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PLADE: A Plane-based Descriptor for
Point Cloud Registration with Small Overlap

Songlin Chen, Liangliang Nan, Renbo Xia, Jibin Zhao, and Peter Wonka

Abstract—Traditional point cloud registration methods require
large overlap between scans, which imposes strict constraints on
data acquisition. To facilitate registration, users have to carefully
position scanners to ensure sufficient overlap. In this work, we
propose to use high-level structural information (i.e., plane/line
features and their inter-relationship) for registration, which is
capable of registering point clouds with small overlap, allowing
more freedom in data acquisition. We design a novel plane/line-
based descriptor dedicated to establishing structure level cor-
respondences between point clouds. Based on this descriptor,
we propose a simple but effective registration algorithm1. We
also provide a dataset2 of real-world scenes containing a larger
number of scans with a wide range of overlap. Experiments and
comparisons with state-of-the-art methods on various datasets
reveal that our method is superior to existing techniques. Though
the proposed algorithm outperforms state-of-the-art methods
on the most challenging dataset, the point cloud registration
problem is still far from being solved, leaving significant room
for improvement and future work.

Index Terms—point cloud, registration, descriptor, scanning,
dataset.

I. INTRODUCTION

THE proliferation of acquisition devices (e.g., laser scan-
ners and depth cameras) enables us to quickly obtain a

massive volume of 3D point clouds of indoor and outdoor
environments. The obtained point clouds have many appli-
cations in computer vision and computer graphics, including
navigation and virtual/augmented reality. The nature of the
scanning process typically results in a set of randomly oriented
point clouds captured from different viewpoints, waiting to
be registered. Although the registration problem has been
extensively studied in the last decades, it still remains an open
problem due to three main reasons.

Firstly, existing methods assume sufficient overlap between
point clouds, which imposes restrictions on the scanning
process, i.e., the user has to strategically position or move the
scanner to ensure proper overlap between scans, making data
acquisition a challenging task [1], [2]. In realistic scanning
conditions, it is quite common that scans with insufficient
overlap are obtained. This issue becomes vital when a scene
is simultaneously scanned by multiple scanners and users.
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Another important scenario is when one wants to obtain
complete scans of a scene, the user may apply a static laser
scanner to capture the major part of the scene and a mobile
scanner to complete the occluded regions. Scanning in such
a fashion typically leads to a global point cloud and a set of
local point clouds capturing local regions of the scene. These
scans often have too small overlap for traditional registration
methods to succeed.

Secondly, traditional registration methods focus on estab-
lishing correspondences between point clouds using local
salient features. However, man-made scenes like building
interiors and exteriors comprising mainly planar structures are
common in the real-world [3], for which sufficient descriptive
local features cannot be extracted for registration [4].

Thirdly, developing reliable point cloud registration ap-
proaches brings up significant challenges in evaluation tasks
that involves capturing massive datasets and providing ground
truth registrations. Unfortunately, very limited data sets are
available and are typically created for specific environments
(e.g., urban scenes) by using a single type of scanner (e.g.,
high-range laser scanners) [5], [6]) and typically have only a
few scan pairs. The lack of diverse data sets (e.g., different
environments, acquired using different sensors) and accu-
rate ground-truth has caused various point cloud registration
techniques to be poorly and unfairly evaluated [7], [8]. In
fact, existing techniques can only be evaluated against small
carefully crafted data sets.

In this work, we address the problem of registering point
clouds with small overlap captured from real-world scenes.
Since sufficient overlap and descriptive features cannot be
guaranteed, our approach relies on high-level structures of the
scene for registration. Specifically, man-made environments
typically consist of planar structure, thus we represent the
main structures of the scene as a collection of planes. These
planar structures along with their inter-relations reveal high-
level global characteristics of the scene and we believe that
they provide sufficient information for registration. While there
exists a fair amount of previous work using plane/line-based
features, the robustness of existing plane-based methods is
still not satisfactory [9], [10], [11], [12], [13], [14]. Our work
proposes a plane/line-based descriptor to establish structure
level correspondences between point clouds, with which robust
registration can be effectively achieved.

In addition to the simple but effective registration algorithm,
we provide a benchmark dataset scanned from a set of indoor
and outdoor scenes with varying overlapping ratios, comple-
menting existing datasets. As for evaluation, the performance
of a registration method can be simply measured by the
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percentage of the successfully registered scans. Though exper-
iments demonstrate that our method significantly outperforms
the state of the art, a large portion of point clouds still remain
unregistered. This indicates that the registration problem is far
from being solved, allowing significant room for improvement.
In summary, our main contributions include:
• a novel plane/line-based descriptor dedicated to establish-

ing structure level correspondences between point clouds.
• a robust and fast point cloud registration algorithm using

the plane/line-based descriptor, which significantly out-
performs the state of the art.

• a benchmark dataset for evaluating point cloud registra-
tion algorithms. Our dataset contains scans with varying
overlap, posing interesting challenges for research in
point cloud registration.

II. RELATED WORK

Point cloud registration methods can be roughly classified
into two categories: coarse registration and fine registration.
Fine registration algorithms aim to improve a given initial
coarse registration. Such algorithms include ICP (Iterative
Closest Point) [15] and its variants [16], [17], [18], [19].
In contrast, the inputs to the coarse registration algorithms
are point clouds with unknown orientations. Thus, coarse
registration is considered more challenging and has been
receiving increasing attention in the past years. Our method
falls into the coarse registration category. So in this section, we
mainly discuss recent work on coarse registration, in partic-
ular, algorithms on local descriptor-based registration, global
feature-based registration, and registration without overlap. For
a comprehensive review of general point cloud registration
algorithms, please refer to the survey by Maiseli et al. [8].

Local descriptor-based registration. Algorithms in this
category are most popular in point cloud registration. These
algorithms focus on using/defining local salient point features
(i.e., transformation invariant descriptors) to establish point-
wise correspondences between subsets (i.e., sets of key points)
of the two point clouds [20], [21], [22], [23], [24], [25],
[26], [27], [28], [29], [30]. The typical procedure is to first
extract key points and compute their descriptors and then
establish sparse correspondences between the key points based
on the descriptors. After that, various strategies have been
developed to eliminate false correspondences. Commonly used
techniques include geometric hashing [31] and RANSAC
(Random Sample Consensus) [32], [33]. Other schemes are
also developed for obtaining good correspondences. For ex-
ample, Gelfand et al. [21] exploit a branch-and-bound al-
gorithm to find the optimal set of correspondences. Based
on the fact that certain ratios defined on a planar congruent
set remain invariant under rigid transformations, Mellado et
al. [24] proposes to extract all sets of coplanar 4-points to
register point clouds with certain levels of noises and outliers.
With initial correspondences computed using the Fast Point
Feature Histogram (FPFH) feature [26], Zhou et al. propose
an optimization framework that simultaneously suppresses
spurious correspondences [34]. These methods demonstrated
satisfactory performance on point clouds of general surfaces.

However, they require sufficient overlap and are usually slow
in processing large point clouds (e.g., scans of buildings).

Global feature-based registration. Compared to local fea-
tures, global features cover larger scales of the point clouds
and thus are more descriptive. The most widely used global
feature is the plane feature that can be reliably and efficiently
extracted from point clouds, especially for man-made scenes.
These methods first segment the point clouds into planar
patches and then search for correspondences at the patch level
using various strategies [10], [11], [35], [12], [13].

Similar to local descriptors, various global shape descrip-
tors have been developed for point cloud registration, such
as the Hough Transform Descriptor, the Spherical Entropy
Image [36], and the Viewpoint Descriptor [14]. By con-
sidering the layout of indoor scenes, Lee et al. propose to
jointly estimate the layout and registration for indoor scene
reconstruction [37].

Even higher-level features have also been studied in point
cloud registration. Thapa et al. [38] propose a semantic
feature-based method for registration of building scans. Their
method starts with a semantic segmentation (achieved by using
simple heuristics) of building scans. Then, correspondences
are obtained by matching segments of the same semantic type
and same pattern (topological relation with other features).
Due to the difficulties in semantic segmentation, it remains
unclear how to extend this method to register scans of general
scenes/objects.

Registration without overlap. When overlap between s-
cans is low, registration algorithms seek help from additional
information provided by the point clouds [4], [39], [40]. Yan et
al. propose to register building scans without overlap [4]. The
inputs to their system are scans capturing multiple rooms of
a large building, and/or scans capturing both the interior and
exterior of a building. In their problem setting, the overlap
between scans becomes extremely small or sometimes do not
exist. The authors rely on portals (e.g., windows and doors)
extracted from the point clouds to establish potential corre-
spondences between scans. The global registration of the scans
is then obtained by selecting a valid set of correspondences
via a combinatorial optimization.

In recent years, researchers have also studied the problems
of registering/assembling object pieces [41], [42], [43], [44].
Huang et al. [43] assemble fractured object pieces based on
roughness analysis and patch-based features defined on frac-
tured surfaces. Then, object pieces are registered by pairwise
matching validated via penetration and consistency checks.
Based on the fact that certain objects demonstrate continuous
sharp feature curves, Huang et al. [44] align distinct object
parts by enforcing the continuity of the sharp feature curves.
This method relies heavily on the rich geometric features of
the objects. Thus, it may not be scaled to practical scans of
general scenes.

Our approach falls in global feature-based registration. We
aim at registering featureless scans of real-world scenes that
demonstrate unpredictable levels of overlap. We introduce
a novel global descriptor that captures high-level structure
information (i.e., inter-relationship of the major planes) of the
scenes for registration.
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Fig. 1. Line extraction. (a) Input point cloud. (b) Extracted planar segments
(in different colors) and boundary points (in red). (c) Extracted line segments
(in red).

III. OUR APPROACH

Our registration method is based on the traditional
hypothesize-and-evaluate strategy. Specifically, the hypothesis
is obtained by matching our novel plane/line-based descriptor,
followed by removing the redundant matchings in the transfor-
mation space. Finally, the optimal registration is identified by
evaluating the matching scores of the candidate registrations.
In the following, we first describe our plane-based descriptor.
We then detail our registration algorithm.

A. Structure Level Descriptor

A large portion of the traditional point cloud registration
methods look into salient features and rely on a local geometric
descriptor to establish correspondences between point clouds.
Since sufficient overlaps and descriptive features may not
be guaranteed, we rely on a high-level representation of the
scene to achieve robust registration. We observe that man-
made environments typically consist of planar structures, thus
we represent the main structure of the scene as a collection of
planes. These planar structures along with their inter-relations
reveal high-level global characteristics of the scene, providing
promising information for registration [9]. Specifically, we
propose a structure level descriptor defined on planes and
lines extracted from the point clouds, from which a unique
rigid registration transformation can be established between
two descriptors.

Plane/Line extraction. There exist a few approaches to
extract basic geometric primitives (e.g., planes and lines)
from point clouds [45], [46], [47]. As has been demonstrated
that the RANSAC-based plane detection method is robust to
noise and outliers and has been successfully applied to other
tasks [48], we choose to utilize an efficient implementation
of the RANSAC algorithm by Schnabel et al. [45] to extract
planar segments from the point clouds. Figure 1 (b) shows an
example of the extracted planar segments.

Given the planar segments, we then extract lines for each
planar segment. Specifically, we first detect boundary points
by looking into the distribution of the planar points within
their neighborhood. We use an angle criterion to determine if
a point is lying on the boundary of a planar segment. Figure 1
(a) inset illustrates our angle criterion (we choose the angle
threshold θ to be π

2 ). Similar to plane extraction, we use a
RANSAC strategy to extract line segments from the boundary
points (see Figure 1 (c)). Alternative methods, such as [49],
can also be applied to extract the lines segments directly from
point clouds.

Fig. 2. The structure level descriptor. (a) A descriptor defined on two pairs of
planes. Line L1 is the intersection of planes P1 and P2; L2 is the intersection
of planes P3 and P4. (b) A descriptor defined on a line segment L2 and two
planes P1 and P2.

Defining the descriptor. Given a certain amount of planes
abstracting the main structure of the scene, at least three non-
parallel planes are required to establish rigid transformations
between two point clouds. To avoid ambiguities (i.e., a corner
of three planes can be matched to multiple similar corners)
and obtain a unique transformation, we look into quadruplets
of non-parallel planes.

We first compute pairwise intersections of the supporting
planes of the extracted planar segments, resulting in a set of
lines. To cope with near co-planar planes, we discard a line
Li if dist(Li, c) > r, where c and r denote the center and
radius of the bounding sphere of the point cloud. Figure 2
(a) illustrates the primitives (i.e., four planes) on which our
plane-based descriptor is defined. Specifically, the plane-based
descriptor is an eight-dimensional vector consisting of the
following entries
• d: the distance between the two lines L1 and L2;
• ∠(L1, L2): the angle between L1 and L2;
• ∠(P1, P2) and ∠(P3, P4): angles introduced by the two

pairs of planes;
• ∠(L1, P3), ∠(L1, P4), ∠(L2, P1), and ∠(L2, P2): the

angles between the intersecting lines of two planes and
the other planes;

Note that we choose the acute angle for each pair of primi-
tives. To ensure descriptiveness, our plane-based registration
descriptor is defined depending on the relative magnitudes of
the angles between primitives

d8 =



dist(L1, L2)
∠(L1, L2)
∠(P1, P2)
∠(P3, P4)

min(∠(L1, P3),∠(L1, P4))
max(∠(L1, P3),∠(L1, P4))
min(∠(L2, P1),∠(L2, P2))
max(∠(L2, P1),∠(L2, P2))


(1)

if ∠(P1, P2) < ∠(P3, P4). Otherwise, we change the order
of the planes and then define the descriptor. Here min(∗, ∗)
and max(∗, ∗) indicate the smaller and greater value of two
angles, respectively.

The above plane-based registration descriptor is defined
purely on two pairs of non-parallel planes, with which a unique
rigid registration transformation can be established between
two descriptors. In the very unlikely cases (in particular when
the overlap between the point cloud pair is small), less than
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two pairs of non-parallel planes can be found. The point cloud
shown in Figure 1 is such an example, where only two parallel
horizontal planes and two parallel vertical planes are extracted.
Thus, no quadruplet of non-parallel planes exists to uniquely
define a rigid transformation. In such a case, we seek help
from additional line features of the scene. So in addition to
the eight-dimensional plane-based descriptor, we also define
another type of registration descriptor on a smaller number
of geometric primitives, i.e., a pair of non-parallel planes and
a line segment. Similarly, the plane/line-based descriptor is a
six-dimensional vector defined as

d6 =


dist(L1, L2)
∠(L1, L2)
∠(P1, P2)
∠(L1, P3)

min(∠(L2, P1),∠(L2, P2))
max(∠(L2, P1),∠(L2, P2))

 (2)

B. Registration

With the structure level registration descriptor, we are now
able to compute transformations between two point clouds.
Since our descriptor characterize the inter-relation between
non-parallel planes/lines, we can establish a unique rigid
transformation using a descriptor dL from a point cloud L
and its best-matched descriptor dG from the other point cloud
G.

We enumerate all plane/line combinations to collect a set
of descriptors in both L and G, namely DG = D8

G ∪ D6
G

and DL = D8
L ∪ D6

L, where D8
∗ = {d8

∗} and D6
∗ = {d6

∗}
denote the eight dimensional and six dimensional descriptors
respectively.

Descriptor matching. To efficiently find the best matches
of descriptor pairs, we build a KD-tree for the descriptors DG
and we query the most similar descriptor for each descriptor
in DL. The distance of a descriptor pair is computed as
the Euclidean distance of the two descriptors. To compare a
6D descriptor against an 8D descriptor, we simply exclude
the two extra dimensions from the 8D descriptor vector. By
doing this, the 8D descriptor vector is degraded to 6D. So the
Euclidean distance between them can be computed using the
corresponding entries.

Transformation redundancy. Since our registration de-
scriptor mainly encodes the geometric information of the
planes, simply enumerating all combinations of the planes
results in duplicated transformations. Figure 3 visualizes the
computed translations and rotations from the best-matched
descriptor pairs of two point clouds. We can see that a large
portion of the transformations is duplicated. This can be
observed from the large number of points but fewer clusters
in the visualization.

Given a large number of transformations computed from the
best-matched descriptor pairs, our final goal is to choose the
best transformation that can register the two point clouds. To
achieve this goal, we have to evaluate the confidence for each
transformation. Here, the confidence of the transformation is
typically measured by the number of matched points. Precisely
measuring the number of matched points requires querying

Fig. 3. A visualization of the computed translations and rotations from the
best-matched descriptor pairs of two point clouds. Each point in (a) represents
a translation and each point in (b) represents a rotation (denoted by the three
angles w.r.t. the axes). Note that minor jittering has been added to reveal the
duplicated transformations.

Fig. 4. Penetration tests for two planar segments. (a) and (b) do not have
penetration. (c) An example of penetration.

the nearest neighbor for every point in one point cloud.
Performing such queries on small numbers of transformations
is affordable. However, the large portion of duplicated trans-
formations hinders us from efficiently obtaining the optimal
transformation. To this end, we first remove the redundancy in
the transformations and we keep only the most representative
ones. Using a KD-tree structure, we search for the neighbors
Ti of each transformation ti within a radius r. We simply
replace ti ∪Ti with their mass center. In our implementation,
we chose rt = 0.001 · rL for translations and rr = 2◦ for
rotations, where rL denotes the radius of the bounding sphere
of the point cloud L. After the redundancy being removed,
the number of transformations is significantly reduced. Then,
we perform penetration tests to further reduce infeasible trans-
formations. To do so, we look into the point distribution of
two planar segments (see Figure 4). Penetration is considered
occurring only if the points of each planar segment lie on both
sides of the supporting plane of the other planar segment.

Identifying optimal registration. Intuitively, the optimal
registration transforms the point cloud L in a way such that
the most number of points can be matched to the points in
the point cloud G. This is true for most cases, especially
for objects with curved surfaces. However, when dealing with
man-made scenes that typically comprise planar regions, the
transformation receiving most matched points does not always
suggest the optimal registration. This is obvious because one
planar segment (a set of points lying in a plane) can be
matched with any other planar segments. In this work, we
measure the confidence of a registration transformation (i.e.,
a translation denoted by t and a rotation denoted by r) by
combining two criteria

conf(t, r) = wplane ·Rplane + wpoints ·Rpoints, (3)

where Rplane and Rpoints denote the ratio of the matched
planes and the ratio of the matched points respectively. The
two weights wplane and wpoints are empirically chosen to
be 0.2 and 0.8, respectively. By computing the registration
confidence for each transformation, the one with the highest
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registration confidence is considered as the optimal coarse
registration.

IV. BENCHMARK DATASET

To evaluate our method and, more importantly, to provide
a more practical benchmark dataset complementing existing
datasets, we create a new dataset RESSO2 targeting both
indoor and outdoor scenes.

Data collection. Our data acquisition involves two different
types of commercial scanners: a high-range static laser scanner
(Leica ScanStation C10, with an effective operating range of
100 meters) and a hand-held scanner (FARO Freestyle X, op-
erating range 3 meters). These two scanners have significantly
different operating ranges, accuracy, and resolutions, posing
sufficient challenges to registration algorithms.

We scanned 187 point clouds in total for 15 different
environments (10 indoor scenes and 5 outdoor scenes). Each
indoor scene is captured by a few global point clouds using the
static laser scanner and optionally multiple local point clouds
using the hand-held scanner. The global point clouds capture
the majority of each indoor scene and the local point clouds
are intended to capture local regions of the scene, especially
the regions that are occluded in the global point clouds. This
further adds to the challenges for registration. Due to larger
sizes, the outdoor scenes are mainly captured using the long-
range static laser scanner.

We scanned the scenes without adding additional clutter for
augmenting naturally occurring features and we tried to create
some overlap, but not an excessive amount. Also, the fact that
the point clouds stem from different scanners is a possible
challenge for some feature extractors.

Overlap between scans. Real-world scans typically have
unpredictable varying overlap ratios, which is challenging to
registration algorithms. We choose to quantify the overlap of
two point clouds by measuring the percentage of points that
have the closest corresponding point (in another scan of the
pair) closer than a threshold ε. Considering noises in the input
point clouds and the unavoidable errors in the registration, we
compute the ε-overlap for each scan pair at a discrete set of
ε values. We depict these discrete ε-overlap values in a curve,
so as to intuitively reveal the overlap between scans. Figure 5
demonstrates the ε-overlap curves for a few point cloud pairs
from RESSO and other datasets. From the ε-curves, we can see
that RESSO has less but a wider range of overlap. Thus, our
new dataset is a more challenging and a useful complement
to existing datasets.

Ground truth registration. Given the challenges in the
registration problem itself and the large number of scans,
we obtain ground truth registrations using a combination of
automatic approaches and manual registration. Specifically, we
run our registration algorithm on the point clouds of each scene
and we record the transformation matrices of the successfully
registered point clouds by visual inspection and fine tuning
of the registration using ICP [15]. For those failed to be
registered in the automatic phase, we manually registered them
as initialization to ICP.

2RESSO: Real-world Scans with Small Overlap.

V. RESULTS AND DISCUSSION

We implemented our method in C++ using the Point Cloud
Library [51]. In our current implementation, we mainly fo-
cus on local registration (i.e., pairs of the scans), leaving
global registration (i.e., simultaneously registering all scans
in a scene) as future work. Experiments on various datasets
demonstrated that our method significantly outperforms state-
of-the-art registration techniques.

Evaluation method. Our work focuses on coarse registra-
tion, but in practice, fine registration might be used as a post-
process. One possible evaluation method would be to evaluate
the combination of coarse and fine registration algorithms. We
opt for a more direct evaluation, where we separately evaluate
the impact of coarse registration and fine registration results by
comparing the transformed scans to their ground truth. While
there are many fine registration methods, we use ICP [15] as a
popular representative. Specifically, we consider a registration
successful if the registered scan is close enough to the ground
truth, i.e.,

dist(sr, sg) > dt, (4)

where dist(sr, sg) measures the average point distance be-
tween a registered scan sr and the ground truth sg . To
choose an appropriate value for the threshold dt, we take into
consideration that our coarse registration result is provided
as initialization to a fine registration method. We conducted
multiple experiments and we present the one on all the point
cloud pairs in Figure 9 here. We introduced a sequence (i.e.,
10) of random perturbation transformations (starting from the
ground truth transformation) such that the mean distance of all
the corresponding points was increased at a constant interval of
5cm. Then we ran the ICP algorithm of [15] on all the point
cloud pairs in each sequence to test if ICP could converge.
We recorded the success rate for each sequence and the result
is demonstrated in Table I. This experiment showed that ICP
converged when the mean distance was smaller than 20cm
for indoor scenes and 25cm for outdoor scenes. Based on
these experiments, we conservatively set dt to 10cm for indoor
scenes and 20cm for outdoor scenes.

Registration results. Figures 6 and 7 visualize the regis-
tration results of the proposed method on ten indoor scenes
and five outdoor scenes from our dataset RESSO, respec-
tively. Thanks to the descriptive plane-based descriptor, our
registration method managed to register all these scan pairs.
Though the indoor scene in Figure 6 (j) and the outdoor
scene in Figure 7 (d) partially consist of curved surfaces,
planar structures still dominate and our method successfully
registered these point clouds. The outdoor scene shown in
Figure 7 (a) contains many trees. The planar regions still pro-
vide sufficient information for a reliable registration. Besides
RESSO, we also tested our registration method on point clouds
from publicly available datasets and related works. The visual
results are shown in Figure 8.

Our method is capable of registering scans with small
overlap. Figures 6, 7, and 8 show the registration results of all
point clouds for each scene, thus it is difficult to observe the
overlaps between scans. In Figure 9, we demonstrate a few
pairs of scans from our results shown in Figures 6 and 7.
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Fig. 5. Overlap of point cloud pairs. Top row: scan pairs from RESSO. Bottom row: scan pairs from existing datasets, i.e., (g) ETH [50], (h) DS2-L [13],
(i) TLS-ZEB [14], (j) and (k) Robotic 3D scan repository [5], (l) DS1-H [6]. The corresponding ε-overlap curve is shown below each scan pair.

TABLE I
SUCCESS RATE (%) OF ICP [15] ON A SEQUENCE OF POINT CLOUD PAIRS WITH INCREASING PERTURBATION LEVELS.

Figure
Perturbation (cm) 5 10 15 20 25 30 35 40 45

Figure 9 (a) 100 100 100 100 40 0 0 0 0
Figure 9 (b) 100 100 100 100 70 0 0 0 0
Figure 9 (c) 100 100 100 100 100 30 0 0 0
Figure 9 (d) 100 100 100 100 100 100 90 30 0

Fig. 6. Registration results of the indoor scenes from RESSO. The ceilings have been removed to better reveal the building interiors. The number bellow
each subfigure indicates the total scans in each scene.

Initialization to fine registration. To test if our coarse reg-
istration results can be further improved by a fine registration
method, we ran the ICP algorithm of [15] on all the point
cloud pairs shown in Figure 9 and recorded the registration
error before and after the ICP step. The result is reported in
Table II. We can see that the ICP step significantly reduced

the registration error compared to the that of the coarse regis-
tration, indicating that our coarse registration results provided
good initialization to the ICP algorithm.

Robustness to plane detection. Our plane-based descriptor
is designed to capture the global structure of a scene, allow-
ing us to reliably establish structure level correspondences
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Fig. 7. Registration results of the outdoor scenes from RESSO. The number bellow each subfigure indicates the total scans in each scene.

Fig. 8. Registration results of our method on various datasets. (a) Bremen [52], (b) DS1-H [6], (c) DS2-L [13], (d) DS3-V [13], (e) ETH [50], (f) TLS-ZEB [14],
(g) and (h) Robotic 3D scan repository [5]. The ceilings in (b), (c), and (f) have been removed to better reveal the building interiors.

TABLE II
REGISTRATION ERRORS BEFORE AND AFTER APPLYING THE FINE

REGISTRATION METHOD OF [15] ON THE CLOUD PAIRS SHOWN IN
FIGURE 9.

Figure
Errors (m) Coarse Fine

Figure 9 (a) 0.026 0.008
Figure 9 (b) 0.025 0.006
Figure 9 (c) 0.154 0.039
Figure 9 (d) 0.136 0.042

between two point clouds. Since a few descriptive planes
are adequate in depicting the main structure of the scene, it
is not necessary (nor possible) to obtain a complete set of
planes accurately extracted from the point clouds. To evaluate
this, we repeatedly ran our method on the scene shown in
Figure 6 (a) by incrementally removing planes. Specifically,
we remove 10% of the extracted planes at each iteration until
our algorithm breaks down. Figure 10 reports how our method
behaves by gradually dropping planes. Such a test confirms
that a few dominant planes can provide adequate information
for point cloud registration, allowing our method to achieve
satisfactory registration results as long as certain descriptive
planes (i.e., a small portion of planes) are present.

Robustness to noise. In order to evaluate the impact
of noisy surfaces, we added Gaussian noise to a pair of
point clouds from Figure 6 (a) with increasing noise levels,
i.e., standard deviations (σ) 15cm, 30cm, 45cm, and 60cm,
respectively. Though the noise levels are quite high, we were
still able to extract planes with sufficient quality at three noise

Fig. 10. Registration by gradually dropping planes on the scene show in
Figure 6 (a). Planes with smaller numbers of points are dropped first.

Fig. 11. Registration of two point clouds with Gaussian noise (standard
deviation σ = 45cm).

levels. Figure 11 shows the registration result at noise level
σ = 45cm. However, when the noise level reached 60cm,
where the smaller point cloud (in green) were completely
contaminated by the noise (note how difficult to recognize
the chairs in the scene), our RANSAC-based plane extraction
algorithm failed to detect sufficient planes to establish reliable
correspondences for the registration. Such a test indicates
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Fig. 9. Pairs of point clouds registered by our method, intended to reveal the overlaps between scans. The first two columns show the input scan pairs and
the right column shows the registration results.

that our method is robust to noise as long as the major
representative planes can be extracted.

Comparison. We compared our method against various
point cloud registration methods, including local descriptor-
based approaches and plane-based approaches. Table III and
Table IV report the performance of our method and the
competing methods on some of scan pairs from scenes shown
in Figures 6 and 7. The performance is measured in terms of

the percentage of successfully registered point clouds. From
Table III, we can see that Super4PCS [24] failed in registering
most of the point cloud pairs from the indoor scenes. Other
local descriptor-based registration methods managed to regis-
ter only a small portion of the scans. Such poor performance
is mainly due to the small overlap and the absence of local
geometric features in the point clouds. As expected, the
performance of these techniques improves when the scans have
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significantly larger overlap, e.g., the indoor scene shown in
Figure 6 (j) and the outdoor scenes shown in Figure 7. Besides,
the scenes in Figure 6 (j) and Figure 7 (a) contain some
curved structures, adding descriptive local geometric features
for registration. The large overlapping ratio and the geometric
features bring the performance improvements.

We also compared our method against various state-of-the-
art plane-based registration methods. Due to that source code
of the completing methods is not available, we ask the authors
to run their algorithms on a few scan pairs randomly chosen
from RESSO. These scan pairs demonstrate a wide range
of overlapping ratios. Table IV summarizes the comparison.
Among these methods, the RANSAC-based approach is quite
similar to our method, except that we replace our descriptor-
based correspondence search with RANSAC-based correspon-
dence search. From all these comparisons, we can conclude
that planes are effective features for registering scans of real-
world scenes. Based on the novel plane-based , our method
significantly outperforms the competing methods in terms of
the percentage of successfully registered scans.

Running times. Table V gives the running times of our
method and the competing methods on the scenes shown in
Figures 6 and 7. The Super4PCS algorithm [24] requires to
explore sufficient sets of coplanar 4-points and thus becomes
more expensive for scans of large scenes. The method by Zhou
et al. [34] demonstrate higher efficiency than the Super4PCS
technique because its optimization process involves neither
correspondence updates nor closest-point queries. Compared
to these techniques, our method takes advantage of the plane-
based descriptor so that structure level correspondences be-
tween scans can be very efficiently established via nearest
neighbor search. Thus, it has better efficiency than most of
the competing methods, in particular for larger scenes. Note
that the input point clouds were down-sampled to enable
the competing algorithms to generate their results within an
acceptable time frame.

Limitations. Our plane-based descriptor is dedicated to
registering point clouds of scenes that at least partially consist
of planar structures. Thus, the proposed descriptor is especially
suitable for registering scans of man-made environments. The
descriptor will probably not be successful for scans of vege-
tation and scans of individual objects that consist of curved
surfaces.

Another limitation of our current implementation is that the
confidence metric defined in Equation 3 can only handle the
majority of the tested point clouds in our benchmark data sets.
It still remains a challenge to develop a reliable confidence
metric that works for all scenarios.

VI. CONCLUSIONS

In this paper, we discussed several challenges of the point
cloud registration problem. To address these challenges, we
presented a simple but effective method for registering prac-
tical and feature-poor scans with small overlap in arbitrary
initial poses. Our method is based on a high-level descriptor
that reveal structural characteristics of the scenes, leading to
superior registration performance.

Despite the excellent performance of the proposed registra-
tion algorithm, we demonstrated that the point cloud regis-
tration problem is far from being solved, leaving significant
room for improvement and future work. We also provide the
community a new challenging benchmark dataset that is large
and challenging enough to ensure that registration algorithms
are fairly evaluated and compared, in the hope that experts in
related fields seize such research opportunities and push the
state of the art in point cloud registration forward.
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