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Figure 1: The physical trajectories of a user using different RDW controllers while walking along the same virtual path. The physical
space is 10m×10m with obstacles, while the virtual space is 20m×20m. By redirecting the user to the most favorable reachable
position and orientation in the physical space, our method can better use physical space and trigger fewer resets.

ABSTRACT

Redirected walking (RDW) aims to reduce the collisions in the
physical space for VR applications. However, most of the previous
RDW methods do not consider future possibilities of collisions after
imperceptibly redirecting users. In this paper, we combine the subtle
RDW methods and reset strategy in our method design and propose
a novel solution for RDW that can make better use of physical space
and trigger fewer resets. The key idea of our method is to discretize
the representation of possible user positions and orientations by a
series of standard poses and rate them based on the possibilities of
hitting obstacles of their reachable poses. A transfer path algorithm
is proposed to measure the accessibility among standard poses and
is used to support the calculation of the scores of standard poses.
Using our method, the user can be redirected imperceptibly to the
optimal pose with the best score among all the reachable poses from
the user’s current pose during walking. Experiments demonstrate
that our method outperforms state-of-the-art methods in various
environment sizes and obstacle layouts.
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1 INTRODUCTION

Redirected walking (RDW) technology enables users to explore a
large virtual environment within a limited physical space. The subtle
RDW strategies imperceptibly fine-tune users’ travel direction and
speed when they are walking in the virtual space to help users avoid
obstacles in the physical space. Once a user hits an obstacle, the
overt [24] RDW technology will reset their orientation and position.
A good reset strategy will also help the user turn to an optimal
direction to avoid hitting obstacles again in the future. The subtle
RDW algorithm and the reset strategy collaboratively reduce the
number of collisions between users and physical obstacles in virtual
applications. They both have been attracting researchers’ attention
in recent years.

However, most previous studies treat the subtle RDW and the
reset strategy as two separate problems. The widely used subtle
RDW methods are mainly based on heuristic ideas, such as steer-to-
center (S2C), steer-to-orbit (S2O). Recently reinforcement learning-
based methods such as steer-to-optimal-target (S2OT) [17] have
been introduced to address the issue. However, they do not consider
resetting the direction when a user hits an obstacle. In turn, the
commonly used reset strategies, such as reset-to-center (R2C), two-
one-turn, do not consider the influence of steering either. The recent
work based on artificial potential functions (APF) [2] proposed
several reset strategies in the combination of steering methods, such
as reset-to-gradient (S2G) and modified reset-to-center (MR2C) [27].
Nevertheless, they only use the gradients of the user’s current pose
to decide the following direction, without considering how to transit
to the optimal future pose.

This work aims to provide a new RDW method that can better
use physical space and simultaneously reduce the number of resets
needed during redirected walking. To achieve the goal, we need
to estimate the possibility of hitting an obstacle in the future user



position and orientation after steering them. However, users’ poses
could have infinite possibilities since the space is continuous, making
it an extremely complex problem. Therefore, we simplify it by
defining several appropriate user positions and orientations in the
physical space and always propose redirecting users to those favorite
poses. Accordingly, the description of user poses, including position
and orientation, is converted to a discretized form. We only need to
measure the safety of limited numbers of standard poses. Besides,
to help users explore the entire environment with redirected walking,
we propose an algorithm to approach a smooth transfer path from
one standard pose. It helps the precomputation of the pose scores by
checking the distance between the pose and all the accessible poses
and whether a collision will happen when traveling between them.

This paper presents and evaluates our approach to redirect the
users to walk on a series of discrete standard poses in the physical
space to reduce collisions. The method first steers the user to a
standard pose imperceptibly, then gives each standard pose a score
to measure its safety, and redirect the user to the most favorable pose
that can be reached based on their intention and current pose. The
method also acts as a unified controller for steering and reset since
the scoring system can recommend optimal targets for reset when
needed and steer the user. As a result, the user can be steered to the
optimal pose while traveling and be reset to the optimal orientation
when the steering is not possible. The decisions for steering and
resetting are made together, reducing the number of resets in joint
efforts. The main contributions of the paper are as follows:

• This paper proposes a novel RDW method that takes steering
and reset into consideration simultaneously and evaluates it by
simulation experiments.

• This paper proposes a discrete pose representation model and
a transfer path algorithm to precisely redirect the user to the
desired poses under the curvature gain’s constraints.

• This paper proposes a pose safety value-based RDW strategy
to quantitatively redirect the user to the optimal pose for a
smaller number of resets.

2 RELATED WORK

2.1 Redirected Walking
Razzaque firstly raised the concept of redirected walking in
2001 [18]. Early methods include using scaled translation [28]
and augmenting motion in the user’s intended direction [8]. Suma et
al. [24] divides the RDW techniques into two categories, the subtle
methods, and overt methods, depending on whether the adjustment
of movement is perceptible. Nilsson et al. [13] further reviewed
the RDW methods and divides the methods into four finer-grained
categories: scripted, reactive, predictive, and resetting. The first
three correspond to the subtle methods, while the last one is overt,
which will be specifically discuss in subsection 2.2.

Scripted methods steer the user under the assumption that the
users are walking along a pre-designed virtual path planned by
the system developers in advance. Changing blindness [25] and
introducing impossible overlapping spaces [26] are two influential
strategies of scripted methods. However, scripted controllers need to
be customized for different virtual environments and perform poorly
if the user does not follow the pre-determined virtual path.

Reactive methods do not rely on the assumptions or predictions
about the user’s future path. They only rely on the user’s current
status and previous movements to work widely in various virtual and
physical environments. Razzaque et al. [17] proposed three general
reactive methods, namely, steer-to-center (S2C), steer-to-orbit (S2O),
and steer-to-multiple-targets (S2MT). S2C constantly redirects the
user to the center of the physical space. S2O redirects the user to a
circle around the physical center. S2MT redirects the user to one of
the pre-defined physical waypoints. Hodgson et al. [7] added a new
strategy named steer-to-multiple+center, which includes the physical
center to the pre-defined waypoints in S2MT. They also showed

that S2C outperforms other reactive algorithms in most scenarios,
while S2O has advantages when the user walks along a long straight
virtual path. Azmandian et al. [1] further reinforced Hodgson’s
conclusion by comparing several reactive algorithms in different
physical environment sizes and aspect ratios. In recent efforts, Chen
et al. [4] described an RDW algorithm for irregularly shaped and
dynamic physical environments. Lee et al. [9] proposed steer-to-
optimal-target (S2OT) for RDW. Different from S2MT, they estimate
optimal steering target through reinforcement learning. Chang et
al. [3] and Strauss et al. [23] also proposed methods to redirect the
users using reinforcement learning. Thomas et al. [27] proposed
an RDW method based on the potential artificial fields. Bachmann
et al. [2] made the APF method allowing multiple users to walk in
the same tracking space. Messinger et al. [11] improved the APF
method for irregular tracking space.

Predictive methods incorporate the user’s future movements pre-
diction into the redirection. Predictive controllers can be effective
since they tend to predict the future information of the system, but
their performance will decrease if the prediction is not accurate.
Zmuda et al. [31] presented a planning algorithm called Fully Opti-
mized Redirected Walking for Constrained Environments (FORCE),
which steers the user depending on the probabilistic prediction of the
user’s virtual path through a known virtual environment. Nescher
et al. [12] also proposed a method named Model Predictive Control
Redirection technique (MPCRed), which is a planning framework
for determining the best redirection by analyzing the geometry of
the virtual environment (VE). Recently Dong et al. [5] improved
the artificial potential field methods by applying the future dynamic
state predictions.

Some other methods choose to alter the user’s path to avoid colli-
sions. Simeone et al. [20] put virtual objects to represent physical
obstacles to avoid the users walking into obstacles but found that
users were likely to interact with the added virtual objects on the
contrary. They later replaced the obstacles with surfaces that people
would not typically walk onto, such as water or lava, and found
that the user’s path was successfully altered [19]. Sra et al. [22] im-
plemented a method to procedurally generate virtual environments
that match the walkable area of the physical environment. These
methods changed the layout of the virtual space, which may cause
semantic disharmony, and need to be customized for different virtual
and physical pairs.

Our proposed method is reactive and does not rely on the cus-
tomization of the VE and physical environment (PE). We make no
physical and virtual space requirements, which means the users can
walk freely anywhere in VE. It increases the difficulty of the problem
but also increases the versatility of the method.

2.2 Reset Strategies

Though subtle RDW tries to minimize the collisions, users still
have a chance to hit the boundaries or obstacles. Therefore, overt
techniques like a reset need to be used to ensure the users’ safety.
The reset technique pauses the virtual experience and then changes
the user’s orientation and position to favorable. The reset maneuver
reduces users’ immersive experiences and should be used as few as
possible.

The most common reset strategy is two-one-turn, proposed by
Williams et al. [29]. It notifies the users to turn around while dou-
bling the users’ rotation in VE. So a 360◦ virtual turn yields just a
180◦ physical turn, making the user turn to the direction they came
physically while keeping the virtual state unchanged. Researchers
have studied softer ways to achieve reset to reduce the breaks in
immersion. Peck et al. [14–16] proposed to use distractors in VE to
let users focus on while being reorientated.

Some methods have been proposed to reduce the collisions to
make the user reorientation in a more favorable direction. Reset-
to-center(R2C) is a general method, which always resets the user’s



direction to the center of the physical space. Other reset techniques
may be specific to the RDW controller. Thomas et al. [27] introduced
three improved reset strategies, including reset-to-gradient(R2G),
modified reset to center (MR2C), and step-forward reset to gradi-
ent(SFR2G), which works in collaboration with the potential field
controllers [2, 27]. Other reorientation techniques such as creating a
portal [6] or deploying a narrator inside the virtual environment [30]
also help the user adjust their traveling direction.

In general, the reset technique is only used when RDW techniques
fail to prevent collisions. However, our method considers resetting
and steering simultaneously. In our method, reset can be applied
without encountering obstacles, making the user be reset in advance
to avoid collisions in the future.

3 METHOD

In order to reduce the frequency of user reset, we need to consider
the possibility of encountering obstacles for each location and ori-
entation when redirecting users in the physical space. However,
the physical space is continuous, making it difficult to evaluate the
value for an infinite number of states. Therefore, we propose to use
discrete standard poses to express the user’s position and orientation.
We then find a transfer path to guide the walking between each pair
of poses, which is also used for rating each pose by checking all
its accessible poses. With the scores of each standard pose, we just
need to redirect the user to the best reachable standard pose, i.e., the
standard pose that is the least likely to encounter obstacles to reduce
future collisions.

3.1 The Discrete Descriptor of the Physical Space
Floor tiles inspire the representation of positions in real rooms.
We assume that square floor tiles with side length δ are tiled on
the ground in the physical space. The corners of the tiles are
T = {t1, t2, . . . , tn} as the standard positions in physical space. The
nearest standard position then represents a user’s location. The
orientation of a user is also discretized by m angles, forming a set
of orientations Ω = {ω1,ω2, . . . ,ωm}, called standard orientations.
The closest standard orientation represents the user’s orientation.

𝝎𝟏

𝝎𝟐

𝝎𝟑

𝝎𝒎

Ω = {𝜔1, 𝜔2, … , 𝜔𝑚}
are the standard orientations

𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑛}
are the standard positions

𝒕𝟏 𝒕𝟐 𝒕𝟑

𝒕𝒏

𝒙

𝒚

𝑶

Figure 2: The discrete descriptor of the physical space.
The states containing a standard position and a standard orien-

tation are called standard poses P = {(t,ω) |t ∈ T,ω ∈ Ω}. On the
one hand, the standard poses can describe the user’s pose under a
tolerable error range. On the other hand, they have a limited quantity
that is easy to analyze. We stipulate that the user can only walk on
the standard poses to prevent accumulation errors. This stipulation
is unseen by the users. If the user is currently not on the standard
poses, we will insensibly redirect their walking to a certain standard
pose. The advantage of the discrete representation is that we can
estimate the probability of encountering obstacles for each pose and
evaluate it as an explicit score.

3.2 Transfer Path Between Standard Poses
Given a start point and an end point and their tangent directions,
we must design a smooth path to connect them to make the user
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Figure 3: Two examples of the path transfer algorithm. The paths are
found by continuously inserting ’S’-turns to reduce the residual gap to
the target. Different colors are used to illustrate the inserted ’S’-turns
in each iteration. In the figure, the curvature radius is 1m, and the
distance of AB is 4.3m.

walk from the current pose to the desired standard pose. Though
countless curves meet such constraints (for example, a spline curve
can connect two points with prescribed tangent directions smoothly),
the curvature is hard to control to satisfy the gain threshold.

In this subsection, we propose to look for the transfer path from
one pose to another under the constraints of curvature gain threshold.
Suppose the starting position is A and the ending position is B. The
required tangent directions of A and B are α and β , respectively.
Our goal is to find a smooth path, i.e. an isometric point sequence
C = ⟨a1,a2, . . . ,al⟩ in computational representation, to connect A
and B. The distance between any two adjacent points in C is a fixed
constant ∆s, representing the distance traveled by the user in a frame
time ∆t. The tangent vector of ai is defined as −−−→ai−1ai, and the tangent
direction of the first point a1 is set to the user’s current orientation.
We use θ (ai) to represent its tangent direction, and θθθ (ai) as the unit
vector along θ (ai). Since the curve C is smooth and its maximum
curvature is limited by the gain threshold, the tangent direction of
points in C must further satisfy a curvature constrain. So, we are
going to find:

C = ⟨a1,a2, . . . ,al⟩ (1)
s.t. a1 = A,θ (a1) = α,al = B,θ (al) = β

|−−−→ai−1ai|= ∆s (1<i ≤ l)
∆s

|θ (ai)−θ (ai−1)|
= R (1<i ≤ l)

Where R is the minimum radius of curvature allowed by the
curvature gain threshold. In order to maximize the use of physical
space, we set the radius of curvature of every point on C to be equal
to R. We construct such C in an iterative manner. Firstly we assume
that α ̸= β . We fix the starting point and the entrance tangent vector
of C to satisfy: a1 = A and θ (a1) = α , as shown in Fig. 3. As
curve C grows from the starting point with the iterations, the index
value of the last point l will also increase accordingly. Our idea is to
preferentially satisfy θ (al) = β in each iteration, and then gradually
adjust al to approach B through the iterations. For doing this, we
first construct a circular arc:(

x−Ax −Rcos
(

α ± π

2

))2
+
(

y−Ay −Rsin
(

α ± π

2

))2
= R2

(2)
We sample points at every interval ∆s on the arc to form C0. The

sampling starts from A and stops when a point with tangent β on
the arc appears. As the arc from A can turn either left or right, we
choose the inferior arc of the two arcs for sampling. If α = β , this



inferior arc cannot be found, then we form C0 with only a single
point A: C0 = ⟨A⟩. C0 can ensure its starting point and entrance
tangent direction is exactly A and α , and its exit tangent direction is
β , as shown in Fig. 3(interation 0). But there is a residual distance
between the end of C0 and B. We then gradually reduce this residual
distance through iterations by inserting ’S’-turns. Considering the
relationship between a point and the tangent vector of its previous
point, we group the points into two categories:

g(ai) =

{
1, if θθθ (ai−1)×θθθ (ai) · zzz > 0
−1, if θθθ (ai−1)×θθθ (ai) · zzz < 0

(3)

zzz is the normal vector of the floor, pointing up. From (3),
g(ai) = 1 if ai is located on the left of its previous point’s tan-
gent direction, and we name it a left-turning point. Similarly, ai is a
right-turning point when g(ai) =−1 and it is on the right side of the
previous point’s tangent direction. Since the tangent change between
two adjacent points in C is fixed to |θ (ai)−θ (ai−1)|= ∆s/R, the
tangent direction of each point can be obtained from its turning
category and the tangent direction of its previous point:

θ (ai) = θ (ai−1)−g(ai)
∆s
R

(4)

Therefore, for any C, when inserted with the same number of
left-turning and right-turning points, the tangent direction of the end
point will keep unchanged, while the end point’s position may shift.
Using this principle, we can gradually reduce the residual gap for C
by inserting proper ’S’-turns.
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Figure 4: A pair of conjugate ’S’-turns which start from the origin and
face the positive x-axis.

An ’S’-turn is a point sequence sampled from two spliced arcs
and is composed of a series of left-turning points followed by the
same number of right-turning points, making the curve ’S’-shaped.
To be merged into C, ’S’-turns satisfy the interval and curvature
constraints . So a piece of ’S’-turn’ curve can be uniquely defined
by the number of turning points 2k:

S (k) = ⟨e1, . . . ,ek,ek+1, . . . ,e2k⟩ (5)

where the first k points turn left and the following k points turn
right. If a pair of ’S’-turns with the same lengths has the opposite
turnings orders, their shapes will just be flipped, as shown in Fig. 4.
We use the superscripts ’±’ on S (k) to distinguish these conjugate
situations. Suppose a pair of conjugate ’S’-turns is starting from the
origin and the set-off direction is along the positive x-axis (i.e., the
starting orientation is 0◦), the displacements of its tails relative to its
head are:

ssshhhiii fff ttt
(
S± (k)

)
=

[
2Rsin

k∆s
R

,±2R
(

1− cos
k∆s
R

)]
(1 ≤ k ≤ K)

(6)
K is the considered length limit of the ’S’-turns. Note that if the

set-off direction of the ’S’-turn is not along the positive x-axis, and
the set-off direction is an arbitrary orientation ω , the displacement
vector will also rotate accordingly by multiplying by the rotation
matrix:

ssshhhiii fff tttω

(
S± (k)

)
=

[
cosω −sinω

sinω cosω

]
ssshhhiii fff ttt

(
S± (k)

)
(7)

In the i-th iteration, we are going to find an optimal insertion
position aτ as well as an optimal shape of ’S’-turn for the current
path Ci−1, so that when inserting the ’S’-turn to Ci−1 at the position
of aτ , the end of the new path Ci is closer to B. When inserting
the ’S’-turn, aτ is considered as the previous point of e1 in the
definition of its tangent direction and turning category. We hope that
the displacement direction caused by the inserted ’S’-turn is as close
as possible to the direction of the residual gap, so the desired aτ and
k are:

aτ ,k= argmin
aτ∈Ci−1,1≤k≤K

∣∣∣ϕ (−→
alB

)
−θ (aτ )−ϕ

(
ssshhhiii fff tttθ(aτ )

(
S± (k)

))∣∣∣
(8)

ϕ (···) represents the argument of a vector. (8) is solved by enu-
meration or the Nelder–Mead method [21] in the variable domain.
After finding aτ and k, Ci is constructed by splitting Ci−1 at aτ and
inserting the corresponding ’S’-turn. As the turning category of
each point is known, the new positions and tangent directions of the
points after aτ can be inferred and updated.

If in a certain iteration n, the new residual distance is larger than
the current one, we then stop iterating and use Ci−1 as our final C.
We denote the found path as C (A,α,B,β ). We next consider the
scale of C (A,α,B,β )’s residual distance. We accept the path if the
residual distance is smaller than a threshold ε .

3.3 Score Estimation of Standard Poses

To find out the most favorable pose to redirect the user to, we set
a score for each standard pose to indicate the level of safety when
a user sets off from it. Note that the safety of a pose is affected by
the safety of the accessible poses from itself. So this can be solved
as a dynamic programming problem. We need to figure out the
accessibility of the standard poses in the physical environment for
score estimation.

We enumerate all the pairs of standard poses and use the transfer
path algorithm in the subsection 3.2 to calculate the curvature-gain-
satisfied path between the pose pairs. Denote a pair of poses as
(Ut ,Uω )∈ P and (Vt ,Vω )∈ P, if the path C (Ut ,Uω ,Vt ,Vω ) does not
exist, (Vt ,Vω ) is labeled as not accessible by (Ut ,Uω ). Otherwise,
we should verify whether the path exceeds the walkable space. We
traverse the points of C (Ut ,Uω ,Vt ,Vω ) in a binary search manner
and use the ray casting algorithm to determine whether the point is
in an obstacle or outside the room. If all the path points are not in
obstacles or outside the room, we deem that (Vt ,Vω ) is accessible
by (Ut ,Uω ). The accessibility between them is recorded on a map
for future inquiries.

We now estimate the scores of poses for avoiding resets. It is a
recursive process. The score of a pose is calculated based on the
scores of its accessible poses, including the poses accessible after
applying a reset. The estimated score of pose (Ut ,Uω ) after round i
is denoted as Qi (Ut ,Uω ). The estimation is based on the following
considerations:

1. The score of (Ut ,Uω ) is based on other poses that can be
transferred to.

2. The farther the user can go from (Ut ,Uω ), the safer (Ut ,Uω )
is. Therefore, if the user can reach a pose (Vt ,Vω ) from (Ut ,Uω ),
we should use the distance |UtVt | as a reward for this path.

3. Future reset times need to be minimized. So if the user can
reach a pose (Vt ,Vω ) from (Ut ,Uω ) only by being reset first, we
should give a penalty η to this path.

Therefore, in the i-th round of the score estimation of (Ut ,Uω ),
we firstly check out all the poses that can be accessed from (Ut ,∗),
where ∗ represents all standard orientations in Ω. We denote the
set of the found poses as Access(Ut ,∗). When ∗ is just equal to Uω ,
the user can reach the found pose without resetting; otherwise, a
user needs to be reset to the direction represented by ∗, and then
walk to the corresponding pose. For all the pose in Access(Ut ,∗),



we use their current scores to estimate Qi (Ut ,Uω ), considering the
path reward and reset penalty:

Qi (Ut ,Uω )= max
(Vt ,Vω )∈Access(Ut ,∗)

(|UtVt |+λQi−1 (Vt ,Vω )− reset ·η)

(9)
λ ∈ (0,1) is an attenuation coefficient of the potential next pose.

It decays the next poses’ influence to make the score estimation
converge. reset ∈ {0,1} is a binary judgment flag of reset. If the
pose transfer demands a reset action, a penalty η will cost to the
score reward.

The scores of all standard poses are set to zeros at the beginningIn
the i-th round of estimation, we update the score estimates for all
poses (Ut ,Uω ) ∈ P using equation (9). The score estimation is
carried out round by round until the estimated score converges.

3.4 The Inference Phase

In the inference phase of the method, the RDW controller is working
based on the user’s displacement and rotation within the time of each
frame, ∆t. The controller redirects the user from the current pose
to the most favorable standard pose when the user walks forward.
To achieve that, the controller firstly finds the closest standard pose
of the user’s current physical pose and also uses this standard pose
to represent the user’s current pose. Although the representation
pose may have a deviation from the users’ actual pose, we omit the
impact of this small error on the controller’s decision-making.

The controller then finds the accessible pose set of the standard
pose and uses the equation (9) to select the target pose with the
best rewards to go. The scores of the candidate target poses are
obtained by looking up the score table that has been iteratively
estimated. As the user’s actual pose may have a deviation from
the representation pose, the controller then uses the transfer path
algorithm in subsection 3.2 to verify the path existence from the
actual pose to the selected target pose. Since the actual pose is very
close to the representation standard pose, the path will exist in most
cases. If the path does not exist, the controller then continues to find
the sub-optimal target pose until the path to the target standard pose
exists. The controller uses the transfer path to steer the user and
uses the maximum curvature gain to follow the transfer path as he
walks forward in the virtual space. If the user keeps moving forward,
the user will be redirected precisely to the selected target standard
pose. Moreover, if the user rotates or reaches the end of the path,
the controller repeats the above process and steers the user using the
recalculated new transfer path.

When the user moves forward, the translation gain is determined
by the pose scores of the user’s left-hand and right-hand orientations.
We consider two tentative poses, of which the positions are the same
as the user’s current position and the orientations are the user’s
current orientation plus 90◦ or minus 90◦. We also use the scores
of the closest standard poses as their scores. If their scores are both
small, it indicates that the user might be walking along a narrow
aisle. In that case, we use the maximum translation gain to speed up
the user, making them unlikely to stop in a narrow aisle where resets
may easily happen. In other cases, the translation gain is set to 1.0.

When the user rotates, the rotation gain is determined by the
scores of the current user pose and the following standard pose
along the rotation direction. If the current score is large, we apply
the minimum rotation gain to slow down the rotation. If the current
score is small, we apply the maximum rotation gain to speed up the
rotation. Otherwise, we look at the score of the following standard
pose along the rotation direction. If the score of the future pose is
large, we speed up the rotation, and if the next pose has a small
score, we slow the rotation down. In other cases, the rotation gain is
set to 1.0. Then we can give the user a greater chance of staying in a
favorable pose after an arbitrary rotation.

30%
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40%

40%

20%

20%

20% 20%

20%

20%

Environment A Environment B Environment C

Figure 5: Environment layouts used for testing. A is a control en-
vironment with no physical obstacles. B is a moderately complex
environment with an obstacle in the middle. C is a highly complex
environment with scattered multiple obstacles.

Finally, we consider a score to be big if it exceeds the score of
two-thirds of the standard poses, and we consider a score to be small
if it is lower than two-thirds of the standard poses.

4 EVALUATION

4.1 Implementation Details

In our experiment, the spacing between standard positions δ is
set to 0.5m. This length is slightly larger than the width of an
adult’s shoulder (34cm ∼ 38cm), which is considered sufficient for
describing the user’s position in the room. The number of standard
orientations m is set to 12, which means that the angle between
two adjacent standard orientations is 30◦. The smallest radius of
curvature allowed in the path R is set to 7.5m, which is a commonly
employed threshold [1, 7, 27]. We use K = 90 as the maximum
considered length of the ’S’-turns. The residual distance threshold
ε for path acceptance is set to 0.1m, a tolerable error compared
to the human body scale. The walking position error does not
accumulate since our RDW framework will always redirect users
to a new standard position. In the score estimation stage, we use
λ = 0.999 as the attenuation coefficient to amplify the impact of
future reset penalties on the current decision. The scale of the
reset penalty η is determined by the size of the physical space and
we use the area of the physical space as the value of η . In the
inference phase, the translation gain is from 0.86 to 1.26, and the
rotation gain is 0.8 to 1.49. We use the same gains thresholds for
the other methods to compare. For the fast calculation of the pose
accessibility, if it has been verified that (Vt ,Vω ) ∈ P is accessible
from (Ut ,Uω ) ∈ P, and Uω ∈ Ω, Vω ∈ Ω, where ∗ is the reverse
orientation of ∗, we directly recognize that

(
Ut ,Uω

)
is accessible

from
(
Vt ,Vω

)
at the same time. This technique can speed up the

calculations.

4.2 Environment Layouts

We evaluate the RDW algorithms using three physical environment
layouts: environments A, B, and C, as shown in Fig. 5. Environment
A is a free environment with no obstacles, used as a control layout.
Environment B is a moderately complex environment. It has a single
obstacle centered along both x boundary and y boundary, with a
side length of 40% of the environment side length. Environment
B is a representative sample of the environments with an obstacle
in the middle. Environment C is a highly complex environment.
It has four evenly distributed obstacles with a side length of 20%
of the environment, making the aisles extremely narrow. C is a
representative sample of the environments with scattered multiple
obstacles. All layouts are square with a side length of 10m or 20m.
To make our method adaptable to various environments, we have no
requirements on the shape of obstacles in the virtual space, and the
users can walk freely in the virtual space. It increases the difficulty
of the test because the virtual waypoints can be freely and randomly
distributed without any prior constraints.



4.3 Simulation Design
In order to evaluate the algorithm and eliminate the influence of
randomness, plenty of tests are often needed for the RDW algorithms.
Simulation can avoid the enormous cost of live user studies, and
it is common to test the RDW algorithm. We thus evaluate our
RDW controller using simulation experiments. The settings of our
simulation design are mostly consistent with that of Thomas et
al. [27]. The simulated user in the virtual space initially stands on
the first waypoint. Every time the user reaches a waypoint, he will
turn around to face the next waypoint and then walk straight to the
next waypoint. This process continues until the user reaches the
last waypoint. The user’s initial position in the physical space is
set at the center of the environment and facing towards the lower Y
boundary. The initial position outside the obstacle is on the Y-axis
for the physical space with obstacles in the center of the environment.
The RDW controller receives the user’s displacement and rotation
in the virtual space in each frame and redirects the user’s physical
movement. If the user needs to be reset, we rotate the user in
the physical space with a reflex angle (greater than 180◦) to the
desired direction, meanwhile rotating the user by 360◦ in the virtual
space. The worst case of this strategy is equivalent to two-one-turn,
a common reset technique in the RDW literature, where the user
rotates 360◦ in the virtual space and turns back in the physical space.

The simulated user in the virtual space translates at a constant
speed of 1m/s and rotate at a constant rate of π/2 rad/s. Our simula-
tion runs at a frame rate of 30 FPS on a laptop with an Intel Core
i7-8750H CPU 2.20GHz and 32GB of RAM.

5 EXPERIMENTS AND RESULTS

We compare our method with several state-of-the-art RDW meth-
ods, including Steer-to-Center(S2C) [7], Steer-to-Orbit(S2O) [7],
Zigzag [17], Thomas et al.’s APF (TAPF) [27], Messinger et al.’s
APF (MAPF) [11], Dynamic APF (DAPF) [5] and the steer-by-
reinforcement learning method (SRL) [23]. We have briefly in-
troduced the above methods in Section 2. The experiments were
conducted with the help of OpenRDW [10].

5.1 Experiments with Random Paths
We first test our method with the other methods using randomly
generated virtual paths. We use the same method as in [1] to gen-
erate random virtual user trajectories. Each waypoint is generated
with a random interval from 2m to 6m from the previous waypoint
with a random angle within −π and π between the directions of
the neighboring waypoints. We test the algorithms with 100 virtual
paths in every physical environment layout, each containing 100
randomly generated virtual waypoints. The same 100 virtual paths
were applied to test the comparison algorithms. We analyze the
number of resets and average virtual distance between resets under
the three environments. A significance level of α = 0.05 is applied
for all the tests.

5.1.1 Environment A
We firstly analyze the performance of all the methods in environ-
ment A, under the condition of 10m and 20m side lengths. For
each side length, a method has 100 observations of the number
of resets and average virtual distance between resets, so we use
Kolmogorov-Smirnov test to figure out whether the results are nor-
mally distributed. The test denied the assumption that the results
follow normal distribution for almost all the methods, so we use
the non-parametric technique Kruskal-Wallis H test to compare
these data. We show the distributions of the observations for all
the methods using the box plots in Fig. 6 and report the detailed
medians(Mdn) and the inter-quartile ranges(IQR) in the supplemen-
tary.

We can see that our method has a relatively advantageous number
of resets and average virtual distance between resets among the

majority of the methods. Kruskal-Wallis H test verified that the
results of the methods have statistically significant differences, in
the number of resets in 10m (H(7) = 304.571, p < .001), number
of resets in 20m (H(7) = 492.382, p < .001), average virtual dis-
tance between resets in 10m (H(7) = 302.779, p < .001) and 20m
(H(7) = 488.760, p < .001). So we further conduct post hoc pair-
wise comparisons using Mann-Whitney U test to find out if there
are any differences between our method and other methods. The p
values are adjusted by the Bonferroni method. The post hoc com-
parisons results are reported in the supplementary. The post hoc
comparisons show that our method has statistically significant differ-
ences with DAPF, SRL, MAPF, S2C, and S2O. From the box plots
in Fig. 6 we can find that our method is superior to these methods.
From Fig. 6 we can also find that TAPF, Zigzag, and our method
have similar median values, and the Zigzag slightly outperforms our
method in the 10m layout in terms of the median value. However,
the Mann-Whitney U test finds no significant difference between
our method and the two methods.

5.1.2 Environment B

For environment B, the Kolmogorov-Smirnov test indicated that
most of the results are not normally distributed for both the two
metrics in both the 10m and 20m spaces. So the non-parametric
techniques are applied to analyze these results. The distributions of
the number of resets and average virtual distance between resets are
shown in Fig. 6, and we report the detailed medians(Mdn) and the
inter-quartile ranges(IQR) values in the supplementary.

For the 10m size layout, the Kruskal-Wallis H test finds that not
all methods have a same number of resets distribution (H (7) =
293.712,P < .001) and average virtual distance between resets
distribution (H (7) = 308.9,P < .001). The further post hoc pair-
wise comparisons using the Mann-Whitney U test revealed that our
method has a relatively smaller number of resets and a relatively
longer average virtual distance between resets than most of the meth-
ods. But the comparisons find no significant difference between our
method and the S2O in number of resets (U = 3805.5, p = 0.097)
and average virtual distance between resets (U = 4035.0, p= 0.515).
The p values are adjusted by the Bonferroni method. The details
of the post hoc pairwise comparisons between our method and the
comparison methods are shown in the supplementary.

The analysis of the 20m size layout by Kruskal-Wallis H test
also reject the assumption that the distributions of number of resets
(H (7) = 571.447,P < .001) and average virtual distance between
resets (H (7) = 574.805,P < .001) are the same for all the methods.
Mann-Whitney U test used for post hoc comparisons shows that the
differences between our method and the most comparison methods
are significant. In contrast, the MAPF method has no significant
difference from our method in this case.

5.1.3 Environment C

For environment C, Kolmogorov-Smirnov tests show that not all
results follow a normal distribution. So we use non-parametric
techniques to analyze these data. The result distributions are shown
in Fig. 6, and the median(Mdn) and inter-quartile range(IQR) values
of each group are reported in the supplementary. From the figure,
we can see that our method has the best performance of both the
number of resets and average virtual distance between resets.

Kruskal-Wallis H test is applied to analyze the distribution dif-
ference of the results. We find that the distributions of number of
resets in each group are significantly different in the 10m environ-
ment, H (7) = 471.009,P < .001, as well as the 20m environment,
H (7) = 450.248,P < .001. We then use the Mann-Whitney U test
for post hoc comparisons. The Bonferroni correction is used to cor-
rect the p values. The post hoc comparisons found that our method
outperforms all comparison methods in number of resets in both
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Figure 6: The box plots of the results of experiments with random paths. The distribution of the outliers is not included in the whiskers. The dotted
lines with an asterisk (*) indicate the significant difference from our method (p < 0.05)

10m and 20m environments, and the differences are statistically sig-
nificant. The comparison details are reported in the supplementary.

The situation is similar when analyzing the average virtual dis-
tance between resets. Kruskal-Wallis H test shows that the methods
have a different distribution of average virtual distance between
resets, whether in the 10m space (H (7) = 474.924,P < .001) or
the 20m space (H (7) = 457.695,P < .001). The post hoc com-
parisons confirmed that our method has a longer average distance
between resets and the difference with all the comparison methods
is statistically significant.

5.1.4 Discussion

The results of the number of resets and average virtual distance
between resets in environments A, B, and C demonstrate that our
method surpasses the previous methods, especially when the lay-
outs have more obstacles and smaller spaces. In the most complex
environment (C), our method outperforms the other methods and
shows more significant advantages in the 10m space than the 20m
space. The reason is that our method pre-calculates the score of the
specified poses and precisely guides the user to the most favorable
reachable pose every time. This mechanism helps the user avoid
the obstacles effectively and better utilize the physical space. In
contrast, the other methods only infer the control action from the
current user pose information or use heuristic targets as references.
Thus they do not ensure the target pose to be the optimal reachable
pose from the current state. Moreover, some comparison methods
do not combine the reset strategy with steering. They only rely on
basic reset strategies such as two-one-turn, making it difficult for
them to choose a good reset direction when trapped by obstacles. In
Environment B, with fewer obstacles, our method also outperforms
the other methods. However, the maximum advantage is not as
much as that in Environment C. We note that the effect of S2O is
significantly improved compared to other methods, especially in the

10m layout. The reason is that there is only an obstacle in the center,
the orbit used for steering the user in S2O will bypass the obstacle.
On the contrary, the effect of S2C is significantly reduced because
it always redirects the user to the center of the environment where
the obstable is placed in this environment. It demonstrates that the
results of S2C and S2O are highly affected by the specific physi-
cal environment. Instead, our method uses the precomputed pose
scores and the steering path algorithm to direct the user to bypass
the obstacles in a deterministic way, and changes of the obstacle
layout will not interfere with our approach. Therefore, our method
is more generalizable. Environment A is a controlled environment
with no obstacles, where we find that the difference among the result
distributions of different methods is not that large. It may be because
the methods tend to take similar actions in such a simple situation.
Our method is at the forefront among the methods, and there is no
significant difference between our method and the other methods in
Environment A.

5.2 Experiments with Long Straight Paths
We further test the methods with long straight virtual walking, which
is challenging for RDW controllers because it means the virtual
space to be infinitely large. Here, the user’s autonomous turning
is no longer available to fold their path in physical space, so the
RDW controller can only adjust their orientation to better use the
physical space. To test the performance of different methods under
the long straight virtual path, we make the simulated user walk along
a straight path in the virtual space with a fixed length of 400m, and
use different RDW controllers to redirect the user in physical space.
The same environments A, B, and C described in subsection 4.2 are
used for this experiment. The user’s initial position and orientation
in the physical space are randomly generated out of the obstacles.
Each method is tested 100 times, and the same 100 initial poses are
used for all the methods in the same layout. Since the virtual path
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Figure 7: The box plots of the results of experiments with long straight paths. The distribution of the outliers is not included in the whiskers.

length is fixed, the average virtual distance between resets is linked
to the number of resets. We only analyze the number of resets for
the methods.

Since some of the methods to compare with do not take the reset
direction into account, our experiment finds that these methods
often get many resets. As users would not change their heading
when walking along long straight paths, their performance depends
heavily on their initial poses. The frequently resetting after the
user appeared around the scene corners made us believe that it is
pointless to compare the distribution with the inconsistent results
of some methods. Thus we only compare the distributions with the
APF based methods, which can reset according to the gradients to
get rid of obstacles.

Fig. 7 shows the box plots of the number of resets of the different
methods in the three environments. The medians and inter-quartile
ranges of the number of resets are further reported in the supple-
mentary. Our method has shown a relatively small number of resets
when walking on long straight virtual paths, and the distributions
of the number of resets between our method and the other meth-
ods are notably different. The longer the box-plot is, the more the
starting pose influences the method’s effectnumber of resets. Thus
we can conclude that the performance of our method is essentially
unaffected by the initial poses in various environments and sizes.
Our method uses pre-calculated scores to guide the user’s direction,
accurately steering and resetting the user to the optimal reachable
pose. So that no matter where the user appears initially, our method
can quickly help him get away from the blocks with obstacles. We
also find that when traveling along the long straight path in Environ-
ment C, resets are fewer than in Environment B. It is because the big
obstacle stops the user from walking across the environment while
walking in environment B. The users must navigate the obstacle,
which causes a rise in the number of resets. Although environment
C is the most complicated, the space between obstacles makes it
easier for our method to move the user. Our transfer path algorithm
can help find the optimal way to redirect the user to pass by the
obstacles.

6 LIMITATION

There are several limitations of our method. Firstly, our method
is not suitable for dynamic physical spaces. Compared with other
reactive methods like S2C, our method requires preprocessing and
precomputing the pose scores. The precomputation time is affected
by the number of standard poses and the size of the physical space.
Therefore, our method is incapable of adapting to dynamically chang-
ing physical spaces, since our method cannot guarantee that the
precomputation is done in real-time for unpredictable physical space
changes. Our method will be less effective if the user frequently
changes their orientations. When they walk in a straight line in the
virtual space, our method pre-calculates his future path to an optimal
target in the physical space and steers the user to walk along that
path with the curvature gains. It is favorable for walking in a long

straight line in the virtual space. However, if the user constantly
changes their walking direction, our method will have to recalculate
the optimal target and the transfer path frequently. It will increase
the computation cost and cannot ensure that the user reaches the
original optimal target every time. Another limitation is that we only
evaluated the algorithm using the simulation experiments. Although
we can make an enormous number of tests, longer testing paths, and
freely designed environments in the simulated environment, a full
user study is important to test the real user experience and find the
potential shortcomings that have not been found in our experiments.

7 CONCLUSION AND FUTURE WORK

This paper brings a new RDW solution, which uses the pre-computed
scores of several standard poses to redirect the users to the most
favorable pose every time. Our method is based on the idea that users
should always be redirected to the optimal target during walking.
We represent user pose discretely and figure out the score indicating
how unlikely the user is to hit obstacles for each standard pose. The
RDW controller uses the scores to determine the optimal reachable
target. A transfer path algorithm is proposed to steer the user from
an arbitrary pose to the specified standard pose concerning curvature
gain threshold, imperceptibly allowing the user to reach the desired
pose. Experiments show that our method outperforms the state-of-
the-art methods in various environment layouts and sizes, especially
in the small environment with complicated obstacles. The test of the
long straight virtual paths shows that our method has an advantage in
walking on long straight paths, and the performance of our method
is not affected by the initial pose.

Our work can be improved in the future. Our method does not
consider the RDW of multiple users simultaneously. In future work,
our work can be extended to support redirected multiple users by
dynamically modifying the pose scores when other users obstruct
the path. In addition, the current standard positions are distributed
on a square grid, which might not be the best. Different grid shapes
for the standard positions, such as the regular hexagonal grid, may
increase the number of reachable standard poses while maintaining
the same standard position density. We also plan to find a more
effective discrete representation for standard poses in future work.
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