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A B S T R A C T   

The goal of urban building mesh simplification is to generate a compact representation of a building from a given 
mesh. Local smoothness and sharp contours of urban buildings are important features for converting unstruc
tured data into solid models, which should be preserved during the simplification. In this paper, we present a 
general method to filter and simplify 3D building mesh models, capable of preserving piecewise planar structures 
and sharp features. Given a building mesh model, a mesh filtering technique is firstly designed to yield piecewise 
planar regions and extract crease contours. The planar regions are used to constrain the simplification of the 
mesh. Mesh decimation is achieved through a series of edge collapse operations, which uses regional structural 
constraints and local geometric error metrics to handle planar and non-planar areas respectively. The proposed 
method preserves the mesh structure with meaningful levels of detail while reducing the number of faces. The 
effectiveness of this method is evaluated on various building models generated from different observation scales, 
and the performance is validated by extensive comparisons to state-of-the-art techniques.   

1. Introduction 

There is an explosive growth of 3D scanning techniques, which have 
the capability of observing urban scenes from various platforms. 3D 
models of mesh type are always favored by many applications. A mesh 
model generated from point clouds by a surface reconstruction algo
rithm (Carr et al., 2001; Alexa et al., 2003; Shen et al., 2004; Guenne
baud and Gross, 2007; Kazhdan et al., 2006) or from a photogrammetry 
pipeline (Furukawa and Ponce, 2010; Wu et al., 2011; Agisoft, 2020; 
Pixel4D, 2020) typically contains hundreds of millions of faces, which 
represents a huge burden on the visualization, storage, and data transfer 
of real-world applications. In some large-scale application scenarios, 
such as communication shielding analysis, augmented reality naviga
tion, disaster assessment simulation, etc., the texture information and 
fine details of the model are not necessary. However, low memory 
footprint, fast data transfer, and efficient physical calculation analysis 
are always preferred in those applications. Therefore, it has become an 
urgent task to reduce the complexity of the models and meanwhile 
preserve the structure of scenes. 

Extracting buildings from large scenes is crucial for many applica
tions and great techniques have been developed for the extraction of 
single buildings (Lafarge and Mallet, 2012; Weinmann et al., 2015a; 
Niemeyer et al., 2016; Landrieu and Simonovsky, 2018). In this context, 

our method does not commit to segmenting the urban scene. Instead, our 
objective is to reduce the geometric complexity of single buildings and 
meanwhile preserve their structure based on a mesh simplification 
approach. 

An efficient mesh simplification method should maintain the main 
structures of the mesh, although small-scale details might be lost. How 
to define the structure of a mesh is still an open question. However, it is 
common sense that the structure of an object is related to the graph of 
sharp features, smooth parts, or planar regions of the object (Botsch and 
Kobbelt, 2001; Mitra et al., 2013; Salinas et al., 2015). Since planar 
shapes are the most common shapes in urban buildings, our simplifi
cation method is intended to preserve these planar features while 
reducing the model sizes. For non-planar regions, our method seeks for 
piecewise planar approximations of the original geometry. Another 
problem is that geometric defects, such as noises and uneven density, are 
present in complex meshes. To eliminate these defects, mesh pre- 
processing plays an important role in the success of the final simplifi
cation. To reduce the amount of data, mesh decimation is one of the 
most versatile algorithms, which merges vertices by the edge collapse 
operations that minimize predefined geometric error metrics (Garland 
and Heckbert, 1997; Lindstrom and Turk, 1998). However, the existing 
error metrics are sensitive to noise and vertex density, so erroneous 
approximations may accumulate during iterations. 
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The goal of this work is to build a fully automated pipeline that slims 
down an urban building mesh model while preserving its structure. The 
method is not aimed at dealing with an entire urban scene at once, but to 
process single buildings in the scene one by one. Our pipeline consists of 
three major modules, namely mesh filtering, structure extraction, and 
mesh decimation. The simplification can filter out small scale details, 
and the results can form multi-resolution hierarchies for efficient ge
ometry processing as well as level-of-detail (LOD) generation. 

The main contributions of this paper are as follows: 

(1) A mesh filtering method that can progressively enhance piece
wise smoothness and sharp contour features. This pre-processing 
method considerably improves the generality of the technique to 
different data sources. Based on this, a simple region growing 
algorithm can be exploited to extract planar shapes from the 
mesh. The structure of a mesh is represented by a topological 
graph, which is assembled by a set of planar regions and intra- 
contour edges detected after mesh filtering.  

(2) A refined mesh decimation method based on a hierarchy strategy. 
Compared with traditional mesh decimation methods, we design 
error metrics for the edge collapse operators in planar and non- 
planar regions using different strategies. Planes detected in the 
previous step are used as a constraint to avoid erroneous accu
mulation during the edge collapse iterations. Therefore, the 
simplified model keeps the original plane structures as much as 
possible. 

2. Related work 

As many mesh modelling algorithms are in conjunction with point 
cloud processing, we discuss related techniques of model filtering and 
contour extraction in the fields of both mesh processing and point cloud 
processing. 

2.1. Meshing and filtering 

Various surface reconstruction algorithms have been designed to 
generate mesh models from points based on different mathematic the
ories, such as radial basis functions (Carr et al., 2001), moving least 
squares (Alexa et al., 2003, Shen et al., 2004, Guennebaud and Gross, 
2007), and Poisson equation (Kazhdan et al., 2006). The surface defi
nition determines which form of projection procedures is used or which 
formulation of implicit functions is taken. Even though both implicit 
surface reconstruction and projection-based reconstruction can preserve 
local smoothness of models, they tend to lose sharp features. These 
methods are concerned with the fidelity of the model rather than the 
compactness. The output models of these techniques can be the input 
data of our algorithm. 

Model fitting with parameterized geometric primitives is another 
way for surface reconstruction, such as the methods based on Hough 
Transform (Overby et al., 2004; Vosselman et al., 2004) and random 
sample consensus (RANSAC) (Schnabel et al., 2007; Henn et al., 2013). 
Planar structures are widely used in many urban building modelling 
methods (Lafarge and Mallet, 2012; Xiong et al., 2015; Li et al., 2016, 
2019), as they assume that the input mesh exhibits a large amount of 
near-planar parts. Chauve et al. (2010) used planes to partition the 3D 
space into a polyhedral cell complex, and the reconstructed surface is 
defined as the interface of a volumetric cell assignment. Nan et al. 
(2017) proposed using a combination of planar patches to generate a 
manifold polygonal surface model. As a constraint in their objective 
function, an edge is shared by two adjacent planar regions. However, the 
selection of planar patches highly depends on planar shape extraction, 
which is still sensitive to noise and sampling anisotropy, resulting in 
spurious hypotheses. 

Given a mesh model, regularization-based methods are usually 
designed using some vertex moving criteria to adjust the mesh surface 

satisfying some requirements. Anisotropy parameterization-free pro
jections (Lipman et al., 2007, Huang et al., 2009) use local approximate 
strategies to resample vertices to regularize meshes. He et al. (2013) 
introduced a face edge-based Laplacian operator, which calculates 
gradient information between neighbouring faces. Then they use an 
l 0-based optimization to minimize the sum of the values of Laplacian 
over all triangle face edges. This method is effective for smoothing 
piecewise flat areas and preserving the sharp features. Inspired by the 
bilateral filtering used in image smoothing (Tomasi and Manduchi, 
1998), Solomon et al. (2014) performed mesh denoising by filtering the 
face normals, using a general formulation of the bilateral filter. The 
challenge for regularizing meshes on the sharp areas is that the neigh
borhood employed for curvature estimation would enclose vertices 
belonging to different surface patches across the sharp feature. 

The normals provide convenient descriptors for detailed geometric 
features of a mesh model. Early works on normal estimation usually 
need sufficiently big neighborhoods to average out the effects of noise. 
The scheme is based on an isotropic neighborhood radius, which implies 
that they easily smear sharp features during the smoothing process. A 
significant inaccuracy remains the determination of surface normals 
close to non-differentiable surface edges. We take triangle faces of 
meshes as operation units and select an adaptive anisotropic neighbor
hood for each unit only enclosing neighbouring faces located on the 
same surface patch. 

2.2. Contour extraction 

The detection of sharp creases is an ill-posed problem. For point 
cloud data, the covariance tensor of the neighborhood of a point is useful 
for describing the local dimensionality. In previous work (Yang et al., 
2013; Weinmann et al., 2015a, 2015b; Wei et al., 2015), point features 
are designed based on different arithmetic combinations of the eigen
values of the covariance tensor, and these features are further used to 
classify corners, edges, and planes. For instance, Hackel et al. (2016) 
used these eigenvalues to compose features and extract all features from 
multi-scale representations. Then, they train a random forest-based bi
nary classifier to classify each point into contour versus non-contour. 
The contour points construct an over-complete graph of candidate 
contours, then an optimal set of contours is extracted using a further 
binary classification in a higher-order Markov random field. 

Combining 2D imagery information with 3D data is an alternative 
way to extract 3D line segments. The multi-view stereo (MVS) technique 
is one of the most popular ways to reconstruct 3D models from image 
sequences (Furukawa and Ponce, 2010; Wu et al., 2011). Consequently, 
some methods extract line features in images and establish line corre
spondences, then triangulate them to 3D lines (Chen and Wang, 2011; 
OK et al., 2012; Hofer et al., 2015). The 3D lines are reconstructed by 
applying the soft matching method both on 2D images and a point cloud. 
In contrast, Lin et al. (2015) projected a point cloud into a collection of 
2D images and extract the 2D line-support regions on these images. Then 
back-project them into the original point cloud as 3D line-support re
gions. However, these methods are tailored only for straight-line seg
ments, so they cannot handle some curve contours in models. The 
quality of projected images will be unstable when the 3D point clouds 
have a strongly varying point density. 

The methods for contour detection in 2.5D range images are more 
efficient because the data have a regular neighborhood structure. A 
distance threshold can quickly determine the depth discontinuity, hence 
provides some contour pixel candidates (Bormann et al., 2015; Choi 
et al., 2013). From a single image, Wang et al. (2016) introduced an 
approach to regularize 2.5D surface normal and depth predicted at each 
pixel. They infer coarse depths, surface normals, and planar boundary by 
convolutional neural networks (CNN), then a dense conditional random 
field is used to regularize the normals and depths with planar boundary 
constraint. 

After extracting a set of irregular contour points, some contour 
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refinement or regularization work is necessary to generate clear polyg
onal building contours (Rottensteiner et al., 2005; Xie and Feng, 2016; 
Chen et al., 2017; Li et al., 2019). Local linearity is one of the most 
widely used model assumptions. In general, it is still a challenge to 
obtain clean contours in curved areas using only geometric features. 

2.3. Mesh simplification 

A detailed model full of redundant triangle faces can be simplified by 
removing a large number of homogeneous faces. Edge collapse-based 
mesh decimation methods are very common in model simplification. 
The idea is that the greedy mesh decimation approaches use some local 
geometric error metrics to decide whether to delete the vertex or not. 
After removing vertices, all adjacent faces are re-triangulated (Garland 
and Heckbert, 1997). Lindstrom and Turk (1998) proposed a memory- 
efficient decimation method, which decomposes the error quadric ma
trix to a set of symmetric sub metrics. This method is more effective in 
terms of approximation error. 

Considering the distinct characteristics of different regions of a 
model, Zelinka and Garland (2002) added boundary constrains on the 
decimation metrics. They define a volume in which the approximation 
must lie, and does not permit the simplification algorithm to work 
outside the volume. Similarly, Cohen et al. (2003) developed a piece- 
wise linear mapping function based on known error bounds of the 
model for successive simplification operations. Marinov and Kobbelt 
(2005) proposed an integral error metric designed to derive multi- 
resolution meshes whose structures are aligned to some detected geo
metric elements. In (Salinas et al., 2015), the structure is abstracted by a 
set of planar proxies detected from a preprocessing step. From the set of 
detected proxies, they compute a proxy-based graph which constrains 
the mesh decimation process. Sometimes, the topology of the model 
cannot be maintained. This process can make drastic topological alter
ations to the model. BigSUR (Kelly et al., 2017) provides another way to 

get the simplified model. It fuses multi-source data, including coarse 
meshes of urban buildings, street images, and GIS footprints, to formu
late a binary integer program that globally balances multiple sources of 
errors to produce compact facade structures. However, these multi- 
source data are not always available at the same time. 

In this paper, the structure of a mesh is abstracted by a set of 
piecewise planar regions and their intra-contours, which are obtained 
after mesh filtering. This method is particularly useful for simplifying 
single buildings with sharp regions among facades and roofs. The 
detection of contours is performed at a spatial scale induced by a 
tolerance threshold of face-orientation discontinuity. To maintain the 
structure of the model and to avoid the error accumulation, we propose a 
refined mesh decimation method, which defines a hierarchical error 
metric to preserve the stability of the detected planar shapes during the 
subsequent edge collapse iterations. 

3. Methodology 

The input data to the algorithm is a triangulated mesh model that 
could be derived from point cloud by any surface reconstruction or 
modelling technique, such as dense photogrammetry or implicit surface 
reconstruction algorithms (Carr et al., 2001; Alexa et al., 2003; Shen 
et al., 2004; Guennebaud and Gross, 2007; Kazhdan et al., 2006; Fur
ukawa and Ponce, 2010; Wu et al., 2011; Agisoft, 2020; Pixel4D, 2020). 
The proposed algorithm tackles the simplification problem as a three- 
phase task: (1) mesh filtering that suppresses noises and enhances 
piecewise smoothness; (2) planar region and feature extraction; (3) 
iterative mesh decimation based on a hierarchical error metric. The 
pipeline of the proposed method is illustrated in Fig. 1. 

3.1. Mesh filtering 

In the mesh filtering step, we decouple face normals and face vertex 

Fig. 2. The effect of the two weight terms. Left: αfi fj decreases when the distances of faces increase. The horizontal axis and sigma values represent the ratio to the 
average edge length. Right: βfi fj decreases when the angle between normals increases. The horizontal axis indicates the angle between two neighbouring faces. 

Fig. 1. The pipeline of our mesh simplification method.  
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positions and refine them separately. Specifically, we use a bilateral 
filtering algorithm to smooth the normals of triangle faces, and then use 
the new normals to update mesh vertices. The mesh filtering program 
iterates between normal filtering and vertex updating. In the following, 
we first introduce the normal filtering method. 

Face normal filtering. Given a mesh M , we denote as V(M ) = {vi;

i = 1,⋯, n} the set of vertices andE(M ) = {ei,j = vj − vi; vi, vj ∈ V} the 
set of edges. ei,j represents an edge that links two vertices vi and vj. As our 
basic operation targets are triangle faces, we define the initial normal of 
each face as the unit vector perpendicular to the face plane. Given a 
triangle face fi, its initial normal is calculated by: 

nfi =
(v2 − v1) × (v3 − v1)

‖(v2 − v1) × (v3 − v1)‖
, (1)  

where v1, v2, and v3 are the vertices of fi. 
After initializing every face normal, a bilateral filtering algorithm is 

applied to refine the normal orientations. It involves two types of 
weights: (1) spatial distance-based weights αfi fj ; and (2) normal 
proximity-based weights βfifj . The spatial distance of two faces, fiand fj, is 
calculated by the Euclidean distance between their centroids cfi and cfj . 
We denote nfi and nfj as the normal of the two faces. Both weight 
functions are defined in similar forms of the Gaussian function, as fol
lows: 

αfi fj = exp

(

−
‖cfi − cfj‖

2

2σ2
dist

)

, βfifj = exp

(

−
‖1 − nfi ⋅nfj‖

2

(1 − cosθ)2

)

, (2)  

where σdist is the variance parameter of distance proximity; θ is a user- 
specified angle threshold that a smaller value yields a better differenti
ation. Both αfifj and βfi fj are non-negative functions. The values of αfifj 

decrease rapidly when the distance of neighbouring faces increases; βfifj 
provides less influence when two normals are more different and vice 
versa. So, a small value of weight inhibits the two neighbouring faces 
from influencing each other. To better understand the effect of the two 
weights, we depict the curves of weight values to the similarities, as 
shown in Fig. 2. In our work, σdist is estimated by the average edge length 
of the mesh edges, and we set θ = 20◦ by default. 

When extracting the neighborhood of a face, we should avoid 
including the faces across the crease areas. We use an adaptive topo
logical neighborhood querying scheme. Each neighborhood set consists 
of multiple faces with similar normal directions. Let Nfi denote the 
neighborhood set of fi on condition that each element satisfies two 
criteria: (1) it shares at least one vertex with the query face fi; (2) the dot 
product of neighbour’s normal and normal of fi is greater than cosθ. 
Besides, the query face itself is also included in Nf i . A filtered normal n̂’fi 
for facefi is computed as: 

n̂’fi =
1
wi

∑

fj∈Nfi (f )

Afi ⋅αfifj ⋅βfifj ⋅nfj , (3)  

wi =

⃦
⃦
⃦
⃦
⃦
⃦

∑

fj∈Nfi (f )

A⋅αfifj ⋅βfi fj ⋅nfj

⃦
⃦
⃦
⃦
⃦
⃦
,

where wiis a normalization term ensuring the result is a unit vector. Afi is 
the area of the face fi. Intuitively, n̂’fi is a weighted average of normals 
within the neighborhood Nfi . For meshes with uneven face sizes, the 
topological neighborhood can provide better querying results than the 
range-based neighbor querying, as it only includes neighbouring faces 
with similar orientations. As can be seen from Eq. (3), the new surface 
normal n̂’fi is a weighted average of its neighbors. Since all the weights 

Fig. 3. The effect of the two weights on the filtering. The faces are color-coded based on face normal directions. The number below each column indicates the 
number of iterations. 
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are positive, Eq. (3) can be intuitively interpreted as a smoothing 
operation over the face normals, thus it inherently preserves the basic 
structure of the model. 

Note that the initial normal nfj can be extremely irregular if the initial 
mesh surface is highly crumpled. In this case, we use an isotropic 
geometrical neighborhood Nfi at the beginning of the filtering. The 
isotropic geometrical neighborhood includes all neighbouring faces 
whose distances from the query face fi are less than a range threshold. 
After a few iterations of the filtering process, the neighbouring normals 
will be homogeneous. Then, we use the aforementioned topological 
neighborhood query method for further filtering. 

Vertex position update. After refining the face normals, the vertex 
positions need to be updated correspondingly. To calculate vertex dis
placements, we design a variation of the discrete anisotropic Laplacian 
operator inspired by HA (Huang and Ascher, 2008). In the original 
method from HA, the discrete anisotropic Laplacian (AL) operator is 
given by 

Δvi =
1

wvi

∑

vk∈Nvi (v)

exp
(
− hi,k

2

2σ2
i

)

hi,k⋅nvi , (4)  

wvi =
∑

vk∈Nvi (v)

exp
(
− hi,k

2

2σ2
i

)

, hi,k = ei.k⋅nvi ,

where vk ∈ Nvi (v) denotes the neighbors of a vertex vi; hi,k denotes the 
projection of an edge ei.kalong the normal nvi ; σi is the deviation of edge 
projections; and nvi is the normal of vi. wvi is used to normalize the in
fluences of edge projections. Eq. (4) averages the neighbouring edges 
with anisotropic weights. 

We also use weighted averages but depart from HA in the sense that 
our implementation is based on face normals rather than vertex normals. 
As a non-boundary vertex has at least three faces in its one-ring neigh
bors referred to as face neighborhood Nvi (f), they provide reliable 
guidance for the vertex updating. In our implementation, the connected 
segment between the face center cfk and the vertex vi, i.e.cfk − vi, is used 
to replace ei.k in the projection hi,k. Besides, our experiments and analysis 
have shown that there is no obvious difference by using exponential 
kernel on hi,k, so the projection value is normalized by dividing the 
number of neighbouring faces. Thus, our vertex displacement value Δvi 

is calculated by 

Δvi =
1

|Nvi (f )|0

∑

fk∈Nvi (f )

[(
cfk − vi

)
⋅n̂’fk

]
⋅nfk , (5)  

where |Nvi (f)|0 gives the number of neighbouring faces; fk ∈ Nvi (f) de
notes fk one of the neighbouring faces of vi, and ̂n’fk is the filtered normal 
of fk. 

An iteration is finally accomplished by vertex updating: vi←vi + Δvi . 
Then the updated vertices can generate new face normals for the next 
iteration. According to Eqs. (1), (3), and (5), we iterate the three steps of 
face normal initialization, normal filtering, and vertex updating until 
convergence is reached. The theoretical convergence criterion is that for 
every vertex the displacement is within a specified threshold. 

The optimization result of the filtering operation should satisfy 
min
∑

∀nfk
n̂fk Πfk , where Πfk is the plane coplanar with a face fk. However, 

the vertex update strategy approximates the optimization result. So, 
after each iteration, the vertex updating and normal smoothing affect 
each other and they are difficult to converge completely. Extensive ex
periments revealed that after 10 iterations, a plausible model flatness 
can be achieved. For efficiency, we set the number of iterations to the 
range [10, 20]. In practice, a large number will also work but it takes 
more time. 

Fig. 3 illustrates the concept behind the proposed approach on a 
ridge area of a building model. The faces are color-coded based on their 
normal orientations. Due to the noise, the initial mesh surfaces around 

the ridge area are bumbled, and the orientation distribution of face 
normals is quite fuzzy. After our normal filtering and vertex updating 
(first row), these problems have been improved significantly. For this 
model, the change of the mesh became negligible and the contour be
tween the two regions became clear after 15 iterations. The filtered mesh 
provides fundamental support for the later feature extraction. 

To demonstrate the impact of both the normal similarity weight and 
spatial weight, we show the smoothing results by omitting one of the 
weights (i.e., setting its value to 1). As shown in the second row of Fig. 3, 
where only the normal similarity weight is used to filter the mesh, the 
face normals converge rapidly. Although there are sharp discontinuities 
in the ridge area, the contour has increased tortuosity. This is because 
using only the similar normals in the neighborhood strengthens the 
orientation of each other, which has an effect of sharpening the transi
tion regions. The third row shows that using only the spatial weight 
degenerates the formula into a simple range-weighted mean filtering, 
which leads to over smoothing in the ridge area. 

3.2. Region and contour extraction. 

Planar region extraction. After filtering the 3D model, the topo
logical relationship of its triangular faces does not change, and the 
characteristics of the smooth region and the edge region of the model are 
further enhanced. On this basis, a simple region growing method can get 
good plane segmentation results. To get piecewise planar regions, we 
segment triangle faces into some regions by traversing triangle faces 
through their common edges to compare their normal directions. 
Neighbouring triangles are merged into a group if their normals are 
close enough. A region stops expanding when no more faces satisfy the 
merging conditions, and then a new growth stage starts from the 
remaining faces. After the region growing, we obtain a set of coarse 
planar regions and every triangle face has been assigned to one of these 
regions. A detailed description of the region growing method is given in 
Algorithm 1. 

To further analyze these regions, especially their spatial adjacent 
relationships, we build a topology graph G = (VG,EG) without consid
ering their geometric positions. It is similar to the graphs proposed in 
aerial building roof analysis tasks (Oude Elberink and Vosselman, 2009; 
Xiong et al., 2014). In the graph G, each node denotes a region vi := Ri 
and the edge between two nodes means that two regions are adjacent. To 
build the set EG, we traverse all face edges. If two regions Ri and Rj have 
faces that share a common edge, we consider the two regions adjacent 
and insert a graph edge eij in EG. 

Using the topology graph, we further refine the planar regions and 
detect intersecting region contours. As the region growing algorithm 
only considers normal proximity, there are two types of regions that 
need to be refined: (1) some very small groups with few faces, and (2) 
some separated similar regions that should be connected. 

Generally, very small groups will be considered invalid. If the area of 
a region Ri is smaller than a specified area threshold, the faces in Ri need 
to be redistributed to one of its adjacent regions {Rj}. To find the target 
region Rtarget, we compute the summation of the projected distances from 
face vertices {v}Ri 

to the plane ΠRj of the candidate region, according to 
Equation (6). 

Rtarget = argmin

⎛

⎝
∑

{v}Ri

⃒
⃒v,ΠRj

⃒
⃒

⎞

⎠ (6) 

If the value of the smallest summation is smaller than a specific 
fitting threshold, all faces in Ri are regrouped into Rtarget; otherwise, the 
faces remain ungrouped. Hence, we allow ungrouped faces, which are 
lying on highly curved regions or they are outliers. 

After eliminating very small regions, the fusion regions inherit their 
graph edges. Separated regions that should be together are mainly 
caused by these sandwiched small regions. After trimming small regions 
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in G, we check and merge the regions that are near coplanar and adja
cent. After all, a plane is fitted by least-squares (LS) fitting from all 
related face vertices for each planar region. 

The pseudo-code of the planar structure extraction is given in Al
gorithm 1.  

Algorithm 1. Planar structure extraction framework 
Input: Original mesh 
1) Initialize a group indicator for every face g(f) = g = − 1, and put all faces in a 

global set A = {f};  

2) While A ∕= ∅ do:  
3) fi = A.front(), erase fi from A, and g(fi) = ++g;  
4) Define a new group Rg = ∅, and insert fi into Rg ;  
5) Find all neighbor faces Nfi of fi;  
6) For each fk ∈ Nfi do:  
7) Ifg

(
fk
)
∕= − 1, erase fk from Nfi , continue;  

8) Else if n̂’fk ⋅n̂’fi > sin0(θ),set g(fk) = g, insert fkinto Rg,find neighbors Nfk of fk, 
erase fk from A, and concat Nfi with Nfk .Go to 6).  

9) Mark Rg as a planar region, then go to 2);  
10) End loop 2). Get coarse regions {Rg}.  
11) Construct a coarse region-based graph G = (VG ,EG);  
12) For each node/region vi := Ri in VG, do:  
13) If area(Ri) > area threshold, continue;  
14) Else, find target region Rtarget according to Equation (6)If the smallest sum <

fitting threshold,merge Ri into Rtarget ;Else mark faces in Ri as ungrouped.Go to 
12).  

15) Fitting planes by LS for every region. 
Output: Refined planar regions with supporting face indices.  

Contour feature extraction. The contour features of a mesh are coin
cident with some triangle face edges, along which the orientations of the 
joint faces show significant discontinuities. Similar to the process 
searching graph edges, we traverse all face edges and check whether the 
adjacent faces of an edge belong to different regions. Specifically, an 
edge is a contour edge if its two adjacent faces belong to different re
gions. An intersection line l can be calculated from two corresponding 
region planes for the contour edge. Then, the two vertices of the contour 
edge are projected to line l. 

Fig. 4 illustrates the feature extraction procedure using the mesh in 
Fig. 3. The region growing method classified the triangle faces into some 
homogeneous parts, as shown in (b). Faces with an identical color 
correspond to a separate region. As mentioned above, a small normal 
proximity angle tolerance, e.g. 15 degrees, will split some similar re
gions. That is why we can observe a few patches marked as different 
regions in the preliminary classification. Using the region refinement 
strategy, these similar regions are merged with adjacent regions to get a 
coherent segmentation result, as shown in (c). In (d) and (e), the final 
extracted planar regions and their intra-contour edges are demon
strated. The extracted features faithfully reflect the characteristics of the 
scene. 

3.3. Simplification of mesh models 

Conventional edge collapse. Mesh simplification is achieved by 

finding a tradeoff between model accuracy and geometric complexity. 
This is realized by a mesh decimation framework that iteratively applies 
the edge collapse operation. Edge collapse is an operator that merges the 
two vertices vi and vj to a unique vertex v̂, i.e., vi, vj→v̂. For an edge 
expressed by ei,j = vj − vi, a cost Δei,j is defined related to an error metric 
to decide whether the two vertices should be merged. 

In the original edge collapse operator of the GH method (Garland and 
Heckbert, 1997), each vertex is associated with an error quadric Qv, 
which represents an error between the current and the initial mesh. The 
method minimizes the sum of the projected distances from the vertices 
to their neighbouring face planes Nv(f). Given a plane P = [a, b, c, d]T, 
the squared distance of a point v = [x, y, z,1]T to the plane is: 
(
PT v
)2

= vT ( PPT)v =: vT QPv, (7)  

where QP =

⎡

⎢
⎢
⎣

a2 ab
ab b2

ac ad
bc bd

ac bc
ad bd

c2 cd
cd d2

⎤

⎥
⎥
⎦

Further, the error quadric Qv of a vertex v accumulates the squared 
projected distances from v to all supporting planes{Pfk}, which are 
coplanar with v’s neighbouring triangles Nv(f): 

∑

Pfk ∈Nv(f )

(
Pfk

T v
)2

=
∑

k
vT QPfk

v = vT

(
∑

k
QPfk

)

v =: vT Qvv. (8) 

This quadric Qv is encoded as a 4× 4 symmetric matrix. For an edge 
ei,j, its quadric Qei,j is computed by adding the quadrics of its two vertices, 
i.e., Qei,j = Qvi + Qvj . So, the cost function of an edge ei,j is calculated as: 

Δei,j = v̂T Qei,j v̂. (9)  

v̂ is the variable, which represents a new vertex. Whenv̂ minimizes the 
cost Δei,j , it is the result position for edge collapse operation on ei,j. As 
every edge has a minimized cost with a corresponding potential vertex, 
we can list all the edges in ascending order according to their costs. The 
algorithm iteratively merges the end points of the edge with the lowest 
cost, computes its optimal location, and updates the edge list. 

Notice that, in Eq. (8), the quadric Qv of a vertex v is calculated based 
on all neighbouring faces of v. This method does not consider the 
regional structure. Consequently, the quadric of the edge has the same 
problem, which might lead to local convergence. 

Feature-preserving edge collapse. Our approach analyzes neigh
bouring faces and regional structures to design a hierarchical error 
quadrics for the edges. Extracted planar regions are used to define a new 
error metric. 

If all neighbouring faces of v belong to one planar region Pv, we 
calculate the error quadric QPv of v based on Pv rather than the neigh
bouring faces of v. Here, QPv is a planar region constrained error quadric. 
Otherwise, we keep using the conventional error quadric, i.e. the sum of 
the projected distances from v to all neighbouring triangles’ planes (see 

Fig. 4. An overview of the feature extraction process. (a) Initial mesh; (b) preliminary classification based on region growing; (c) the segmentation result after 
merging similar regions; (d) two refined planar region structures; and (e) the intra-contour edge depicted in red color. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.) 
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Eq. (8)). Hence, the vertex quadric now is designed as a hierarchical 
formula: 

Qv =

⎧
⎨

⎩

QPv if ∀Pfk belong to Pv∑

Pfk ∈Nv(f )

QPfk
otherwise , (10) 

For an edge, its quadric Qei,j accumulates the two vertex quadrics. The 
error metric is defined as: 

Δei,j = v̂T Qei,j v̂ = v̂T
(

Qvi + Qvj

)
v̂. (11) 

The next step is to find v̂ that minimizes Δei,j . We adopt the GH’s 
placement strategy for v. As Δei,j is quadratic, an optimal location for v̂ 
can be found by solving ∂Δ/∂x = ∂Δ/∂y = ∂Δ/∂z = 0. Taking partial 
derivatives of Equation (11), ̂v is the root of the following linear system: 
⎡

⎢
⎣

q11 q12
q21 q22

q13 q14
q23 q24

q31 q32
0 0

q33 q34
0 1

⎤

⎥
⎦v̂ =

⎡

⎢
⎣

0
0
0
1

⎤

⎥
⎦, (12)  

where qij is the corresponding element in Qei,j . If the coefficient matrix in 
this function is invertible, we select either v̂ = vi, v̂ = vj, or v̂ =

(vi + vj)/2 depending on which that produces the lowest value of Δei,j . 
The impact of planar region groups on edge collapse operators is 

illustrated in Fig. 5, where the dash lines denote supporting planes. The 
operator using GH’s error quadric generates v̂, which has the lowest 
total distance value to the planes of neighbouring triangles. It only uses 
local geometric information of neighbouring faces, which might be 
influenced by noises. If the neighbouring faces are near planar on a 

larger scale, the result cannot reflect this characteristic. On the contrary, 
as our error metric considers the planar region group as a whole, the new 
vertex v̂ will automatically migrate to the plane. 

The hierarchical definition of error metrics for the edge collapse 
operations ensures that the proposed approach is more adaptable for 
different data. For example, if a building is composed entirely of planar 
structures, the error metric in the algorithm is only subject to the 
regional planar constraints. Conversely, if a building does not contain a 
plane structure but only curved shapes, the edge collapse operation 
degrades into the traditional method. 

In practice, we use a greedy optimization method that first computes 
a priority queue of edge collapse operators with increasing cost values. 
The collapse operator with the lowest cost from the heap is extracted and 
applied. Then, the priority queue is updated and the algorithm iterates 
the above processes until the reduction requirement is satisfied. 

We observe in different experiments that when we set the target 
number of mesh vertices to about twice the number of extracted planar 
regions, the result models can reach a better tradeoff between model 
fidelity and conciseness. However, automatically setting the optimal 
vertex number of simplified mesh is not easy due to the varying 
complexity of the scenes. It may require trial and error to better balance 
the geometric accuracy and the simplicity of the final model. In Section 
4.4, we show some examples to discuss the effects of target vertex 
numbers. 

4. Experimental results 

4.1. Qualitative results 

To evaluate the efficiency of the proposed method, we applied it to a 

Fig. 6. Simplification of an aerial photogrammetry model. From (a) to (f), initial mesh, mesh filtering result, region growing result, extracted planar region 
structures, contour features, and the final simplification result. 

Fig. 5. Examples of edge collapse operation (vi,vj→v̂), using GH’s error quadric (middle up) and regional plane constrained error metric (middle bottom). The dash 
lines denote supporting planes Pf . 
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variety of building mesh models with irregular connectivity of planar 
regions and features. These models are generated by different tech
niques, including photogrammetry techniques, surface modelling from 
LiDAR point clouds, and Kinect fusion algorithm. In our experiments, we 
set the normal angle tolerance to 15 degrees and set the result vertex 
number to about twice the number of the detected planar regions. 

Fig. 6 demonstrates how the result evolves on an office building 
model generated by aerial photogrammetry techniques. The proposed 
method succeeds in (b) smoothing surfaces, (c) extracting planar regions 
and (d) region structures, and (e) detecting contour features. Note that 
not all faces have corresponding planar regions. As shown in (c), the 
faces in dark blue color indicate that they have not been grouped into 
any planar region. That is because the initial mesh models may contain 
some over smoothed or highly curved parts. Our segmentation method 
does not partition these curved regions, so the method simplifies un
structured parts such as trees on the ground and air conditioners at the 
roofs using traditional edge collapse operators. The structural parts, 
such as the main facades of the building, are simplified extremely with a 
much smaller number of faces. Through the comparison between the 
enlarged parts of (a) and (f), we can see that the triangle number of the 
model has been significantly reduced after the process. 

Fig. 7 shows a similar example of a power station, in which (a) to (d) 
are the original model, smoothed model, segmentation result, and the 
final simplification result, respectively. We noticed that parts of the 
model with double thin slices shapes might be shrunk into a degenerated 
plane. As the blue arrows indicated, a channel on the ground has been 
converted to a step after the simplification. For large scenes with com
plex structures, some unexpected planes may be detected because the 
mesh surfaces at these parts present incorrect shapes caused by noises or 
occlusions. As the wall indicated by the red arrows, an additional planar 
region is extracted from the filtered model, which leads to an extra plane 
in the final model. 

The experiments of both Figs. 6 and 7 demonstrate that the proposed 
method can generate lightweight polygonal mesh models, which have a 
more compact representation compared to the initial photogrammetry 
mesh models. Depending on the use, e.g., quantity survey or simulation, 
features such as baseboards, window ledges, roof tiles, or chimneys may 
be considered as useless pieces of information. Therefore, these details 
are usually omitted in the results. As a whole, even though real-world 

models generated from aerial photogrammetry techniques contain 
many bumbled surfaces, our filtering method can eliminate this type of 
defects on smooth regions and leads to extremely simplified meshes. The 
simplified models can well meet the standard of CityGML LOD2 models 
(Groger et al., 2012). The resulted models can be further mapped with 
textures coming from oblique photographic images based on the image 
orientation parameters. 

We also verify the adaptability of this method by testing on two other 
types of data. One is the mesh model of an indoor flat generated by an 
RGBD sensor with the Kinect fusion method (Izadi et al., 2011); the 
other two are a factory building model generated from an aerial LiDAR 
point cloud by the dual contouring algorithm (Zhou et al., 2010). In
termediate and final results are depicted in Figs. 8 and 9. The charac
teristic of the indoor model is that there are a lot of holes due to 
transparent windows and occlusions in the scanning. We can see that 
there are some holes in the indoor mesh. These holes are retained after 
simplification. The characteristic of the LiDAR point clouds is that the 

Fig. 7. A mesh simplification example on a power station model. The blue arrows indicate a channel that is degenerated during the procedure; the red arrows 
indicate an extra undesired planar structure. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. Simplification of an indoor model generated by the Kinect fusion 
method from RGB-D data. 
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façades of the initial model are sparse while the roofs are dense. That is 
caused by the top-down observation viewpoint of the aerial LiDAR 
sensor. Our method is capable of reducing the accumulation of local 
erroneous approximations during the edge collapse process. Regional 
structures of the model are preserved by not performing edge collapse 
operators that violate the minimization rules defined by Eq. (11). 

Our method is based on the assumption that buildings are dominated 
by piecewise planar structures. For buildings that do not comply with 
this assumption, it has an effect of a piecewise planar approximation of 
the input model. Fig. 10 shows the models of a stadium and an exhibi
tion hall both with smooth domes. The simplification results demon
strate that our method has good applicability. As there is a judgment in 
the algorithm, it can automatically fall into the traditional decimation 

method to process these smooth structures. 

4.2. Quantitative analysis 

All experiments were performed on a laptop with a 2.50 GHz Intel 
(R) Core (TM) i7-6500U CPU and 8 GB RAM. We have implemented our 
method in C++ with the VCG library (VCG Library, 2020) for mesh 
operation and libQGLViewer (libQGLViewer, 2019) for visualization. 
Statistics of the above-mentioned results are listed in Table 1. In our 
implementation, all models are stored by saving their vertices, vertex 
indices of faces, and face normals. As the compression ratio of the points 
and that of the faces are not the same after simplification, we compute 
the overall compression ratios based on the file sizes in ASCII format. To 
evaluate the accuracy of the simplification results, we calculate the 
fitting error based on the distance between the vertices of the original 
model and the faces of the simplified model. Specifically, the distances 
are calculated from the original model vertices to the closest faces on the 
simplified model. The mean value and the root mean square (RMS) value 
of the distances are used to evaluate the fitting accuracy. By using the 
diagonal length of the scene’s bounding box as a reference, the relative 
error can be analyzed in the global scope. Since the models are gener
ated with calibrated devices and photogrammetry techniques, their 
lengths have the real physical unit. 

Form Table 1, we can also conclude that the compression ratio of the 
factory building model is larger than the others. That is because the 
main structure of this scene is a large curved dome, which could not be 
represented by a small number of planar structures. In this case, more 
face edges are processed by calculating the conventional error metric. As 
listed in the last column, most of the relative errors are less than 1% of 
the whole scenes except for the indoor model. The indoor scene con
tains a large number of small pieces of furniture that are eliminated in 
the result, increasing the errors. 

Using the power station data, a series of simplified models with 

 (a) Initial mesh.       (b) Filtered mesh.       (c) Planar regions.      (d) Simplification result. 

Fig. 9. The simplification of a factory building model reconstructed from a LiDAR point cloud.  

Table 1 
Statistics of sizes and errors for the simplification results.  

Model Planar region # Original vertex / face # Result vertex / face # Compress ratio Distance (meter) 

Diagonal Mean error RMS error 

Office building 112 14,643 / 28,929 208 / 391  1.12%  279.827 0.384 
(0.137%) 

0.601 
(0.215%) 

Power station 257 100,543 / 220,370 514 / 1001  0.64%  574.940 0.936 
(0.163%) 

1.663 
(0.289%) 

Indoor flat 56 223,634 / 428,021 101 / 169  0.03%  15.236 0.109 
(0.717%) 

0.185 
(1.21%) 

Factory building 233 22,118 / 43,205 466 / 803  3.32%  228.054 0.162 
(0.071%) 

0.315 
(0.138%)  

Fig. 10. The simplification of two models with curved domes.  
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different compression ratios are analyzed on geometric fitting accuracy. 
As the geometric errors of traditional methods are close, GH’s method is 
used as a reference to evaluate the accuracy of other methods. We 
evaluate the mean errors of all results by calculating the projection 
distances from the original model’s vertices and from the filtered 
model’s vertices to the result models, respectively. In addition to the 
original model, we choose the filtered model as a reference for the 
following reasons. We assume that the filtered model has already dis
carded many fine details. Besides, the photogrammetric error of the 
original model is not considered. As shown in the color texture of the 

original model, the areas with large errors are mainly uneven parts on 
the roofs, walls, and the ground. By referring to the filtered model, we 
can better understand the advantages of the simplified model in terms of 
structural reservation. Most regions remain consistent geometric posi
tions in the filtered model after simplification. The mean errors are 
plotted in Fig. 11 (left). As the compression ratio increases, we can 
observe similar error trends of different methods. In Fig. 11 (right), we 
depict the original model and the filtered model with color attributes 
related to their vertex projected distance to the result in Fig. 7 (d). 

In the tests referring to the original model, we observed that GH’s 
method has better accuracy when the compression ratio value is larger 
than 1.0%. That is because it uses the local feature to design the error 
metric, and more fine details are maintained at low compression ratios. 
On the contrary, our structure-preserving strategy resulted in a higher 
error due to the planar region-based abstraction. When the compression 
ratio increases, the advantage of our method is shown. The results have a 
lower error at coarse levels by preserving the dominant structural ele
ments. The method performs well in terms of improved accuracy and 
preservation of scene structures. Hence, our approach is more suitable 
for extreme simplification tasks. 

Fig. 11. Mean geometric errors. On the right, we show the errors of the simplified model in Fig. 7(d).  

Fig. 12. Comparison on a church building (top row) and a noisy torus model (bottom row, noise magnitude is 30% of the average edge length of the mesh). (a) Initial 
mesh model, (b) our smoothed model, (c) our simplification result, (d) result generated by GH’s method (Garland and Heckbert, 1997), (e) LT’s method (Lindstrom 
and Turk, 1998), and (f) result of SLA’s method (Salinas et al., 2015). All methods simplified the model to 50 vertices. 

Table 2 
Statistics on the running times of each step of the method on four examples.  

Model Timing (Sec.) 

Mesh filtering Region extraction Edge collapse Total 

Office building  1.85  4.27  0.33  6.45 
Power station  10.40  83.43  1.91  95.74 
Indoor flat  25.25  260.22  3.35  288.82 
Factory building  6.53  55.21  0.40  62.14  
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In Table 2, we report the computation times of the three key steps. 
Firstly, the normal filtering and vertex update is linear to the number of 
mesh faces and vertices. So the complexity of the filtering process is 
kO
(
nF + nV), where k is the number of iterations, nF and nV are the 

number of mesh faces and vertices respectively. For the coarse region 
extraction process, the region growing complexity is O

(
nF); the region 

refinement process consists of finding the region connectivity and 
calculating region area and fitting distances from faces to their neigh
bouring planes. The complexity is O

(
nFm2), where m is the number of 

regions detected by the coarse region growing method. Consequently, 
this is the most time-consuming step of the whole method. For the edge 
collapse operation, the operator iteratively queries the deleting edges in 
a heap, which has a complexity of the process is O

(
nElognE), where nE is 

the total number of edges. 

4.3. Comparison 

We further compared our method to those of the GH’s method 
(Garland and Heckbert, 1997), the LT’s method (Lindstrom and Turk, 
1998), and the SLA’s method (Salinas et al., 2015), using a photo
grammetric church building model and a torus model with additive 
Gaussian noises. In our experiment, the results of the GH’s method and 
the SLA’s method are obtained by the demo program of Salinas et al. 
(2015). LT’s method and our method are implemented using the VCG 
library (VCG Library, 2020). Adopt the comparison method used in 
(Salinas et al., 2015), we set the expected vertex number of the final 
model to 50 in both cases. The comparison results are shown in Fig. 12. 

The original models may contain different levels of noises and some 
defects near sharp features. After the mesh filtering phase, these defects 
are significantly reduced. This is particularly noticeable in the example 
of the torus model. Fig. 12(b) indicates that our results converge to 
piecewise smooth regions with clean sharp features. Based on the planar 
region constraint, the vertex positions tend to adapt themselves to the 
mesh curvature as it can be observed on the models (Fig. 12(c)). 

A smaller vertex number indicates a coarse complexity of the model. 
Both GH’s and LT’s approaches have troubles to reach low approxima
tion error while preserving structures (see Fig. 12(d) and (e)). The 
boundary areas of the input data are over smoothed or noisy, which 
leads to the shrinkage and degeneration during the edge collapse pro
cesses and progressively cause the accumulation of erroneous. 

The SLA’s approach also used the detected planar structures to 
design the edge collapse rule. However, it lacks the strategy on the non- 
planar structures, so its result (Fig. 12(f)) is sensitive to the quality of 
planar proxy detection. As the tower in the middle of the roof is not 
detected by any plane elements, it is discarded in the final result. When 
the input model is seriously contaminated by noise (the torus mode), 
SLA’s method performs poorly at recovering clean planar features. This 

finally causes an unstable result. Compared to these methods, our 
method introduces a mesh filtering process before the edge collapse 
operations, which significantly improves the robustness of the pipeline 
and prevents error accumulation during the subsequent edge collapse 
operations. As our definition of error metric of vertices uses a hierar
chical strategy, the method can handle planar regions as well as non- 
planar regions. 

A comparison of time consumption and geometry accuracy is given 
in Table 3. The proposed method and the LSA method took longer for the 
preprocessing of plane extraction. Besides, the proposed method is 
slower in mesh smoothing. The majority of the computational costs of 
the algorithm is due to updating the normal vector and vertex co
ordinates. Although our method is inferior to other methods in running 
time, it has obvious advantages in terms of result accuracy. Fig. 13 
shows the fitting error of our simplification models on the initial mesh 
(Church) and the ground truth model (Torus). Large errors mainly occur 
in some small corners and bumps, such as chimneys and horns. These 
objects do not affect the overall structures. From the Torus model, it can 
be seen that there is some offset in the corners, which is caused by the 
smoothing step. Smoothing improves the simplification in the flat areas 
but may introduce small errors at the corners. 

The robustness to noise is one of the characteristics of our method. As 
the filtering process can suppress the noise level, the complex level of the 
simplified model is less affected by noise. The noise tolerance of our 
method is illustrated in Fig. 14, in which the models are manually 
designed and corrupted with different levels of noise. We can observe 
that the quality of filtering results and region extraction are stable to the 
noise levels. As shown in the second row, large noise blurs the sharp 
edges, while the filtered result would smooth the roof eaves. With the 
increase in noise, the number of small planes detected also increases. 
The region refinement method merges these small planes into large re
gions, reducing the number of structures. When the noise magnitude is 
less than 20% of the average edge length, the algorithm can faithfully 
recover the model to the same quality as without noise. Therefore, our 
algorithm can be applied to a wide range of models. 

4.4. City model 

Fig. 15 shows the simplification of a city model with various building 
structures. The area is 890 m long and 350 m wide. The result shows that 
our method can generate well-decimated meshes in terms of both visual 
coherence (Fig. 15(b)) and geometric accuracy (Fig. 16). As shown in the 

Fig. 13. Fitting errors of the Church and Torus models.  

Table 3 
Comparison with time consumption and geometry accuracy.  

Model Initial 
vertex# 

Result 
vertex # 

Timing 
(Sec.) 

Mean error 
(m) 

Method 

Church 95033 50  19.011  0.17 Ours  
15.110  0.23 SLA  
2.018  0.33 LT  
2.062  0.29 GH 

Torus 2686 50  1.640  0.52e-3 Ours  
1.362  0.003 SLA  
0.037  0.013 LT  
0.255  0.009 GH  
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enlarged windows in Fig. 16, the protrusions such as chimneys are the 
main source of errors. 

In Fig. 17, we present a comparison using a single building from the 
city model, whose face number is reduced from 1667 to 60. This 
experiment revealed that plane feature-preserving approaches, such as 
the SLA and our method, are sensitive to the quality of plane detection. 
As our method benefits from the smoothing process, the plane detection 
results are cleaner and more accurate. Plane features perform well at 
recovering clean sharp features of small roof patches. Because the GH 
method has no feature-based constraints, it will flatten some adjacent 
non-coplanar regions. Therefore, compared with SLA and ours, the GH 
result has a smaller number of planar areas. As indicated by the arrows 
in Fig. 17, after applying the GH and SLA methods, some small roof 
structures were deformed, and these parts have larger errors. Overall, 
the proposed method has better accuracy. 

4.5. Limitations 

An ideal simplified mesh should be visually coherent to the initial 
model and contain only the minimal complexities required to represent 
the model without losing structures. However, how to define minimal 
complexities is still very ambiguous. It is difficult to find a universally 
applicable criterion to terminate the simplification method. In Fig. 18, 

we show a set of results to explain the visual effect of the target number 
of vertices. Since the models in Fig. 1 and Fig. 8 are relatively simple and 
can be evaluated intuitively, we use these two groups of results for 
analysis. As can be seen, when the vertex numbers of the models are 
greater than twice the number of planes we set, the overall structures of 
the models change little. When the number of target vertices is further 
reduced, the structure of the model may be completely lost at a certain 
time indicating a failure in simplification. We notice that increasing or 
decreasing one or two vertices has little effect on the model when the 
total number is large. However, when the vertex number is reduced to a 
low number, individual vertex adjustment will cause unexpected results 
in the simplified model. We set the number of vertices twice the number 
of extracted planes. Although this is not necessarily the optimal number 
of vertices, it provides a good compromise. 

Our target objects are mainly piecewise planar buildings since these 
structures are dominated by planar shapes. For buildings that consist of 
large free-form surfaces, the computational complexity of our method 
will increase and the algorithm may lose its advantages. Besides, the 
proposed algorithm cannot guarantee all refined vertices perfectly 
aligned with the abstracted planes, which is a common issue of quadratic 
optimization-based mesh simplification methods. 

Fig. 14. The robustness to noise. From left to right, the meshes in the columns are corrupted with noises, whose magnitude is 0%, 10%, 20%, 30%, and 40% of the 
average edge length respectively. 
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Fig. 15. City models of Graz. We separate the models into roofs and walls with different colors for better visualization.  

Fig. 16. Fitting error. The color map indicates the distance from the initial meshes to the simplified meshes. (Max: 4.998 m; mean: 0.445 m; RMS: 0.750279). Two 
enlarged single models (bottom) show the overlay of error maps on the simplified models. The parts with large errors are mainly at chimneys and dormers. 
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5. Conclusion 

This paper presented an approach for producing compact building 
models from dense triangle meshes. The method first applies a filtering 
process on the face normals, followed by updating the vertex positions. 
The filtering process can denoise meshes on planar regions while 
enhancing sharp edge features. We have revealed that the mesh filtering 

process can significantly improve the performance of the subsequent 
simplification algorithm, which was simply ignored by most previous 
approaches. After the mesh filtering and planar region extraction, an 
improved edge collapse method is proposed to reduce the number of 
mesh faces. Based on a hierarchical definition strategy of error metric, 
the method retains the building structures in a good manner for both 
planar and non-planar regions. As shown in the experimental results, the 

Fig. 17. Comparison on a single building from the city model.  

Fig. 18. The simplification results by setting different vertex numbers. The red numbers correspond to the proposed method, which uses about twice the number of 
extracted planes. (v: vertex number; f: face number. 9 planes detected in the first model; 56 planes detected in the second model.) (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.) 
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proposed approach has strong generality and can be applied to many 
different data types. The simplified models can be widely used in a range 
of graphics and mapping applications. As future work, we plan to parse 
the simplified building models into some semantic components, allow
ing users to efficiently edit and analyze the models. 
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Henn, A., Gröger, G., Stroh, V., Plümer, L., 2013. Model driven reconstruction of roofs 
from sparse LiDAR point clouds. ISPRS J. Photogramm. Remote Sens. 76, 17–29. 

Hofer, M., Maurer, M., Bischof, H., 2015. Line3d: Efficient 3d scene abstraction for the 
built environment. In: Gall J., Gehler P., Leibe B. (eds) Pattern Recognition. DAGM 
2015. Lecture Notes in Computer Science, vol. 9358. Springer, Cham. 

Huang, H., Ascher, U., 2008. Surface mesh smoothing, regularization, and feature 
detection. SIAM J. Scientific Computing 31 (1), 74–93. 

Huang, H., Li, D., Zhang, H., Ascher, U., Cohen-Or, D., 2009. Consolidation of 
unorganized point clouds for surface reconstruction. ACM Trans. Graphics 28 (5), 
1–7. 

Izadi, S., Kim, D., Hilliges, O., et al., 2011. KinectFusion: real-time 3D reconstruction and 
interaction using a moving depth camera. In: proceedings of the 24th annual ACM 
symposium on User interface software and technology. ACM, 2011, 559-568. 

Kazhdan, M., Bolitho, M., Hoppe, H., 2006. Poisson surface reconstruction. In: 
Proceedings of the Fourth Eurographics Symposium on Geometry Processing, 
Cagliari, Sardinia, Italy, 2006, pp. 61–70. 

Kelly, T., Femiani, J., Wonka, P., and Mitra, N., 2017. BigSUR: Large-scale structured 
urban reconstruction. ACM Transactions on Graphics (Proceedings of ACM Siggraph 
Asia), 2017. 

Lafarge, F., Mallet, C., 2012. Creating large-scale city models from 3d-point clouds: a 
robust approach with hybrid representation. Int. J. Comput. Vision 99 (1), 69–85. 

Landrieu, L., Simonovsky, M., 2018. Large-Scale Point Cloud Semantic Segmentation 
with Superpoint Graphs. In: The IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR), Salt Lake, USA, pp. 4558–4567. 

Li, M., Nan, L., Smith, N., Wonka, P., 2016. Reconstructing building mass models from 
UAV images. Comput. Graph. 54 (C), 84–93. 

Li, M., Rottensteiner, F., Heipke, C., 2019. Modelling of buildings from aerial LiDAR 
point clouds using TINs and label maps. ISPRS J. Photogramm. Remote Sens. 154, 
127–138. 

LibQGLViewer, libQGLViewer, http://libqglviewer.com/, 2019. 
Lin, Y., Wang, C., Cheng, J., Chen, B., Jia, C., Chen, Z., Li, J., 2015. Line segment 

extraction for large scale unorganized point clouds. ISPRS J. Photogramm. Remote 
Sens. 102, 172–183. 

Lindstrom, P., Turk, G., 1998. Fast and memory efficient polygonal simplification. IEEE 
Proceedings of the Conference on Visualization, Los Alamitos, CA, USA 1998, 
279–286. 

Lipman, Y., Cohen-or, D., Levin, D., Tal-ezer, H., 2007. Parameterization-free projection 
for geometry reconstruction. ACM Trans. Graphics 26 (3), 22. 

Marinov, M., Kobbelt, L., 2005. Automatic generation of structure preserving 
multiresolution models. Comput. Graph. Forum 24 (3), 479–486. 

Mitra, N., Wand, M, Zhang, H., Cohen-Or, D., Kim, V, Huang, Q.X., 2013. Structure- 
aware shape processing. In: ACM SIGGRAPH Asia 2013 Courses, New York, NY, USA, 
2013, 1:1–20. 

Nan, L., Wonka, P., 2017. PolyFit: Polygonal surface reconstruction from point clouds. In: 
IEEE International Conference on Computer Vision (ICCV). Venice, Italy, Oct. 2017. 

Niemeyer, J., Rottensteiner, F., Soergel, U., Heipke, C., 2016. Hierarchical higher order 
CRF for the classification of airborne LiDAR point clouds in urban areas. 
International Archives of Photogrammetry, Remote Sensing and Spatial Information 
Sciences 41, 655–662. 

Ok, A.O., Wegner, J.D., Heipke, C., Rottensteiner, F., Soergel, U., Toprak, V., 2012. 
Matching of straight line segments from aerial stereo images of urban areas. ISPRS J. 
Photogramm. Remote Sens. 74, 133–152. 

Oude Elberink, S., Vosselman, G., 2009. Building reconstruction by target based graph 
matching on incomplete laser data: analysis and limitations. Sensors 9 (8), 
6101–6118. 

Overby, J., Bodum, L., Kjems, E., Iisoe, P., 2004. Automatic 3D building reconstruction 
from airborne laser scanning and cadastral data using Hough transform. Int. Arch. 
Photogram. Remote Sens. 35 (B3), 296–301. 

Pix4D, 2020, https://cloud.pix4d.com, 2020. 
Rottensteiner, F., Trinder, J., Clode, S., Kubik, K., 2005. Automated delineation of roof 

planes from LiDAR data. Int. Arch. Photogram. Remote Sens. Spat. Inf. Sci. 36 (3/ 
W19), 221–226. 

Salinas, D., Lafarge, F., Alliez, P., 2015. Structure-aware mesh decimation. Comput. 
Graphics Forum 34 (6), 211–227. 

Schnabel, R., Wahl, R., Klein, R., 2007. Efficient RANSAC for point-cloud shape 
detection. Comput. Graphics Forum 26 (2), 214–226. 

Shen, C., O’Brien, J.F., Shewchuk, J.R., 2004. Interpolating and approximating implicit 
surfaces from polygon soup. ACM Trans. Graph. 23 (3), 896–904. 

Solomon, J., Crane, K., Butscher, A., Wojtan, C., 2014. A general framework for bilateral 
and mean shift filtering. arXiv preprint arXiv:1405.4734 (2014). 

Tomasi, C., Manduchi, R., 1998. Bilateral filtering for gray and color images. In: In: 
Proceedings of the Sixth International Conference on Computer Vision (ICCV), 
p. 839. 

VCG Library: The VCG Library. http://vcg.isti.cnr.it/vcglib/, Jun. 2020. 
Vosselman, G., Gorte, B.G.H., Sithole, G., Rabbani, T., 2004. Recognizing structure in 

laser scanning point clouds. In: Proceedings of the ISPRS working group VIII/2: laser 
scanning for forest and landscape assessment, Freiburg, October 2004, 33–38. 

Wang, P., Shen, X., Russell, B., Cohen, S., Price, B., Yuille, A., 2016. SURGE: Surface 
regularized geometry estimation from a single image. In: 30th Conference on Neural 
Information Processing Systems (NIPS 2016), Barcelona, Spain. 2016. 

Wei, M., Yu, J., Pang, W.M., Wang, J., Qin, J., Liu, L., Heng, P.A., 2015. Bi-normal 
filtering for mesh denoising. IEEE Trans. Vis. Comput. Graphics. 21 (1), 43–55. 

Weinmann, M., Jutzi, B., Hinz, S., Mallet, C., 2015a. Semantic point cloud interpretation 
based on optimal neighborhoods, relevant features and efficient classifiers. ISPRS J. 
Photogramm. Remote Sens. 105, 286–304. 

Weinmann, M., Schmidt, A., Mallet, C., Hinz, S., Rottensteiner, F., Jutzi, B., 2015b. 
Contextual classification of point cloud data by exploiting individual 3D 

M. Li and L. Nan                                                                                                                                                                                                                               

http://refhub.elsevier.com/S0924-2716(21)00006-X/h0010
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0010
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0015
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0015
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0015
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0020
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0020
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0030
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0030
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0030
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0035
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0035
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0035
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0050
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0050
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0050
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0055
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0055
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0070
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0070
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0075
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0075
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0075
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0085
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0085
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0095
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0095
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0100
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0100
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0100
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0120
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0120
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0125
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0125
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0125
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0130
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0130
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0135
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0135
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0135
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0145
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0145
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0145
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0150
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0150
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0150
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0155
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0155
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0160
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0160
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0175
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0175
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0175
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0175
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0180
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0180
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0180
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0185
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0185
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0185
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0190
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0190
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0190
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0200
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0200
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0200
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0205
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0205
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0210
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0210
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0215
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0215
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0225
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0225
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0225
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0245
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0245
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0250
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0250
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0250
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0255
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0255


ISPRS Journal of Photogrammetry and Remote Sensing 173 (2021) 135–150

150

neighborhoods. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial 
Inf. Sci. II-3/W4, 271–278. 

Wu, C., Agarwal, S., Curless, B., Seitz, S.M., 2011. Multicore bundle adjustment. In: 
Proceedings of the 2011 IEEE conference on computer vision and pattern recognition 
(CVPR), Washington, DC, USA, 11, 3057–64. 

Xie, J., Feng, C.C., 2016. An integrated simplification approach for 3D buildings with 
sloped and flat roofs. ISPRS Int. J. Geo-Inf. 5, 128. 

Xiong, B., Jancosek, M., Oude Elberink, S., Vosselman, G., 2015. Flexible building 
primitives for 3D building modeling. ISPRS J. Photogramm. Remote Sens. 101, 
275–290. 

Xiong, B., Oude Elberink, S., Vosselman, G., 2014. A graph edit dictionary for correcting 
errors in roof topology graphs reconstructed from point clouds. ISPRS J. 
Photogramm. Remote Sens. 93, 227–242. 

Yang, B., Fang, L., Li, J., 2013. Semi-automated extraction and delineation of 3D roads of 
street scene from mobile laser scanning point clouds. ISPRS J. Photogramm. Remote 
Sens. 79, 80–93. 

Zelinka, S., Garland, M., 2002. Permission grids: practical, error-bounded simplification. 
ACM Trans. Graphics 21 (2), 207–229. 

Zhou, Q.Y., Neumann, U., 2010. 2.5D dual contouring: a robust approach to creating 
building models from aerial LiDAR point clouds. In: Daniilidis K., Maragos P., 
Paragios N. (eds) Computer Vision – ECCV 2010. Lecture Notes in Computer Science, 
vol. 6313. Springer, Berlin, Heidelberg. 

M. Li and L. Nan                                                                                                                                                                                                                               

http://refhub.elsevier.com/S0924-2716(21)00006-X/h0255
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0255
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0265
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0265
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0270
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0270
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0270
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0275
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0275
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0275
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0280
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0280
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0280
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0285
http://refhub.elsevier.com/S0924-2716(21)00006-X/h0285

	Feature-preserving 3D mesh simplification for urban buildings
	1 Introduction
	2 Related work
	2.1 Meshing and filtering
	2.2 Contour extraction
	2.3 Mesh simplification

	3 Methodology
	3.1 Mesh filtering
	3.2 Region and contour extraction.
	3.3 Simplification of mesh models

	4 Experimental results
	4.1 Qualitative results
	4.2 Quantitative analysis
	4.3 Comparison
	4.4 City model
	4.5 Limitations

	5 Conclusion
	Declaration of Competing Interest
	Acknowledgements
	References


