〉 . . . 〈∂µp−1

kp−1
∂µp〉〈∂µp

kp,l−r
. . .〉g


 .

Now suppose that one has an equation of tautological classes ofM g,n.
Use the above equation (for r = l) one can translate the equation
of tautological classes on Mg,n into an equation of the (axiomatic)
Gromov–Witten invariants. The term-wise cancellation of the contri-
butions from the second and the third terms of (19) and (20) can be
seen easily by straightforward computation. �
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If the above description is a bit abstract, the reader might want to try
the following simple example. ψ2

1 on M g,1 is translated into invariants:

〈∂x2 〉g − 〈∂x1∂µ〉〈∂µ〉g − 〈∂x∂µ〉〈∂µ1 〉g + 〈∂x∂µ〉〈∂µ∂ν〉〈∂ν〉g.
The above “translation” from tautological classes to Gromov–Witten
invariants are worked out explicitly in some examples in Sections 6 and
7 of [8].

Remark 2. The S-invariance theorem actually hold at the level of
(Chow or cohomology) classes, rather than just the numerical invari-
ants. The geometric content is (6). This should be clear from the proof.

5.3. Reduction to q0 = 0. The arguments in this section are mostly
taken from [12].
Let E = 0 be a tautological equation of (axiomatic) Gromov–Witten

invariants. Since we have already proved ŝ(E) = 0, our next goal would
be to show r̂(E) = 0. In this section, we will show that it suffices to
check r̂(E) = 0 on the subspace q0 = 0.

Lemma 3. It suffices to show r̂E = 0 on each level set of the map
q 7→ s in (10).

Proof. The union of the level sets is equal to H+. �

Lemma 4. It suffices to check the relation for all r̂(z)E = 0 along
zH+ (i.e. q0 = 0).

Proof. Theorem 5.1 of [10] states that a particular lower triangular ma-
trix Ss, which is called “calibration” of the Frobenius manifold, trans-
forms the level set at s to zH+. S-invariance Theorem then concludes
the proof. �

Remark 3. In fact, Ss can be taken as a fundamental solution of the
horizontal sections of the Dubrovin (flat) connection, in z−1 formal
series. It was discovered in [10], following the works in [13] and [9],
that

A := Ŝsτ
X

is the corresponding generating function for “ancestors”. Therefore the
transformed equation ŜsEŜ

−1
s = 0 is really an equation of ancestors.

6. Invariance under upper triangular subgroups

6.1. Quantization of upper triangular subgroups. The upper tri-
angular subgroup consists of the regular part of the twisted loop groups
R(z) = er(z) satisfying

(21) R∗(−z)R(z) = 1
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or equivalently

(22) r∗(−z) + r(z) = 0.

The quantization of r(z) is

r̂(z) =

∞∑

l=1

∞∑

n=0

∑

i,j

(rl)ijq
j
n∂qin+l

+
~

2

∞∑

l=1

l−1∑

m=0

(−1)m+1
∑

ij

(rl)ij∂qi
l−1−m

∂
q
j
m
.

Therefore

d〈∂i1k1∂
i2
k2
. . .〉g

dǫr

=

∞∑

l=1

∞∑

n=0

∑

i,j

(rl)ijq
j
n〈∂in+l∂

i1
k1
. . .〉g

+
∞∑

l=1

∑

i,a

(rl)iia〈∂ika+l∂
i1
k1
. . . ∂̂iaka . . .〉g

+
1

2

∞∑

l=1

l−1∑

m=0

(−1)m+1
∑

ij

(rl)ij〈∂il−1−m∂
j
m∂

i1
k1
∂i2k2 . . .〉g−1

+
1

2

∞∑

l=1

l−1∑

m=0

(−1)m+1
∑

ij

g∑

g′=0

(rl)ij∂
i1
k1
∂i2k2 . . . (〈∂

i
l−1−m〉g′〈∂jm〉g−g′).

(23)

Here, if g = 0, the third term on the right 〈. . .〉−1 = 0 by definition.
Also, it is understood that the formula for r̂l extends to products of
Gromov–Witten invariants by Leibniz rule.

6.2. Relations to invariance of tautological equations. Let E =
0 be a tautological equation on moduli of curves. As explained in Part
I, it can be written in terms of a formal sum of decorated graphs.
Denote E = 0 also the induced equation of Gromov–Witten invariants.
Consider d

dǫr
E. It is clear that the first term of (23) vanish as E = 0

implies
∑

(rl)ijq
j
nE = 0. Similarly, the contribution to the second

term from ∂̂ik at an external marked point (i.e. not at a node) cancels.

Therefore, d
dǫr
E consists of three parts, from the second term (with ∂̂ik

at a node), third term and fourth term.
It follows from the usual correspondence between tautological classes

and Gromov–Witten invariants that these three parts corresponds to
three graphical operations defined in [14]:
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• The second term, when ia are indices at a node, corresponds to
cutting the edges.

• The third term corresponds to genus reduction.
• The last term corresponds to splitting the vertices.

Equation (22) implies (rl)ij is symmetric in i, j for l even and anti-
symmetric for l odd. The corresponding operation for a fixed l on the
decorated graphs are denoted rl in Part I. In fact, this is the original
motivation of the Invariance Conjecture 1 and 2. Invariance Conjec-
ture 3 is based upon a folklore belief: Call an equation of Gromov–
Witten invariants “universal” if it holds for all Gromov–Witten theory.
It is believed that all universal equations are induced from tautological
equations on moduli of curves. Invariance Conjecture 3 is statement of
this speculation in terms of invariance constraints.
To show that rl is well-defined is equivalent to showing

(24) rl(E) = 0

for any tautological equation

E = 0

in Rk(M g,n). Using the link between rl on moduli of curves and r̂l on
Gromov–Witten theory, one’s first step is to show that

(25) r̂l(Ẽ) = 0

for Gromov–Witten theory. This will serve as a numerical invariant
form of Invariance Theorem, which asserts the invariance at the level
of cycles.
Note that equation (25) can be interpreted as an infinitesimal form

of the requirement that the induced tautological equation

Ẽ = 0

has the same form for any Gromov–Witten theory. That is, the tau-
tological equation is invariant under the action of quantized upper tri-
angular subgroups of the twisted loop groups. This is the reason the
term “invariance of tautological equations” is used for equation (24).

Theorem 4. Equation (25) holds. That is, all tautological equations
of Gromov–Witten invariants are invariant under the action of upper
triangular subgroups of the twisted loop groups.

Proof. Since we have already established S-invariance theorem, this
theorem follows from Theorem 2. Indeed, (16) implies that there is
a “loop group” element (or rather its quantization) taking a tauto-
logical equation on moduli of curves to that of any semisimple theory
and vice versa. Therefore the set of induced tautological equations of
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one semisimple theory has a one-one correspondence with the set of
tautological equations of another semisimple theory. �

6.3. Proof of Invariance Theorem. A set of three Invariance Con-
jectures are advanced in [14] to give the tautological relations an in-
ductive structure. The main purpose of this section is to establish
Conjecture 1 there, which corresponds to an infinitesimal form of The-
orem 4 on moduli of curves.

Theorem 5. (Invariance Theorem) rl in (1) is well-defined, or equiv-
alently (24) holds for any tautological equation. That is, Invariance
Conjecture 1 in [14] is true.

Proof. With all the preparation above, there are two remaining ingre-
dients in the proof:

(1) Teleman’s classification theorem of semisimple cohomological
field theories [18], applied to Givental’s framework on X = P1.

(2) An explicit calculation of rl-matrix of P1 in the Appendix.

Note that (1) is stronger than Theorem 2: It implies a “cycle form” of
Givental’s formula.
Let

E =
∑

i

ciΓi = 0

be a tautological relation. (Notations as in Part I [14].) The induced
tautological equation on Gromov–Witten theory of two points is de-
noted Ẽ. (1) implies that this tautological equation on the (two copies
of) moduli space of curves (X = 2pt) is transformed to the correspond-
ing tautological equation on moduli space of stable maps to P1. By
Theorem 3 and Remark 2 and (1) above,

d

dǫr
Ẽ =

∞∑

l=1

2∑

i,j=1

(rl)ijr
ij
l Ẽ = 0,

where r
ij
l is the operation rl, with the two new half-edges called i and

j (for the i-th and j-th points). It remains to prove that (rl)ij is “non-
degenerate” in the sense that (rl)ij 6= 0 unless

r
ij
l Ẽ = 0

due to the a priori constraint (22). The non-vanishing of the rl-
matrices follows from Proposition 2, which will be proved in the Ap-
pendix. Therefore,

r
ij
l Ẽ = 0

which implies (24). �
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6.4. Some applications of Theorem 5. In a series of joint work
with D. Arcara [1, 2, 3] and with A. Givental [12], Theorem 5 is shown
to implies

• A uniform derivation of all known g = 1, 2 tautological equa-
tions.

• Derivation of a new tautological equation in M3,1 of codimen-
sion 3.

• All monomials of κ-classes and ψ-classes are independent in
Rk(M g,n)/R

k(∂M g,n) for all k ≤ [g/3].

The first two investigate the existence of tautological equations, while
the last one deals with the non-existence of tautological equations.
Theorem 5 provides a new and systematic way to study the existence or
non-existence of tautological equations via induction and linear algebra.
In fact, it is the simplicity of the derivations of the above results that
might point to some new direction in the study of tautological rings.

Appendix A. The R matrix for P 1

by Y. IWAO and Y.-P. LEE

The notations here follows those in [17]. All invariants and functions
are for X = P1.

R(z) =

∞∑

n=0

Rnz
n

is defined by R0 = I (the 2 × 2 identity matrix) and the following
recursive relation (1.4.5 in [17]),

(26) −
√
−1

2
(u1 − u2)

−1

(
(Rn−1)

2
1 (Rn−1)

2
2

(Rn−1)
1
1 (Rn−1)

1
2

)
(du1 − du2)

+

(
(dRn−1)

1
1 (dRn−1)

1
2

(dRn−1)
2
1 (dRn−1)

2
2

)
=

(
0 (Rn)

1
2

(Rn)
2
1 0

)
(du1 − du2)

for n ≥ 1, where (u1, u2) are the canonical coordinates of QH∗(P1).

Proposition 1.

(27) Rn =

(
1 2n(−1)n−1

√
−1

2n
√
−1 (−1)n

)
cn
vn
,

where

cn := −
∏n−1

k=1(−1 + 4k2)

22nn!
, v := u1 − u2.
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and it is understood that c1 = −1/4.

Proof. Equation (26) gives a recursive relation which determines all Rn

from R0 = I. It is easy to check that (27) satisfies (26). �

Recall that r(z) is defined as logR(z).

Proposition 2.

rl =





(
0 −cl

√
−1

cl
√
−1 0

)
if l is even,

(
al bl

√
−1

bl
√
−1 −al

)
if l is odd,

such that al, bl, cl are all nonzero rational numbers.

The rest of the Appendix is used to prove this proposition.
First, it is not very difficult to see the matrices rl should be of the

above forms and all al, bl, cl are rational numbers. These assertions
follow from the following formula for rl

∞∑

l=1

rlz
l = logR(z) = −

∞∑

n=0

(1− R(z))n+1

n+ 1

=
∑

l

zl
l∑

m=1

(−1)m−1

m

∑

i1+···+im=l
ij>0

Ri1 · · ·Rim ,

(28)

Equation (22), and induction on l.
Here are a few examples of rl matrices obtained from (28) and Propo-

sition 1:

r1 =
1

4

(
−1 −2

√
−1

−2
√
−1 1

)

r2 =
1

23

(
0 3

√
−1

−3
√
−1 0

)

r3 =
1

25

(
−4 −23

√
−1

−23
√
−1 4

)

r4 =
1

24

(
0 33

√
−1

−33
√
−1 0

)

r5 =
1

5 · 29
(

−2132 −20839
√
−1

−20839
√
−1 2132

)
.
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The non-vanishing of al, bl, cl requires some elementary (though some-
how lengthy) arguments. The idea is to get some rough estimates of
the absolute values of entries of rl, which are enough to guarantee the
non-vanishing. We will start with some preparations.
Define a function of n, C(n), by

C(n) =
n−1∏

k=1

(1− 1

4k2
).

Then for n ≥ 1,

(Rn)
2
1 = C(n) · (n− 1)! · (−

√
−1

2
) · v−n.

Lemma 5. C(n) is strictly decreasing and limn→∞C(n) > 0.62.

Proof. C(n) is obviously strictly decreasing, so does limn→∞[lnC(n)] =
ln[limn→∞C(n)]. Since

ln(1− x) ≥ 4(ln
3

4
)x for 0 < x ≤ 1

4
,

lim
n→∞

[lnC(n)] = lim
n→∞

[
n−1∑

k=1

ln(1− 1

4k2
)

]
≥ π2

6
ln

3

4
.

Therefore

lim
n→∞

C(n) ≥ e
π2

6
ln 3

4 ≈ 0.62299 · · · .
�

By abuse of notation, let |(Rn)
j
i | denote the absolute value of the

coefficient of v−n in (Rn)
j
i . Since (Rn)

1
1 =

−
√
−1

2n
(Rn)

2
1, we get the

following corollary:

Corollary 3. For n ≥ 1,

0.62
(n− 1)!

2
< |(Rn)

2
1| ≤

(n− 1)!

2

0.62
(n− 1)!

4n
< |(Rn)

1
1| ≤

(n− 1)!

4n
.

Now define σl
n by

σl
n :=

∑

i1+···+il=n
ij>0

i1!i2! · · · il!,

Lemma 6.

σl
n ≤ (

8

3
)l−1n! for n = 0, 1, 2, 3, · · · , l = 1, 2, 3, · · · .
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Proof. It is obviously true for l = 1 and arbitrary n. By induction on
n with fixed l = 2:

σ2
n ≤ 8

3
n! n = 0, 1, 2, 3, · · · .

Then induction on l. Assume σl
n ≤ (

8

3
)l−1n! for all n. It suffices to

show σl+1
n ≤ (

8

3
)ln! for all n.

σl+1
n = 0!σl

n + 1!σl
n−1 + 2!σl

n−2 + · · ·+ (n− 1)!σl
1 + n!σl

0

≤ (
8

3
)l−1[0!n! + 1!(n− 1)! + 2!(n− 2)! + · · ·+ (n− 1)!1! + n!0!]

= (
8

3
)l−1σ2

n ≤ (
8

3
)ln!.

�

Lemma 7. Let

S(m) :=

m∑

k=3

2k−3(m− k)!

k
for m ≥ 5.

Then

T (m) :=
S(m)

(m− 3)!
is a decreasing function of m for m ≥ 5.

Proof. Clearly, ith term of T (m) ≥ ith term of T (m + 1) for i =
1, 2, · · ·m−3, with equality only for i = 1. Form ≥ 5, T (m+1) < T (m)
as

2m−3

m(m− 2)!
+

2m−2

(m+ 1)(m− 2)!
<

2m−3

m(m− 3)!
.

�

Corollary 4. (1) T (m) < 1 for m ≥ 5.
(2) T (m) < 0.477 for m ≥ 9.
(3) S(m) < (m− 3)! for m ≥ 5.
(4) S(m) < 0.477(m− 3)! for m ≥ 9.

Corollary 5.

1

2

∣∣∣∣∣
m−1∑

k=1

(RkRm−k)
1
1

∣∣∣∣∣ ≤
15

256
(m− 3)! for m odd, m ≥ 7.

Proof. Since m is odd,
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1

2

∣∣∣∣∣
m−1∑

k=1

(RkRm−k)
1
1

∣∣∣∣∣ ≤
m−1

2∑

k=1

∣∣(Rk)
1
1

∣∣ ∣∣Rm−k)
1
1

∣∣

≤1

4
· 3(m− 2)!

16(m− 1)
+

3 · 1!
16 · 2 · 3(m− 3)!

16(m− 2)
+ · · ·+

3(
m− 3

2
)!

16(
m− 1

2
)
·
3(
(m− 1)

2
)!

16(
(m+ 1)

2
)

≤ 3

64
(m− 3)! +

9

256
[0!(m− 4)! + 1!(m− 5)! + · · ·+ (

m− 5

2
)!(
m− 3

2
)!

≤ 3

64
· 5
4
· (m− 3)! =

15

256
(m− 3)! for m ≥ 7.

�

Lemma 8. ∣∣(Rm)
1
1

∣∣ ≥ 0.13(m− 2)! for m ≥ 7.

Proof. By Corollary 3

∣∣(Rm)
1
1

∣∣ > 0.62 · (m− 1)!

4m
=

1

4
· 0.62 · (1− 1

m
)(m− 2)!

≥ 1

4
· 0.62 · 6

7
(m− 2)!

> 0.13(m− 2)!.

�

Now we are ready to prove Proposition 2. We start with off-diagonal
entries.

(rl)
2
1 = (Rl)

2
1 +

l∑

n=2

(−1)n−1

n

∑

i1+···+in=l
ij>0

(Ri1 · · ·Rin)
2
1

︸ ︷︷ ︸
=:(R′

l
)2
1

.

By the triangular inequality, we have

|(rl)21| ≥
∣∣∣∣(Rl)

2
1

∣∣−
∣∣(R′

l)
2
1

∣∣∣∣ .
So it suffices to show ∣∣(Rl)

2
1

∣∣ >
∣∣(R′

l)
2
1

∣∣
Now,



24 Y.-P. LEE

∣∣(R′

l)
2
1

∣∣

≤
l∑

n=2

1

n

∑

i1+···+in=l
ij>0

∣∣(Ri1 · · ·Rin)
2
1

∣∣

≤
l∑

n=2

1

n

∑ (ij1 − 1)!

2
· · · (ijk − 1)!

2
· (ijk+1

− 1)!

4ijk+1

· · · (ijn − 1)!

4ijn
(by Corollary 3)

≤
l∑

n=2

1

n
· 3

n − (−1)n

2 · 4n · (8
3
)n−1(l − n)! (by Lemma 6)

=
3

16

l∑

n=2

1

n

[
2n − (−2

3
)n
]
(l − n)!

<
3

16

l∑

n=2

1

n
· 2n · (l − n)!

<
3

8
(l − 2)! +

3

2
(l − 3)! for l ≥ 1 (by Corollary 4).

By Corollary 3,

0.31(l− 1)! <
∣∣(Rl)

2
1

∣∣ < 0.5(l − 1)! for l ≥ 1.

So for l ≥ 5,

∣∣(Rl)
2
1

∣∣ > 0.3(l − 1)! >
3

8
(l − 2)! +

3

2
(l − 3)! >

∣∣(R′

l)
2
1

∣∣ ,

i.e., (rl)
2
1 6= 0. Since we know (rl)

2
1 6= 0 for l = 1, 2, 3, 4, (rl)

2
1 6= 0 for

all l ≥ 1.
Similarly for diagonal terms for l = odd.
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∣∣(R′

l)
1
1

∣∣ ≤ 1

2

∑

i1+i2=l
ij>0

∣∣(Ri1Ri2)
1
1

∣∣+
l∑

n=3

1

n

∑

i1+···+in=l
ij>0

∣∣(Ri1 · · ·Rin)
1
1

∣∣

≤ 15

256
(l − 3)! +

3

16

l∑

n=3

1

n

[
2n + (−2

3
)n
]
(l − n)!

<
15

256
(l − 3)! +

3

16

l∑

n=3

1

n
· 2n · (l − n)!

=
15

256
(l − 3)! +

3

2
S(l)

<
15

256
(l − 3)! + 0.72(l − 3)! for l ≥ 9, m = odd (by Corollary 4).

By Lemma 8,
∣∣(Rl)

1
1

∣∣ > 0.13(l− 1)! > (
15

256
+ 0.72)(l − 3)! >

∣∣(R′

l)
1
1

∣∣ for l ≥ 9.

(rl)
1
1 6= 0 for l ≥ 9, l = odd. We know (rl)

1
1 6= 0 for l = 1, 3, 5.

It is now left to check l = 7, which is checked by hand.

∣∣(R′

7)
1
1

∣∣ ≤ 15

256
· 4! +

7∑

m=3

3m + (−1)m

2 · 4m · σm
7−m

=
15 · 24
256

+
1

2

[
1

3
· 27− 1

64
· 108 + 1

4
· 81 + 1

256
· 52

+
1

5
· 243− 1

1024
· 20 + 1

6
· 729 + 1

4096
· 6 + 1

7
· 2187− 1

16384
· 1
]
= 11.3720 · · · .

On the other hand,
∣∣(R7)

1
1

∣∣ = 3 · 15 · 35 · 63 · 99 · 143
214 · 7! = 17.0114 · · · .

So (r7)
1
1 6= 0. The proof of Proposition 2 is now complete.
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