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In this paper, we study the spectrum of the Lamé operator

L =
d2

dx2 − 6℘(x + z0; τ) in L2(R,C),

where ℘(z; τ) is the Weierstrass elliptic function with periods 
1 and τ , and z0 ∈ C is chosen such that L has no singularities 
on R.
(i) We completely determine the explicit location of intersec-
tion points of spectral arcs.
(ii) We give a complete picture of the deformation of the spec-
trum as τ = 1

2 + ib and b > 0 varies. In particular, we show 
that the spectrum has exactly 9 different types of graphs for 
different b’s, and we also give the explicit range of b for each 
type of graphs. This solves open problems raised in [17].
(iii) As an application of the spectrum and the deep con-
nection of the Lamé equation with the mean field equation 
from [4], we prove the existence of τ = 1

2 + ib such that the 
mean field equation �u + eu = 16πδ0 on the rhombus torus 
Eτ := C/(Z + Zτ) has no even axisymmetric solutions but 
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does have 2 even not-axisymmetric solutions. This gives the 
first positive answer to a long-standing open problem.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Let τ ∈ H = {τ | Im τ > 0} and Eτ := C/(Z + Zτ) be a flat torus. Recall that 
℘(z) = ℘(z; τ) is the Weierstrass elliptic function with basic periods ω1 = 1 and ω2 = τ . 
Denote also ω3 = 1 + τ and ek = ek(τ) := ℘(ωk

2 ; τ) for k ∈ {1, 2, 3}. It is well known that

℘′(z; τ)2 = 4
3∏

k=1

(℘(z; τ) − ek(τ)) = 4℘(z; τ)3 − g2(τ)℘(z; τ) − g3(τ).

Let ζ(z) = ζ(z; τ) := − 
∫ z

℘(ξ; τ)dξ be the Weierstrass zeta function with two quasi-
periods ηj = ηj(τ), j = 1, 2:

ηj(τ) := 2ζ(ωj

2 ; τ) = ζ(z + ωj ; τ) − ζ(z; τ), j = 1, 2, (1.1)

and σ(z) = σ(z; τ) := exp
∫ z

ζ(ξ; τ)dξ be the Weierstrass sigma function. Notice that 
ζ(z) is an odd meromorphic function with simple poles at Z +Zτ , σ(z) is an odd entire 
function with simple zeros at Z +Zτ and ηj satisfies the Legendre relation τη1−η2 = 2πi. 
We will use these classical special functions freely.

In this paper, we study the spectrum σ(Ln) of the Lamé operator [19]

Ln := d2

dx2 − n(n + 1)℘(x + z0; τ), x ∈ R (1.2)

in L2(R, C), where n ∈ N and z0 ∈ C is chosen such that ℘(x +z0; τ) has no singularities 
on R. Remark that σ(Ln) does not depend on the choice of z0 due to the fact that the 
Lamé potential −n(n + 1)℘(z; τ) is a Picard potential in the sense of Gesztesy and 
Weikard [14] (i.e. all solutions of the Lamé equation

y′′(z) = [n(n + 1)℘(z; τ) + E]y(z), z ∈ C (1.3)

are meromorphic in C). Indeed, we can also consider z0 = 0 where the Lamé potential 
has singularities on R; see [28] where the spectral theory for Picard potentials with 
singularities on R was studied. In particular, the Hill’s discriminant Δ(E) is still well-
defined (i.e. Δ(E) is the trace of the monodromy matrix of (1.3) with respect to z → z+1; 
see Section 2 for a brief overview of this entire function). The spectral theory of the 
Schrödinger operator L with complex periodic smooth potentials has attracted significant 
attention and has been studied widely in the literature; see e.g. [1,2,14,16,17,25] and 
references therein. In this theory, it is known [25] that the spectrum σ(L) satisfies
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Fig. 1. Rough graphs of three types for the spectrum of the n = 1 Lamé operator for general τ .

σ(L) = Δ−1([−2, 2]) = {E ∈ C | − 2 ≤ Δ(E) ≤ 2}.

Furthermore, it was proved in [14] that σ(L) consists of finitely many analytic arcs if 
the potential of L is a Picard potential. In this paper, as in [14] we call the arcs of 
σ(L) = Δ−1([−2, 2]) as spectral arcs of the operator L.

Generally, the spectrum is very complicated except for the case when the periodic 
potential is real-valued and smooth on R. If a Picard potential is real-valued but with 
singularities on R, the spectrum might not be contained in R in general; see e.g. [16,17,
28]. Thus the theory is still far from complete, and more explicit examples with nontrivial 
spectra are needed to understand the geometry of spectrum arcs.

In this series of papers, we want to study explicitly the spectrum of the classical Lamé 
operator (1.2) and explore its applications. For the simplest case τ ∈ iR>0, since the 
Lamé potential −n(n + 1)℘(x + ωk

2 ; τ) with k ∈ {2, 3} is real-valued and smooth on R, 
Ince [18] discovered a remarkable fact: For τ ∈ iR>0,

σ(Ln) = (−∞, E2n] ∪ [E2n−1, E2n−2] ∪ · · · ∪ [E1, E0], (1.4)

where E2n < E2n−1 < · · · < E1 < E0 are precisely all roots of the well-known spectral 
polynomial Qn(E; τ) (also called the Lamé polynomial in the literature) associated to 
the Lamé potential (see e.g. [3,15]).

However, the spectrum σ(Ln) is no longer of the form (1.4) for general τ ’s and becomes 
very complicated; see e.g. [1,7,15–17] and references therein. Batchenko and Gesztesy [1]
and Haese-Hill et al. [17] concentrated on the n = 1 case, for which the spectrum σ(L1)
consists of two regular analytic arcs and so there are totally three different types of 
topological graphs for different τ ’s as shown in Fig. 1 (see also [15,16]). Note that (b) 
occurs at those τ ’s such that ek(τ) + η1(τ) = 0 for some k; see [1,17,26]. In particular 
for τ = 1

2 + ib with b > 0, [1,17] inferred that σ(L1) = (−∞, e1] ∪ σ1, where σ1 is a 
simple arc symmetric with respect to R with endpoints e2 and e3 = e2, and {p} := σ1∩R

satisfies p = −η1 < e1 for b > b̃, p = −η1 = e1 for b = b̃ and p > e1 for 0 < b < b̃. 
Here b̃ is the unique zero of e1 + η1 on the line τ = 1

2 + ib. It was pointed out in [17, 
Section 5] that the rigorous analysis of n ≥ 2 cases seems to be difficult since the related 
explicit formulae quickly become quite complicated as n grows. Indeed the pattern of 
the spectrum for the case n = 2 is still unknown so far.
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1.1. Spectrum of the n = 2 Lamé operator

Our first subject is to study the spectrum σ(L) of the n = 2 Lamé operator

L = L2 = d2

dx2 − 6℘(x + z0; τ), x ∈ R. (1.5)

It is well known (see e.g. [15,17,21,29]) that the spectral polynomial Q2(E; τ) is given by

Q2(E; τ) = (E2 − 3g2(τ))
3∏

k=1

(E + 3ek(τ)), (1.6)

which has a double zero at τ = 1
2 + i

√
3

2 . Note that this situation never occurs for 
n = 1. Even along the line Re τ = 1

2 , the complexity of spectral arcs of σ(L) was briefly 
commented in [17]. We will show that the spectral arcs have exactly 9 different patterns.

By applying [14, Theorem 4.1] to (1.5), we see that the spectrum σ(L) consists of 
g̃ ∈ {1, 2} bounded simple analytic arcs σk and one semi-infinite simple analytic arc σ∞
which tends to −∞ + 〈q〉, with 〈q〉 =

∫ x0+1
x0

q(x)dx, i.e.

σ(L) = σ∞ ∪ ∪g̃
k=1σk, g̃ ∈ {1, 2}, (1.7)

where the finite endpoints of such arcs must be zeros of the spectral polynomial Q2(E; τ).
See Section 2 for a brief overview of this fact. To the best of our knowledge, there seems 
no more explicit description of σ(L) in the literature. To study the geometry of σ(L), 
we have to determine completely the intersection points of different arcs of σ(L).

Definition 1.1. Let E be an intersection point of at least two spectral arcs in {σ∞, σ1, σ2}.

• We say that E is of type I if E is not an endpoint of these arcs, i.e. Q2(E; τ) �= 0
and so E is met by 2k ≥ 4 semi-arcs of the spectrum σ(L).

• We say that E is of type II if E is an endpoint of these arcs, i.e. Q2(E; τ) = 0 or 
equivalently

E ∈
{
±(3g2(τ))1/2,−3e1(τ),−3e2(τ),−3e3(τ)

}
.

For example, the intersection point in Fig. 2-(1) is of type I, and the intersection point 
in Fig. 2-(8) is of type II. Define

E±(τ) :=
−3η1(τ) ±

√
9η1(τ)2 + 6g2(τ)
2 (1.8)

to be zeros of the polynomial P (E) := E2+3η1(τ)E− 3
2g2(τ). Our first result completely 

determines all possible intersection points of σ(L).
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Fig. 2. Nine rough graphs of the spectrum for different choices of b’s as stated in Theorem 1.3 and the 
continuous deformation of the spectrum as b decreases. The dark points denote zeros of Q2(E; τ).

Theorem 1.2. Fix any τ ∈ H.

(1) E is a type I intersection point if and only if

E ∈ {E±(τ)} ∩ σ(L) and Q2(E; τ) �= 0.

(2) For k ∈ {1, 2, 3}, −3ek(τ) is a type II intersection point if and only if e′k(τ) = 0.
(3) ±(3g2(τ))1/2 is a type II intersection point if and only if

6η1(τ) ± (3g2(τ))1/2 = 0.

Now we study the deformation of the spectrum σ(L) when τ = 1
2 + ib with b > 0

varying. In the sequel, we use A �B to denote the disjoint union of A and B, i.e. A ∩B = ∅. 
Note that g2, e1, η1 ∈ R and e2 = e3 /∈ R for Re τ = 1

2 . We will prove in Lemma 4.2 that

b1 := sup
{
b̃ > 1

2
√

3 | (3η
2
1 + 2g2)(1

2 + ib) > 0 for b ∈ [ 1
2
√

3 , b̃)
}
, (1.9)

is well-defined and 1
2
√

3 < b1 < 1
2 . Clearly 3η2

1 + 2g2 = 0 and so E+ = E− = −3
2η1 at 

1
2 + ib1. On the other hand, it was proved in [9, Corollary 1.5] that

there is a unique b0 ∈ ( 5 , 1√ ) such that d η1(1 + ib0) = 0. (1.10)
24 2 3 db 2
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Clearly the explicit values of b1 and b0 can be computed numerically, which implies 
b1 ≈ 0.3 and b0 ≈ 0.24. Our second main result shows that σ(L) has exactly 9 different 
types of graphs for different b’s; see Fig. 2.

Theorem 1.3. Let τ = 1
2 + ib, b > 0. Then the spectrum σ(L) of the n = 2 Lamé operator 

(1.5) is symmetric with respect to the real line R.
Moreover, the following statements hold, where the notation σ2 always denotes a sim-

ple arc symmetric with respect to R with endpoints −3e2 and −3e3.

(1) If b >
√

3
2 , then g2, e1 > 0 and

σ(L) = (−∞,−3e1] � [−(3g2)1/2, (3g2)1/2] ∪ σ2,

with

σ2 ∩R = σ2 ∩ (−(3g2)1/2, (3g2)1/2) = {E+(1
2 + ib)}.

(2) If b =
√

3
2 , then e1 > 0, g2 = 0, i.e. the two endpoints ±(3g2)1/2 collapse into E = 0

and so

σ(L) = (−∞,−3e1] � σ2, with σ2 ∩R = {0}.

(3) Let b1 be defined in (1.9). Then for b ∈ (b1, 
√

3
2 ), we have g2 < 0 and

σ(L) = (−∞,−3e1] � σ1 � σ1,

where σ1 is a simple arc in {E| ImE > 0} (i.e. σ1 ∩ R = ∅) with endpoints −3e2
(note Im e2(1

2 + ib) < 0 for all b) and i|3g2|1/2, and σ1 is the conjugate of σ1 with 
endpoints −3e3 and −i|3g2|1/2.

(4) If b = b1, then g2 < 0 and

σ(L) = (−∞,−3e1] ∪ σ1 ∪ σ2,

where σ1 is a simple arc symmetric with respect to R with endpoints ±(3g2)1/2 and

σ1 ∩R = σ2 ∩R = σ1 ∩ σ2 = {−3
2η1(1

2 + ib1)} ⊂ (−∞,−3e1).

(5) If b ∈ ( 1
2
√

3 , b1), then g2 < 0 and

σ(L) = (−∞,−3e1] ∪ σ1 ∪ σ2,

where σ1 is a simple arc symmetric with respect to R with endpoints ±(3g2)1/2 and

σ1 ∩R = σ1 ∩ (−∞,−3e1) = {E+(1 + ib)},
2
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σ2 ∩R = σ2 ∩ (−∞,−3e1) = {E−(1
2 + ib)},

σ1 ∩ σ2 = ∅, E+(1
2 + ib) > E−(1

2 + ib).

(6) If b = 1
2
√

3 , then g2 = 0, e1 < 0 and so

σ(L) = (−∞,−3e1] ∪ σ2, with σ2 ∩R = {−6
√

3π}.

(7) Recall b0 ∈ ( 5
24 , 

1
2
√

3 ) in (1.10). Then for b ∈ (b0, 1
2
√

3), we have g2 > 0, e1 < 0 and

σ(L) = (−∞,−(3g2)1/2] ∪ σ2 � [(3g2)1/2,−3e1],

with

σ2 ∩R = σ2 ∩ (−∞,−(3g2)1/2) = {E−(1
2 + ib)}.

(8) If b = b0, then g2 > 0, e1 < 0 and

σ(L) = (−∞,−(3g2)1/2] ∪ σ2 � [(3g2)1/2,−3e1],

with σ2 ∩R = {−(3g2)1/2}.
(9) If b ∈ (0, b0), then g2 > 0, e1 < 0 and

σ(L) = (−∞,−(3g2)1/2] � σ2 � [(3g2)1/2,−3e1],

with

σ2 ∩R = σ2 ∩ (−(3g2)1/2, (3g2)1/2) = one point.

Remark 1.4. Theorem 1.3 gives a complete picture of the spectrum σ(L) for the n = 2
Lamé operator (1.5) as τ = 1

2 + ib, and hence completely solve open problems raised 
in [17, Section 4]. See Fig. 2 for the 9 rough graphs of σ(L) for different choices of 
b’s and also the continuous deformation of σ(L) as b decreases. It is unexpected to us 
that Theorem 1.3-(4) happens, i.e. all the arcs σ∞, σ1, σ2 intersect at the same point 
E+ = E− = −3

2η1 simultaneously, namely there are 6 semi-arcs meeting at this point 
−3

2η1. By σ(L) = Δ−1([−2, 2]) and the local behavior

Δ(E) − Δ(−3
2η1) = c0(E + 3

2η1)k(1 + o(|E + 3
2η1|)), c0 �= 0,

we have k = 3 if Δ(−3
2η1) ∈ (−2, 2) (resp. k = 6 if Δ(−3

2η1) = ±2), and adjacent 
semi-arcs meet at −3

2η1 with the same angle π3 .
We emphasize that the explicit expression (1.8) of E±(τ) plays a crucial role in the 

proof of Theorem 1.3. For example, in order to obtain Theorem 1.3-(3), we need to 
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rule out the possibility σ1 ∩ σ1 �= ∅. By Theorem 1.2-(1), this is equivalent to prove 
E±(τ) /∈ σ(L), which is not trivial at all. Thanks to (1.8), we will overcome this difficulty 
by applying the pre-modular form theory of the n = 2 Lamé equation from [9,21]; see 
Lemma 4.3.

Remark 1.5. In Part II [10], we will give a complete description of those τ ’s in H =
{τ | Im τ > 0} such that the spectrum σ(L; τ) of the n = 2 Lamé operator has a type II 
intersection point (such as Fig. 2-(8)).

1.2. Applications

Since the Lamé potential is doubly periodic, we can also consider its spectrum along 
the ω2 = τ direction. Denote the Hill’s discriminant and the spectrum by Δj(E) and 
σj(L) := Δ−1

j ([−2, 2]) respectively along the ωj direction (i.e. Δj(E) is the trace of 
the monodromy matrix of (1.3) with respect to z → z + ωj), j = 1, 2. Obviously, the 
monodromy of the corresponding Lamé equation (1.3) is unitary (i.e. the monodromy 
group is conjugate to a subgroup of SU(2)) if and only if

E ∈ σ1(Ln) ∩ σ2(Ln) \ {E|Qn(E; τ) = 0}.

See e.g. [4]. For example, if (denote ω0 = 0)

Ln := d2

dz2 −
3∑

k=0

nk(nk + 1)℘(z + ωk

2 ; τ), nk ∈ Z≥0,

is the Darboux-Treibich-Verdier operator [12,27] and τ ∈ iR>0, then we proved in [8]
that

σ1(Ln) = (−∞, E2g] ∪ [E2g−1, E2g−2] ∪ · · · ∪ [E1, E0],
σ2(Ln) = [E2g, E2g−1] ∪ · · · ∪ [E2, E1] ∪ [E0,+∞),

provided that (n0, n1, n2, n3) satisfies

neither n1 + n2 − n0 − n3

2 ≥ 1, n1 ≥ 1, n2 ≥ 1, (1.11)

nor n0 + n3 − n1 − n2

2 ≥ 1, n0 ≥ 1, n3 ≥ 1. (1.12)

Here E2g < · · · < E1 < E0 are all the roots of the associated spectral polynomial 
Qn(E; τ) of Ln. Thus

σ1(Ln) ∩ σ2(Ln) \ {E|Qn(E; τ) = 0} = ∅, (1.13)

namely the monodromy of Lny(z) = Ey(z) cannot be unitary for any E ∈ C.
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On the other hand, it is known [4,8,13] that the existence of unitary monodromy for 
Ln is equivalent to the existence of even solutions of the singular Liouville (or mean 
field) equation

�u + eu = 8π
3∑

k=0

nkδωk
2

on Eτ , (1.14)

where � = ∂2/∂x2 + ∂2/∂y2 is the Laplace operator and δp denotes the Dirac measure 
at p. Thus (1.13) implies that (1.14) has no even solutions on any rectangular torus 
provided (1.11)-(1.12) hold. We refer the reader to [8] for more details.

Now we want to apply Theorem 1.3 to prove the existence of solutions to (1.14) on 
rhombus torus with (n0, n1, n2, n3) = (2, 0, 0, 0), i.e.

�u + eu = 16πδ0 on Eτ , Re τ = 1
2 . (1.15)

A solution u(z) (here we use complex variable z = x + iy) is called even if u(z) = u(−z), 
and is called axisymmetric if u(z) = u(z̄). The existence of even axisymmetric solutions 
have been studied in [6,13], and the following theorem was proved.

Theorem A. Let τ = 1
2 + ib with b > 0. Then there exists b̂ >

√
3

2 such that

(1) [13] If b ∈ (0, 1
4b̂ ) ∪ (b̂, +∞), then (1.15) has a unique even axisymmetric solution.

(2) [13] If b ∈ [ 1
4b̂ , ̂b], then (1.15) has no even axisymmetric solutions.

(3) [6] If b ∈ {1
2 , 

√
3

2 , 1
2
√

3}, then (1.15) has no solutions.

Remark that due to the conformal equivalence of Eτ with Eτ ′ , where τ ′ := τ−1
2τ−1 =

1
2 + i 1

4b , solving (1.15) on Eτ is equivalent to solving it on Eτ ′ . This simple fact explains 
the relation of those numbers in Theorem A. The proof of Theorem A is highly non-
trivial, and some special techniques were developed in [6,13]. See also [13] for a general 
result for (1.14). However, both methods in [6,13] cannot be applied to study the long-
standing open problem (cf. [8, p.1271]) whether even but not axisymmetric solutions exist 
or not.

Our third main result is to apply the geometry of both spectra σ1(L) and σ2(L) to 
obtain the following

Theorem 1.6. Let τ = 1
2 +ib with b > 0. Then there are b ∈ ( 1

2
√

3 , 
√

3
2 ) such that the mean 

field equation (1.15) has no even axisymmetric solutions, but does have 2 even solutions 
which are not axisymmetric.

It is interesting to compare Theorems A and 1.6 with the following result proved in 
[20].
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Theorem B. [20] Let τ = 1
2 + ib with b > 0. Then there exists 1

2 < b̃ <
√

3
2 such that

(1) If b ∈ (0, 1
4b̃ ) ∪ (b̃, +∞), then

�u + eu = 8πδ0 on Eτ , Re τ = 1
2 (1.16)

has a unique even solution and hence axisymmetric.
(2) If b ∈ [ 1

4b̃ , ̃b], then (1.16) has no solutions.

Theorem B indicates that even solutions of (1.16) on rhombus torus must be axisym-
metric. To the best of our knowledge, Theorem 1.6 seems to be the first result that 
confirms the existence of even but not axisymmetric solutions for (1.14) on rhombus 
torus. Theorem 1.6 indicates that Theorem A might not give the exact number of even 
solutions, and the solvability of (1.15) with τ = 1

2 + ib is still not complete and remains 
open.

Another application of Theorem 1.3 is that we can obtain b̂ = 1
4b0 , where b̂ is the 

constant in Theorem A and b0 is given in (1.10). See Remark 5.6.
This paper is organized as follows. In Section 2, first we briefly review the spectral 

theory of Hill equation from [14] and apply it to the n = 2 Lamé potential, then we 
collect some facts about the monodromy theory of the corresponding Lamé equation from 
[4,15,21]. In Sections 3-4, we give the proofs of Theorems 1.2 and 1.3 respectively. Finally 
in Section 5, we apply Theorem 1.3 to the mean field equation and prove Theorem 1.6.

2. Preliminaries

In this section, we collect some preliminary results that are needed in later sections.

2.1. Spectral theory [14]

We briefly review the spectral theory of Hill equation with complex-valued potentials 
from [14] and apply it to the n = 2 Lamé potential. Let q(x) be a complex-valued 
continuous nonconstant periodic function of period Ω on R. Consider the following Hill 
equation

y′′(x) + q(x)y(x) = Ey(x), x ∈ R. (2.1)

This equation has received an enormous amount of consideration due to its ubiquity in 
applications as well as its structural richness; see e.g. [14,16] and references therein for 
historical reviews.

Let y1(x) and y2(x) be any two linearly independent solutions of (2.1). Then so do 
y1(x +Ω) and y2(x +Ω) and hence there is a monodromy matrix M(E) ∈ SL(2, C) such 
that



Z. Chen et al. / Advances in Mathematics 383 (2021) 107699 11
(y1(x + Ω), y2(x + Ω)) = (y1(x), y2(x))M(E). (2.2)

Define the Hill’s discriminant Δ(E) by

Δ(E) := trM(E), (2.3)

which is clearly an invariant of (2.1), i.e. does not depend on the choice of linearly 
independent solutions. This Δ(E) is an entire function and plays a fundamental role 
since it encodes all information of the spectrum σ(L) of the operator L = d2

dx2 + q(x); 
see e.g. [16] and references therein. Indeed, we define

S := Δ−1([−2, 2]) = {E ∈ C | − 2 ≤ Δ(E) ≤ 2} (2.4)

to be the conditional stability set of the operator L. Then it was proved by Rofe-Beketov 
[25] that S coincides with the spectrum σ(L):

σ(L) = S = {E ∈ C | − 2 ≤ Δ(E) ≤ 2}. (2.5)

Recall that E ∈ C is called a periodic (resp. antiperiodic) eigenvalue of L if Ly = Ey

has a nonzero solution y satisfying y(x + Ω) = y(x) (resp. y(x + Ω) = −y(x)). Clearly E
is a (anti)periodic eigenvalue if and only if Δ(E) = ±2. Define

d(E) := ordE(Δ(·)2 − 4).

Then it is well known (cf. [24, Section 2.3]) that d(E) equals to the algebraic multiplicity 
of (anti)periodic eigenvalues. Let s(E, x, x0) be the special solution of (2.1) satisfying 
the initial values

s(E, x0, x0) = 0, s′(E, x0, x0) = 1,

and define

p(E, x0) := ordEs(·, x0 + Ω, x0),
pi(E) := min{p(E, x0) : x0 ∈ R}.

It is known that p(E, x0) is the algebraic multiplicity of a Dirichlet eigenvalue on the 
interval [x0, x0 + Ω], and pi(E) denotes the immovable part of p(E, x0) (cf. [14]). It was 
proved in [14, Theorem 3.2] that d(E) − 2pi(E) ≥ 0.

Now we consider the n = 2 Lamé operator L in (1.5), i.e. q(x) = −6℘(x + z0; τ) is 
smooth on R with period Ω = 1. Applying the general result [14, Theorem 4.1] to this 
q(x), we obtain

Theorem 2.A. [14, Theorem 4.1] For the Lamé potential q(x) = −6℘(x + z0; τ), recall 
its spectral polynomial Q2(E; τ) given in (1.6). Then the spectrum σ(L) = S consists 
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of g̃ ∈ {1, 2} bounded simple analytic arcs σk, 1 ≤ k ≤ g̃ and one semi-infinite simple 
analytic arc σ∞ which tends to −∞ + 〈q〉, with 〈q〉 =

∫ x0+1
x0

q(x)dx, i.e.

σ(L) = S = σ∞ ∪ ∪g̃
k=1σk, g̃ ∈ {1, 2}.

The finite endpoints of such arcs are those E’s satisfying Q2(E; τ) = 0 with d(E) =
2pi(E) + ordEQ2(·; τ) odd, and there are exactly d(E)’s semi-arcs of σ(L) meeting at 
such E.

2.2. The n = 2 Lamé equation

To study the spectrum σ(L) of the n = 2 Lamé operator L in (1.5), we need to recall 
some known results (see e.g. [4,15,21]) for the corresponding n = 2 Lamé equation:

y′′(z) = [6℘(z; τ) + E]y(z). (2.6)

In the sequel, we omit the notation τ freely for convenience.
(L-1). For any E ∈ C, there exists a unique pair ±a = ±{a1, a2} ⊂ Eτ \{0} satisfying 

a1 �= a2 in Eτ and

ζ(a1 − a2) − ζ(a1) + ζ(a2) = 0 (2.7)

such that the classical Hermite-Halphen ansatz

y±a(z) := e±z
∑2

j=1 ζ(aj)
∏2

j=1 σ(z ∓ aj)
σ(z)2

are solutions of (2.6) with

E = 3[℘(a1) + ℘(a2)]. (2.8)

The Legendre relation τη1−η2 = 2πi implies that there is a unique (r, s) ∈ C2 satisfying

r + sτ = a1 + a2, rη1 + sη2 = ζ(a1) + ζ(a2),

which is equivalent to

ζ(a1) + ζ(a2) − (a1 + a2)η1 = −2πis, (2.9)

τ(ζ(a1) + ζ(a2)) − (a1 + a2)η2 = 2πir. (2.10)

Then the transformation law σ(z + ωk) = −e(z+ωk
2 )ηkσ(z) implies

y±a(z + 1) = e±(
∑2

j=1 ζ(aj)−(a1+a2)η1)y±a(z) = e∓2πisy±a(z), (2.11)
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y±a(z + τ) = e±(τ
∑2

j=1 ζ(aj)−(a1+a2)η2)y±a(z) = e±2πiry±a(z), (2.12)

namely y±a(z) are elliptic of the second kind.
(L-2). Define w±(x) := y±a(x +z0), then Lw± = Ew± and w±(x +1) = e∓2πisw±(x), 

i.e. e∓2πis are eigenvalues of the monodromy matrix M(E) in (2.2). Thus (2.3) gives

Δ(E) = e−2πis + e2πis = e
∑2

j=1 ζ(aj)−(a1+a2)η1 + e−(
∑2

j=1 ζ(aj)−(a1+a2)η1). (2.13)

(L-3). Recalling the spectral polynomial Q2(E) in (1.6), if Q2(E) = 0, then {a1, a2} =
{−a1, −a2}, i.e. ya(z) = y−a(z). In this case, ya(z) is known as the Lamé function
in the literature, and it follows from (2.11)-(2.12) that 2r, 2s ∈ Z. Furthermore, the 
monodromy matrices cannot be diagonalized simultaneously and so the monodromy 
cannot be unitary.

(L-4). If Q2(E) �= 0, then ya(z) and y−a(z) are linearly independent, i.e. {a1, a2} ∩
{−a1, −a2} = ∅ and so

℘(a1) �= ℘(a2). (2.14)

This together with (2.7) and the addition formula

ζ(a1 − a2) − ζ(a1) + ζ(a2) = 1
2
℘′(a1) + ℘′(a2)
℘(a1) − ℘(a2)

,

implies

℘′(a1) + ℘′(a2) = 0. (2.15)

From here and (℘′)2 = 4℘3 − g2℘ − g3, we easily obtain

[℘(a1) + ℘(a2)]2 − ℘(a1)℘(a2) − g2
4 = 0. (2.16)

On the other hand, it follows from (2.11)-(2.12) that the monodromy matrices are given 
by

(ya(z + 1), y−a(z + 1)) = (ya(z), y−a(z))
(
e−2πis 0

0 e2πis

)
, (2.17)

(ya(z + τ), y−a(z + τ)) = (ya(z), y−a(z))
(
e2πir 0

0 e−2πir

)
. (2.18)

Furthermore, it was proved in [21, Lemma 4.4, Theorem 4.5] that (r, s) /∈ 1
2Z

2 and 
satisfies

Z(2)
r,s (τ) = 0 as long as r + sτ /∈ 1Z + τZ. (2.19)
2 2
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Clearly the monodromy is unitary (i.e. the monodromy matrices in (2.17)-(2.18) belong 
to SU(2)) if and only if (r, s) ∈ R2 \ 1

2Z
2 and in this case r + sτ /∈ 1

2Z + τ
2Z holds 

automatically. Here 1
2Z

2 := {(a, b)|2a, 2b ∈ Z} and Z(2)
r,s (τ) is defined by

Z(2)
r,s (τ) := Zr,s(τ)3 − 3℘(r + sτ ; τ)Zr,s(τ) − ℘′(r + sτ ; τ),

with Zr,s(τ) := ζ(r + sτ ; τ) − rη1(τ) − sη2(τ). In other words, [21, Theorem 4.5] proved 
that for given τ , the monodromy of the Lamé equation (2.6) is given by (2.17)-(2.18)
with r + sτ /∈ 1

2Z + τ
2Z for some E if and only if Z(2)

r,s (τ) = 0. See [21] for the general 
theory for the general Lamé equation y′′ = [n(n + 1)℘(z; τ) + E]y.

Clearly Z(2)
r,s (τ) is holomorphic in τ if (r, s) ∈ R2 \ 1

2Z
2 and

Z(2)
r,s (τ) = Z

(2)
r+m,s+n(τ) for any (m,n) ∈ Z2.

Moreover, Z(2)
r,s (τ) is a modular form of weight 3 with respect to the principal congruence 

subgroup Γ(m) := {γ ∈ SL(2, Z)|γ ≡ I2 mod m} if (r, s) is a m-torsion point; see [21]. 
Due to this property, Z(2)

r,s (τ) is called a pre-modular form in [21]. Here we recall the 
following result concerning the non-vanishing of Z(2)

r,s (·), which will play a crucial role in 
our proof of Theorem 1.3-(3) in Section 4.

Theorem 2.1. [9, Theorem 1.6] Let r ∈ R \ 1
2Z. Then Z(2)

r,0 (τ) �= 0 for any τ ∈ F0 := {τ ∈
H | 0 ≤ Re τ ≤ 1, |τ − 1

2 | ≥
1
2}.

(L-5). Define

Y2 :=
{
{a1, a2} ∈ Sym2Eτ

∣∣∣∣∣ ai �= 0, a1 �= a2 in Eτ ,

ζ(a1 − a2) − ζ(a1) + ζ(a2) = 0

}
.

Clearly −a ∈ Y2 if a ∈ Y2, and a ∈ Y2 is a branch point of Y2 if a = −a in Eτ . Then 
the map E : Y2 → C defined by (2.8) is a ramified covering of degree 2, and there holds 
(see e.g. [4, Theorem 7.4])

Y2 ∼= {(E,C) | C2 = Q2(E)}. (2.20)

Therefore, Y2 is a hyperelliptic curve, known as the Lamé curve.

3. Spectrum of the n = 2 Lamé operator: general case

In this and next sections, we study the spectrum of the n = 2 Lamé operator:

L = d2

dx2 − 6℘(x + z0; τ), x ∈ R. (3.1)

As mentioned in Section 1,
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Q2(E; τ) = (E2 − 3g2(τ))
3∏

k=1

(E + 3ek(τ)). (3.2)

This section is devoted to proving Theorem 1.2. Again we omit the notation τ freely for 
convenience.

Proof of Theorem 1.2. (1). Consider any E0 such that Q2(E0) �= 0. By (2.20) there is 
a small neighborhood O ⊂ C of E0 such that Q2(E) �= 0 for E ∈ O and E ∈ O can 
be a local coordinate for the hyperelliptic curve Y2, namely a1 = a1(E), a2 = a2(E) are 
holomorphic for E ∈ O. Denote xj = ℘(aj(E0)) for convenience, then x1 �= x2 by (2.14). 
Since (2.15) holds for E ∈ O, by taking derivative with respect to E, we obtain from 
℘′′ = 6℘2 − g2

2 that

(6x2
1 − g2

2 )a′1(E0) + (6x2
2 − g2

2 )a′2(E0) = 0. (3.3)

Consider the local behavior at E0:

Δ(E) − Δ(E0) = c(E −E0)k(1 + O(|E −E0|)), k ≥ 1, c �= 0. (3.4)

If Δ(E0) ∈ (−2, 2), it follows from (3.4) and σ(L) = {E| −2 ≤ Δ(E) ≤ 2} that there are 
precisely 2k semi-arcs of σ(L) meeting at E0. If Δ(E0) = ±2, then there are precisely k
semi-arcs of σ(L) meeting at E0.

Step 1. We show the necessary part. Suppose that E0 is a type I intersection point, 
i.e. E0 is met by at least 4 semi-arcs of the spectrum σ(L) and Q2(E0) �= 0. We need to 
prove E2

0 + 3η1E0 − 3
2g2 = 0.

We claim that

(x1 + η1)a′1(E0) + (x2 + η1)a′2(E0) = 0. (3.5)

Indeed, by (2.13) we have for E ∈ O that

Δ′(E) = −[e
∑2

j=1 ζ(aj)−η1(a1+a2) − e−(
∑2

j=1 ζ(aj)−η1(a1+a2))] (3.6)

×[(℘(a1) + η1)a′1(E) + (℘(a2) + η1)a′2(E)],

Δ′′(E) =Δ(E)[(℘(a1) + η1)a′1(E) + (℘(a2) + η1)a′2(E)]2 (3.7)

− [e
∑2

j=1 ζ(aj)−η1(a1+a2) − e−(
∑2

j=1 ζ(aj)−η1(a1+a2))]

× d
dE [(℘(a1) + η1)a′1(E) + (℘(a2) + η1)a′2(E)].

If Δ(E0) �= ±2, i.e. Δ(E0) ∈ (−2, 2), then our assumption implies 2k ≥ 4, i.e. k ≥ 2
and so Δ′(E0) = 0. Since Δ(E0) �= ±2 implies e

∑2
j=1 ζ(aj)−η1(a1+a2) �= ±1 at E0, we 

see from (3.6) that (3.5) holds. If Δ(E0) = ±2, then our assumption implies k ≥ 4, i.e. 
Δ′(E0) = Δ′′(E0) = Δ′′′(E0) = 0. Since Δ(E0) = ±2 implies e

∑2
j=1 ζ(aj)−η1(a1+a2) = ±1

at E0, again we obtain (3.5) by (3.7).
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Noting from (2.8) that 3℘′(a1)a′1(E) + 3℘′(a2)a′2(E) = 1 and so (a′1(E0), a′2(E0)) �=
(0, 0), we conclude from (3.3) and (3.5) that

det
(

x1 + η1 x2 + η1
6x2

1 − g2
2 6x2

2 − g2
2

)
= 0, (3.8)

which gives

6x1x2 + 6η1(x1 + x2) + g2
2 = 0. (3.9)

Since E0 = 3(x1 + x2) and (2.16) says x1x2 = (x1 + x2)2 − g2
4 , we cancel the term x1x2

and finally obtain E2
0 + 3η1E0 − 3

2g2 = 0.
Step 2. Suppose E0 ∈ {E±(τ)} ∩ σ(L) satisfies Q2(E0) �= 0. Then Δ(E0) ∈ [−2, 2]

and E2
0 + 3η1E0 − 3

2g2 = 0. This, together (2.16), implies (3.9) and so (3.8). By (3.8)
and (3.3), we conclude that (3.5) holds.

If Δ(E0) ∈ (−2, 2), then we see from (3.5)-(3.6) that Δ′(E0) = 0, i.e. k ≥ 2 in 
(3.4) and so there are 2k ≥ 4 semi-arcs of σ(L) meeting at this E0. If Δ(E0) = ±2, 
then e

∑2
j=1 ζ(aj)−η1(a1+a2) = ±1 at E0. From here and (3.5)-(3.7), we see that Δ′(E0) =

Δ′′(E0) = 0 and moreover, a direct computation also gives Δ′′′(E0) = 0. This means 
k ≥ 4 in (3.4) and so there are k ≥ 4 semi-arcs of σ(L) meeting at this E0. Therefore, 
E0 is a type I intersection point.

(2)-(3). Since e1 �= e2 �= e3 �= e1 and

e1 + e2 + e3 = 0, g2 = 2(e2
1 + e2

2 + e2
3), (3.10)

it is easy to see

{−3e1,−3e2,−3e3} ∩ {(3g2)1/2,−(3g2)1/2} = ∅,

so

ord−3ekQ2(·; τ) = 1, k = 1, 2, 3,

1 ≤ ord±(3g2)1/2Q2(·; τ) ≤ 2. (3.11)

Recalling (L-3) in Section 2.2 that ya(z) = y−a(z) for E ∈ {−3ek, ±(3g2)1/2}, we proved 
in [7, Theorem 2.6] that there is a solution y2(z) linearly independent with ya(z) such 
that for E = −3ek,

ya(z + 1) = εkya(z), y2(z + 1) = εky2(z) + 12iπεke′k(τ)
℘′′(ωi

2 )℘′′(ωj

2 )
ya(z), (3.12)

where {i, j, k} = {1, 2, 3}, εk = 1 if k = 1 and εk = −1 if k = 2, 3; and for E = ±(3g2)1/2,

ya(z + 1) = ya(z), y2(z + 1) = y2(z) − 1 (6η1 ± (3g2)1/2)ya(z). (3.13)
3
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From here and [14, Proposition 3.1] which proved that

pi(E) ≥ 1 ⇔ all solutions of Ly = Ey are (anti)periodic,

we immediately obtain

pi(−3ek(τ)) ≥ 1 if and only if e′k(τ) = 0, (3.14)

pi(±(3g2)1/2) ≥ 1 if and only if 6η1 ± (3g2)1/2 = 0. (3.15)

Therefore, we see from d(E) = 2pi(E) + ordEQ2(·) in Theorem 2.A that

d(−3ek(τ)) ≥ 3 if and only if e′k(τ) = 0,

d(±(3g2)1/2) ≥ 3 if and only if 6η1 ± (3g2)1/2 = 0.

From here and Theorem 2.A, we conclude that −3ek(τ) is a type II intersection point 
(or equivalently, −3ek(τ) is met by at least 3 semi-arcs of σ(L)) if and only if e′k(τ) = 0, 
and similar results hold for ±(3g2)1/2. This proves Theorem 1.2 (2)-(3). �
4. Spectrum of the n = 2 Lamé operator: the case τ = 1

2 + ib

In this section, we always assume τ = 1
2 + ib with b > 0 and prove Theorem 1.3. First 

we prove that the spectrum σ(L) of the n = 2 Lamé operator is symmetric with respect 
to R, which actually holds for all n ∈ N.

Lemma 4.1. The spectrum σ(Ln) of the Lamé operator Ln in (1.2) is symmetric with 
respect to the real line R.

Proof. Let τ̃ = 2ib and consider L̃n := d2

dx2 + q(n,0,0,n)(x + z0; ̃τ), where

q(n,0,0,n)(z; τ̃) := −n(n + 1)(℘(z; τ̃) + ℘(z + 1+τ̃
2 ; τ̃))

is the Darboux-Treibich-Verdier potential [12,27]. Since τ̃ ∈ iR>0, we proved in [8, 
Lemma 3.5] that the spectrum σ(L̃n) is symmetric with respect to R. Since 1+τ̃

2 =
1
2 + ib = τ , we can rewrite the elliptic function q(n,0,0,n)(z; ̃τ) as

q(n,0,0,n)(z; τ̃) = −n(n + 1)℘(z; τ) − n(n + 1)e3(τ̃),

which implies σ(L̃n) = σ(Ln) − n(n + 1)e3(τ̃). From here and e3(τ̃) ∈ R, we conclude 
that σ(Ln) is also symmetric with respect to R. �

Now we continue to study the spectrum of the n = 2 Lamé operator

L = d2
− 6℘(x + z0; τ), x ∈ R.
dx2
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Together with Theorem 2.A, we summarize that the following hold:

(P-1) the spectrum σ(L) consists of g̃ ∈ {1, 2} bounded simple analytic arcs σk and one
semi-infinite simple analytic arc σ∞ which tends to −∞, i.e.

σ(L) = {E| − 2 ≤ Δ(E; τ) ≤ 2} = σ∞ ∪ ∪g̃
k=1σk, g̃ ∈ {1, 2}, (4.1)

where the finite endpoints of such arcs are precisely those

E ∈ {−3e1,−3e2,−3e3, (3g2)1/2,−(3g2)1/2} (4.2)

with d(E) = 2pi(E) + ordEQ2(·; τ) odd, and there are exactly d(E) semi-arcs of 
σ(L) meeting at such E.

(P-2) σ(L) is symmetric with respect to the real line R. In particular, σ∞ ⊂ R.
(P-3) A classical result (see e.g. [16, Theorem 2.2]) says that C \σ(L) is path-connected.

Therefore, we need to compute d(E) for E in (4.2) to analyze σ(L). Recall g2, e1, η1 ∈
R and e2 = e3 /∈ R since Re τ = 1

2 . It is well known that g2(τ) = 0 if and only if 
τ ∈

{
aeπi/3+b
ceπi/3+d

|
(
a b
c d

)
∈ SL(2, Z)

}
, and

{
aeπi/3+b
ceπi/3+d

∣∣∣ ( a b
c d

)
∈ SL(2,Z)

}
∩ (1

2 + iR>0) =
{
eπi/3, eπi/3−1

2eπi/3−1

}
,

so

g2(1
2 + ib)

⎧⎪⎪⎨⎪⎪⎩
> 0 if b ∈ (0, 1

2
√

3 ) ∪ (
√

3
2 ,+∞)

= 0 if b ∈ { 1
2
√

3 ,
√

3
2 }

< 0 if b ∈ ( 1
2
√

3 ,
√

3
2 ).

(4.3)

Together with (3.10)-(3.11), we have

ord−3ekQ2(·; τ) = 1, k = 1, 2, 3,

ord±(3g2)1/2Q2(·; 1
2 + ib) =

⎧⎨⎩1 if b /∈ { 1
2
√

3 ,
√

3
2 },

2 if b ∈ { 1
2
√

3 ,
√

3
2 }.

(4.4)

Furthermore,

g2 − 3e2
1 = (e2 − e3)2 = (e2 − e2)2 < 0, i.e. |3e1| > |(3g2)

1
2 | if g2 ≥ 0.

On the other hand, it is well known that e1(1+i
2 ) = 0 and it was proved in [20, Theorem 

1.7] that d e1(1 + ib) > 0 for b > 0, which implies
db 2
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e1(1
2 + ib)

⎧⎪⎪⎨⎪⎪⎩
> 0 if b > 1

2

= 0 if b = 1
2

< 0 if b ∈ (0, 1
2 )

(4.5)

and e′1(τ) �= 0 for Re τ = 1
2 . This, together with e1+e2+e3 = 0 and e3 = e2, implies that 

e′k(τ) �= 0 for Re τ = 1
2 , k = 1, 2, 3. From here and (3.14) we conclude that pi(−3ek(τ)) =

0 for τ = 1
2 + ib and so

d(−3ek(τ)) = 1 for τ = 1
2 + ib, k = 1, 2, 3. (4.6)

To compute d(±(3g2)1/2), we use the formula (see e.g. [9, (1.5)])

d
dbη1(1

2 + ib) = −1
24π (12η2

1 − g2) = −1
72π (6η1 + (3g2)

1
2 )(6η1 − (3g2)

1
2 ), (4.7)

and we proved in [9, Corollary 1.5] that: There exists b0 ∈ ( 5
24 , 

1
2
√

3 ) such that d
dbη1(1

2 +
ib) = 0 if and only if b = b0, and

η1(1
2 + ib0) = max

b>0
η1(1

2 + ib) > π2

3 = lim
b→+∞

η1(1
2 + ib). (4.8)

This, together with (4.7) and (4.3), implies 6η1 − (3g2)1/2 = 0 at τ = 1
2 + ib0 and

(12η2
1 − g2)(1

2 + ib)
{
< 0 for b ∈ (0, b0)
> 0 for b > b0.

(4.9)

From here and (3.15) we conclude pi((3g2)1/2) = 0 for τ = 1
2 + ib with all b > 0 and

pi(−(3g2)1/2)
{
≥ 1 if b = b0

= 0 if b ∈ (0, b0) ∪ (b0,+∞).

Together with (4.4), we finally obtain

d(±(3g2)1/2) = 1 for b ∈ (0,+∞) \ {
√

3
2 , 1

2
√

3 , b0},

d(0) = d(±(3g2)1/2) = 2 for b ∈ { 1
2
√

3 ,
√

3
2 },

d((3g2)
1
2 ) = 1, d(−(3g2)

1
2 ) = 1 + 2pi(−(3g2)

1
2 ) ≥ 3, for b = b0.

Finally, it follows from (3.12)-(3.13) that

Δ(−3e1; τ) = Δ(±(3g2)
1
2 ; τ) = 2, Δ(−3e2; τ) = Δ(−3e3; τ) = −2.

Recalling the expression of E±(τ) in (1.8), we need to study the sign of 3η2
1 + 2g2 to 

see whether E±(τ) are real or not. Clearly (4.3) and (4.8) imply (3η2
1 + 2g2)(1

2 + ib) > 0
and so
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E−(1
2 + ib) < E+(1

2 + ib) for b ∈ (0, 1
2
√

3 ] ∪ [
√

3
2 ,+∞). (4.10)

Lemma 4.2. The quantities

b1 := sup
{
b̃ > 1

2
√

3 | (3η
2
1 + 2g2)(1

2 + ib) > 0 for b ∈ [ 1
2
√

3 , b̃)
}
, (4.11)

b2 := sup
{
b̃ > b1 | (3η2

1 + 2g2)(1
2 + ib) < 0 for b ∈ (b1, b̃)

}
, (4.12)

are well-defined and satisfy 1
2
√

3 < b1 < 1
2 < b2 <

√
3

2 . Furthermore,

(3η2
1 + 2g2)(1

2 + ib)

⎧⎪⎪⎨⎪⎪⎩
> 0 if b ∈ [ 1

2
√

3 , b1) ∪ (b2,
√

3
2 ],

= 0 if b ∈ {b1, b2},
< 0 if b ∈ (b1, b2).

Consequently, E− = E+ = −3
2η1 at both 1

2 + ib1 and 1
2 + ib2, and E±(1

2 + ib) /∈ R for 
b ∈ (b1, b2).

Proof. By the well-known Fourier expansion of g2, numerically g2(1
2 + i1

2) ≈ −76.6π2. 
This, together with η1(1

2 + i1
2) = 2π (see e.g. [9, p32]), implies (3η2

1 + 2g2)(1
2 + i1

2 ) < 0, 
so b1 is well-defined and 1

2
√

3 < b1 < 1
2 . Next we need to prove that

(3η2
1 + 2g2)(1

2 + ib) < 0, for b ∈ (b1, 1
2 ]. (4.13)

We use η1(eπi/3) = 2π√
3 (see e.g. [9, (4.1)]) and the modular property

η1

(
aτ + b

cτ + d

)
= (cτ + d)2η1(τ) − 2πic(cτ + d),

(
a b
c d

)
∈ SL(2,Z).

By these and 1
2 + i 1

2
√

3 = eπi/3−1
2eπi/3−1 , we obtain

η1(1
2 + i 1

2
√

3 ) = 2
√

3π. (4.14)

Clearly (4.3) implies that g2(1
2 + ib) has a minimum point on ( 1

2
√

3 , 
√

3
2 ). This fact can 

be improved as follows (see e.g. [11, Corollary 4.4]): There exists b̂ ∈ ( 1
2
√

3 , 
1
2 ) such that 

g2(1
2 +ib) is strictly decreasing for b ∈ (0, ̂b) and strictly increasing for b ∈ (b̂, +∞). Since 

(4.8) says that η1(1
2 + ib) > π2

3 is strictly decreasing for b ∈ [ 1
2
√

3 , +∞), we conclude that 
(3η2

1 + 2g2)(1
2 + ib) is strictly decreasing for b ∈ [ 1

2
√

3 , ̂b], so

(3η2
1 + 2g2)(1

2 + ib) < (3η2
1 + 2g2)(1

2 + ib1) = 0 for b ∈ (b1, b̂].

Furthermore,
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max
b∈[b̂, 12 ]

(3η2
1 + 2g2)(1

2 + ib) < 3η1(1
2 + i 1

2
√

3 )2 + 2g2(1
2 + i1

2 ) < 0.

This proves (4.13). Together with (3η2
1 + 2g2)(1

2 + i
√

3
2 ) > 0, we conclude that b2 is 

well-defined and b2 ∈ (1
2 , 

√
3

2 ). Finally, we need to prove

(3η2
1 + 2g2)(1

2 + ib) > 0 for b ∈ (b2,
√

3
2 ]. (4.15)

Since (3η2
1 + 2g2)(1

2 + ib2) = 0 < (3η2
1 + 2g2)(1

2 + i
√

3
2 ), we only to prove that for any 

b ∈ [b2, 
√

3
2 ) satisfying (3η2

1 + 2g2)(1
2 + ib) = 0, there holds d

db (3η
2
1 + 2g2)(1

2 + ib) > 0, 
which can be easily proved by a direct computation: By (4.7) and (see e.g. [11])

g′2(τ) = i
π (2η1g2 − 3g3)(τ),

we have

d
db (3η

2
1 + 2g2)(1

2 + ib) =−1
4π (12η3

1 + 15η1g2 − 24g3)

=−1
4π (7η1g2 − 24g3) > 0,

where we use η1 > 0, g2 < 0 and g3 = 4e1|e2|2 > 0 for τ = 1
2 + ib with b ∈ [b2, 

√
3

2 ) ⊂
(1
2 , 

√
3

2 ) (note that g3(1
2 +i1

2) = 0). Therefore, (4.15) holds and the proof is complete. �
Lemma 4.3. Fix any τ = 1

2 + ib with b ∈ [b2, 
√

3
2 ). Then Q2(E±(τ); τ) �= 0, E±(τ) >

−3e1(τ) and Δ(E±(τ); τ) > 2, i.e. E±(τ) /∈ σ(L).

Proof. By 3η2
1 +2g2 ≥ 0 and g2 < 0 we have E−(τ) ≤ E+(τ) < 0. In the following proof, 

we omit the notation τ freely. Recall

E2
± + 3η1E± − 3

2g2 = 0. (4.16)

If Q2(E±) = 0, then E± = −3e1 (because all other roots of Q2(·) are complex-valued) 
and so e2

1 − η1e1 − 1
6g2 = 0. However, since e′1(τ) is expressed as (see e.g. [7, (2.15)])

e′1(τ) = −i
π [e2

1 − η1e1 − 1
6g2](τ),

we obtain e′1 = 0, a contradiction with the aforementioned fact e′1 �= 0 for Re τ = 1
2

proved in [20, Theorem 1.7]. Thus Q2(E±) �= 0 and E± �= −3e1.
By the monodromy theory recalled in Section 2.2, there exists a unique pair ±a =

±{a1, a2} ⊂ Eτ \ {0} satisfying a1 �= ±a2 in Eτ such that

E± = 3(x1 + x2), where x1 := ℘(a1) �= x2 =: ℘(a2),

℘′(a1) + ℘′(a2) = 0, x1x2 = (x1 + x2)2 − g2 , (4.17)
4
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Δ(E±) = e
∑2

j=1 ζ(aj)−η1(a1+a2) + e−(
∑2

j=1 ζ(aj)−η1(a1+a2)). (4.18)

By (4.16)-(4.17), we easily obtain

(x1 − x2)2 = (x1 + x2)2 − 4x1x2 = g2 −
E2

±
3 = 1

2g2 + η1E± < 0.

So by renaming a1 and a2, we may assume

x2 = x1 = E±
6 + i

2

√
−1

2g2 − η1E±. (4.19)

Consequently,

4x2
1 − g2 = −2E2

±
9 + 2E±

3 i
√

−1
2g2 − η1E± = −4

3E±x1,

and so

℘′(a1)2 = x1(4x2
1 − g2) − g3 = −E±

3

(
E2

±
9 − 1

2g2 − η1E±
)
− g3 (4.20)

= 6η1g2 + (g2 − 12η2
1)E±

9 − g3 =: F±(τ).

If F± = 0, then ℘′(a2) = −℘′(a1) = 0, so {a1, a2} = {ωj

2 , ωk

2 } in Eτ and then E± =
3(ej + ek) = −3el, where {j, k, l} = {1, 2, 3}, which is a contradiction with Q2(E±) �= 0. 
Thus F± �= 0. Since

lim
b↑

√
3

2

E+(1
2 + ib) = 0 > −3e1(1

2 + i
√

3
2 ), lim

b↑
√

3
2

F+(1
2 + ib) < 0,

so E+(1
2 + ib) > −3e1(1

2 + ib) and F+(1
2 + ib) < 0 hold for 

√
3

2 − b > 0 small and so 

for all b ∈ [b2, 
√

3
2 ) by continuity. Consequently, E− = E+ > −3e1 and so F− = F+ < 0

at τ = 1
2 + ib2. Again by continuity we conclude that E−(1

2 + ib) > −3e1(1
2 + ib) and 

F−(1
2 + ib) < 0 for all b ∈ [b2, 

√
3

2 ).
On the other hand, since τ = 1

2 + ib implies τ̄ = 1 − τ , it follows from the expression 
of ℘(z; τ)

℘(z; τ) = 1
z2 +

∑
(m,n)∈Z2\{(0,0)}

(
1

(z −m− nτ)2 − 1
(m + nτ)2

)

that

℘(z; τ) = ℘(z̄; τ̄) = ℘(z̄; 1 − τ) = ℘(z̄; τ),

and so
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℘′(z) = ℘′(z̄), ζ(z) = ζ(z̄).

So (4.19) gives ℘(a2) = ℘(a1) = ℘(a1), i.e.

either a2 = a1 or a2 = −a1 in Eτ . (4.21)

Since F± < 0, it follows from (4.20) that ℘′(a1) ∈ iR \ {0} and so

℘′(a2) = −℘′(a1) = ℘′(a1) = ℘′(a1).

From here and (4.21) we obtain a2 = a1 and so ζ(a2) = ζ(a1) = ζ(a1), which implies

ζ(a1) + ζ(a2) − η1(a1 + a2) ∈ R.

Now we claim that

ζ(a1) + ζ(a2) − η1(a1 + a2) ∈ R \ {0}. (4.22)

Indeed, if ζ(a1) + ζ(a2) − η1(a1 + a2) = 0, we see from (2.9) that s = 0 and so r =
a1 + a2 ∈ R. By Q2(E±) �= 0 and (2.19) we have r ∈ R \ 1

2Z and Z(2)
r,0 (1

2 + ib) = 0. 
But this is a contradiction with Theorem 2.1 because b ≥ b2 > 1

2 implies 1
2 + ib ∈ F0. 

Therefore, (4.22) holds and so Δ(E±) > 2 by (4.18). This completes the proof. �
Now we are in a position to prove Theorem 1.3.

Proof of Theorem 1.3. Let τ = 1
2 + ib with b > 0. Recall −3e3 = −3e2 /∈ R for all b > 0. 

In the following proof, we write Δ(E; τ) = Δ(E; b) for convenience. We divide the proof 
into several steps.

Step 1. We consider the simple case b =
√

3
2 .

Then −3e1 < 0 = ±(3g2)1/2, d(−3ek) = 1 for all k and d(0) = 2, i.e. 0 is an interior 
point of σ(L) and −3ek is an endpoint of precisely one semi-arc of σ(L). Together with 
Properties (P-1)-(P-3), we easily conclude that

σ(L) = (−∞,−3e1] � σ2,

where σ2 is a simple arc symmetric with respect to R with endpoints −3e2 and −3e3, 
and σ2 ∩R = {0}. This proves Theorem 1.3-(2).

Step 2. We consider the case b >
√

3
2 .

Then −3e1 < −(3g2)1/2 < (3g2)1/2, d(−3ek) = d(±(3g2)1/2) = 1 for all k, i.e. each of 
{−3ek}k ∪ {±(3g2)1/2} is an endpoint of precisely one semi-arc of σ(L). Together with 
(P-1)-(P-3), we easily conclude that

σ(L) = (−∞,−3e1] � [−(3g2)1/2, (3g2)1/2] ∪ σ2,
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where σ2 is a simple arc symmetric with respect to R with endpoints −3e2 and −3e3, 
and σ2 ∩R = one point =: {p0(b)}.

We need to show that p0(b) ∈ (−(3g2)1/2, (3g2)1/2) for all b >
√

3
2 . First we prove 

that this holds for b −
√

3
2 > 0 small. If not, there exists bn ↓

√
3

2 such that p0(bn) /∈
(−(3g2)1/2, (3g2)1/2) for such bn, i.e.

[−(3g2)1/2, (3g2)1/2] ∩ σ2 = ∅. (4.23)

Since Δ(E; bn) is holomorphic in E and Δ(±(3g2)
1
2 ; bn) = 2, there is Ẽn ∈ (−(3g2)1/2,

(3g2)1/2) such that

Δ(Ẽn; bn) = min
E∈[−(3g2)1/2,(3g2)1/2]

Δ(E; bn) < 2.

Then d
dEΔ(Ẽn; bn) = 0 and so

Δ(Ẽn; bn) = −2. (4.24)

Indeed, if Δ(Ẽn; bn) ∈ (−2, 2), it follows from the Taylor expansion

Δ(E; bn) − Δ(Ẽn; bn) = an(E − Ẽn)kn(1 + o(1)), an �= 0, kn ≥ 2 (4.25)

and σ(L) = {E ∈ C | − 2 ≤ Δ(E; bn) ≤ 2} that there are 2kn ≥ 4 semi-arcs of σ(L)
meeting at Ẽn, a contradiction with (4.23). Thus (4.24) holds. Then

lim
n→∞

Ẽn = lim
bn→

√
3

2

±(3g2)1/2 = 0, (4.26)

and so −2 = Δ(Ẽn; bn) → Δ(0; 
√

3
2 ) = 2, a contradiction. So p0(b) ∈ (−(3g2)1/2, (3g2)1/2)

for b −
√

3
2 > 0 small. Denote

b̃ := sup{b̂ >
√

3
2 | p0(b) ∈ (−(3g2)1/2, (3g2)1/2) for b ∈ (

√
3

2 , b̂)}.

If b̃ < +∞, then p0(b̃) ∈ {±(3g2)1/2}, say p0(b̃) = (3g2)1/2 for example. Then 
(3g2)1/2 = [−(3g2)1/2, (3g2)1/2] ∩σ2, i.e. there are 3 semi-arcs of σ(L) meeting at (3g2)1/2, 
a contradiction with d((3g2)1/2) = 1 at b = b̃.

This proves b̃ = +∞, namely p0(b) ∈ (−(3g2)1/2, (3g2)1/2) for all b >
√

3
2 . Then 

Theorem 1.2-(1) says p0(b) = E±(1
2 + ib). Since lim

b↓
√

3
2
p0(b) = 0 and lim

b↓
√

3
2
E−(1

2 +

ib) = −3η1(1
2 + i

√
3

2 ) < 0, we conclude that p0(b) = E+(1
2 + ib) for b −

√
3

2 > 0 small and 

hence for all b >
√

3
2 by continuity and (4.10). This proves Theorem 1.3-(1).

Step 3. We consider b = b0 ∈ ( 5
24 , 

1
2
√

3).
Then −(3g2)1/2 < (3g2)1/2 < −3e1, d(−3ek) = d((3g2)1/2) = 1 for all k, i.e. each 

of {−3ek}k ∪ {(3g2)1/2} is an endpoint of precisely one semi-arc of σ(L). Furthermore, 
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d(−(3g2)
1
2 ) = 1 + 2pi(−(3g2)

1
2 ) ≥ 3 is odd, i.e. there are d(−(3g2)

1
2 ) semi-arcs of σ(L)

meeting at −(3g2)1/2. Together with (P-1)-(P-3), we easily conclude that

σ(L) = (−∞,−(3g2)1/2] ∪ σ2 � [(3g2)1/2,−3e1],

where σ2 is a simple arc symmetric with respect to R with endpoints −3e2 and −3e3, and 
σ2∩R = {−(3g2)1/2}, i.e. there are 3 semi-arcs meeting at −(3g2)1/2, so d(−(3g2)

1
2 ) = 3. 

This proves Theorem 1.3-(8).

Step 4. We consider b ∈ (0, b0).
Then −(3g2)1/2 < (3g2)1/2 < −3e1, d(−3ek) = d(±(3g2)1/2) = 1 for all k, i.e. each of 

{−3ek}k ∪ {±(3g2)1/2} is an endpoint of precisely one semi-arc of σ(L). Together with 
(P-1)-(P-3), we easily conclude that

σ(L) = (−∞,−(3g2)1/2] ∪ σ2 ∪ [(3g2)1/2,−3e1],

where σ2 is a simple arc symmetric with respect to R with endpoints −3e2 and −3e3, 
and

σ2 ∩R = one point =: {p3(b)}. (4.27)

By Step 3 we have p3(b) → −(3g2)1/2 as b ↑ b0, so we obtain either p3(b) ∈
(−∞, −(3g2)1/2) for any b0−b > 0 small or p3(b) ∈ (−(3g2)1/2, (3g2)1/2) for any b0−b > 0
small. Then by the same argument as Step 2, we have that either p3(b) ∈ (−∞, −(3g2)1/2)
for all b ∈ (0, b0) or

p3(b) ∈ (−(3g2)1/2, (3g2)1/2) for all b ∈ (0, b0). (4.28)

In particular, σ2 ∩ [(3g2)1/2, −3e1] = ∅.
Suppose by contradiction that p3(b) ∈ (−∞, −(3g2)1/2) for all b ∈ (0, b0). Then 

Theorem 1.2-(1) shows p3(b) = E±(1
2 + ib). However, since b < b0 and (4.9) imply 

(12η2
1 − g2)(1

2 + ib) < 0, it is easy to see from the expression of P (E) in (1.8) that 
P (−(3g2)1/2) > 0, so

−(3g2)1/2 < E− ≤ p3(b) < −(3g2)1/2,

a contradiction. This proves (4.28) and so Theorem 1.3-(9) holds.

Step 5. We consider b ∈ (b0, 1
2
√

3 ).
Then −(3g2)1/2 < (3g2)1/2 < −3e1, d(−3ek) = d(±(3g2)1/2) = 1 for all k, so the same 

argument as Step 4 shows

σ(L) = (−∞,−(3g2)1/2] ∪ σ2 � [(3g2)1/2,−3e1],
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where σ2 is a simple arc symmetric with respect to R with endpoints −3e2 and −3e3, 
and

σ2 ∩R = one point =: {p2(b)},

where either p2(b) ∈ (−∞, −(3g2)1/2) for all b ∈ (b0, 1
2
√

3 ) or p2(b) ∈ (−(3g2)1/2, (3g2)1/2)
for all b ∈ (b0, 1

2
√

3 ). We will prove that p2(b) ∈ (−∞, −(3g2)1/2) in the next step. 
Consequently, p2(b) = E±(1

2 + ib) by Theorem 1.2-(1). Since P (−(3g2)1/2) < 0 and so 
E+(1

2 + ib) > −(3g2)1/2 > E−(1
2 + ib) for b ∈ (b0, 1

2
√

3 ), we obtain p2(b) = E−(1
2 + ib)

and so Theorem 1.3-(7) holds.

Step 6. We consider b = 1
2
√

3 .
Then ±(3g2)1/2 = 0 < −3e1, d(−3ek) = 1 for all k and d(0) = 2, i.e. −3ek is an 

endpoint of precisely one semi-arc of σ(L) and 0 is an interior point of σ(L), or more 
precisely there are exactly 2 semi-arcs of σ(L) meeting at 0. Together with (P-1)-(P-3), 
we easily conclude that

σ(L) = (−∞,−3e1] ∪ σ2,

where σ2 is a simple arc symmetric with respect to R with endpoints −3e2 and −3e3, 
and

σ2 ∩R =: {p1} ⊂ R \ {0,−3e1}.

Recalling p2(b) in Step 5, we have p2(b) → p1 as b ↑ 1
2
√

3 . If p2(b) ∈ (−(3g2)1/2, (3g2)1/2)
for all b ∈ (b0, 1

2
√

3 ), then

p1 = lim
b↑ 1

2
√

3

p2(b) = lim
b↑ 1

2
√

3

±(3g2)1/2 = 0,

a contradiction. Therefore, p2(b) ∈ (−∞, −(3g2)1/2) for all b ∈ (b0, 1
2
√

3 ), i.e. Theo-
rem 1.3-(7) holds. Then

p1 = lim
b↑ 1

2
√

3

p2(b) = E−(1
2 + i 1

2
√

3 ) = −3η1(1
2 + i 1

2
√

3 ) = −6
√

3π,

where (4.14) is used. This proves Theorem 1.3-(6).

Step 7. We consider b ∈ ( 1
2
√

3 , b1].
Note that for all b ∈ ( 1

2
√

3 , 
√

3
2 ), we have g2 < 0, i.e. ±(3g2)1/2 /∈ R, d(−3ek) =

d(±(3g2)1/2) = 1 for all k, i.e. each of {−3ek}k ∪{±(3g2)1/2} is an endpoint of precisely 
one semi-arc of σ(L). Together these with (P-1)-(P-3) and the spectrum at b = 1

2
√

3
proved in Step 6, we conclude that for b − 1√ > 0 small, we have
2 3
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σ(L) = (−∞,−3e1] ∪ σ1 ∪ σ2, (4.29)

where σ2 (resp. σ1) is a simple arc symmetric with respect to R with endpoints −3e2
and −3e3 (resp. with endpoints ±(3g2)1/2), and

σ1 ∩R = σ1 ∩ (−∞,−3e1) = one point =: {p4(b)},
σ2 ∩R = σ2 ∩ (−∞,−3e1) = one point =: {p5(b)}, (4.30)

p4(b) > p5(b), σ1 ∩ σ2 = ∅, (4.31)

because p5(b) → p1 = −6
√

3π and p4(b) → 0 as b ↓ 1
2
√

3 . Indeed by Theorem 1.2-(1), we 
have

p4(b) = E+(1
2 + ib) > p5(b) = E−(1

2 + ib). (4.32)

Remark that σ1 ∩ σ2 = ∅ follows from p4(b) > p5(b). This fact can be proved by two 
ways: one is to apply Theorem 1.2-(1) to see that σ1 ∩ σ2 ⊂ {E±(1

2 + ib)}; the other is 
that if a ∈ σ1 ∩ σ2, then ā ∈ σ1 ∩ σ2 and ā �= a, a contradiction with (P-3).

Define

b̃1 := sup{b̃ > 1
2
√

3 | (4.29)-(4.31) hold for any b ∈ ( 1
2
√

3 , b̃)}.

By the spectrum at b =
√

3
2 proved in Step 1, we have b̃1 <

√
3

2 . Then (4.32) holds for 
any b ∈ ( 1

2
√

3 , ̃b1) and so

(3η2
1 + 2g2)(1

2 + ib) > 0 for b ∈ [ 1
2
√

3 , b̃1). (4.33)

By the continuity of the spectrum with respect to b and d(−3e1) = 1 for all b, we 
conclude that (4.29)-(4.30) still hold for b = b̃1 (i.e. p4(b̃1) < −3e1). Thus the definition 
of b̃1 shows that (4.31) does not hold for b̃1, i.e.

E+(1
2 + ib̃1) = p4(b̃1) = p5(b̃1) = E−(1

2 + ib̃1),

which implies (3η2
1 + 2g2)(1

2 + ib̃1) = 0. Together with (4.33) and the definition b1 in 
(4.11), we conclude b̃1 = b1, so Theorem 1.3-(5) holds. Furthermore, at b = b1 we have 
σ1 ∩ σ2 = {p4(b1)} = {−3

2η1(1
2 + ib1)}, i.e.

σ1 ∩R = σ2 ∩R = σ1 ∩ σ2 = {−3
2η1(1

2 + ib1)} ⊂ (−∞,−3e1).

Thus Theorem 1.3-(4) holds.

Step 8. We consider b ∈ (b1, 
√

3
2 ).

Then ±(3g2)1/2 /∈ R, d(−3ek) = d(±(3g2)1/2) = 1 for all k, i.e. each of {−3ek}k ∪
{±(3g2)1/2} is an endpoint of precisely one semi-arc of σ(L).
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Recalling (4.1), if two arcs of {σ∞, σ1, σ2} have an intersection point, by Theorem 1.2
it must be of type I and hence one of E±(1

2 + ib), say E−(1
2 + ib) for example, i.e. 

E−(1
2 + ib) ∈ σ(L). Then Lemma 4.3 implies b ∈ (b1, b2). Consequently, Lemma 4.2 says 

E−(1
2 + ib) = E+(1

2 + ib) /∈ R, and then Property (P-2) implies that both E−(1
2 + ib)

and E+(1
2 + ib) are type I intersection points of σ1 and σ2, which leads to a contradiction 

with (P-3) which says that C \ σ(L) is path-connected.
Therefore, different arcs of σ(L) cannot intersect with each other for any b ∈ (b1, 

√
3

2 ). 
Together with (P-1)-(P-3) and the spectrum at b = b1, we conclude from the continuity 
of the spectrum that

σ(L) = (−∞,−3e1] � σ1 � σ1,

where σ1 is a simple arc with endpoints −3e2 (note Im e2(1
2 + ib) < 0) and i|3g2|1/2, 

and σ1 is the conjugate of σ1 with endpoints −3e3 and −i|3g2|1/2. Clearly σ1 ∩ R = ∅
(otherwise σ1 ∩ σ1 �= ∅, a contradiction) and so Theorem 1.3-(3) holds. The proof is 
complete. �
5. Application to the mean field equation

The purpose of this section is to apply Theorem 1.3 to the mean field equation (1.15)
and prove Theorem 1.6. First we briefly review some basic facts about the mean field 
equation

�u + eu = 8πnδ0 on Eτ . (5.1)

Geometrically, a solution u to (5.1) leads to a metric 12e
u|dz|2 with constant curvature +1

acquiring a conic singularity with angle 2π(1 +2n). Physically, (5.1) appears in statistical 
physics as the mean field limit of the Euler flow, hence the name. It is also related to 
the self-dual condensates of the Chern-Simons-Higgs model in superconductivity. See 
[4,5,8,13,20,21,23] and references therein.

The solvability of (5.1) depends on the moduli τ in a sophisticated manner and has 
been studied in [4,8,13,20,21]. In particular, the connection between (5.1) and the Lamé 
equation was studied in [4]. Here we recall this relation for the n = 2 case for later usage.

Theorem 5.1. [4]

(1) If there is a solution u to (1.15), then it lies in a scaling family of solutions uλ

through the Liouville formula

uλ(z) = ln 8e2λ|f ′(z)|2
(1 + e2λ|f(z)|2)2 , λ ∈ R,

where f(z) is a meromorphic function on C, known as a developing map and satis-
fying
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f(z + ωj) = e2iθjf(z), θj ∈ R, j = 1, 2.

Moreover, there is a unique λ so that uλ is even, i.e. uλ(z) = uλ(−z).
(2) Equation (1.15) has a solution if and only if there is E ∈ C such that the monodromy 

of the Lamé equation y′′(z) = [6℘(z; τ) +E]y(z) is unitary. Furthermore, the number 
of even solutions equals to the number of those E’s such that the monodromy is 
unitary.

Now we always assume τ = 1
2+ib with b > 0, and we write the spectrum σ(L) = σ(L; b)

and the Hill discriminant Δ(E; τ) = Δ(E; b) to emphasize their dependence on b.

5.1. Characterization of even solutions in terms of spectrum

Recall the monodromy theory of the Lamé equation

y′′(z) = [6℘(z; τ) + E]y(z) (5.2)

stated in Section 2.2. By (2.11)-(2.13), we have

y±a(z + 2τ − 1) = e±2πi(2r+s)y±a(z),

Δ(E; b) = e2πis + e−2πis.

Define

Δ̃(E; b) := e2πi(2r+s) + e−2πi(2r+s), (5.3)

σ̃(L; b) := {E ∈ C | − 2 ≤ Δ̃(E; b) ≤ 2}. (5.4)

This σ̃(L; b) will play the same role as σ2(L) mentioned in Section 1.2.
For E satisfying Q2(E; τ) = 0, it follows from (L-3) in Section 2.2 that 2r, 2s ∈ Z, i.e. 

Δ̃(E; b) = ±2. So

{−3e1,−3e2,−3e3,±(3g2)1/2} ⊂ σ(L; b) ∩ σ̃(L; b).

Define

Ξ(b) := [σ(L; b) ∩ σ̃(L; b)] \ {−3e1,−3e2,−3e3,±(3g2)1/2}. (5.5)

The following result establishes the precise connection between even solutions of the 
mean field equation and the spectrum.

Lemma 5.2. The number of even solutions of the mean field equation

�u + eu = 16πδ0 on Eτ (5.6)
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equals to #Ξ(b). Furthermore,

(1) The number of even axisymmetric solutions equals to #(Ξ(b) ∩R).
(2) The number of even but not axisymmetric solutions equals to #(Ξ(b) \R).

Proof. Recalling (L-3)-(L-4) stated in Section 2.2, we know that the monodromy of 
(5.2) is unitary if and only if Q2(E; τ) �= 0 and the corresponding (r, s) of this E satisfies 
(r, s) ∈ R2 \ 1

2Z
2, and so if and only if E ∈ Ξ(b) (note (r, s) /∈ 1

2Z
2 follows from 

Q2(E; τ) �= 0). Together with Theorem 5.1-(2), we conclude that the number of even 
solutions of (5.6) equals to #Ξ(b).

To prove (1)-(2), we need to apply the precise connection between an even solution 
u(z) = u(x, y) (here we use complex variable z = x + iy) and the corresponding E ∈ Ξ(b)
proved in [4]:

(uzz − 1
2u

2
z)(z) = −2[6℘(z; τ) + E],

and in Theorem 5.1 the developing map f(z) = ya(z)/y−a(z), where y±a(z) are solutions 
of (5.2) stated in (L-1) in Section 2.2.

Clearly ũ(z) = ũ(x, y) := u(x, −y) = u(z̄) is also an even solution of (5.6) and satisfies 
(note that u(z) is real-valued as a solution of (5.6))

(ũzz − 1
2 ũ

2
z)(z) = (uzz − 1

2u
2
z)(z̄)

= −2[6℘(z̄; τ) + E] = −2[6℘(z; τ) + E],

i.e. E ∈ Ξ(b) if E ∈ Ξ(b). From here and the fact stated in Theorem 5.1-(2) that there is 
a one-to-one correspondence between E ∈ Ξ(b) and even solutions of (5.6), we conclude 
that E = E if and only if u(z) = ũ(z), i.e. u(z) = u(z̄) is axisymmetric. Therefore, the 
assertions (1)-(2) hold. �
5.2. Study of Ξ(b)

By Lemma 5.2, we turn to study Ξ(b). Note that

τ−1
2τ−1 = 1

2 + i 1
4b for τ = 1

2 + ib.

Since ya(z) is a solution of (5.2), then ỹ(z) := ya((2τ − 1)z) satisfies

ỹ′′(z) = (2τ − 1)2[6℘((2τ − 1)z; τ) + E]ỹ(z)

= [6℘(z; τ−1
2τ−1 ) + (2τ − 1)2E]ỹ(z)

= [6℘(z; 1
2 + i 1

4b ) − 4b2E]ỹ(z),

and
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ỹ(z + 1) = ya((2τ − 1)z + 2τ − 1) = e2πi(2r+s)ỹ(z).

Therefore,

Δ(−4b2E; 1
4b ) = e2πi(2r+s) + e−2πi(2r+s) = Δ̃(E; b). (5.7)

Consequently, we conclude from (5.4) that

σ̃(L; b) = {E | − 2 ≤ Δ(−4b2E; 1
4b ) ≤ 2}

= {E | − 4b2E ∈ σ(L; 1
4b )} = 1

−4b2σ(L; 1
4b ). (5.8)

Remark that by the modular properties of ek(τ) and g2(τ), it is easy to see that

1
−4b2 {−3ek(1

2 + i 1
4b ),±(3g2(1

2 + i 1
4b ))

1/2, k = 1, 2, 3} (5.9)

={−3ek(1
2 + ib),±(3g2(1

2 + ib))1/2, k = 1, 2, 3},

namely the finite endpoints of arcs of σ̃(L; b) = 1
−4b2σ(L; 1

4b ) also lie in

{−3ek(1
2 + ib),±(3g2(1

2 + ib))1/2, k = 1, 2, 3},

the same as those of σ(L; b). Together these with Theorem 1.3, we can give a complete 
picture of σ̃(L; b) for all b > 0. Here we only list the special case b ∈ ( 1

2
√

3 , 
1

4b1 ) (i.e. 
1
4b ∈ (b1, 

√
3

2 )) for later usage.

Lemma 5.3. For b ∈ ( 1
2
√

3 , 
1

4b1 ),

σ̃(L; b) = [−3e1,+∞) � σ3 � σ3,

where σ3 is a simple arc in {E| ImE > 0} (i.e. σ3 ∩ R = ∅) with endpoints −3e2 and 
i|3g2|1/2, and σ3 is the conjugate of σ3 with endpoints −3e3 and −i|3g2|1/2.

Now we consider the special case b = 1
2 , where −e2 − e3 = e1 = 0 and so

e3 = e2 = −e2 =: iA, i.e. A = Im e3 > 0. (5.10)

Consequently (recall Lemma 4.2 that g2(1
2 + i1

2 ) ≈ −76.6π2)

−76.6π2 ≈ g2(1
2 + i1

2 ) = 2(e2
1 + e2

2 + e3
3) = −4A2, i.e. A ≈ 4.4π,

and

|3g2|1/2 = 2
√

3A > 3A = Im(−3e2), (5.11)



32 Z. Chen et al. / Advances in Mathematics 383 (2021) 107699
namely the point i|3g2|1/2 is above the point −3e2 on the graph of σ(L; 12). Note from 
(5.8) that

σ̃(L; 1
2 ) = −σ(L; 1

2 ). (5.12)

Since σ(L; 12 ) is symmetric with respect to R, we see from (5.12) that σ̃(L; 12 ) and σ(L; 12 )
are symmetric with respect to iR. From here we can prove

Lemma 5.4. For b = 1
2 , recall from Theorem 1.3-(3) that

σ(L; 1
2 ) = (−∞, 0] � σ1 � σ1,

where σ1 is a simple arc in {E| ImE > 0} with endpoints −3e2 = 3Ai and i|3g2|1/2 =
2
√

3Ai, and σ1 is the conjugate of σ1. Then

σ1 \ {−3e2, i|3g2|1/2} ⊂ {E | ReE < 0}. (5.13)

In other words, except the 5 endpoints lying on iR, all other points of σ(L; 12) lie in the 
half plane {E | ReE < 0}.

Proof. By Theorem A-(3) and Lemma 5.2, we obtain Ξ(1
2 ) = ∅. Recall Lemma 5.3 and 

(5.12) that

σ̃(L; 1
2) = [0,+∞) � σ3 � σ3,

where σ3 = −σ1 is symmetric with σ1 with respect to iR. If there is E ∈ (σ1 \
{−3e2, i|3g2|1/2}) ∩ iR, then E ∈ σ3 and so E ∈ Ξ(1

2 ), a contradiction. Therefore,

(σ1 \ {−3e2, i|3g2|1/2}) ∩ iR = ∅, (5.14)

σ1 ∩ σ3 = {−3e2, i|3g2|1/2}. (5.15)

Thanks to (5.14), to prove (5.13) we only to prove ReE < 0 for E ∈ σ1 sufficiently 
close to −3e2. Recall the hyperelliptic curve

Y2 ∼= {(E,C) | C2 = Q2(E)} (5.16)

stated in (L-5) in Section 2.2. It is well known that (a1, a2) = (ω1
2 , ω3

2 ) at E = −3e2. 
Note that C = 0 at E = −3e2, i.e. (−3e2, 0) is a branch point of {(E, C)|C2 = Q2(E)}
or equivalently, (ω1

2 , ω3
2 ) is a branch point of the hyperelliptic curve Y2. Therefore, we 

can consider C as a local holomorphic coordinate of (a1(C), a2(C)) ∈ Y2 corresponding 
to (E, C) near the branch point (ω1

2 , ω3
2 ) with

(a1(0), a2(0)) = (ω1 , ω3 );
2 2
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see [22, Lemma 3.3], where it was also proved that1

a′1(0) = 2
9

1
℘′′(ω1

2 )
1

e1 − e3
, a′2(0) = 2

9
1

℘′′(ω3
2 )

1
e3 − e1

.

Inserting ℘′′ = 6℘2 − g2/2 and (5.10)-(5.11) into the above formula leads to

a′1(0) = i
9A3 , a′2(0) = i

18A3 .

Therefore for (E, C) close to (−3e2, 0), the corresponding (a1, a2) satisfies

a1 = a1(C) = ω1
2 + i

9A3C(1 + O(C)),
a2 = a2(C) = ω3

2 + i
18A3C(1 + O(C)).

Inserting these into (2.9), we obtain from

ζ(ω1
2 ) + ζ(ω3

2 ) − η1(ω1
2 + ω3

2 ) = η2−τη1
2 = −πi

(i.e. s = 1
2 at E = −3e2) and ζ ′ = −℘ that

−2πis = ζ(a1) + ζ(a2) − η1(a1 + a2) (5.17)

= −πi− i
18A3 (e3 + 3η1)C(1 + O(C))

= −πi− i
18A3 |e3 + 3η1||C|ei(θ+θ0)(1 + O(C)),

where we write C = |C|eiθ, θ ∈ [−π, π], and e3 + 3η1 = |e3 + 3η1|eiθ0 . Note that e3 = iA

with A ≈ 4.4π and η1(1
2 + i1

2 ) = 2π, we have tan θ0 = A
6π ≈

2.2
3 ∈ ( 1√

3 , 1), so we can take 
θ0 ∈ (π6 , 

π
4 ).

Now for E ∈ σ1 close to −3e2, i.e. (E, C) close to (−3e2, 0), we have Δ(E) = e2πis +
e−2πis ∈ [−2, 2], i.e. s ∈ R, which implies from (5.17) that θ = kπ − θ0 + o(1) with 
k ∈ {0, 1}. Consequently, we deduce from C2 = Q2(E) and E = −3e2 + o(1) that

E + 3e2 = C2

(E2 − 3g2)(E + 3e1)(E + 3e3)
= − |C|2

54A4 e
−2iθ0(1 + o(1)),

namely ReE = Re(E + 3e2) < 0 for E ∈ σ1 close to −3e2. Then by (5.14), we see that 
(5.13) holds. This completes the proof. �
Remark 5.5. By (5.13) and (5.15) and that σ3 is symmetric with σ1 with respect to iR, 
we see that σ1 ∪ σ3 is a simple closed arc in the half plane {E| ImE > 0}. We give an 
orientation of σ1 ∪σ3 by moving from i|3g2|1/2 along σ1 to −3e2 and then along σ3 back 
to i|3g2|1/2. Then the orientation is counterclockwise because of (5.11) and (5.13).

1 In [22, Lemma 3.3] the formula reads a′
1(0) = 1

℘′′( ω1
2

)
1

e1−e3
because they used the hyperelliptic curve 

C2 = 4
81Q2(E).
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Now we are in a position to prove Theorem 1.6.

Proof of Theorem 1.6. Assume by contradiction that

Ξ(b) = ∅ for any b ∈ [b1, 1
2 ] ⊂ ( 1

2
√

3 ,
1

4b1 ). (5.18)

Step 1. We consider b = b1.
Then σ̃(L; b1) = [−3e1, +∞) � σ3 � σ3 is given in Lemma 5.3 and

σ(L; b1) = (−∞,−3e1] ∪ σ1 ∪ σ2,

is given in Theorem 1.3-(4). We rewrite

σ1 ∪ σ2 = σ0
1 ∪ σ0

1 ,

where σ0
1 = (σ1 ∪ σ2) ∩ {E| ImE ≥ 0}, namely σ0

1 is a simple arc connecting i|3g2|1/2
and −3e2 and

σ0
1 \ {−3

2η1(1
2 + ib1)} ⊂ {E| ImE > 0}.

Since σ3 is a simple arc in {E| ImE > 0} with endpoints −3e2 and i|3g2|1/2, we conclude 
from Ξ(b1) = ∅ that σ0

1 ∩ σ3 = {−3e2, i|3g2|1/2} and so σ0
1 ∪ σ3 is a simple closed arc 

which satisfies

σ0
1 ∪ σ3 \ {−3

2η1(1
2 + ib1)} ⊂ {E| ImE > 0}.

Again we give an orientation of σ0
1 ∪ σ3 by moving from i|3g2|1/2 along σ0

1 to −3e2 and 
then along σ3 back to i|3g2|1/2. Then by letting b ↑ b1 in Theorem 1.3-(5), we easily see 
that the orientation of σ0

1 ∪ σ3 is clockwise.
Step 2. We consider b ∈ (b1, 12 ].
Again σ̃(L; b) = [−3e1, +∞) �σ3 �σ3 is given in Lemma 5.3, where σ3 is a simple arc 

in {E| ImE > 0} with endpoints −3e2 and i|3g2|1/2.
On the other hand, Theorem 1.3-(3) says that

σ(L; b) = (−∞,−3e1] � σ1 � σ1,

where σ1 is a simple arc in {E| ImE > 0} with end points −3e2 and i|3g2|1/2. By 
Ξ(b) = ∅, we have σ1 ∩ σ3 = {−3e2, i|3g2|1/2} and so σ1 ∪ σ3 is a simple closed arc in 
{E| ImE > 0}. Again we give an orientation of σ1 ∪ σ3 by moving from i|3g2|1/2 along 
σ1 to −3e2 and then along σ3 back to i|3g2|1/2. Since these simple closed arcs satisfy

σ1 ∪ σ3 → σ0
1 ∪ σ3 as b ↓ b1,
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we see that the direction of the orientation is invariant under the continuous deformation. 
In conclusion, the orientation of σ1 ∪ σ3 is clockwise for any b ∈ (b1, 12 ], a contradiction 
with Remark 5.5.

Step 3. We complete the proof.
Steps 1-2 imply that (5.18) is not true, i.e. there exist b ∈ [b1, 12 ) such that Ξ(b) �=

∅. Note that E ∈ Ξ(b) if E ∈ Ξ(b). Besides, it is easy to see from Lemma 5.3 and 
Theorem 1.3 (3)-(4) that

σ̃(L; b) ∩ σ(L; b) ∩R = {−3e1},

so Ξ(b) ∩ R = ∅. Therefore, we conclude from Lemma 5.2 that the mean field equation 
(5.6) has no even axisymmetric solutions but does have at least 2 even solutions which 
are not axisymmetric.

This completes the proof. �
Remark 5.6. By (5.8)-(5.9) and Theorem 1.3, we can give a new proof of Theorem A
(1)-(2). For example, for b > 1

4b0 >
√

3
2 we have

σ̃(L; b) = [−3e1,−(3g2)1/2] � σ3 � [(3g2)1/2,+∞),

where σ3 is a simple arc symmetric with respect to R with endpoints −3e2 and −3e3, 
and

σ3 ∩R = σ3 ∩ (−(3g2)1/2, (3g2)1/2) =: {E0(b)},

where E0(b) → (3g2)1/2 as b ↓ 1
4b0 . Together with Theorem 1.3-(1), we immediately 

obtain Ξ(b) ∩ R = {E0(b)} for b > 1
4b0 and Ξ( 1

4b0 ) ∩ R = ∅. From here and Lemma 5.2, 
we conclude that the number of even axisymmetric solutions of (5.6) is 1 (resp. 0) for 
b > 1

4b0 (resp. for b = 1
4b0 ). This proves Theorem A (1)-(2) for b ≥ 1

4b0 and b̂ = 1
4b0 . The 

remaining case b < 1
4b0 can be proved similarly and we omit the details here.
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