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ON INDEPENDENCE OF GENERATORS OF THE TAUTOLOGICAL RINGS

D. ARCARA AND Y.-P. LEE

Abstract. We prove that all monomials of κ-classes and ψ-classes are independent inRk(Mg,n)/Rk(∂Mg,n)

for all k ≤ [g/3]. We also give a simple argument for κl 6= 0 in Rl(Mg) for l ≤ g − 2.

1. Introduction

1.1. Tautological rings. Let Mg,n be the moduli stacks of stable curves. Mg,n are proper,

irreducible, smooth Deligne–Mumford stacks. The Chow rings A∗(Mg,n) over Q are isomorphic

to the Chow rings of their coarse moduli spaces. The tautological rings R∗(Mg,n) are subrings

of A∗(Mg,n), or subrings of H
2∗(Mg,n) via cycle maps, generated by some “geometric classes”

which will be described below.
The first type of geometric classes are the boundary strata. Mg,n have natural stratification

by topological types. The second type of geometric classes are the Chern classes of tautological
vector bundles. These includes cotangent classes ψi, Hodge classes λk and κ-classes κl.

To give a precise definition of the tautological rings, some natural morphisms between moduli
stacks of curves will be used. The forgetful morphisms

(1) fti : Mg,n+1 → Mg,n

forget one of the n+ 1 marked points. The gluing morphisms

(2) Mg1,n1+1 ×Mg2,n2+1 → Mg1+g2,n1+n2
, Mg−1,n+2 → Mg,n,

glue two marked points to form a curve with a new node. Note that the boundary strata are
the images (of the repeated applications) of the gluing morphisms, up to factors in Q due to
automorphisms.

Definition 1. The system of tautological rings {R∗(Mg,n)}g,n is the smallest system of Q-unital
subalgebra (containing classes of type one and two, and is) closed under the forgetful and gluing
morphisms.

The study of the tautological rings is one of the central problems in moduli of curves. The
readers are referred to [14] and references therein for many examples and motivation.

1.2. Main result. Let Mg,n be the moduli stack of smooth n-pointed curves. Let ∂Mg,n :=

Mg,n \Mg,n. The main result of this paper is the following theorem.

Theorem 1. The monomials generated by κ’s and ψ’s have no relations in Rk(Mg,n)/R
k(∂Mg,n)

for k ≤ [g/3] and all n.

We note that R∗(∂Mg,n) and the quotient Rk(M)/Rk(∂M) are defined in Equation (3) and
the paragraph following it.

1.3. Motivation: Faber’s conjecture. The formulation of Theorem 1 is motivated by Faber’s
conjecture on the structure of the tautological rings.

One of the guiding problems in the study of tautological rings of moduli of curves is the set of
conjectures proposed by C. Faber, and R. Pandharipande, E. Looijenga . . . . (For a survey, the
readers are referred to [14].) In [1], Faber conjectures that (Conjecture 1 b.) κ1, κ2, . . . , κ[g/3]
generate the ring R∗(Mg), with no relations in degree ≤ [g/3]. This statement will be referred
to as Faber’s conjecture in this paper. The generation statement has been proved by S. Morita
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[13], and by E. Ionel [7]. Therefore, the remaining part of Faber’s conjecture would be the
independence statement.

An expert in tautological ring can immediately notice the relation between Faber’s conjecture
and Mumford’s conjecture on the stable cohomology ring of Mg,n. In particular, the following
theorem of Madsen–Weiss (Mumford’s conjecture) is similar to Faber’s conjecture.

Theorem 2 ([12] Madsen–Weiss).

H∗(Mg) = Q[κ1, κ2, . . .],

for ∗ ≤ 2g/3 (the stable range).

There is a generalization of Mumford’s conjecture toMg,n, proved by E. Looijenga conditional
to Mumford’s conjecture.

Theorem 3 ([11] Proposition 2.1).

H∗(Mg,n) = Q[κ1, κ2, . . . , ψ1, . . . , ψn]

in the stable range.

Therefore, it is natural to generalize Faber’s conjecture accordingly.

Conjecture 1. κ1, . . . , κ[g/3], ψ1, . . . , ψn generate the ring R∗(Mg,n), with no relations in degree
≤ [g/3].

The generation statement follows immediately from Morita and Ionel’s results cited above.
What is in question is the independence statement.

Note that there is a natural sequence of tautological rings

(3) Rk(∂Mg,n) −→ Rk(Mg,n) −→ Rk(Mg,n) −→ 0,

where Rk(Mg,n) is defined to be the restriction of Rk(Mg,n) and Rk(∂Mg,n) is defined to be
the pushforward of the normalized boundary divisors via gluing morphisms (2). The exactness
in the middle of this sequence was conjectured by Faber and Pandharipande in [2], and proved
in some cases. This statement will be referred to as the boundary tautological class conjecture.
Theorem 1 implies Conjecture 1 if the boundary tautological class conjecture holds.

1.4. Invariance constraints. The main tool employed is the Invariance Constraints, Theo-
rem 5 of [9], originally Invariance Conjecture 1 in [8]. More recently, Faber–Shadrin–Zvonkine,
and independently R. Pandharipande (and the second author), have given a very simple geo-
metric proof of this statement. See Section 3 of [3].

Theorem 4. There exist a series of linear operators

(4) rl : R
k(Mg,n) → Rk−l+1(M

•

g−1,n+2),

where • denotes moduli of possibly disconnected curves.

In particular, these operators give an inductive process of finding the existence or non-
existence of tautological equations.

The definition of rl is defined by graph operations. The strata can be conveniently presented
by their (dual) graphs, which can be described as follows. To each stable curve C with marked
points, one can associate a dual graph Γ. Vertices of Γ correspond to irreducible components.
They are labeled by their geometric genus. Assign an edge joining two vertices each time the
two components intersect. To each marked point, one draws an half-edge incident to the vertex,
with the same label as the point. Now, the stratum corresponding to Γ is the closure of the
subset of all stable curves in Mg,n which have the same topological type as C. For each dual
graph Γ, one can decorate the graph by assigning a monomial, or more generally a polynomial,
of ψ to each half-edge and κ classes to each vertex. The tautological classes in Rk(Mg,n) can
be represented by Q-linear combinations of decorated graphs.

Define three graph operations the spaces of decorated graphs {Γ}.
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• Cutting edges. Cut one edge and create two new half-edges. Label two new half-edges
with i, j /∈ {1, 2, . . . , n} in two different ways. Produce a formal sum of 4 graphs by
decorating extra ψl to i-labeled new half-edges with coefficient 1/2 and by decorating
extra ψl to j-labeled new half-edges with coefficient (−1)l/2 . (By “extra” decoration we
mean that ψl is multiplied by whatever decorations which are already there.) Produce
more graphs by proceeding to the next edge. Retain only the stable graphs. Take formal
sum of these final graphs.

• Genus reduction. For each vertex, produce l graphs. Reduce the genus of this given
vertex by one, add two new half-edges. Label two new half-edges with i, j and decorate
them by ψl−1−m, ψm (respectively) where 0 ≤ m ≤ l − 1. Do this to all vertices,
and retain only the stable graphs. Take formal sum of these graphs with coefficient
1
2 (−1)m+1.

• Splitting vertices. Split one vertex into two. Add one new half-edge to each of the
two new vertices. Label them with i, j and decorate them by ψl−1−m, ψm (respectively)
where 0 ≤ m ≤ l − 1. Produce new graphs by splitting the genus g between the two
new vertices (g1, g2 such that g1 + g2 = g), and distributing to the two new vertices the
(old) half-edges which belongs to the original chosen vertex, in all possible ways. The
κ-classes on the given vertex are split between the two new vertices in a way similar to
the half-edges. That is, consider each monomial of the κ-classes κl1 . . . κlp on the split
vertex as labeled by p special half-edges. When the vertex splits, distribute the p special
edges in all possible way. Do this to all vertices, and retain only the stable graphs. Take
formal sum of these graphs with coefficient 1

2 (−1)m+1.

Definition 2. rl(Γ) is defined to be the formal sum of the outputs of the above three operations.

These operations actually descend to Rk(Mg,n). That is, if E =
∑
cmΓm = 0 ∈ Rk(Mg,n)

is a tautological equation, then

rl(E) = 0.

This is the content of Theorem 4.

Remarks. (i) In fact, only the l = 1 case will be used in this paper.

(ii)The image of rl lies in the connected components of M
•

g−1,n+2 whose curves have at most
two disconnected components.

(iii) The definition of these operators are inspired by Givental’s study of deformation of
(axiomatic) Gromov–Witten theories [5]. The interested readers are referred to [8] and [9] for
details.

Acknowledgments. We wish to thank R. Cavalieri, C. Faber, R. Pandharipande, and R. Vakil
for helpful discussions.

The second author is partially supported by NSF and an AMS Centennial Fellowship.

2. The Proof

Theorem 1 will be proved by induction on (g, n), in the lexicographic order.
The case g ≤ 2 is obvious. Assume now the statement holds for all genera up to g − 1 and

for all n. The case (g, 0) will be first proved via Theorem 4. The following proposition will be
used in the proof.

Proposition 1. κl 6= 0 in R∗(Mg) for all l ≤ g − 2.

Proof. Recall that a nodal genus g curve is said to have rational tails if one of the irreducible
component is smooth of genus g, and Mrt

g,n is the moduli stack of genus g nodal curves with
rational tails. It was shown in [6] Theorem 2.5 that

(5) π∗(ψ
l+1
1 ψg−l−1

2 ) = cκg−2,
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where π is the forgetful morphism Mrt
g,2 → Mg and

c =
(2g − 1)!!

(2l + 1)!!(2g − 2l− 3)!!
.

On the other hand, it is well-known that

π∗(ψ
l+1
1 ψg−l−1

2 ) = κlκg−l−2 + κg−2.

See, for example, Lemma 2 of [9]. Therefore,

(c− 1)κg−2 = κlκg−l−2.

since c− 1 6= 0, and κg−2 6= 0 (Theorem 2 in [1]), the product κlκg−l−2 is non-zero. This implies
that each of the two factors is non-zero. �

Remark 1. (i) We suspect that Proposition 1 is known to some experts, but we were not able
to locate a reference. In fact, experts we have consulted with were not sure about its status.

(ii) As shown above, it is an immediate consequence of Faber–Looijenga’s Socle Theorem [10]
[1] plus the fact c 6= 1. It might be possible to prove c 6= 1 without the full power of [6].

(iii) Equation (5) is part of Faber’s Intersection Number Conjecture, first established by
E. Getzler and R. Pandharipande in [4] conditional to Virasoro conjecture of P2, which was
later established by A. Givental [5]. I. Goulden, D. Jackson, and R. Vakil recently give an
alternative proof for n ≤ 3 [6].

2.1. Case n = 0. Assume that

E =
∑

I

cIκ
I +

∑

m

cmΓm = 0

is a tautological equation in Rk(Mg) for k ≤ [g/3]. Here κI are (distinct) monomials of κ-classes,

and Γm are in the image of Rk(∂Mg,n) via (3). The goal is to show that cI = 0 for all I.

By Theorem 4, we have that r1(E) = 0 in Rk(M
•

g−1,2). Let κ
I be a monomial in κ’s of degree

k. Now we will analyze the output r1(κ
I). It is easy to see that the following term appears in

r1(κ
I) (splitting the vertex) and does not appear in r1(κ

J) for J 6= I or r1(Γm):

g-1

κI

i j 1

where g − 1, 1 are the genera and i, j are the new half-edges.
Suppose that k < [g/3]. The combination of the following three facts implies cI = 0:

• It only appears in r1(κ
I).

• All monomials in κ’s of degree k are independent in Rk(Mg−1,1) by induction hypothesis.
• r1(E) = 0.

Let us now assume that k = [g/3]. If κI is a monomial in κ’s of degree [g/3] such that
κI 6= κ[g/3], one can write κI = κI1κI2 with κIa a monomial in κ’s of degree da > 0 (a = 1, 2)

such that d1+d2 = [g/3]. Since all monomials in κ’s of degree da are independent in Rda(M3da,n)
(a = 1, 2) for all n by induction, the term

3d1

κI1

i j 3d2

κI2

in r1(κ
I) is independent from any other term appearing in r1(E). Again, since this term only

appears in r1(κ
I), and not in r1 of any other element of R[g/3](Mg), the fact that its coefficient

in r1(E) must be zero implies that the coefficient of κI in E is also 0.
The last case to consider is the coefficient of κ[g/3]. Suppose that it is nonzero, i.e., suppose

that

E = aκ[g/3] +
∑

m

cmΓm = 0
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is a tautological equation in R[g/3](Mg) with a 6= 0. Then, taking the image of this equation

in R[g/3](Mg), we would obtain that κ[g/3] = 0, which is not true by Proposition 1 as g ≥ 3 .
Therefore the coefficient of κ[g/3] must also be zero. This concludes the proof of the (g, 0) case.

2.2. Case n = 1. Let

E =
∑

I,J

cIJκ
IψJ

1 +
∑

m

cmΓm = 0

be a tautological equation in Rk(Mg,1). Theorem 4 implies that r1(E) = 0 in Rk(M
•

g−1,2). The
goal is to show that all cIJ = 0.

Following the same technique, one easily conclude cIJ = 0 in the following two cases:

(a) k < [g/3].
(b) J = 0 and κI 6= κ[g/3].

In both cases, the proof is exactly the same as in n = 0 case. Notes that it does not matter where
we attach the extra half-edge (marking), since the induction hypothesis says the statement holds
for genus ≤ g − 1 and all n.

Let us now consider terms of the form κIψJ
1 ∈ R[g/3](Mg,1), with κI a monomial of degree

dI = [g/3]− dJ . Suppose that 0 < dJ < [g/3]. The term

3dI

κI

i j 3dJ ψJ
1

in r1(κ
IψJ

1 ) is independent from any other term appearing in r1(E). As before, this term only

appears in r1(κ
IψJ

1 ) (note that it is important here that ψdJ

1 6= ψdJ

2 in RdJ (M3dJ ,2), which
follows by induction because 0 < dJ < [g/3]), and therefore the coefficient of κIψJ

1 in E is 0.
Therefore, we proved that, if E = 0 is a tautological equation in Rk(Mg,1), then all coefficients

of monomials in κ’s and ψ1 are 0, except possibly for the coefficients of κ[g/3] and ψ
[g/3]
1 in

R[g/3](Mg,1).
Suppose that

E = aκ[g/3] + bψ
[g/3]
1 +

∑

m

cmΓm = 0

is a tautological equation in R[g/3](Mg,1), since all other coefficients must vanish. We will
perform two operations on E to obtain two linear equations on the coefficients of E.

(i) Multiply E by ψ1 and push-forward of ψ1E from R[g/3]+1(Mg,1) to R[g/3](Mg). The
push-forward is easy to perform via the following substitution

(6) κ[g/3] = π∗κ[g/3] + ψ
[g/3]
1 .

As E = 0, the push-forward of ψ1E must vanish. Thus

(2g − 2)aκ[g/3] + aκ[g/3] + bκ[g/3] = 0

in R[g/3](Mg)/R
[g/3](∂Mg). Since κ[g/3] 6= 0, we obtain that

(2g − 2)a+ a+ b = 0.

(ii) Push-forward of E from R[g/3](Mg,1) to R
[g/3]−1(Mg). Equation (6) implies

aκ[g/3]−1 + bκ[g/3]−1 = 0

in R[g/3]−1(Mg)/R
[g/3]−1(∂Mg). Since κ[g/3]−1 6= 0, we have that

a+ b = 0.

(i) and (ii) together imply that a = b = 0. This completes the n = 1 case.
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2.3. Case n ≥ 2. Suppose now the statement is proved for (g,≤ n− 1) and for all genera up to
g − 1. We will show it holds for (g, n), with n ≥ 2.

Let

E =
∑

I,J

cIJκ
IψJ +

∑

m

cmΓm = 0

be a tautological equation in Rk(Mg,n). Theorem 4 implies that r1(E) = 0 in Rk(M
•

g−1,n+2).
The goal is to show that cIJ = 0 for all I, J .

Again, the case k < [g/3] is very similar to the previous cases and is left to the readers.
Suppose that k = [g/3]. If J = 0, the following term only appears in the output r1(κ

I):

1 ...
n-2

g

κI

i j 0 n-1

n

It is independent of other class in the output of r1(E) by induction hypothesis. Therefore, the
induction hypothesis implies that cI0 = 0 for all I.

If both I 6= 0 and J 6= 0, the monomial is of the form κIψJ , with κI degree d1 and ψJ degree
d2, such that d1 + d2 = [g/3] and d1, d2 6= 0. The following tautological class only appears in
the output of r1(κ

IψJ):

3d1

κI

i j 3d2
ψJ1...

n

and is independent of other output classes by induction hypothesis. Therefore the coefficient cIJ
of κIψJ in E is 0.

The next case is I = 0. If ψJ is a monomial in ψ’s of degree [g/3], and ψJ 6= ψ
[g/3]
l for any l,

one can write ψJ = ψJ1ψJ2 , with ψJa a monomial in ψ’s of degree da (j = 1, 2), d1 + d2 = [g/3],
such that J1 and J2 do not share a common half-edge. Then the term

...

3d1
ψJ1

i j 3d2
ψJ2...

in r1(ψ
J ) implies that the coefficient of ψJ in E is 0.

Therefore, we proved that, if E = 0 is a tautological equation in Rk(Mg,n), then all coefficients

of monomials in κ’s and ψ’s are 0, except possibly for the coefficients of ψ
[g/3]
1 , ψ

[g/3]
2 , . . ., ψ

[g/3]
n

in R[g/3](Mg,n).
Suppose that

E =

n∑

l=1

alψ
[g/3]
l +

∑

m

bmΓm = 0

is a tautological relation in R[g/3](Mg,n), where the Γm’s are elements of R[g/3](∂Mg,n).

If we multiply by ψn and then push-forward to R[g/3](Mg,n−1), we obtain that

n−1∑

l=1

(2g − 2 + n− 1)alψ
[g/3]
l + anκ[g/3] = 0

in R[g/3](Mg,n−1)/R
[g/3](∂Mg,n−1). Since all monomials in κ’s and ψ’s of degree [g/3] are

independent in R[g/3](Mg,n−1)/R
[g/3](∂Mg,n−1) by induction hypothesis, one has

a1 = a2 = · · · = an = 0.

This completes the proof of Theorem 1.
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