QUANTUM K-THEORY I: FOUNDATIONS

Y.-P. LEE

Abstract

This work is devoted to the study of the foundations of quantum K-theory, a K-theoretic version of quantum cohomology theory. In particular, it gives a deformation of the ordinary K-ring $K(X)$ of a smooth projective variety X, analogous to the relation between quantum cohomology and ordinary cohomology. This new quantum product also gives a new class of Frobenius manifolds.

1. Introduction

This work is devoted to the study of quantum K-theory, a K-theoretic version of quantum cohomology theory. In particular, it gives a deformation of the ordinary K-ring $K(X)$ of a smooth variety X, analogous to the relation between quantum cohomology and ordinary cohomology.

In order to understand quantum K-theory, it is helpful to give a brief review of quantum cohomology theory. Quantum cohomology studies the intersection theory (of tautological classes) on $\bar{M}_{g, n}(X, \beta)$, the moduli spaces of stable maps from curves C to a smooth projective variety X. The intersection numbers, or Gromov-Witten invariants, look like

$$
\int_{\left[\bar{M}_{g, n}(X, \beta)\right] \mathrm{vir}} \operatorname{st}^{*}(\alpha) \prod_{i=1}^{n} \operatorname{ev}_{i}^{*}\left(\gamma_{i}\right) \psi_{i}^{d_{i}}
$$

where $\gamma_{i} \in H^{*}(X), \alpha \in H^{*}\left(\bar{M}_{g, n}\right)$ and ψ_{i} are the cotangent classes. These notations will be defined in the next section. For now these numbers are pairings between natural cohomology classes and the (virtual) fundamental class of $\bar{M}_{g, n}(X, \beta)$. These invariants at $\operatorname{genus}(C)=0$ determines a deformation of the product structure of the ordinary cohomology ring. The associativity of the quantum cohomology ring structure is equivalent to the WDVV equation, which is basically a degeneration argument by considering a flat family of solutions parameterized by \mathbb{P}^{1} and equating two different degeneration points of the solutions.

[^0]We propose to apply the same philosophy to K-theory. The functorial interpretation of the integration over the (virtual) fundamental classes $\left[\bar{M}_{g, n}(X, \beta)\right]^{\text {vir }}$ is the push-forward of cohomologies from $\bar{M}_{g, n}(X, \beta)$ to the point $\operatorname{Spec} \mathbb{C}$ (via the orientation defined by virtual fundamental class). In fact the push-forward operation can be performed in the relative setting for any proper morphisms. With this in mind, we define quantum K-invariants as the K-theoretic pushforward to Spec \mathbb{C} of some natural vector bundles on $\bar{M}_{g, n}(X, \beta)$ (via the orientation defined by the virtual structure sheaf). More precisely,

$$
\chi\left(\bar{M}_{g, n}(X, \beta), \mathcal{O}_{\overline{M i r}_{g, n}(X, \beta)} \mathrm{st}^{*}(\alpha) \prod_{i=1}^{n} \operatorname{ev}_{i}^{*}\left(\gamma_{i}\right) \mathcal{L}_{i}^{d_{i}}\right)
$$

where $\gamma_{i} \in K(X), \alpha \in K\left(\bar{M}_{g, n}\right)$ and \mathcal{L}_{i} are the cotangent line bundles. The K-theoretic push-forward χ will be defined in Section 2.1 and Section 4.1 for algebraic and topological K-theory respectively. The quantum K-product is defined by quantum K-invariants and a deformed metric (equation (17)). The associativity of quantum K product will be established by a sheaf-theoretic version of WDVV-type argument. A considerable difference in K-theory and intersection theory arises here.

Our main motivations for studying this theory come from two sources. The first is to use this theory to study the geometry of the moduli space of maps. For example, in joint works with R. Pandharipande and with I. Ciocan-Fontanine, a computation of quantum K invariants of $X=\mathbb{P}^{1}$ are used to show that the Gromov-Witten loci $\cap_{i} \mathrm{ev}_{i}^{-1}\left(p t_{i}\right) \subset \bar{M}_{0, n}\left(\mathbb{P}^{1}, d\right)$ are not rational when n is large. This thus answers a question raised in [24 Section 2.2.

The other main motivation comes from the relation between GromovWitten theory and integrable systems. There are many celebrated examples of this sort in quantum cohomology theory. Two of them are most relevant. The first one is Witten-Kontsevich's theory of two dimensional gravity [18] [28]. This theory builds a link between (full) Gromov-Witten theory of a point to KdV hierarchy. The second example is Givental-Kim's theory: It states that genus zero GromovWitten theory on flag manifolds is governed by quantum Toda lattices [13] [16]. Our goal is therefore to extend this relation to quantum K theory. The analogous relation between (full) quantum K-theory of a point and discrete KdV hierarchy is yet to be spelled out. See [21] [22] for some computations in this direction. The relation between genus zero quantum K-theory on flag manifolds and finite difference Toda
lattices turns out to be a very interesting one. The construction of finite difference Toda lattices involved quantum groups. The interested reader is referred to [14] for the details.

Besides these, we believe that the quantum K-invariants for symplectic manifolds are symplectic invariants. This assertion, if verified, could have some implications in symplectic geometry. Also, this theory could be understood as one manifestation of J. Morava's quantum generalized cohomology theory [27].

Acknowledgements. I am grateful to A. Givental and R. Pandharipande for much advice in the course of this work. The referees' reports have greatly improved the exposition of this work. In particular, the proof of Proposition 11 is drastically simplified. Thanks are also due to T. Graber, G. Kennedy, J. Morava, Y. Ruan and V. Srinivas for useful discussions. Part of the work is written during my stay in NCTS, whose hospitality is appreciated.

2. Virtual structure sheaf

The main purpose of this section is to define an element $\mathcal{O}^{\text {vir }}$ in the Grothendieck group of coherent sheaves on the moduli space of stable maps to a smooth projective variety X.
2.1. Preliminaries on algebraic K-theory. The basic reference for algebraic K-theory discussed here is [1].

Let $K^{\circ}(V)$ denote the Grothendieck group of locally free sheaves on V and $K_{\circ}(V)$ denote the Grothendieck group of coherent sheaves on V. There is a cap-product

$$
K^{\circ}(V) \otimes K_{\circ}(V) \rightarrow K_{\circ}(V)
$$

defined by tensor product

$$
[E] \otimes[F] \mapsto\left[E \otimes_{\mathcal{O}_{V}} F\right]
$$

making $K_{\circ}(V)$ a $K^{\circ}(V)$-module.
For any proper morphism $f: V^{\prime} \rightarrow V$, there is a push-forward homomorphism

$$
f_{*}: K_{\circ}\left(V^{\prime}\right) \rightarrow K_{\circ}(V)
$$

defined by

$$
f_{*}([F]):=\sum_{i}(-1)^{i}\left[R^{i} f_{*} F\right] .
$$

Convention. If f is an embedding, we will sometimes denote $f_{*}([F])$ simply by $[F]$.

A morphism $f: V^{\prime} \rightarrow V$ is a perfect morphism if there is an N such that

$$
\operatorname{Tor}_{i}^{V}\left(\mathcal{O}_{V^{\prime}}, F\right)=0
$$

for all $i>N$ and for all coherent sheaves F on V. For a perfect morphism $f: V^{\prime} \rightarrow V$, one can define the pull-back

$$
f^{*}: K_{\circ}(V) \rightarrow K_{\circ}\left(V^{\prime}\right)
$$

by

$$
f^{*}([F])=\sum_{i=0}^{d}(-1)^{i}\left[\operatorname{Tor}_{i}^{V}\left(\mathcal{O}_{V^{\prime}}, F\right)\right] .
$$

It is easy to see that regular embeddings and flat morphisms are perfect.
Let

be a fibre square with v a regular embedding. The refined Gysin map

$$
v^{!}: K_{\circ}(V) \rightarrow K_{\circ}\left(V^{\prime}\right)
$$

can be defined as follows. Since v is a regular embedding, $v_{*}\left(\mathcal{O}_{B^{\prime}}\right)$ has a finite resolution of vector bundles on B. That is, $\mathcal{O}_{B^{\prime}}$ determines an element $K_{B^{\prime}}^{\circ}(B)$, the Grothendieck group of vector bundles on B whose homologies are supported on B^{\prime}. This then determines an element, denoted by $\left[\mathcal{O}_{B^{\prime}}^{V}\right]$, in $K_{V^{\prime}}^{\circ}(V)$ by pull-back. Define $K_{\circ}^{V^{\prime}}(V)$ to be the Grothendieck group of the coherent sheaves on V with homologies supported on V^{\prime} (i.e. exact off V^{\prime}). There is a canonical isomorphism $\varphi: K_{\circ}^{V^{\prime}}(V) \stackrel{\cong}{\rightrightarrows} K_{\circ}\left(V^{\prime}\right)$. One can introduce a generalized cap product

$$
K_{V^{\prime}}^{\circ}(V) \otimes K_{\circ}(V) \xrightarrow{\otimes} K_{\circ}^{V^{\prime}}(V) \xrightarrow{\varphi} K_{\circ}\left(V^{\prime}\right)
$$

by composing the isomorphism φ and the tensor product. The refined Gysin map is:

$$
v^{\prime}([F])=\varphi\left(\left[\mathcal{O}_{B^{\prime}}^{V} \otimes_{\mathcal{O}_{V}} F\right]\right)
$$

Remark 1. One can also apply the deformation to the normal cone argument to define the Gysin pull-back. That is, one can replace the fibre square (1) with

where $C_{V^{\prime}} V, N_{B^{\prime}} B$ are the normal cone and normal bundle of the embeddings u, v. The specialization to the normal cone argument works for K-theory as well, i.e. one has a map

$$
\sigma: K_{\circ}(V) \rightarrow K_{\circ}\left(C_{V^{\prime}} V\right)
$$

such that the Gysin map can be defined by combining σ_{V} with the Gysin map $v_{N}^{!}$of the above fibre square. That is

$$
v^{!}=v_{N}^{!} \circ \sigma .
$$

Remark 2. If b is also a regular embedding, then $v^{!}\left[\mathcal{O}_{V}\right]=b^{!}\left[\mathcal{O}_{B^{\prime}}\right]$, which will also be denoted $\left[\mathcal{O}_{B^{\prime}}\right] \otimes_{\mathcal{O}_{V}}^{\text {der }}\left[\mathcal{O}_{V}^{\prime}\right]$ to emphasize the symmetry.

If $v: B^{\prime} \rightarrow B$ can be factored through a regular embedding $i: B^{\prime} \rightarrow$ Y followed by a smooth morphism $p: Y \rightarrow B$, i.e. v is a local complete intersection morphism. One can form the following fibre diagram

Then q is smooth and we define $v^{!}([F]):=i^{!}\left(q^{*}[F]\right)$. This definition is actually independent of the factorization.

Convention. To simplify the notation, we will often denote the class $[F]$ simply by F and use the operations (like \otimes) as if $[F]$ is a complex of sheaves.
2.2. Moduli spaces of stable maps. This section serves only the purpose of fixing the notations. The reader should consult [10] [6] for details.

Definition. A stable map $(\mathcal{C} ; x, f)$ from a pre-stable curve $\left(C ; x_{1}, \ldots, x_{n}\right)$ of genus g curves with n marked points to X, which represents a class $\beta \in H_{2}(X)$, is a morphism $f: C \rightarrow X$ satisfying:

1. The homological push-forward of C satisfies $f_{*}([C])=\beta$.
2. Stability: The following inequality holds on the normalization E^{\prime} of each irreducible component E :

$$
f(E) \text { is a point } \Rightarrow 2 g\left(E^{\prime}\right)+\#\left\{\text { special points on } E^{\prime}\right\} \geq 3
$$

It is obvious from the definition that the notion of stable maps is a natural generalization of the notion of stable curves. The essential point being that they only allow only finite automorphisms. This makes the following theorem possible:

Theorem 1. ([18]) The stack $\bar{M}_{g, n}(X, \beta)$ of stable maps to X, a smooth projective scheme of finite type over \mathbb{C}, is a proper Deligne-Mumford stack.

Between the various spaces in Gromov-Witten theory there are many interesting morphisms. The first such class of morphisms is called the forgetful morphisms

$$
\mathrm{ft}_{k}: \bar{M}_{g, n+1}(X, \beta) \rightarrow \bar{M}_{g, n}(X, \beta)
$$

by forgetting k-th marked points and stabilizing if necessary.
The second class is called the stabilization morphisms

$$
\text { st }: \bar{M}_{g, n}(X, \beta) \rightarrow \bar{M}_{g, n},
$$

where $\bar{M}_{g, n}$ is the moduli stack of stable curves. It is defined by forgetting the map and retaining the pre-stable curve, then stabilizing the curve. Of course one can just forget the map without stabilization. This leads to the prestabilization morphism [6]

$$
\text { pres : } \bar{M}_{g, n}(X, \beta) \rightarrow \mathfrak{M}_{g, n},
$$

with $\mathfrak{M}_{g, n}$ being the moduli stack of prestable curves.
The third class is called the evaluation morphisms

$$
\mathrm{ev}_{i}: \bar{M}_{g, n}(X, \beta) \rightarrow X
$$

by evaluating the stable map at the i-th marked point. That is, $\mathrm{ev}_{i}(f)=f\left(x_{i}\right)$.

Another object which we will use quite often is the universal cotangent line bundle \mathcal{L}_{i} on $\bar{M}_{g, n}(X, \beta)$. It is defined as $\mathcal{L}_{i}=x_{i}^{*}\left(\omega_{\mathcal{C} / M}\right)$, where $\omega_{\mathcal{C} / M}$ is the relative dualizing sheaf of the universal curve $\mathcal{C} \rightarrow$ $\bar{M}_{g, n}(X, \beta)$ and x_{i} are the marked points.

There are combinatorial generalizations of $\bar{M}_{g, n}(X, \beta)$ by incorporating the modular graphs τ with degree β [6]. The idea is to use the graphs to keep track of the combinatorics of degeneration of curves. This bookkeeping simplifies the notations in the proof of functorial properties of the virtual structure sheaf. We briefly recall the definitions here.

A graph τ is a quadruple $\left(F_{\tau}, V_{\tau}, j_{\tau}, \partial_{\tau}\right)$ where F_{τ} (flags) and V_{τ} (vertices) are finite sets, $j: F_{\tau} \rightarrow F_{\tau}$ is an involution and $\partial: F_{\tau} \rightarrow V_{\tau}$ is a map.

$$
S_{\tau}:=\left\{f \in F_{\tau} \mid j f=f\right\}
$$

is the set of tails (or marked points) and

$$
E_{\tau}:=\left\{\left\{f_{1}, f_{2}\right\} \subset F_{\tau} \mid f_{2}=j f_{1}, f_{2} \neq f_{1}\right\}
$$

is the set of edges. A modular graph is a pair (τ, g), where τ is a graph and $g: V_{\tau} \rightarrow \mathbb{Z}_{\geq 0}$ is a map. We call $g(v)$ the genus of the vertex v. A modular graph is stable if

$$
2 g(v)+\# F_{\tau}(v) \geq 3
$$

for all vertices v, where $F_{\tau}(v):=j_{\tau}^{-1}(v)$ and $\# F(v)$ is the valence of v.
One defines the moduli stack of prestable curves associated to a modular graph (τ, g) as

$$
\mathfrak{M}_{\tau, g}:=\prod_{v \in V_{\tau}} \mathfrak{M}_{g(v), \# F_{\tau}(v)}
$$

where $\mathfrak{M}_{g, n}$ is the usual moduli stack of prestable curves. The moduli stack of stable curves $\bar{M}_{\tau, g}$ associated to a stable modular graph (τ, g) is defined similarly

$$
\bar{M}_{\tau, g}:=\prod_{v \in V_{\tau}} \bar{M}_{g(v), \# F_{\tau}(v)} .
$$

Geometrically, the moduli stack of (pre)stable curves associated to a (connected) modular graph (τ, g) which has at least one edge consists of (connected) singular curves with singularity prescribed by τ. In other words, the stack of universal curves over the stack of the (pre)stable curves has singular generic fibres. For details, see [6].

Let (τ, g) be a modular graph and $\beta: V_{\tau} \rightarrow H_{2}(X)$ be the degree. 1 (τ, g, β) is a stable modular graph with degree if

$$
\beta(v)=0 \Rightarrow 2 g(v)+\# F(v) \geq 3 .
$$

The moduli stack of stable maps $\bar{M}(X, \tau, g, \beta){ }^{2}$ associated to (τ, g, β) is defined by the following three conditions:
(1) If τ is a graph with only one vertex v, and set of flags F_{v} are all tails, then

$$
\begin{equation*}
\bar{M}\left(X, \tau_{1} \times \tau_{2}\right):=\bar{M}\left(X, \tau_{1}\right) \times \bar{M}\left(X, \tau_{2}\right) \tag{2}
\end{equation*}
$$

where $\tau_{1} \times \tau_{2}$ is the disjoint union of two graphs and τ stands for (τ, g, β), by abusing the notation.

[^1](3) If σ is obtained from τ by cutting an edge, then $\bar{M}(X, \tau)$ is defined by the following fibre square

where Δ is the diagonal morphism, and i, j are the corresponding marked points where the edge is cut.
It is easy to see that the morphisms and operations on $\bar{M}_{g, n}(X, \beta)$ generalize to $\bar{M}(X, \tau)$. See [6] for the details.
2.3. The construction of virtual structure sheaf. We shall now introduce the notion of virtual structure sheaf, whose construction is parallel to that of virtual fundamental class as defined in [25] [5].

Let $V \rightarrow B$ be a morphism from a DM-stack to a smooth Artin stack with constant dimension. A relative perfect obstruction theory is a homomorphism ϕ in the derived category (of quasi-coherent sheaves bounded from above) of a two term complex of vector bundles $E^{\bullet}=$ $\left[E^{-1} \rightarrow E^{0}\right.$] to the relative cotangent complex $L_{V / B}^{\bullet}$ of $V \rightarrow B$ such that:

1. $H^{0}(\phi)$ is an isomorphism.
2. $H^{-1}(\phi)$ is surjective.

If V admits a global embedding $i: V \rightarrow Y$ over B into a smooth Deligne-Mumford stack, then the two term cutoff of $L_{V / B}^{\bullet}$ at -1 is given by the first two terms in second exact sequence of relative Kähler differential: $\left[I / I^{2} \rightarrow i^{*}\left(\Omega_{Y / B}\right)\right]$, where I is the relative ideal sheaf of V in Y over B.

Let us now recall the definition of relative intrinsic normal cone. Choose a closed B-embedding of $V, i: V \hookrightarrow Y$, to a smooth DM stack Y over B. Since the normal cone C is a T_{Y}-cone over B (5), one could associate a cone stack $\mathfrak{C}_{V \mid B}:=\left[C / i^{*} T_{Y}\right]$, which is independent of the choice of embedding. $E^{\bullet} \rightarrow L_{V}^{\bullet} / B$ being a perfect obstruction theory implies ([5] Theorem 4.5) that $\mathfrak{C} \rightarrow\left[E_{1} / E_{0}\right]$ is a closed embedding, which induces a cone $C_{1} \subset E_{1}$. Here $E_{0} \rightarrow E_{1}$ is the dual complex of $E^{-1} \rightarrow E^{0}$. Note that even if V does not allow a global embedding, one can still define the intrinsic normal cone by (étale) local embedding. It is proved in [5] that the local construction glues together to form a global cone stack.

Definition. Let $E^{\bullet} \rightarrow L_{V / B}^{\bullet}$ be a perfect obstruction theory. The virtual structure sheaf $\mathcal{O}_{[V, E]}^{\text {vir }}$ for a (relative) perfect obstruction theory
is an element in $K_{\circ}(V)$ defined as the pull-back of $\mathcal{O}_{C_{1}} \in K_{\circ}\left(E_{1}\right)$ by the zero section $0: V \rightarrow E_{1}$, i.e.,

$$
\mathcal{O}_{[V, E]}^{\mathrm{vir}}=\sum_{i}(-1)^{i}\left[\operatorname{Tor}_{i}^{E_{1}}\left(\mathcal{O}_{V} \otimes \mathcal{O}_{C_{1}}\right)\right]
$$

Remark 3. One could also consider this as an element in the derived category of V defined to be

$$
\mathcal{O}_{V}^{\text {vir }}:=\mathcal{O}_{C_{1}} \otimes_{\mathcal{O}_{E_{1}}}^{\mathrm{der}} \mathcal{O}_{V}
$$

where $\otimes^{\text {der }}$ means the derived tensor. Either way, virtual structure sheaf is in general not a bona fide sheaf.

Apply the above setting to Gromov-Witten theory. Let \mathfrak{M}_{τ} be the corresponding moduli stack associated with modular graph τ. Recall that there is a prestabilization morphism pres : $\bar{M}(X, \tau) \rightarrow \mathfrak{M}_{\tau}$, which will be our structure morphism $V \rightarrow B$. Consider the universal stable map

$$
\begin{align*}
& \quad \stackrel{f}{\mathcal{C}} X \\
& { }^{\pi} \downarrow \tag{3}\\
& \bar{M}(X, \tau) .
\end{align*}
$$

One then get a complex $R^{\bullet} \pi_{*} f^{*} T_{X}$, which can be realized as a two term complex $\left[E_{0} \rightarrow E_{1}\right]\left(E_{i}^{\vee}=E^{-i}\right)$ of vector bundles on $\bar{M}_{g, n}(X, \tau)([4])$. In fact, there is a homomorphism

$$
\phi:\left(R^{\bullet} \pi_{*} f^{*} T_{X}\right)^{\vee} \rightarrow L_{\bar{M}(X, \tau) / \mathfrak{M}_{\tau}}
$$

which is a relative perfect obstruction theory. One therefore defines the virtual structure sheaf $\mathcal{O} \frac{\mathrm{vir}_{(X, \tau)}}{M}$. Note that in the present case $\bar{M}(X, \tau)$ admits a global embedding (Appendix A of [15]). One might identify $L_{\bar{M}(X, \tau) / \mathfrak{M}_{\tau}}$ with its two-term cutoff.
2.4. Basic properties of virtual structure sheaf. Some basic properties of virtual structure sheaf is established here as a K-theoretic version of [5]. Because B will always be \mathfrak{M}_{τ} in all our applications, the readers should feel free to make this assumption, although all the results will hold for B any smooth equidimensional Artin stack.

The first step to check the consistency of this definition is the following two propositions:

Proposition 1. (Consistency) The virtual structure sheaf is independent of the choice of the global resolutions $E^{0} \rightarrow E^{1}$. That is, if $E^{0} \rightarrow E^{1}$ is quasi-isomorphic to $F^{0} \rightarrow F^{1}$, then $\mathcal{O}_{[V, E]}^{\mathrm{vir}}=\mathcal{O}_{[V, F]}^{\mathrm{vir}}$.

Proof. The proof of this proposition is exactly the same as the proof of (4) Proposition 5.3.

Proposition 2. (Expected dimension) If V has the expected dimension $\operatorname{dim} B+\operatorname{rank}\left(E^{\bullet}\right)$, then V is a local complete intersection and the virtual structure sheaf is equal to ordinary structure sheaf. Note that the dimension is called "expected dimension" because it is the dimension in the ("generic") case of no obstruction.

Proof. The question can be reduced to the absolute case by the argument given in [15] Appendix B. Thus we will set $B=p t$. Since the question is local (in étale topology), one may assume that

$$
X=\operatorname{Spec} R, \quad R=\mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{r}\right] /\left(g_{1}, \ldots, g_{s}\right) .
$$

In fact, it is enough to consider the local ring

$$
R_{p}=\left(\frac{\mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{r}\right]}{\left(g_{1}, \ldots, g_{s}\right)}\right)_{\left(x_{1}, \ldots, x_{r}\right)}
$$

with maximal ideal \mathfrak{m}. Denote $I=\left(g_{1}, \ldots, g_{s}\right)$, then the two-term cut-off of cotangent complex is

$$
I / I^{2} \rightarrow \Omega_{\mathbb{C}\left[x_{1}, \ldots, x_{r}\right]} \otimes_{\mathbb{C}\left[x_{1}, \ldots, x_{r}\right]} R
$$

This induces a complex of R_{p} modules

$$
\begin{equation*}
I / \mathfrak{m} I \xrightarrow{\varphi} \mathfrak{m} / \mathfrak{m}^{2} . \tag{}
\end{equation*}
$$

One may assume that g_{i} contains no linear terms in x_{i}, or otherwise the presentation of R_{p} could be changed to eliminate terms linear in x_{i}. That is, $I \subset \mathfrak{m}^{2}$ and the above φ is a zero map. This implies that the homology of the above complex is

$$
H^{1}(*)=I / \mathfrak{m} I, \quad H^{0}(*)=\mathfrak{m} / \mathfrak{m}^{2}
$$

Because $E^{\bullet} \rightarrow L^{\bullet}$ is a perfect obstruction theory,

$$
H^{0}(*)=H^{0}\left(E^{\bullet \vee} \otimes \mathbb{C}\right), \quad H^{1}(*) \hookrightarrow H^{1}\left(E^{\bullet \vee} \otimes \mathbb{C}\right)
$$

Therefore

$$
\operatorname{rank}\left(E^{\bullet}\right)=h^{0}\left(E^{\bullet} \otimes \mathbb{C}\right)-h^{1}\left(E^{\bullet} \otimes \mathbb{C}\right) \leq h^{0}(*)-h^{1}(*)=r-s
$$

where the last equality is obvious. This shows, combining with the assumption, that $\operatorname{dim} \operatorname{Spec} R_{p} \leq r-s$. However, $\operatorname{dim} \operatorname{Spec} R_{p}$ is obviously greater or equal to $r-s$. Thus $\operatorname{dim} \operatorname{Spec} R_{p}=r-s$ and $\left\{g_{i}\right\}$ form a regular sequence. Therefore V is a local complete intersection.

On the other hand, $\operatorname{dim} \operatorname{Spec} R_{p}=r-s$ implies that $h^{1}\left(E^{\bullet \vee} \otimes \mathbb{C}\right)=s$ and $E^{\bullet \bullet} \rightarrow L^{\bullet}$ is an isomorphism. Hence $C=E_{1}$, and virtual structure sheaf is the ordinary structure sheaf on V.

The following two propositions form the technical heart of the virtual structure sheaves.

Consider a fibre square

where V^{\prime}, V are separated DM stacks and B^{\prime}, B are smooth (Artin) stacks of constant dimensions.

Proposition 3. (Pull-back) Suppose that $E^{\bullet} \rightarrow L_{V / B}^{\bullet}$ is a perfect obstruction theory for $V \rightarrow B$, and v is flat or is a regular embedding. Then $u^{*} E^{\bullet} \rightarrow L_{V^{\prime} / B^{\prime}}^{\bullet}$ is a perfect obstruction theory for $V^{\prime} \rightarrow B^{\prime}$ and

$$
\mathcal{O}_{\left[V^{\prime}, u^{*} E_{\bullet}\right]}^{\mathrm{vir}}=v^{!} \mathcal{O}_{[V, E \bullet]}^{\mathrm{vir}} .
$$

Let E be a perfect relative obstruction theory for U over B and E^{\prime} be a perfect relative obstruction theory for U^{\prime} over B, where U, U^{\prime} are DM stacks and B is a smooth (Artin) stack of constant dimension. 3^{3} Consider the following fibre square of DM B-stacks

Suppose that the morphism ν is a local complete intersection morphism of B-stacks that have finite unramified diagonal over B. Recall ([5] Sect. 7) that E and E^{\prime} are said to be compatible over ν if there exists a homomorphism of distinguished triangles

The compatibility of obstruction theory means that we have the following short exact sequence of vector bundle stacks

$$
\begin{equation*}
\alpha^{*} \mathfrak{N}_{V^{\prime} / V} \rightarrow\left[E_{1}^{\prime} / E_{0}^{\prime}\right] \rightarrow\left[\mu^{*} E_{1} / \mu^{*} E_{0}\right] \tag{6}
\end{equation*}
$$

where $\mathfrak{N}_{V^{\prime} / V}:=h^{1} / h^{0}\left(T_{V^{\prime} / V}^{\bullet}\right)$. (In general a vector bundle stack can be locally represented as a quotient of a vector bundle by another vector bundle.) In particular when ν is a local complete intersection

[^2]morphism, one can find a smooth stack Y and $V^{\prime} \rightarrow V$ factors through Y :
$$
V^{\prime} \xrightarrow{i} Y \xrightarrow{p} V
$$
such that i is regular embedding and p is smooth. Then
$$
\mathfrak{N}_{V^{\prime} / V}:=\left[N_{V^{\prime} / Y} / i^{*} T_{Y / V}\right] .
$$

Proposition 4. (Functoriality) If E^{\prime} and E are compatible over ν, then

$$
\nu^{\prime} \mathcal{O}_{[U, E]}^{\mathrm{vir}}=\mathcal{O}_{\left[U^{\prime}, E^{\prime}\right]}^{\mathrm{vir}}
$$

when ν is smooth or V^{\prime} and V are smooth.
The rest of this subsection is devoted to the proof of the above two propositions. It can be skipped without losing the logic flow.

Consider the following fibre diagram

where i, j are local embeddings.
Lemma 1. $\left[\mathcal{O}_{C_{1}}\right]=\left[\mathcal{O}_{C_{2}}\right]$ in $K_{\circ}\left(C_{X_{1}} Y \times_{Y} C_{X_{2}} Y\right)$, where $C_{1}:=C_{C_{X_{1}} Y \times X_{2}}\left(C_{X_{1}} Y\right)$ and C_{2} is similarly defined by switching indices 1 and $2 . C_{i}$ are naturally embedded in $C_{X_{1}} Y \times_{Y} C_{X_{2}} Y$.

Proof. The proof of Proposition 4 in [20] also proves this lemma: It is constructed there two principal Cartier divisors D and E in $M_{X_{1}}^{\circ} Y \times_{Y}$ $M_{X_{2}}^{\circ} Y$ (with notations like [7] Ch. 5). The proof there shows that $i_{E}^{!}\left[\mathcal{O}_{D}\right]=\left[\mathcal{O}_{C_{1}}\right]$ and $i_{D}^{!}\left[\mathcal{O}_{E}\right]=\left[\mathcal{O}_{C_{2}}\right]$. By Remark 2, $\left[\mathcal{O}_{C_{1}}\right]=\left[\mathcal{O}_{C_{2}}\right]$.

Now apply the above to the diagram (5). (Similar arguments applies to diagram (4).) Assuming that ν is a regular embedding and β is an embedding, one has

where $D=C_{U} V, D^{\prime}=C_{U^{\prime}} V^{\prime}$ and $N=N_{V^{\prime}} V$. The Lemma 1 states that

$$
\left[\mathcal{O}_{C_{D^{\prime} D}}\right]=\left[C_{N \times_{V} U} N\right]=\left[\rho^{*} \mathcal{O}_{D^{\prime}}\right],
$$

where the ρ^{*} is the pull-back on cones induced from ρ. Let $0: D^{\prime} \rightarrow$ $N \times_{V} D$ be the zero section. By the deformation to normal cone argument

$$
\nu^{!}\left[\mathcal{O}_{D}\right]=0^{*}\left[\mathcal{O}_{C_{D^{\prime}} D}\right] \in K_{\circ}\left(D^{\prime}\right)
$$

Also

$$
0^{*}\left[\rho^{*} \mathcal{O}_{C_{U^{\prime}} V^{\prime}}\right]=\left[\mathcal{O}_{C_{U^{\prime}} V^{\prime}}\right] \in K_{\circ}\left(D^{\prime}\right)
$$

This implies that

Lemma 2.

$$
\nu^{!}\left[\mathcal{O}_{D}\right]=\left[\mathcal{O}_{C_{U^{\prime}} V^{\prime}}\right] .
$$

For the readers who are familiar with the arguments in [5], the above lemmas easily implies the propositions. In the following we reproduce their arguments in K-theory.

Let us start with the proof of Functoriality. For simplicity, let $B=$ $p t$. We will follow closely the proof of Proposition 5.10 in [5]. By Proposition 1 we may choose the global resolution $\left[E_{0}^{\prime} \rightarrow E_{1}^{\prime}\right]$ of E^{\prime} such that the right square of the following diagram

commutes and ϕ_{i} are surjective. $F_{i}:=\operatorname{ker}\left(\phi_{i}\right)$ are vector bundles. This induces short exact sequence of vector bundle stacks

$$
\left[F_{1} / F_{0}\right] \rightarrow\left[E_{1}^{\prime} / E_{0}^{\prime}\right] \rightarrow\left[\mu^{*} E_{1} / \mu^{*} E_{0}\right]
$$

The compatibility of obstruction theory means that we have the following short exact sequence of vector bundle stacks (6)

$$
\alpha^{*} \mathfrak{N}_{V^{\prime} / V} \rightarrow\left[E_{1}^{\prime} / E_{0}^{\prime}\right] \rightarrow\left[\mu^{*} E_{1} / \mu^{*} E_{0}\right]
$$

This implies that $\left[F_{1} / F_{0}\right] \cong \alpha^{*} \mathfrak{N}_{V^{\prime} / V}$. Let $C_{1}=\mathfrak{C}_{U} \times_{\mathfrak{E}} E_{1}$ and $C_{1}^{\prime}=$ $\mathfrak{C}_{U}^{\prime} \times \times_{\mathfrak{E}^{\prime}} E_{1}^{\prime}$. Then $\mathcal{O}_{[U, E]}^{\mathrm{vir}}=0_{E_{1}}^{*} \mathcal{O}_{C_{1}}$ and $\mathcal{O}_{\left[U^{\prime}, E^{\prime}\right]}^{\mathrm{vir}}=0_{E_{1}^{\prime}}^{*} \mathcal{O}_{C_{1}^{\prime}}$.

When ν is smooth or a regular embedding, Proposition 3.14 of [5] implies that we have a fibre square

If ν is smooth, $\nu^{!}=\mu^{*}$ and we have

$$
\nu^{\prime} \mathcal{O}_{[V, E]}^{\mathrm{vir}}=\nu^{!} 0_{E_{1}}^{*}\left[\mathcal{O}_{C_{1}}\right]=0_{\mu^{*} E_{1}}^{!}\left[\mu^{*} \mathcal{O}_{C_{1}}\right]=0_{E_{1}^{\prime}}^{!}\left[\mathcal{O}_{C_{1}^{\prime}}\right]=\mathcal{O}_{\left[V^{\prime}, E^{\prime}\right]}^{\mathrm{vir}}
$$

If ν is a regular embedding of smooth stacks, then

$$
\nu^{!} \mathcal{O}_{[V, E]}^{\mathrm{vir}}=\nu^{\prime} 0_{E_{1}}^{*}\left[\mathcal{O}_{C_{1}}\right]=0_{E_{1}^{\prime}}^{!}!\left[\mathcal{O}_{C_{1}}\right]=0_{E_{1}^{\prime}}^{!}\left[\mathcal{O}_{C_{1}^{\prime}}\right]=\mathcal{O}_{\left[V^{\prime}, E^{\prime}\right]}^{\mathrm{vir}}
$$

by Lemma 2. In general, when only smoothness of V^{\prime} and V are assumed, one factors v as

Apply the smooth case to the right square and the regular embedding case to the left square.

One can generalize the functoriality property to the case β an arbitrary morphism by applying the arguments in [5] Lemma 5.9. That is, to replace the morphism $j: U \rightarrow V$ by $U \rightarrow V \times Y$ such that $U \rightarrow Y$ (and therefore $U \rightarrow V \times Y$) is an embedding. The fibre square (5) will look like

This ends the proof of Proposition4.
The proof of Proposition 3 is similar. Let $E^{\bullet}=E^{-1} \rightarrow E^{0}$. In the case v is flat, by the standard properties of (intrinsic) normal cones $\mathfrak{C}_{V^{\prime} / B^{\prime}}=\mathfrak{C}_{V / B} \times_{B} B^{\prime}(5]$ Proposition 7.1) and $C_{1}^{\prime} \subset u^{*} E_{1}$ is the pullback of C_{1}. Therefore $\mathcal{O}_{C_{1}^{\prime}}=u^{*} \mathcal{O}_{C_{1}}=v^{!} \mathcal{O}_{C_{1}}$. Since 0^{*} commutes with $v^{!}$,

$$
\mathcal{O}_{\left[V^{\prime}, u^{*} E\right]}^{\mathrm{vir}}=0^{*} \mathcal{O}_{C_{1}^{\prime}}=0^{*} v^{!} \mathcal{O}_{C_{1}}=v^{\prime} 0^{*} \mathcal{O}_{C_{1}}=v^{!} \mathcal{O}_{[V, E]}^{\mathrm{vir}}
$$

If v is a regular embedding, apply Lemma 2 to get $\left[\mathcal{O}_{C_{1}^{\prime}}\right]=v^{!}\left[\mathcal{O}_{C_{1}}\right]$ in K-group and proceed as above.

3. Axioms of virtual structure sheaves in quantum K-THEORY

The axioms listed here are K-theoretic version of the Behrend-Manin axioms [6].
3.1. Mapping to a point. Suppose that $\beta=0$. In this case $\bar{M}(X, \tau)=$ $\bar{M}_{\tau} \times X$ and

$$
R^{1} \pi_{*} f^{*} T_{X}=R^{1} \pi_{*} \mathcal{O}_{\mathcal{C}} \boxtimes T_{X},
$$

where the notations are defined in (3). Then

Proposition 5.

$$
\mathcal{O} \frac{\mathrm{vir}}{M(X, \tau)}=\lambda_{-1}\left(R^{1} \pi_{*} \mathcal{O}_{\mathcal{C}} \boxtimes T_{X}\right)^{\vee},
$$

where $\lambda_{-1}(F):=\sum_{i}(-1)^{i} \wedge^{i} F$ is the alternating sum of the exterior power of F.

Proof. The (dual of the) obstruction theory E_{\bullet} is quasi-isomorphic to $R^{0} \pi_{*} \mathcal{O}_{C} \boxtimes T_{X} \rightarrow R^{1} \pi_{*} \mathcal{O}_{C} \boxtimes T_{X}$, which is a complex of locally free sheaves with zero differential. Since $\bar{M}_{\tau} \times X$ is smooth, $C_{1}=$ Image $\left(E_{0} \rightarrow E_{1}\right)=\bar{M}_{\tau} \times X$. Now use the self-intersection formula [8] Chapter VI.

3.2. Products.

Proposition 6.

$$
\mathcal{O} \frac{\mathrm{vir}}{M}\left(X, \tau_{1}\right) \times \bar{M}\left(X, \tau_{2}\right)=\mathcal{O} \frac{\mathrm{vir}}{\bar{M}\left(X, \tau_{1}\right)} \boxtimes \mathcal{O} \overline{\mathrm{vir}_{\left(X, \tau_{2}\right)}},
$$

here $\mathcal{O} \frac{\mathrm{vir}}{\bar{M}\left(X, \tau_{1}\right) \times \bar{M}\left(X, \tau_{2}\right)}$ makes sense as

$$
\bar{M}\left(X, \tau_{1}\right) \times \bar{M}\left(X, \tau_{2}\right)=\bar{M}\left(X, \tau_{1} \times \tau_{2}\right)
$$

See Section 2.2.
Proof. It is obvious that the perfect obstruction theory of the product is the product of perfect obstruction theories on each component.
3.3. Cutting edges. Let σ be a modular graph obtained from τ by cutting an edge as in the fibre diagram (2). In this case $\mathfrak{M}_{\sigma}=\mathfrak{M}_{\tau}=$: \mathfrak{M}. Consider the fibre square

where i, j are the markings created by the cut.
The cutting edges axiom says that

Proposition 7.

$$
\Delta^{\prime} \mathcal{O}_{\frac{\mathrm{vir}}{M(X, \sigma)}}=\mathcal{O}_{\frac{\mathrm{vir}}{M}(X, \tau)}
$$

Proof. It is proved in [4] that the perfect obstruction theories of $\bar{M}(X, \sigma)$ and $\bar{M}(X, \tau)$ are compatible with respect to Δ. It remains to apply Proposition 4.
3.4. Forgetting tails. Let σ be obtained from τ by forgetting a tail (marked point) and let

$$
\pi: \bar{M}(X, \tau) \rightarrow \bar{M}(X, \sigma)
$$

be the forgetful map. Then

Proposition 8.

$$
\pi^{*} \mathcal{O}_{\frac{\mathrm{vir}}{M}(X, \sigma)}=\mathcal{O} \frac{\mathrm{vir}}{M}(X, \tau) .
$$

Proof. The proof in [4] p. 610 shows that

form a commutative diagram. Therefore,

$$
\mathcal{O}_{\overline{\mathrm{vir}}}^{M_{(X, \tau)}}=\mathcal{O}_{[\overline{M i r}}^{\left.\mathrm{vi}(X, \tau), \pi^{*} E(X, \sigma)\right]} .
$$

Now use the pull-back property Proposition 3

$$
\pi^{*} \mathcal{O}_{\frac{\mathrm{vir}}{M(X, \sigma)}}=\mathcal{O}_{\left[\bar{M}(X, \tau), \pi^{*} E(X, \sigma)\right]}^{\mathrm{vir}}
$$

This completes the proof.
Remark 4. The above propositions in this section are the first four of five axioms on virtual fundamental classes in quantum cohomology theory listed in [6] . The last one, isogenies axiom, is not literally true in K-theory. The reason is that even though one can identify fundamental classes of two cycles by a birational morphism, it is not true that the structure sheaves of these two cycles are identified. We therefore have to modify the isogenies axiom in quantum K-theory. Four types of isogenies are stated in K-theory in three axioms. The contractions axiom has to be modified, or "quantized", in K-theory. (The meaning of "quantization" will be clear in the next section.)
3.5. Fundamental classes. Let σ be obtained from τ by forgetting a tail. The degree of σ is induced from τ in the obvious way. Consider the commutative diagram

which induces a morphism

$$
\Psi: \bar{M}(X, \tau) \rightarrow \bar{M}_{\tau} \times_{\bar{M}_{\sigma}} \bar{M}(X, \sigma) .
$$

Proposition 9.

$$
\Psi_{*}\left(\mathcal{O} \frac{\mathrm{vir}}{M(X, \tau)}\right)=\Phi^{!} \mathcal{O} \frac{\mathrm{vir}}{M(X, \sigma)}
$$

Proof. The proof is the same as the proof in 4 pp. 611-3, with the (bivariant) cycle classes changed to (bivariant) K-classes. We summarize the spaces involved in the following diagram:

where the squares are cartesian and $\pi^{\prime}: \mathcal{C} \rightarrow \mathfrak{M}_{\sigma}$ is the universal curve. Since π^{\prime}, m and Φ are representable, proper and flat, they have natural orientations $\left[\pi^{\prime}\right],[m],[\Phi]$ (which are bivariant K-classes [9]). Since s_{σ} is flat, $[m]=s_{\sigma}^{*}[\Phi]$. Furthermore, since l is just blow-down of some rational curves, $l_{*} \mathcal{O}_{\mathcal{C}}=\mathcal{O}_{\bar{M}_{\tau} \times \overline{M_{\sigma}}} \mathfrak{M}_{\sigma} .4$ Therefore $l_{*}\left[\pi^{\prime}\right]=s_{\sigma}^{*}[\Phi]$. Then

$$
\begin{aligned}
\Phi^{!}\left[\mathcal{O} \frac{\mathrm{vir}}{M(X, \sigma)}\right] & =a^{*} s_{\sigma}^{*}[\Phi] \mathcal{O} \frac{\mathrm{vir}}{M(X, \sigma)} \\
& =a^{*} l_{*}\left[\pi^{\prime}\right] \mathcal{O} \frac{\mathrm{vir}}{M}(X, \sigma) \\
& =\Psi_{*} \pi^{\prime} \mathcal{O} \frac{\mathrm{vir}}{M}(X, \sigma) \\
& =\Psi_{*} \mathcal{O} \frac{\mathrm{vir}}{M(X, \tau)}
\end{aligned}
$$

where the last equality follows from Proposition 4.
3.6. Isomorphisms. Suppose that σ is isomorphic to τ, i.e. σ is a relabeling of τ. There is an induced isomorphism $\Psi: \bar{M}(X, \tau) \rightarrow$ $\bar{M}(X, \sigma)$.

[^3]
Proposition 10.

$$
\Psi^{*} \mathcal{O} \frac{\operatorname{vir}}{M(X, \sigma)}=\mathcal{O} \frac{\operatorname{vir}}{M}(X, \tau), \quad \Psi_{*} \mathcal{O} \frac{\operatorname{vir}}{M}(X, \tau)=\mathcal{O} \frac{\operatorname{vir}}{M(X, \sigma)}
$$

The proof is obvious.
3.7. Contractions. Let $\phi: \tau \rightarrow \sigma$ be a map of stable modular graphs by contracting one edge or one loop, such that $\operatorname{genus}(\sigma)=\operatorname{genus}(\tau)$. Denote e the edge or loop in question (in τ). Let $\tilde{\sigma}$ be a fixed modular graph obtained from σ by adding k tails and $(\tilde{\sigma}, \beta)$ is a stable modular graph with degree.
$\left(\tau_{1}^{i}, \beta_{1}^{i_{j}}\right)$ are the stable modular graphs with degrees of the following form. τ_{1}^{i} are obtained from τ by adding k tails in ways compatible with $\tilde{\sigma} \rightarrow \sigma$. Thus there is a natural map from τ_{1}^{i} to $\tilde{\sigma}$ by contracting e, and the following diagram is commutative:

where the two horizontal arrows contracting e and vertical arrows are forgetful maps (by forgetting k new tails). $\beta_{1}^{i_{j}}$ are the degrees on τ_{1}^{i}, compatible with β.

Similarly, $\left(\tau_{m}^{i}, \beta_{m}^{i_{j}}\right)$ are the stable modular graphs with degrees such that τ_{m}^{i} is obtained from τ by first replacing e with a chain c_{m} of m edges and $m-1$ vertices such that the genera of these $m-1$ vertices are all zero. One then adds k tails to this new graph in ways compatible with $\tilde{\sigma} \rightarrow \sigma$ and contraction map $\tau_{m}^{i} \rightarrow \tilde{\sigma}$, which contracts c_{m}. We again arrive at the following commutative diagram:

where a_{m} is the composition of forgetting k tails and contraction. The degrees $\beta_{m}^{i_{j}}$ are the degrees assigned on τ_{m}^{i} in ways compatible with β under p_{m}.

Thus there is a natural morphism $\phi_{m}: \coprod \bar{M}\left(X, \tau_{m}^{i}, \beta_{m}^{i_{j}}\right) \rightarrow \bar{M}(X, \tilde{\sigma}, \beta)$ and the diagram

is commutative.
For example, if $\bar{M}_{\tau}=\bar{M}_{0,4} \times \bar{M}_{0,5}$ and $\bar{M}_{\sigma}=\bar{M}_{0,7}$. Then $\bar{M}(X, \tilde{\sigma}, \beta)=$ $\bar{M}_{0,7+k}(X, \beta)$ and $\bar{M}\left(X, \tau_{2}, \beta_{2}\right)$ are of the form $\bar{M}_{0,4+k_{a}}\left(X, \beta^{a}\right) \times{ }_{X} \bar{M}_{0,2+k_{b}}\left(X, \beta^{b}\right) \times{ }_{X}$ $\bar{M}_{0,5+k_{c}}\left(X, \beta^{c}\right)$ such that $k_{a}+k_{b}+k_{c}=k$ and $\beta^{a}+\beta^{b}+\beta^{c}=\beta_{2}$. Here the notation $\bar{M}_{g_{1}, n_{1}+1}\left(X, \beta_{1}\right) \times_{X} \bar{M}_{g_{2}, n_{2}+1}\left(X, \beta_{2}\right)$ is the fibre product

$$
\begin{array}{ccc}
\bar{M}_{g_{1}, n_{1}+1}\left(X, \beta_{1}\right) \times{ }_{X} & \bar{M}_{g_{2}, n_{2}+1}\left(X, \beta_{2}\right) \longrightarrow & \bar{M}_{g_{1}, n_{1}+1}\left(X, \beta_{1}\right) \times \bar{M}_{g_{2}, n_{2}+1}\left(X, \beta_{2}\right) \\
& & \downarrow \operatorname{ev}_{n_{1}+1 \times \mathrm{ev}_{1}} \\
X & X \times X .
\end{array}
$$

The commutative diagram (8) induces a morphism

$$
\begin{equation*}
\Psi_{m}: \coprod \bar{M}\left(X, \tau_{m}^{i}, \beta_{m}^{i_{j}}\right) \rightarrow \bar{M}_{\tau} \times_{\bar{M}_{\sigma}} \bar{M}(X, \tilde{\sigma}, \beta) . \tag{9}
\end{equation*}
$$

Proposition 11.

$$
\begin{equation*}
\sum_{m}(-1)^{m+1} \Psi_{m *} \sum_{\left(i, i_{j}\right)} \mathcal{O}_{\bar{M}\left(X, \tau_{m}^{i}, \beta_{m}^{i}\right)}^{\mathrm{vir}_{j}}=\Phi^{!}(\mathcal{O} \overline{\operatorname{vir}} \bar{M}(X, \tilde{\sigma}, \beta)) \tag{10}
\end{equation*}
$$

in $K_{\circ}\left(\bar{M}_{\tau} \times_{\bar{M}_{\sigma}} \bar{M}(X, \tilde{\sigma}, \beta)\right)$. The operation $\Phi^{!}$on the RHS of (10) is the refined Gysin map from $K_{\circ}(\bar{M}(X, \tilde{\sigma}, \beta))$ to $K_{\circ}\left(\bar{M}_{\tau} \times_{\bar{M}_{\sigma}} \bar{M}(X, \tilde{\sigma}, \beta)\right)$.
Proof. Consider the following commutative diagram

It induces a morphism

$$
\psi_{m}: \coprod \mathfrak{M}_{\tau_{m}^{i}} \rightarrow \bar{M}_{\tau} \times_{\bar{M}_{\sigma}} \mathfrak{M}_{\tilde{\sigma}} .
$$

We will show an analogue of (10) in this setting. Namely,

$$
\begin{equation*}
\sum_{m, i}(-1)^{m+1} \psi_{m_{*}} \mathcal{O}_{\mathfrak{M}_{\tau_{m}^{i}}}=\Phi^{!} \mathcal{O}_{\mathfrak{M}_{\tilde{\sigma}}} \tag{11}
\end{equation*}
$$

Note that the vertical maps only contracts rational components with two marked points (or less). That is the reason why only chains of rational curves are relevant.

It is easy to see that $\bar{M}_{\tau} \times_{\bar{M}_{\sigma}} \mathfrak{M}_{\tilde{\sigma}} \rightarrow \mathfrak{M}_{\tilde{\sigma}}$ is a divisor D_{τ} of normal crossing in $\mathfrak{M}_{\tilde{\sigma}}$, and the "smoothing map"

$$
\mu_{1}: \coprod \mathfrak{M}_{\tau_{1}^{i}} \rightarrow D_{\tau}
$$

is a finite, unramified and surjective birational morphism. In other words, the smooth Artin stack $\coprod \mathfrak{M}_{\tau_{1}^{i}}$ separates the normal crossing
point. Although D_{τ} is not equal to $\mu_{*} \mathcal{O}_{\amalg \mathfrak{M}_{\tau_{1}^{i}}}$, the difference is supported on the normal crossing subset. The following lemma shows how one could obtain the structure sheaf $\mathcal{O}_{D_{\tau}}$ by the inclusion-exclusion principle.

Lemma 3. Let $D=\cup_{i=1}^{k} D_{i}$ be a divisor with normal crossing, such that D_{i} are smooth, disjoint away from the origin. Furthermore locally at origin D is defined by $x_{1} \ldots x_{k}=0$. Then

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{D} \rightarrow \sum_{i} \mathcal{O}_{D_{i}} \rightarrow \sum_{i<j} \mathcal{O}_{D_{i} \cap D_{j}} \rightarrow \ldots \rightarrow \mathcal{O}_{D_{1} \cap \ldots \cap D_{k}} \rightarrow 0 \tag{12}
\end{equation*}
$$

is an exact sequence.
Proof. Equation (12) is equivalent to the study the exactness of the following sequence locally at the origin

$$
\begin{aligned}
& 0 \rightarrow \mathcal{O} /\left(x_{1} x_{2} \ldots x_{k}\right) \rightarrow \sum_{i} \mathcal{O} /\left(x_{i}\right) \\
& \qquad \sum_{i<j} \mathcal{O} /\left(x_{i}, x_{j}\right) \rightarrow \ldots \rightarrow \mathcal{O} /\left(x_{1}, x_{2}, \ldots, x_{k}\right) \rightarrow 0 .
\end{aligned}
$$

This equation holds because, e.g. $k=2$, the following sequence

$$
0 \rightarrow \mathcal{O} /\left(x_{1} x_{2}\right) \rightarrow \mathcal{O} /\left(x_{1}\right) \oplus \mathcal{O} /\left(x_{2}\right) \rightarrow \mathcal{O} /\left(x_{1}, x_{2}\right) \rightarrow 0
$$

is exact. In the general case this follows from the inclusion-exclusion principle. For the exactness of (12) at points away from the origin, where l divisors intersect $(l<k)$, it follows from the induction as the divisor locally defined by the equation $y_{i_{1}} \ldots y_{i_{l}}$.

It remains to note that the normal crossing substack is stratified by the image of

$$
\mu_{m}: \coprod \mathfrak{M}_{\tau_{m}^{i}} \rightarrow D_{\tau}
$$

with codimension m in $\mathfrak{M}_{\tilde{\sigma}}$. This concludes the proof of (11).
Now consider the following diagram

which defines a compatible perfect obstruction theory over w. Therefore by Proposition 4

$$
\begin{equation*}
w^{!} \mathcal{O}_{\overline{M i r}_{\tilde{\sigma}}(X, \beta)}=\mathcal{O}_{\bar{M}_{\tau_{m}^{i}}^{\mathrm{vir}}}\left(X, \beta_{m}^{i j}\right) . \tag{13}
\end{equation*}
$$

Proposition follows from the combination of equations (11) and (13).

4. Quantum K-Invariants

4.1. Preliminaries on topological K-theory. The K-theory used in this article has four variants:

- $K_{\circ}(V)$: the Grothendieck group of coherent sheaves on V.
- $K^{\circ}(V)$: the Grothendieck group of algebraic vector bundles on V.
- $K^{*}(V):=K^{0}(V) \oplus K^{1}(V)$: the topological K-cohomology theory on V (of complex vector bundles).
- $K_{*}(V):=K_{0}(V) \oplus K_{1}(V)$: the topological K-homology theory on V.
For the benefit of algebraic geometers let us recall some definitions and useful properties of topological K-theory. All the spaces involved are topological spaces or algebraic schemes. See Remark 5 below for applications to stacks.

Let $V \hookrightarrow \mathbb{C}^{N}$ be a topological closed embedding. Define

$$
K_{i}(V):=K^{i}\left(\mathbb{C}^{N}, \mathbb{C}^{N}-V\right) \stackrel{\text { def }}{=} K_{V}^{i}\left(\mathbb{C}^{N}\right)
$$

(Remember that there is a Bott periodicity.) Note that this definition is independent of the closed embedding.

There is a cap product between homology and cohomology theories. In algebraic K-theory, it is just the tensor product. In topological K theory, it is defined as follows. Let $V \subset \mathbb{C}^{N}$ be the closed embedding as above and U be a neighborhood of V in \mathbb{C}^{N} such that every element in $K^{*}(V)$ extends to an element in $K^{*}(U) . K_{i}(V)=K^{i}\left(\mathbb{C}^{N}, \mathbb{C}^{N}-V\right)=$ $K^{i}(U, U-V)$ by excision. Then the cap product is defined as

$$
\begin{aligned}
K^{i}(V) \otimes K_{j}(V) \rightarrow K^{i}(U) & \otimes K^{j}(U, U-V) \\
& \rightarrow K^{i+j}(U, U-V)=K_{j+i}(V) \stackrel{\cong}{\rightrightarrows} K_{j-i}(V),
\end{aligned}
$$

where the second arrow is the cup product and the last arrow is the Bott periodicity.

One can define the push-forward

$$
f_{*}: K_{i}\left(V^{\prime}\right) \rightarrow K_{i}(V)
$$

for $f: V^{\prime} \rightarrow V$ a continuous proper map. Since f is proper, there is $\phi^{\prime}: V^{\prime} \rightarrow D^{m}\left(D^{m}\right.$ is a polydisk in $\left.\mathbb{C}^{m}\right)$ such that

$$
\left(f, \phi^{\prime}\right): V^{\prime} \rightarrow V \times D^{m}
$$

is a closed embedding. Choose a closed embedding $\phi: V \rightarrow \mathbb{C}^{N}$ as above. The push-forward is the composition

$$
\begin{aligned}
& K_{i}\left(V^{\prime}\right) \cong K^{i}\left(\mathbb{C}^{N+m}, \mathbb{C}^{N+m}-\left(\phi f, \phi^{\prime}\right)(X)\right) \\
& \stackrel{\text { res }}{\rightarrow} K^{i}\left(\mathbb{C}^{N+m}, \mathbb{C}^{N} \times\left(\mathbb{C}^{m}-D^{m}\right) \cup\left(\mathbb{C}^{N}-\phi(V)\right) \times \mathbb{C}^{m}\right) \\
& \cong K^{i}\left(\mathbb{C}^{N}, \mathbb{C}^{N}-\phi(V)\right) \cong K_{i}(V)
\end{aligned}
$$

where the \leftarrow is the Thom isomorphism, i.e. multiplying the canonical element of $K^{0}\left(\mathbb{C}^{m}, \mathbb{C}^{m}-D^{m}\right)$.

There is an obvious homomorphism $K^{\circ}(V) \rightarrow K^{0}(V)$ as every algebraic vector bundle is a topological one. One can also construct a homomorphism

$$
\begin{equation*}
T o p: K_{\circ}(V) \rightarrow K_{0}(V) \tag{14}
\end{equation*}
$$

as follows. Choose a closed embedding of V to a smooth scheme $i: V \hookrightarrow Y$. (In our applications, all schemes are quasi-projective.) For a bounded complex of coherent sheaves α^{\bullet} on $V, i_{*}\left(\alpha^{\bullet}\right)$ is quasiisomorphic to a bounded complex E^{\bullet} of locally free sheaves on Y, which is exact out of V. Regard E^{\bullet} as a a topological element and embed Y in some \mathbb{C}^{n}. By Thom isomorphism E^{\bullet} is identified as a bounded complex of topological vector bundles on \mathbb{C}^{n}, exact off V, which is then an element in $K_{0}(V)$.

A relation between the push-forward maps in two K-homology theories is given by the following theorem of Baum-Fulton-MacPherson:

Theorem 2. ([2]) For a proper morphism $g: X \rightarrow Y$, the following diagram:

commutes.
There is again a bivariant topological K-theory which unifies the above setting. The homomorphism (14) is also valid in the bivariant setting [9].

Remark 5. Although the K-theory of a moduli stack is quite different from the K-theory of its coarse moduli space, one can define the quantum K-invariants via coarse moduli space in the following way. Let $p: \mathcal{M} \rightarrow M$ be the canonical map from the moduli stack to its coarse moduli space. First construct the virtual structure sheaf $\mathcal{O}_{\mathcal{M}}^{\text {vir }}$ on the
moduli stack, then push-forward $p_{*}\left(\mathcal{O}^{\text {vir }}\right)$ to its coarse moduli space, which is a topological space. One gets

$$
\chi\left(\mathcal{M}, \operatorname{ev}_{\mathcal{M}}^{*}(\gamma) E \mathcal{O}_{\mathcal{M}}^{\mathrm{vir}}\right)=\chi\left(M, \operatorname{ev}_{M}^{*}(\gamma) p_{*}\left(E \mathcal{O}_{\mathcal{M}}^{\text {vir }}\right)\right)
$$

by projection formula as ev: $\mathcal{M} \rightarrow X$ factors through $M . E$ is any K element on \mathcal{M}, like \mathcal{L} or \mathcal{H} (Hodge bundle). This means that one gets the same quantum K-invariants on coarse moduli space if one takes the suitable virtual structure sheaf.

Therefore, one can define quantum K-invariants for topological K theory on topological spaces rather than orbispaces, by using the topological K-homology for topological space associated to coarse moduli space and $\operatorname{Top}\left(p_{*}\left(\mathcal{O}^{\text {vir }}\right)\right)$ as the virtual structure sheaf. This eliminates the difficulty of constructing topological K-homology on orbispaces, which will be addressed in another paper.
4.2. Definition of Quantum K-invariants. In this subsection we will propose a construction of K-theoretic invariants 5^{5} of the GromovWitten type, which we call quantum K-invariants.

Let $K^{\bullet}(V)$ be the (algebraic or topological) K-cohomology of V and $K_{\bullet}(V)$ be the (algebraic or topological) K-homology of V. When V is smooth, the notation $K(V)$ is used to denote both $K^{\bullet}(V)$ and $K_{\bullet}(V)$ as they are isomorphic.

The quantum K-invariants is defined to be
$\left\langle\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n} ; F\right\rangle_{g, n, \beta}:=\chi\left(\bar{M}_{g, n}(X, \beta), \mathcal{O}^{\text {vir }} \otimes \operatorname{ev}^{*}\left(\gamma_{1} \otimes \ldots \gamma_{n}\right) \otimes \mathrm{st}^{*}(F)\right)$,
where $\gamma_{i} \in K(X), F \in K\left(\bar{M}_{g, n}\right)$ and χ is the push-forward to a point $(\operatorname{Spec} \mathbb{C})$. Note that the triple (g, n, β) is chosen so that $\bar{M}_{g, n}(X, \beta)$ is defined. Note that due to Baum-Fulton-MacPherson Theorem 2 topological invariants will be equal to algebraic invariants (whenever applicable). We will not make distinctions.

One could also include the gravitational descendents and define:

$$
\begin{align*}
& \left\langle\tau_{k_{1}}\left(\gamma_{1}\right), \tau_{k_{2}}\left(\gamma_{2}\right), \ldots, \tau_{k_{n}}\left(\gamma_{n}\right) ; \operatorname{st}^{*}(F)\right\rangle_{g, n, \beta} \\
:= & \chi\left(\bar{M}_{g, n}(X, \beta), \mathcal{O}^{\text {vir }} \otimes\left(\otimes_{i=1}^{n} \mathcal{L}_{i}^{\otimes k_{i}} \operatorname{ev}_{i}^{*}\left(\gamma_{i}\right)\right) \otimes \operatorname{st}^{*}(F)\right) \tag{15}
\end{align*}
$$

From this point we assume the K-theory is the topological K-theory. The modification to algebraic K-theory is in most places straightforward. A key point will be discussed in Remark 10.

Let X be a smooth projective variety, and $E \subset H_{2}(X, \mathbb{Z})$ denote the semigroup of effective curve classes. Let $\mathbb{C}[E]$ be the semigroup ring

[^4]determined by E. Since $0 \in E, \mathbb{C}[E]$ has a unit element. For $\beta \in E$, the corresponding element of $\mathbb{C}[E]$ will be denoted by Q^{β}.

Let \mathfrak{m} be the maximal ideal in $\mathbb{C}[E]$ generated by the nonzero elements of E. The Novikov ring $N(X)$ is defined to be the completion of $\mathbb{C}[E]$ in the \mathfrak{m}-adic topology. Alternatively, $N(X)$ may be defined by formal series in Q^{β} :

$$
N(X)=\left\{\sum_{\beta \in E} c_{\beta} Q^{\beta} \mid c_{\beta} \in \mathbb{C}\right\} .
$$

Let $e_{0}=\mathcal{O}, e_{1}, e_{2}, \ldots$ be a basis of $K(X)_{\mathbb{Q}}$ and let t_{i} be its dual coordinates. Define $t:=\sum_{i} t_{i} e_{i}$. The K-theoretic Poincaré pairing

$$
(\cdot, \cdot): K(X)_{\mathbb{Q}} \otimes K(X)_{\mathbb{Q}} \rightarrow \mathbb{Q}
$$

is defined to be $\left(e_{i}, e_{j}\right)=\chi\left(e_{i} \otimes e_{j}\right)$. This is a perfect pairing whenever X is smooth. This defines a metric $g_{i j}:=\left(e_{i}, e_{j}\right)$ on $K(X)$.

The quantum K-potential of genus 0 is a generating series of genus zero quantum K-invariants:

$$
\begin{equation*}
G(t, Q):=\frac{1}{2}(t, t)+\sum_{n=0}^{\infty} \sum_{\beta \in E} \frac{Q^{\beta}}{n!}\langle t, \ldots, t\rangle_{0, n, \beta} . \tag{16}
\end{equation*}
$$

Here $(0, n, \beta)$ is a triple such that $\bar{M}_{0, n}(X, \beta)$ exists. It is obvious that $G(t, Q) \in N(X) \otimes_{\mathbb{C}} \mathbb{C}[[t]]$.

We will see later that the metric in quantum K-theory ought to be "quantized" due to the modified contraction axiom (§ 3.7). Define the quantum K-metric to be

$$
\begin{equation*}
\left(\left(e_{i}, e_{j}\right)\right)=G_{i j}:=\partial_{t_{i}} \partial_{t_{j}} G(t) \tag{17}
\end{equation*}
$$

$G_{i j}$ is the quantization of $g_{i j}$ because $\left.G_{i j}\right|_{q=0}=g_{i j}$ by definition. Define $G^{i j}$ to be the inverse matrix of $G_{i j}$.

One could also define the quantum K-classes for X to be a family of linear maps (cf. [19])

$$
I_{g, n, \beta}^{X}: K(X)^{\otimes n} \rightarrow K\left(\bar{M}_{g, n}\right)
$$

defined by

$$
\begin{equation*}
I_{g, n, \beta}^{X}\left(u_{1} \otimes u_{2} \otimes \ldots \otimes u_{n}\right):=\operatorname{st}_{*}\left(\mathcal{O} \frac{\mathrm{vir}}{M_{g, n}(X, d)} \otimes_{1}^{*}\left(u_{1}\right) \otimes \ldots \otimes \operatorname{ev}_{n}^{*}\left(u_{n}\right)\right) \tag{18}
\end{equation*}
$$

The equivalence of these two definitions follows from the fact that the Poincaré duality in $K\left(\bar{M}_{g, n}, \mathbb{Q}\right)$ is a perfect pairing.
Remark 6. 1. It is obvious how to include the modular graphs into our data and define quantum K-invariants associated to a modular graph.
2. Finally we mention that there is an equivariant version of these invariants. If there is an algebraic group (or compact Lie group) G
acting on X, then the moduli space $\bar{M}_{g, n}(X, \beta)$ (and its virtual structure sheaf) has a G action too. We can talk about the G-equivariant quantum K-invariants, completely parallel to equivariant quantum cohomology theory.
4.3. On Kontsevich-Manin axioms in K-theory. The quantum K-invariants (without descendents) as defined above obviously can not satisfy all axioms of cohomological Gromov-Witten invariants [19]. The effectivity and motivic axioms follow from the construction. The grading and divisor axioms are missing, due to the lack of "dimension counting". We will discuss briefly the remaining five axioms below.
S_{n}-covariance: The quantum K-class is covariant under S_{n} action on the marked points.

Fundamental class: Let e_{0} be the (K-class of) structure sheaf of X and $\pi_{n}: \bar{M}_{g, n} \rightarrow \bar{M}_{g, n-1}$. Then

$$
\begin{equation*}
I_{g, n, \beta}^{X}\left(u_{1} \otimes u_{2} \otimes \ldots \otimes u_{n-1} \otimes e_{0}\right)=\pi_{n}^{*}\left(I_{g, n-1, \beta}^{X}\left(u_{1} \otimes u_{2} \otimes \ldots \otimes u_{n-1}\right)\right) \tag{19}
\end{equation*}
$$

Mapping to a point: Suppose that $\beta=0$. Consider the following diagram

$$
\begin{gathered}
\bar{M}_{g, n} \times X \xrightarrow{p_{2}} X \\
\quad{ }^{p_{1}} \\
\bar{M}_{g, n}
\end{gathered}
$$

where p_{i} are the projection morphisms. Then

$$
\begin{equation*}
I_{g, n, 0}^{X}\left(u_{1} \otimes \ldots \otimes u_{n}\right)=\left(p_{1}\right)_{*} p_{2}^{*}\left(u_{1} \otimes \ldots \otimes u_{n} \otimes \lambda_{-1}\left(R^{1} \pi_{*}\left(\mathcal{O}_{C} \otimes T_{V}\right)\right)^{\vee}\right) \tag{20}
\end{equation*}
$$

Splitting: Fix g_{1}, g_{2} and n_{1}, n_{2} such that $g=g_{1}+g_{2}, n=n_{1}+n_{2}$. Let

$$
\Phi: \bar{M}_{g_{1}, n_{1}+1} \times \bar{M}_{g_{2}, n_{2}+1} \rightarrow \bar{M}_{g, n}
$$

be the contraction map which glues the last marked point of $\bar{M}_{g_{1}, n_{1}+1}$ to the first marked point of $\bar{M}_{g_{2}, n_{2}+1}$ (contracting a non-looping edge). Then

$$
\begin{align*}
& \Phi^{*} \sum_{k, \beta} q^{\beta} \frac{1}{k!} \mathrm{ft}_{*}^{k} I_{g, n+k, \beta}^{X}\left(\gamma_{1} \otimes \ldots \otimes \gamma_{n} \otimes t \otimes \ldots \otimes t\right) \tag{21}\\
= & \sum_{i j}\left(\sum_{k_{1}, \beta^{\prime}} q^{\beta^{\prime}} \frac{1}{k_{1}!} \mathrm{ft}_{*}^{k_{1}} I_{g_{1}, n_{1}+k_{1}+1, \beta^{\prime}}^{X}\left(\gamma_{1} \otimes \ldots \gamma_{n_{1}} \otimes t \otimes \ldots \otimes t \otimes e_{i}\right)\right) \\
& G^{i j}(t)\left(\sum_{k_{2}, \beta^{\prime \prime}} \frac{1}{k_{2}!} \mathrm{ft}_{*}^{k_{2}} I_{g_{2}, n_{2}+k_{2}+1, \beta^{\prime \prime}}^{X}\left(e_{j} \otimes \gamma_{n_{1}+1} \otimes \ldots \gamma_{n} \otimes t \otimes \ldots \otimes t\right)\right),
\end{align*}
$$

where the notation $\mathrm{ft}^{k}: \bar{M}_{g, n+k} \rightarrow \bar{M}_{g, n}$ stands for the forgetful map which forget the additional k marked points.

Genus reduction: Let

$$
\Phi: \bar{M}_{g-1, n+2} \rightarrow \bar{M}_{g, n}
$$

be the contraction map which glues the last two marked points (contracting a loop). Then

$$
\begin{aligned}
& \Phi^{*} \sum_{k, \beta} q^{\beta} \frac{1}{k!} \mathrm{ft}_{*}^{k} I_{g, n+k, \beta}^{X}\left(\gamma_{1} \otimes \ldots \otimes \gamma_{n} \otimes t \otimes \ldots \otimes t\right) \\
= & \sum_{i j}\left(\sum_{k, \beta} q^{\beta} \frac{1}{k!} \mathrm{ft}_{*}^{k} I_{g+1, n+k+2, \beta}^{X}\left(\gamma_{1} \otimes \ldots \gamma_{n} \otimes t \otimes \ldots \otimes t \otimes e_{i} \otimes e_{j}\right)\right) G^{i j}(t)
\end{aligned}
$$

The proofs of these five axioms follows from the corresponding axioms of virtual structure sheaves. For example, Contractions, Cutting Edges and Products imply the splitting and genus reduction axioms. The only novelty is the appearance of $G^{i j}$ in Splitting and genus reduction axioms. This has its origin in Contractions Axiom (Section 3.7). Let us write $G_{i j}(t, q)=g_{i j}+F_{i j}(t, q)$. The inverse matrix $G^{i j}(t, q)$ is therefore

$$
g^{i j}+\sum_{m \geq 2}(-1)^{m+1} g^{i a_{1}} F_{a_{1} b_{1}} g^{b_{1} a_{2}} \ldots F_{a_{m-1} b_{m-1}} g^{b_{m-1} j}
$$

due to the matrix geometric series

$$
\frac{1}{1+f}=1-f+f^{2}-f^{3}+\ldots
$$

Note that the contributions from the contracted chains (denoted c_{m}) in Proposition 11 are exactly $F_{a_{1} b_{1}} g^{b_{1} a_{2}} \ldots F_{a_{m-1} b_{m-1}}$. The fact that the combinatorics involved can be simplified by introducing $G^{i j}$ is first observed in 12.
4.4. String equation. Let $\pi: \bar{M}_{g, n+1}(X, \beta) \rightarrow \bar{M}_{g, n}(X, \beta)$ be the forgetful map by forgetting the last marked point. 6 String equation asks the relations between $\left\langle\tau_{k_{1}}\left(\gamma_{1}\right), \ldots, \tau_{k_{n}}\left(\gamma_{n}\right), \tau_{0}(1)\right\rangle_{g, n+1, \beta}$ and $\left\langle\tau_{k_{1}}\left(\gamma_{1}\right), \ldots, \tau_{k_{n}}\left(\gamma_{n}\right)\right\rangle_{g, n, \beta}$. In the higher genus case, the Hodge bundle is also included. It is easy to see that the relation is reduced to the following equations (by projection formula):

[^5]For $g=0$:

$$
\begin{equation*}
\pi_{*}\left(\mathcal{O}^{\mathrm{vir}}\left(\prod_{i=1}^{n} \frac{1}{1-q_{i} \mathcal{L}_{i}}\right)\right)=\left(1+\sum_{i=1}^{n} \frac{q_{i}}{1-q_{i}}\right)\left(\mathcal{O}^{\operatorname{vir}}\left(\prod_{i=1}^{n} \frac{1}{1-q_{i} \mathcal{L}_{i}}\right)\right) \tag{22}
\end{equation*}
$$

where q_{i} are formal variables. The LHS and RHS are equal as formal series in q_{i} 's.

For $g \geq 1$:

$$
\begin{align*}
& \pi_{*}\left(\mathcal{O}^{\text {vir }} \frac{1}{1-q \mathcal{H}^{*}} \prod_{i=1}^{n} \frac{1}{1-q_{i} \mathcal{L}_{i}}\right) \\
= & \mathcal{O}^{\text {vir }} \frac{1}{1-q \mathcal{H}^{*}}\left[\left(1-\mathcal{H}^{*}+\sum_{i=1}^{n} \frac{q_{i}}{1-q_{i}}\right)\left(\prod_{i=1}^{n} \frac{1}{1-q_{i} \mathcal{L}_{i}}\right)\right] \tag{23}
\end{align*}
$$

where \mathcal{H} is the Hodge bundle, i.e. $\mathcal{H}:=R^{0} \pi_{*} \omega_{\mathcal{C} / \bar{M}}$.
Proof. First notice that the virtual structure sheaves in the above equations can be simultaneously erased from both sides by the Fundamental class and Forgetting tails axioms.

First the case $g=0$. Let D_{i} be the divisors on $\bar{M}_{0, n+1}(X, \beta)$ such that the generic curves have two components: one contains the i-th and $n+1$-th marked points, and the other contains the rest. It is well-known that

$$
\begin{equation*}
\mathcal{O}\left(\mathcal{L}_{i}\right)=\pi^{*} l_{i} \otimes \mathcal{O}\left(D_{i}\right) \tag{24}
\end{equation*}
$$

(see e.g. [28]), where for the notational convenience we have used l_{i} and \mathcal{L}_{i} for i-th universal cotangent line bundles on $\bar{M}_{0, n}(X, \beta)$ and $\bar{M}_{0, n+1}(X, \beta)$ respectively. It is easy to see that ([21] Lemma 2)

$$
\begin{equation*}
R^{1} \pi_{*}\left(\mathcal{O}\left(\sum_{i} d_{i} D_{i}\right)\right)=0 \tag{25}
\end{equation*}
$$

for $d_{i} \geq 0$. By projection formula

$$
R^{0} \pi_{*}\left(\otimes_{i=1}^{n} \mathcal{L}_{i}^{\otimes d_{i}}\right)=\left(\otimes_{i=1}^{n} l_{i}^{d_{i}}\right) R^{0} \pi_{*} \mathcal{O}\left(\sum_{i} d_{i} D_{i}\right)
$$

It remains to compute $H^{0}:=R^{0} \pi_{*} \mathcal{O}\left(\sum_{i} d_{i} D_{i}\right)$, which is a vector bundle because $R^{1}=0$.

To compute H^{0}, we use some local arguments. The fibre C_{x} of π is a rational curve with n marked points x_{1}, \ldots, x_{n}. An element of $H^{0}\left(C_{x}, \mathcal{O}\left(\sum_{i} d_{i} D_{i}\right)\right)$ is a rational function with poles of order no more than d_{i} at x_{i}. Therefore $H^{0}\left(C_{x}, \mathcal{O}\left(\sum_{i} d_{i} D_{i}\right)\right)$ is filtered by the degrees of poles at x_{i} :

$$
\mathcal{F}_{0} \subset \mathcal{F}_{1} \subset \ldots \subset \mathcal{F}_{d_{i}}
$$

It is by definition that the graded piece $\mathcal{F}_{k+1} / \mathcal{F}_{k}$ are isomorphic to $T_{x_{i}}^{\otimes k}$. Summarizing,

$$
\begin{equation*}
H^{0} \stackrel{K \text {-theory }}{=} \mathcal{O} \oplus l_{1}^{-1} \oplus \ldots l^{-d_{1}} \oplus l_{2}^{-1} \oplus \ldots \oplus l_{n}^{-1} \oplus \ldots l_{n}^{-d_{n}} \tag{26}
\end{equation*}
$$

where " K-theory" above means the equation is valid only in K-theory as we have used the graded pieces.

It is now a matter of elementary computation (see Proposition 1 in [21]) to deduce the genus zero string equation from (26).

In the case $g \geq 1$ the Hodge bundles \mathcal{H} will naturally occur. Notice that \mathcal{H} is actually equal to $\pi^{*}(\mathcal{H})$, and this implies that the factor $1 /(1-q \mathcal{H})$ commutes with π_{*} due to the projection formula. By Grothendieck-Riemann-Roch formula, (23) is a rational function of q and q_{i} 's. Therefore

$$
\begin{equation*}
\pi_{*}\left(\frac{1}{1-q \mathcal{L}}\right)=\pi_{*}\left(\frac{-q^{-1} \mathcal{L}^{-1}}{1-q^{-1} \mathcal{L}^{-1}}\right) . \tag{27}
\end{equation*}
$$

Now for $d_{i} \geq 1$, we want to show

$$
\begin{aligned}
& \pi_{*}\left(\otimes_{i=1}^{n} \mathcal{L}_{i}^{-d_{i}}\right) \\
= & \otimes_{i=1}^{n} \mathcal{L}_{i}^{-d_{i}}\left(\underline{1}-\mathcal{H}^{*}-\sum_{i, d_{i} \neq 0}\left(\underline{1}+\mathcal{L}_{i}+\ldots+\mathcal{L}_{i}^{d_{i}-1}\right)\right) .
\end{aligned}
$$

The above equality can be proved using the same arguments as in the genus zero case. By (25) and projection formula

$$
\pi_{*}\left(\otimes_{i=1}^{n} \mathcal{L}_{i}^{-d_{i}}\right)=\left(\otimes_{i=1}^{n}\left(l_{i}\right)^{-d_{i}}\right) \pi_{*} \mathcal{O}\left(\sum_{i}-d_{i} D_{i}\right)
$$

Because $d_{i} \geq 1$ for all $i, R^{0} \pi_{*}\left(\mathcal{O}\left(\sum_{i}-d_{i} D_{i}\right)\right)=0$.

$$
H^{1}:=R^{1} \pi_{*}\left(\mathcal{O}\left(\sum_{i}-d_{i} D_{i}\right)\right)
$$

is a vector bundle.
Now by Serre duality $\left(H^{1}\right)^{*}=R^{0} \pi_{*} \omega\left(\sum_{i} d_{i} D_{i}\right)$, where ω is the dualizing sheaf. Fibrewisely, $H^{0}\left(C, \omega\left(\sum_{i} d_{i} x_{i}\right)\right)$ is the holomorphic differential with poles of order at most d_{i} at x_{i}. Thus we have a filtration $\mathcal{F}_{1} \subset \mathcal{F}_{2} \subset \ldots \subset \mathcal{F}_{d_{i}}$ of degrees of poles at each marked point x_{i} as above and the graded bundles $\mathcal{F}_{k+1} / \mathcal{F}_{k}$ is isomorphic to $l_{i}^{\otimes-k}$ and
$\mathcal{F}_{0}=\mathcal{H}$. Therefore

$$
\begin{aligned}
& \pi_{*}\left(\otimes_{i=1}^{n} \mathcal{L}_{i}^{-d_{i}}\right) \\
= & \otimes_{i=1}^{n}\left(l_{i}\right)^{-d_{i}}\left(-R^{1} \pi_{*} \mathcal{O}\left(\sum_{i}-d_{i} D_{i}\right)\right) \\
= & \otimes_{i=1}^{n}\left(l_{i}\right)^{-d_{i}}\left(-\left(R^{0} \pi_{*} \omega\left(\sum_{i}-d_{i} D_{i}\right)\right)^{*}\right) \\
= & \otimes_{i=1}^{n} l_{i}^{-d_{i}}\left(\underline{1}-\mathcal{H}^{*}-\sum_{i, d_{i} \neq 0}\left(\underline{1}+l_{i}+\ldots+l_{i}^{d_{i}-1}\right)\right) .
\end{aligned}
$$

Notice again that the last equality holds only in K-theory (using graded objects). This means

$$
\begin{aligned}
& \pi_{*}\left(\prod_{i=1}^{n} \frac{q_{i}^{-1} \mathcal{L}_{i}^{-1}}{1-q_{i}^{-1} \mathcal{L}_{i}^{-1}}\right) \\
= & \left(1-\mathcal{H}^{*}+\sum_{i=1}^{n} \frac{q_{i}^{-1}}{1-q_{i}^{-1}}\right)\left(\prod_{i=1}^{n} \frac{q_{i}^{-1} l_{i}^{-1}}{1-q_{i}^{-1} l_{i}^{-1}}\right),
\end{aligned}
$$

which is equivalent to (23).
4.5. Dilaton equation. Let $\pi: \bar{M}_{g, n+1}(X, \beta) \rightarrow \bar{M}_{g, n}(X, \beta)$ as above. The dilaton equation asks the relations between $\left\langle\tau_{k_{1}}\left(\gamma_{1}\right), \ldots, \tau_{k_{n}}\left(\gamma_{n}\right), \tau_{1}\left(e_{0}\right)\right\rangle_{g, n+1, \beta}$ and $\left\langle\tau_{k_{1}}\left(\gamma_{1}\right), \ldots, \tau_{k_{n}}\left(\gamma_{n}\right)\right\rangle_{g, n, \beta}$.

$$
\begin{align*}
& \pi_{*}\left(\mathcal{O}^{\text {vir }} \frac{1}{1-q \mathcal{H}}\left(\prod_{i=1}^{n} \frac{1}{1-q_{i} \mathcal{L}_{i}}\right) \mathcal{L}_{n+1}\right) \tag{28}\\
= & \mathcal{O}^{\text {vir }} \frac{1}{1-q \mathcal{H}}\left[\left(\mathcal{H}-1+\sum_{i=1}^{n} \frac{1}{1-q_{i}}\right)\left(\prod_{i=1}^{n} \frac{1}{1-q_{i} \mathcal{L}_{i}}\right)\right]
\end{align*}
$$

Proof. The proof is similar to the above proof of string equation. In the proof we again use l_{i} for \mathcal{L}_{i} on $\bar{M}_{g, n}(X, \beta)$. We will use Forgetting tail axiom, (24) (25) and projection formula

$$
\pi_{*}\left(\otimes_{i=1}^{n} \mathcal{L}_{i}^{d_{i}} \otimes \mathcal{L}_{n+1}\right)=\otimes_{i=1}^{n} l_{i}^{d_{i}} \otimes \pi_{*}\left(\mathcal{L}_{n+1}\left(\sum_{i} d_{i} D_{i}\right)\right)
$$

Because of the relation $\mathcal{L}_{n+1}=\omega\left(x_{1}+\ldots+x_{n}\right)$,

$$
\begin{aligned}
& =\otimes_{i=1}^{n} l_{i}^{d_{i}} \otimes \pi_{*} \omega\left(\sum_{i}\left(d_{i}+1\right) D_{i}\right) \\
& =\otimes_{i=1}^{n} l_{i}^{d_{i}} \otimes\left(\mathcal{H}-1+n+\sum_{i=1}^{n} \sum_{k=1}^{d_{i}} l_{i}^{-k}\right) .
\end{aligned}
$$

It is easy to see that this is equivalent to (28).
Remark 7. The above computation also yields

$$
\pi_{*}\left(\mathcal{L}_{n+1}-1\right)=\mathcal{H}+\mathcal{H}^{*}+(n-2) 1
$$

This resembles the cohomological dilaton equation in the sense that the rank of the RHS is $2 g-2+n$.

Remark 8. The techniques used in proving String and Dilaton equations can also be used to find the push-forward of negative powers of \mathcal{L}.

5. Quantum K-Ring and Frobenius manifold

In this section we generalize Givental's treatment [12] to non-convex algebraic manifolds. Many statements already appeared in [12] (albeit with the convexity condition there) and are included here for completeness.
5.1. The ring structure in quantum K-theory. The definition of the ring structure of quantum K-theory is analogous to that of quantum cohomology theory.

Let $\left\{e_{i}\right\}$ be a basis of $K(X)$ and t_{i} its coordinates. $t:=\sum_{i} t_{i} e_{i}$ as in Section 4.2.

The quantum K-product $*$ is defined to be:

$$
\begin{equation*}
\left(\left(e_{i} * e_{j}, e_{k}\right)\right):=\partial_{t_{i}} \partial_{t_{j}} \partial_{t_{k}} G(t), \tag{29}
\end{equation*}
$$

where $G(t)$ is the genus zero potential defined in (16) and $((\cdot, \cdot))$ is the quantized metric defined in equation (17).

The main result of this section is
Theorem 3. $(K(X, \mathbb{Q}[[Q]]), *)$ is a commutative and associative algebra, which deforms the usual ring structure of $K(X)$.

Proof. The deformation properties follow immediately from the definition. Setting $q=0$ would make $*$ the ordinary tensor product. The (super-)commutativity also follows from the definition.

The associativity follows from the Splitting Axiom (21). It is easy to see that the K-theoretic WDVV equation

$$
\sum_{\mu \nu} G_{i j \mu} G^{\mu \nu} G_{\nu k l}=\sum_{\mu \nu} G_{i k \mu} G^{\mu \nu} G_{\nu j l}=\sum_{\mu \nu} G_{i l \mu} G^{\mu \nu} G_{\nu j k}
$$

is equivalent to the associativity of the quantum K-ring. The WDVV equation follows from Splitting Axiom: Let $n=4, n_{1}=2, n_{2}=2$ in (21). Different ways of splitting amount to the same invariants.

In the case $t=0$, we have defined a deformation by quantum threepoint function, which is similar to the pair-of-pants structure. However, in this case the metric ought to be quantized as well (and is replaced by two-point function at $t=0$).

Remark 9. For convex X, a proof can be found in [12].
Remark 10. The above description is good for topological K-theory. For algebraic K-theory, a finite basis does not necessarily exist and the K-theoretic Poincaré pairing has a huge kernel. However, one could proceed by using a presentation which is basis-free and does not rely on Poincaré pairing. Namely, one could define the quantum K-product (at $t=0$) as

$$
e_{i} * e_{j}=\sum_{\beta} Q^{\beta}\left(\operatorname{ev}_{3}\right)_{*}\left(\operatorname{ev}_{1}^{*}\left(e_{i}\right) \operatorname{ev}_{2}^{*}\left(e_{j}\right) \sum_{m}(-1)^{m+1} \sum_{\left(i, i_{j}\right)} \Psi_{m *} \mathcal{O}_{\bar{M}\left(X, \tau_{m}^{i}, \beta_{m}^{i_{j}}\right)}^{\mathrm{vir}}\right)
$$

where $\mathrm{ev}_{i}: \bar{M}_{0,3}(X, \beta) \rightarrow X$ are the evaluation morphisms and

$$
\sum_{m}(-1)^{m+1} \sum_{\left(i, i_{j}\right)} \Psi_{m *} \mathcal{O}_{\bar{M}\left(X, \tau_{m}^{i}, \beta_{m}^{i j}\right)}^{\text {vir }}
$$

is the alternating sum of virtual structure sheaves appeared in (10).
5.2. Quantum K-theory and Frobenius (super-)manifolds. In this section, we show that the construction of quantum K-ring produces a (new) class of Frobenius manifolds, in the sense of [26]. This in particular gives a positive answer to the question raised by Bayer and Manin ([3] 1.1.1 Question). Note that in this case the identity element e_{0} is not flat.

The data of K-theoretic Frobenius structure includes:
(1) A metric $\left(\left(e_{i}, e_{j}\right)\right)=G_{i j}:=\partial_{i} \partial_{j} G(t)$ on tangent spaces to $K(X)_{\mathbb{C}}$.
(2) The quantum multiplication with structural constants

$$
\left(\left(e_{i} * e_{j}, e_{k}\right)\right)=\partial_{i} \partial_{j} \partial_{k} G(t)
$$

on the tangent bundle.
(3) A connection on the tangent bundle defined by the operators of quantum multiplication:

$$
\nabla_{q}:=d-\frac{1}{1-q} \sum_{i}\left(e_{i} *\right) d t_{i}
$$

Proposition 12. 1. The metric and the quantum multiplication $* d e-$ fine on the tangent bundle a formal commutative associative Frobenius algebra with unit 1.
2. The connection ∇_{q} are flat for $q \neq 1$.
3. The operator ∇_{-1} is the Levi-Civita connection of the metric $((\cdot, \cdot))$.
4. The metric $((\cdot, \cdot))$ is flat.

Proof. (see [12]) The first two are formal consequences of WDVV equation. The Levi-Civita connection of the metric $G_{i j}(t)$ is

$$
\Gamma_{i j}^{k}=\frac{1}{2}\left(G_{i l ; j}+G_{j l ; i}-G_{i j ; l}\right) G^{l k}=\frac{1}{2} G_{i j l} G^{l k}=\frac{1}{2}\left(e_{j}\right)_{i}^{k}
$$

where $G^{i j}$ is the inverse matrix of $G_{i j}$. Thus 3. holds. 4. is an obvious consequence of 3 .
Corollary 1. $Q K^{*}(X)_{\mathbb{C}}$ is a formal Frobenius manifold over the Novikov ring $N(X)$.
5.3. Quantum differential equation in K-theory. Parallel to the discussion in quantum cohomology, we may introduce quantum differential equation [11]:

$$
\nabla_{q} S=0
$$

which is a system of linear partial differential equations.
Theorem 4. The matrix $\left(S_{i j}\right)$

$$
S_{i j}(t, Q):=g_{i j}+\sum_{n, \beta} \frac{Q^{\beta}}{n!}\left\langle e_{i}, t, \ldots, t, \frac{e_{j}}{1-q \mathcal{L}}\right\rangle_{0, n+2, \beta}
$$

is the fundamental solution to the K-theoretic quantum differential equation. Namely, the column vectors form a complete set of solutions.
Proof. The proof relies on two ingredients: the string equation and WDVV equation. However, the WDVV equation here takes a slightly generalized form. Put $e_{i}, e_{j}, e_{k}, \frac{e_{l}}{1-q \mathcal{L}}$ on the distinguished four marked points. The proof of WDVV equation goes through and we get

$$
G_{i, j, \alpha} G^{\alpha \beta} \partial_{k} S_{\beta l}=G_{i, k, \alpha} G^{\alpha \beta} \partial_{j} S_{\beta l}
$$

or equivalently,

$$
\begin{equation*}
\left(e_{j} *\right) \partial_{k} S=\left(e_{k} *\right) \partial_{j} S \tag{30}
\end{equation*}
$$

Put $j=0$. Since $\left(e_{0} *\right)=\operatorname{Id}$, (30) implies that

$$
\partial_{k} S=\left(e_{k} *\right) \partial_{0} S
$$

Now by string equation

$$
\partial_{0} S=\frac{1}{1-q} S .
$$

References

[1] SGA 6, Dirigé par P. Berthelot, A. Grothendieck et L. Illusie. Lecture Notes in Mathematics, Vol. 225, Springer-Verlag, Berlin-New York, 1971.
[2] P. Baum, W. Fulton, R. MacPherson, Riemann-Roch and topological K theory for singular varieties, Acta Math. 143 (1979), no. 3-4, 155-192.
[3] A. Bayer, Yu. Manin, (Semi)simple exercises in quantum cohomology, math.AG/0103164.
[4] K. Behrend, Gromov-Witten invariants in algebraic geometry, Invent. Math. 127 (1997), no. 3, 601-617.
[5] K. Behrend, B. Fantechi, The intrinsic normal cone, Invent. math. 128 (1997), no. 1, 45-88.
[6] K. Behrend, Yu. Manin, Stacks of stable maps and Gromov-Witten invariants, Duke math. J. 85 (1996), no. 1, 1-60.
[7] W. Fulton, Intersection theory, Springer-Verlag, Berlin, 1998.
[8] W. Fulton, S. Lang, Riemann-Roch algebra, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], 277. Springer-Verlag, New York-Berlin, 1985. x+203 pp
[9] W. Fulton, R. MacPherson, Categorical framework for the study of singular spaces, Mem. Amer. Math. Soc. 31 (1981), no. 243, vi+165 pp.
[10] W. Fulton, R. Pandharipande, Notes on stable maps and quantum cohomology, Algebraic geometry-Santa Cruz 1995, Proce. Symp. Pure. Math. 62. Part 2, (1997) 45-96.
[11] A. Givental, Equivariant Gromov-Witten invariants, IMRN 13 (1996) 613-63.
[12] A. Givental, On the WDVV-equation in quantum K-theory, Mich. Math. J. 48 (2000) 295-304.
[13] A. Givental, B. Kim, Quantum cohomology of flag manifolds and Toda lattices, Comm. Math. Phys. 168 (1995), no. 3, 609-641.
[14] A. Givental, Y.-P. Lee, Quantum K-theory on flag manifolds, finite-difference Toda lattices and quantum groups, math.AG/0108105, to appear in Invent. Math.
[15] T. Graber, R. Pandharipande, Localization of virtual fundamental class, Invent. math. 135 (1999) 2 487-518.
[16] B. Kim, Quantum cohomology of flag manifolds G / B and quantum Toda lattices, Ann. of Math. (2) 149 (1999), no. 1, 129-148.
[17] M. Kontsevich, Intersection theory on the moduli space of curves and the matrix Airy function, Comm. Math. Phys. 147 (1992), no. 1, 1-23.
[18] M. Kontsevich, Enumeration of rational curves via torus actions, In: The moduli space of curves. R. Dijkgraff, C. Faber, G. van der Geer (Eds.), Progress in Math., 129, Birkhäuser, 1995, 335-68.
[19] M. Kontsevich, Yu. Manin, Gromov-Witten Classes, quantum cohomology, and enumerative geometry, Comm. Math. Phys. 164 (1994), no. 3, 525-562.
[20] A. Kresch, Canonical rational equivalence of intersections of divisors, Invent. Math. 136 (1999), no. 3, 483-496.
[21] Y.-P. Lee, A Formula for Euler characteristics of tautological line bundles on the Deligne-Mumford moduli spaces, IMRN, 1997, No. 8, 393-400.
[22] Y.-P. Lee, Euler characteristics of universal cotangent line bundles on $\bar{M}_{0,1}$, math.AG/0005217.
[23] Y.-P. Lee, Quantum K-theory II: computations and open problems, in preparation.
[24] Y.-P. Lee, R. Pandharipande, A reconstruction theorem in quantum cohomology and quantum K-theory, preprint math.AG/0104084.
[25] J. Li, G. Tian, Virtual moduli cycles and Gromov-Witten invariants, J. Amer. Math. Soc. 11 (1998), no. 1, 119-174.
[26] Yu. Manin, Frobenius manifolds, quantum cohomology, and moduli spaces, American Mathematical Society Colloquium Publications, 47, American Mathematical Society, Providence, RI, 1999. 303 pp.
[27] J. Morava, Quantum generalized cohomology, in Operads: Proceedings of Renaissance Conferences (Hartford, CT/Luminy, 1995), 407-419, Contemp. Math., 202, Amer. Math. Soc., Providence, RI, 1997.
[28] E. Witten, Two-dimensional gravity and intersection theory on moduli space, Surveys in Diff. Geo. vol. 1 (1991) 243-310.

Princeton University, Department of Mathematics, Fine Hall, Washington Road, Princeton, NJ 08544-1000

Email address: yplee@math.princeton.edu
Department of Mathematics, University of Utah, Salt Lake City, Utah 84112-0090

Email address: yplee@math.utah.edu

[^0]: Research partially supported by NSF grant DMS-0072547.

[^1]: ${ }^{1}$ We have abused the notations by using β (resp. g) sometimes as map $\beta: V_{\tau} \rightarrow$ $H_{2}(X)\left(g: V_{\tau} \rightarrow \mathbb{Z}_{\geq 0}\right)$ and sometimes as the total degree $\sum_{v} \beta(v)$ (total genus). It should be clear in the context which is which.
 ${ }^{2}$ For brevity, τ will sometimes stand for (τ, g) or (τ, g, β).

[^2]: ${ }^{3}$ The superscript \bullet in E^{\bullet} will be omitted for simplicity.

[^3]: ${ }^{4}$ Alternatively, one can argue this in the following way. It is known that if $f: U \rightarrow V$ is a birational surjective morphism between smooth schemes, then $R^{i} f_{*} \mathcal{O}_{U}=0$ for $i \geq 1$ and $R^{0} f_{*} \mathcal{O}_{U}=\mathcal{O}_{V}$. This property is preserved under flat base change, therefore it holds for stacks as well. That implies $l_{*} \mathcal{O}=\mathcal{O}$.

[^4]: ${ }^{5}$ The word 'invariant' should be taken as self-contained since we have not proved that it is a, say, symplectic invariant as in the case of cohomology theory. This will be discussed in a separate paper.

[^5]: ${ }^{6}$ It is proved in [6] that $\mathrm{ft}_{n+1}: \bar{M}_{g, n+1}(X, \beta) \rightarrow \bar{M}_{g, n}(X, \beta)$ is the universal curve $\pi: \mathcal{C} \rightarrow \bar{M}_{g, n}(X, \beta)$. It is therefore convenient not to distinguish these two.

