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Abstract

A two-dimensional chiral conformal field theory can be viewed mathematically as the representation theory
of its chiral algebra, a vertex operator algebra. Vertex operator algebras are especially well suited for studying
logarithmic conformal field theory (in which correlation functions have logarithmic singularities arising from
non-semisimple modules for the chiral algebra) because of the logarithmic tensor category theory of Huang,
Lepowsky, and Zhang. In this paper, we study not-necessarily-semisimple or rigid braided tensor categories
C of modules for the fixed-point vertex operator subalgebra V G of a vertex operator (super)algebra V with
finite automorphism group G. The main results are that every V G-module in C with a unital and associative
V -action is a direct sum of g-twisted V -modules for possibly several g ∈ G, that the category of all such twisted
V -modules is a braided G-crossed (super)category, and that the G-equivariantization of this braided G-crossed
(super)category is braided tensor equivalent to the original category C of V G-modules. This generalizes results
of Kirillov and Müger proved using rigidity and semisimplicity. We also apply the main results to the orbifold
rationality problem: whether V G is strongly rational if V is strongly rational. We show that V G is indeed
strongly rational if V is strongly rational, G is any finite automorphism group, and V G is C2-cofinite.
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1 Introduction

Orbifolding is a way to produce new conformal field theories from old ones. Mathematically, a two-dimensional
(chiral) conformal field theory can be treated as the representation theory of its chiral algebra, a vertex operator
algebra, and from this point of view, an orbifold conformal field theory amounts to the representation theory of the
fixed-point subalgebra V G of an automorphism group G of the original vertex operator algebra V . In the physics
literature, systematic study of orbifolds for rational conformal field theories began in [DVVV]. A key feature is
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the adddition of twisted sectors to the Hilbert space of the original conformal field theory, which correspond in
mathematics to categories of twisted V -modules associated to automorphisms in G. In the mathematics literature,
twisted modules for lattice vertex operator algebras had already been introduced in [FLM] for the construction of
the moonshine module, a vertex operator algebra on which the Monster finite simple group acts by automorphisms.

Perhaps the first question in orbifold conformal field theory is, how are representations of the orbifold V G related
to the representations of V and G? In particular, can the tensor category structures on the three categories of V -,
G-, and V G-modules be related? In this paper, for finite G, we answer these questions under minimal assumptions,
namely that V G actually has a module category C that both includes V and admits vertex and braided tensor
category structures as in [HLZ1]-[HLZ8] (see also the review article [HL]). These conditions hold for many vertex
operator algebras in logarithmic conformal field theory, where correlation functions have logarithmic singularities
arising from (necessarily non-semisimple) modules on which the Virasoro operator L(0) acts non-semisimply. For
example, by [Hu3], our results apply when V G is positive energy (also called CFT-type) and C2-cofinite. Moreover,
V G indeed satisfies these conditions if V itself is simple, positive energy, C2-cofinite and G is finite solvable [Mi1].
(An effort to extend this result to general finite groups has recently appeared in [Mi2], but unfortunately there
appears to be a gap in the argument at the moment.)

In the narrower setting of rational conformal field theory, when V G is a so-called “strongly rational” vertex
operator algebra (with a semisimple modular tensor category of representations [Hu2]), it follows from the work
of Kirillov [Ki1]-[Ki3] and Müger [Mü1]-[Mü2] how to describe the category of V G-modules in terms of V - and
G-modules. Take the category Rep V of all V G-modules which admit suitably associative and unital actions of
V . This category is semisimple and every simple object is a g-twisted V -module for some g ∈ G, and from there
it follows that Rep V is a braided G-crossed tensor category in the sense of Turaev [Tu]. Any braided G-crossed
tensor category has an associated braided tensor category called the G-equivariantization. For Rep V , objects of
the equivariantization (Rep V )G are modules in Rep V equipped with a compatible G-module structure; morphisms
commute with both V - and G-actions. Finally, (Rep V )G is braided tensor equivalent to the original category of
V G-modules: taking G-fixed points gives the functor from (Rep V )G to V G-modules, while there is an induction
functor in the other direction.

The main result of this paper is that these results remain true for vertex operator algebras, and indeed vertex
operator superalgebras, in logarithmic conformal field theory. In this setting, we must first choose a category C of
V G-modules that has braided tensor category structure: for positive-energy C2-cofinite V G, this could be the full
category of grading-restricted generalized V G-modules, but in general we may need to choose a proper subcategory.
Then we take Rep V to be the category of V G-modules in C that admit suitably associative and unital V -actions;
when V is a superalgebra, we also require modules in Rep V to have Z/2Z-gradings such that the V -action is even.
Note that Rep V depends on the choice of C, and it inherits tensor (super)category structure from C [KO, CKM].
Now our main result gives the relation between the tensor category structures on C and Rep V ; summarizing
Theorems 4.15 and 4.17:

Main Theorem 1. Let V be a simple vertex operator superalgebra, G a finite automorphism group of V that
includes the parity involution, C an abelian category of grading-restricted generalized V G-modules that includes V
and admits vertex and braided tensor category structures as in [HLZ1]-[HLZ8], and Rep V the supercategory of
Z/2Z-graded V G-modules in C that admit even, unital, and associative V -actions (defined precisely in Section 2.1
below). Then:

1. Every indecomposable object of Rep V is a g-twisted V -module for some g ∈ G.

2. The category Rep V admits the structure of a braided G-crossed supercategory.

3. The induction functor F : C → (Rep V )G is an equivalence of braided tensor categories.

In particular, we do not assume that any category of V G-modules is semisimple. More importantly, we do not
assume that any category of V G-modules is rigid, that is, that its objects have duals. It is usually difficult to show
that a tensor category of modules for a vertex operator algebra is rigid, and the only general rigidity theorem, due
to Huang [Hu2], applies only to rational vertex operator algebras. This is why the work of Kirillov and Müger,
which uses rigidity, does not apply in the generality of the main theorem. For example, [Ki1, Ki2] show that a
simple object W in Rep V is g-twisted by constructing g, which must be an endomorphism of V having something
to do with W . But the only way to construct such an endomorphism is to create a copy of W (and its dual) using
rigidity and have them interact with V in some way.

In Section 3, we prove that indecomposable objects of Rep V are g-twisted by constructing the complete set of
projections from any object W in Rep V onto its g-twisted summands for g ∈ G. The formula for the projections
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generalizes a construction from [KO] and requires rigidity only for V itself: the projection πg onto the g-twisted
summand must be an endomorphism of W having something to do with g, so the formula for πg uses rigidity to
create a copy of V on which g can act. But we do not even need to assume the rigidity of V as a V G-module,
because this follows from results in [McR]. For G finite abelian, a variant of Main Theorem 1(1), also without
assuming rigidity, has appeared previously in [CM, Corollary 4.3].

Main Theorem 1 can be used when rigidity is expected but not known a priori. In Section 4.4, we consider
the orbifold rationality problem: if V is strongly rational and G is finite, is V G also strongly rational? Carnahan
and Miyamoto have shown [CM] that the answer is yes if G is cyclic (and by extension if G is solvable), but the
question has remained open for general finite G. One needs to show that V G is both C2-cofinite and rational,
and in the presence of C2-cofiniteness, rationality means that the category of (grading-restricted) V G-modules is
semisimple. In Theorem 4.20 and Corollary 4.23 below, we reduce the orbifold rationality problem to the question
of C2-cofiniteness for V G:

Main Theorem 2. Let V be a strongly rational vertex operator algebra and G any finite group of automorphisms
of V . If C is an abelian category of grading-restricted generalized V G-modules that includes V and admits vertex
tensor category structure as in [HLZ1]-[HLZ8], then C is semisimple. In particular, if V G is C2-cofinite, then V G

is strongly rational.

The idea is to show that Rep V is semisimple under the conditions of Main Theorem 2, because it is easy to
show that this implies C is semisimple. But because every module in Rep V is a direct sum of g-twisted modules
for certain g ∈ G, it is enough to show that the category of g-twisted modules is semisimple for any fixed g ∈ G.
This then follows using the rationality of each V 〈g〉 proved in [CM].

The equivalence in Main Theorem 1 between C and the G-equivariantization of Rep V has interesting implica-
tions even in what is perhaps the simplest non-trivial case: V is a superalgebra and G ∼= Z/2Z is generated by the
parity involution, so that V G is the even vertex operator subalgebra V 0̄. In this case, the objects of (Rep V )Z/2Z

are simply the ordinary and parity-twisted V -modules (Neveu-Schwarz and Ramond sectors in physics terminology)
equipped with parity decompositions. In particular, morphisms in (Rep V )Z/2Z must be even. Applying the induc-
tion functor then shows that every indecomposable module in the base category C of V 0̄-modules is the even part of
either a Neveu-Schwarz or Ramond V -module (equivalently, the odd part since reversing the parity decomposition
yields another module in (Rep V )Z/2Z).

Examples of vertex operator superalgebras with non-semisimple representation theory that can be studied using
Main Theorem 1 include the symplectic fermion superalgebras SF (d), d ∈ Z+, of d pairs of symplectic fermions [Ka,
Ab, Ru]. As the even subalgebras SF (d)0̄ are C2-cofinite [Ab], the full categories of grading-restricted, generalized
SF (d)0̄-modules have braided tensor category structure [Hu3]. In fact, one of the goals that stimulated the work in
this paper was to understand Runkel’s construction [Ru] of a braided tensor category conjecturally equivalent to the
Huang-Lepowsky-Zhang braided tensor category (as in [HLZ1]-[HLZ8]) of grading-restricted generalized SF (d)0̄-
modules. The braided tensor category in [Ru] was constructed using Neveu-Schwarz and Ramond SF (d)-modules
and seems to be the Z/2Z-equivariantization of Rep SF (d). In future work, we plan to verify the identification
of (Rep SF (d))Z/2Z with Runkel’s braided tensor category, thus proving (in light of Main Theorem 1(3)) the
conjectured equivalence with the Huang-Lepowsky-Zhang braided tensor category of SF (d)0̄-modules. As Runkel’s
category is braided tensor equivalent to a non-semisimple modular tensor category of finite-dimensional modules
for a quasi-Hopf algebra [GR, FGR], this would provide a family of examples of non-rational C2-cofinite vertex
operator algebras whose module categories admit non-semisimple modular tensor category structure.

The methods of this paper are primarily categorical, using the theory of commutative associative (super)algebras
in braided tensor categories developed in, for instance, [KO] and expanded upon in [CKM]. To apply results on
algebras in tensor categories to vertex operator algebras, we use the identification from [HKL] of vertex operator
algebra extensions with algebras in a braided tensor category of modules for a vertex operator subalgebra. This
result was extended to superalgebras in [CKL], and the relationship between the module categories of vertex
operator (super)algebra extensions and (super)algebras in a braided tensor category was established in [CKM].
Tensor-categorical techniques have proven highly useful in the representation theory of vertex operator algebras
in recent years: in this paper, we use braid diagrams to concisely express proofs that would otherwise require
complex manipulations of compositions of up to four vertex algebraic intertwining operators (6-point correlation
functions in conformal-field-theoretic terminology). That tensor-categorical techniques can be used at all to study
vertex operator algebras is a consequence of the work of Huang-Lepowsky-(Zhang), culminating in [HLZ1]-[HLZ8],
developing the (logarithmic) vertex tensor category theory for module categories of a vertex operator algebra.
The reader may notice that while the present paper is designed to handle vertex operator algebras in logarithmic
conformal field theory, very few logarithms appear explicitly. This is because most of the complex analysis needed
for this paper has been worked out already in [HLZ1]-[HLZ8] as well as subsequent works such as [CKM].
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The remaining contents of this paper are structured as follows. In Section 2.1, we present definitions and basic
results on superalgebras V in braided tensor categories C, including an overview of the monoidal supercategory
structure on the representation category Rep V and the induction tensor functor from C to Rep V (see [CKM]
for a fuller discussion). In Section 2.2, we define the notion of g-twisted V -module in Rep V , associated to
an automorphism g of the superalgebra V , as well as the notion of braided G-crossed supercategory, a suitable
supercategory version of the notion of braided G-crossed category from [Tu]. We also discuss how categories of
twisted V -modules provide examples of braided G-crossed supercategories. This result seems to be well known,
since it is stated as a theorem in [Ki3], but a detailed proof seems to be missing from the literature. We provide one
in Appendix A. In Section 2.3 we give the definition of G-equivariantization of a braided G-crossed supercategory
and show that in the case of twisted modules for a superalgebra, induction is a braided tensor functor from C to
the G-equivariantization (Rep V )G, provided that every object in Rep V is a direct sum of twisted modules. This
result is also known, appearing in [Ki1] and [Mü2], but we include a full proof to emphasize that it does not require
C to be semisimple or rigid.

In Section 3, we prove the main categorical result of this paper (Theorem 3.3): under some conditions which
do not include rigidity or semisimplicity of C, every object in Rep V is a direct sum of g-twisted V -modules for
possibly several g ∈ G. In particular, Rep V is a braided G-crossed supercategory and induction is a braided tensor
functor from C to (Rep V )G. In the proof of Theorem 3.3, we use braid diagrams for brevity and clarity, but the
reader interested in fuller details may consult Appendix B.

In Section 4, we interpret the categorical results of the previous two sections as theorems for vertex operator
(super)algebras using the connection between vertex operator superalgebra extensions and superalgebras in braided
tensor categories established in [HKL, CKL, CKM]. After reviewing the definitions of vertex operator superalgebras
and their g-twisted modules in Section 4.1, we prove the main general theorems in Section 4.2. First we show that
the categorical and vertex algebraic notions of g-twisted V -module agree when V is a vertex operator superalgebra,
and then we prove the first two parts of Main Theorem 1 by verifying the conditions of Theorem 3.3 using [DLM]
and [McR]. Then after arguing that the braided G-crossed supercategory structure on Rep V is natural from a
vertex algebraic point of view, we prove the third part of Main Theorem 1 in Theorem 4.17. In Section 4.3, we
describe the braided tensor category structure on the Z/2Z-equivariantization of Rep V when V is a superalgebra
and Z/2Z is generated by the parity automorphism; by Main Theorem 1(3), this provides a description of the
braided tensor category of modules for the even subalgebra V 0̄. Finally, in Section 4.4, we prove Main Theorem 2.

Acknowledgements This work was partially supported by the United States National Science Foundation grant
DMS-1362138. I would also like to thank Thomas Creutzig and Shashank Kanade for discussions, and the referee
for comments and suggestions.

2 Braided G-crossed supercategories

In this section, we collect definitions and results on braided G-crossed supercategories of twisted modules for a
superalgebra V in a braided tensor category associated to a group G of automorphisms of V . For more details see,
for example, [Tu], [KO], [Ki1]-[Ki3], [EGNO], and [CKM].

2.1 Superalgebra objects in supercategories

See [BE] for a helpful analysis of the relations between various notions of supercategory in the mathematical
literature. Here we fix a field F of characteristic not equal to 2 and work with F-linear supercategories (in the
terminology of [BE]) whose morphism sets are F-superspaces. We will denote the parity of a morphism f in a
supercategory by |f | ∈ Z/2Z. Composition of morphisms in an F-linear supercategory is an even linear map
between superspaces, in the sense that

|fg| = |f |+ |g|

when f and g have parity. Superfunctors between supercategories induce even linear maps on morphisms. If S is
a supercategory, then so is S × S with composition of morphisms defined by

(f1, f2)(g1, g2) = (−1)|f2||g1|(f1g1, f2g2) (2.1)

when f2 and g1 have parity. Also, S × S has a supersymmetry superfunctor σ given on objects by σ(W1,W2) =
(W2,W1) and on parity-homogeneous morphisms by σ(f1, f2) = (−1)|f1||f2|(f2, f1).
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A monoidal supercategory S is a supercategory with monoidal category structure: a tensor product superfunctor
� : S×S → S, a unit object 1, even natural left and right unit isomorphisms l and r, and even natural associativity
isomorphisms A, which satisfy the triangle and pentagon axioms. Since � is a superfunctor, it induces an even
linear map on morphisms: |f1 � f2| = |f1|+ |f2| when f1 and f2 are parity-homogeneous, and by (2.1),

(f1 � f2)(g1 � g2) = (−1)|f2||g1|(f1g1) � (f2g2) (2.2)

for appropriately composable morphisms with f2 and g1 parity-homogeneous (this is called the super interchange
law in [BE]).

The monoidal supercategory S is braided if it has an even natural braiding isomorphism R : �→ � ◦ σ. From
the definition of σ, for parity-homogeneous morphisms f1 : W1 → W̃1 and f2 : W2 → W̃2 in S,

R
W̃1,W̃2

(f1 � f2) = (−1)|f1||f2|(f2 � f1)RW1,W2
. (2.3)

We will say that a (braided) monoidal supercategory is rigid if every object W has a (left) dual W ∗ for which the
evaluation morphism eW : W ∗ �W → 1 and coevaluation morphism iW : 1→W �W ∗ are both even.

All F-linear supercategories S in this paper will be F-additive in the sense that S has a zero object and the
biproduct

⊕
Wi of any finite set of objects {Wi} in S exists. We will not generally require our supercategories

to be abelian, as kernels and cokernels of non-parity-homogeneous morphisms may not exist in our examples. By
an F-additive monoidal supercategory, we will mean an F-additive supercategory with a monoidal supercategory
structure such that the tensor product of morphisms is bilinear.

Now we recall the main definitions and results from [CKM, Section 2.2]. Fix an F-linear (abelian) braided
tensor category C, with unit object 1, left and right unit isomorphisms l and r, associativity isomorphisms A, and
braiding isomorphisms R. The only additional requirement is that for any object W in C, the functors W � • and
•�W are right exact. We define an auxiliary supercategory SC whose objects are ordered pairs W = (W 0̄,W 1̄),
with W 0̄ and W 1̄ objects of C, and whose morphisms are given by

HomSC(W1,W2) = HomC(W
0̄
1 ⊕W 1̄

1 ,W
0̄
2 ⊕W 1̄

2 ).

Every object W of SC has a parity involution PW ∈ EndSC(W ) given by

PW = 1W 0̄ ⊕ (−1W 1̄).

The parity involutions determine the superspace structure of the morphism spaces in SC: f ∈ HomSC(W1,W2) has
parity |f | ∈ Z/2Z if

fPW1 = (−1)|f |PW2f.

The supercategory SC is also F-additive with zero object 0 = (0, 0) and biproducts defined by W1 ⊕ W2 =
(W 0̄

1 ⊕ W 0̄
2 ,W

1̄
1 ⊕ W 1̄

2 ). Moreover, SC is abelian, with every morphism having a kernel and cokernel, because
C is. However, if f : W1 → W2 is a morphism in SC, we cannot assume the kernel morphism k : Ker f → W1 and
cokernel morphism c : W2 → Coker f are even. They can be taken to be even if f is parity homogeneous. Moreover
every parity-homogeneous monomorphism in SC is the kernel of an even morphism, and every parity-homogeneous
epimorphism in SC is the cokernel of an even morphism (see [CKM, Proposition 2.15]).

Next, SC has braided tensor supercategory structure as follows: for objects W1, W2 in SC,

W1 �W2 =
(

(W 0̄
1 �W 0̄

2 )⊕ (W 1̄
1 �W 1̄

2 ), (W 0̄
1 �W 1̄

2 )⊕ (W 1̄
1 �W 0̄

2 )
)
.

For morphisms f1 : W1 → W̃1 and f2 : W2 → W̃2 in SC, the tensor product f1 � f2 must be a C-morphism⊕
i1,i2∈Z/2Z

W i1
1 �W i2

2 →
⊕

j1,j2∈Z/2Z

W̃ j1
1 � W̃ j2

2 .

Since the tensor product in C distributes over biproducts, f1 � f2 in SC can be identified with a C-morphism

(W 0̄
1 ⊕W 1̄

1 ) � (W 0̄
2 ⊕W 1̄

2 )→ (W̃ 0̄
1 ⊕ W̃ 1̄

1 ) � (W̃ 0̄
2 ⊕ W̃ 1̄

2 ),

and this C-morphism is
(
f1P

|f2|
W1

)
�f2 when f2 is parity-homogeneous. The factor P

|f2|
W1

allows the super interchange
law (2.2) to hold.

5



The unit object in SC is 1 = (1, 0), so for any object W = (W 0̄,W 1̄) in SC, we can identify

1 �W = (1 �W 0̄,1 �W 1̄), W � 1 = (W 0̄ � 1,W 1̄ � 1)

by first identifying 0 � W i = 0 = W i � 0 for i ∈ Z/2Z and then identifying (1 � W i) ⊕ 0 = 1 � W i. Under
these identifications, the unit isomorphisms for W in SC are given by lW = lW 0̄ ⊕ lW 1̄ and rW = rW 0̄ ⊕ rW 1̄ . The
associativity isomorphism for objects W1, W2, and W3 in SC is

AW1,W2,W3
=

( ⊕
i1+i2+i3=0̄

A
W

i1
1 ,W

i2
2 ,W

i3
3

)
⊕
( ⊕
i1+i2+i3=1̄

A
W

i1
1 ,W

i2
2 ,W

i3
3

)
.

For objects W1 and W2 in SC, the braiding isomorphism is

RW1,W2
=

( ⊕
i1+i2=0̄

(−1)i1i2R
W

i1
1 ,W

i2
2

)
⊕
( ⊕
i1+i2=1̄

(−1)i1i2R
W

i1
1 ,W

i2
2

)
.

The sign factors in the braiding isomorphisms guarantee that (2.3) holds. As for C, the functors W � • and •�W
on SC are right exact for any object W .

Now we define a superalgebra in the braided tensor category C to be a commutative associative algebra, with
even structure morphisms, in SC. Specifically:

Definition 2.1. A superalgebra in C is an object V = (V 0̄, V 1̄) in SC equipped with even morphisms µV : V �V →
V and ιV : 1→ V that satisfy the following conditions:

1. Left unit: µV (ιV � 1V )l−1
V = 1V .

2. Associativity: µV (1V � µV ) = µV (µV � 1V )AV,V,V .

3. Supercommutativity: µV = µVRV,V .

Remark 2.2. No sign factor is needed in the supercommutativity axiom because this is built into the braiding
isomorphisms in SC. Also, the left unit and supercommutativity axioms together imply the right unit property:
µV (1V � ιV )r−1

V = 1V .

Given a superalgebra V in C, we define the supercategory RepV of (left) V -modules with objects (W,µW )
where W is an object of SC and µW : V �W →W is an even morphism in SC satisfying

1. Unit: µW (ιV � 1W )l−1
W = 1W , and

2. Associativity: µW (1V � µW ) = µW (µV � 1W )AV,V,W .

A morphism f : (W1, µW1)→ (W2, µW2) in RepV is an SC-morphism f : W1 →W2 such that

fµW1
= µW2

(1V � f).

The parity of a morphism in RepV agrees with its parity as a morphism in SC. The supercategory RepV is
an F-additive supercategory (see for instance [CKM, Proposition 2.32]) but is not necessarily abelian because the
natural actions of V on the kernel and cokernel of a morphism in RepV might not be even unless the morphism is
parity-homogeneous. However, the underlying category RepV , which has the same objects as RepV but only the
even morphisms, is an F-linear abelian category.

The supercategory RepV also has a monoidal supercategory structure as follows. Given two objects W1, W2 of

RepV , V can act on either factor of W1 �W2: define µ
(1)
W1,W2

to be the composition

V � (W1 �W2)
AV,W1,W2−−−−−−→ (V �W1) �W2

µW1
�1W2−−−−−−→W1 �W2

and define µ
(2)
W1,W2

to be the composition

V � (W1 �W2)
AV,W1,W2−−−−−−→ (V �W1) �W2

RV,W1
�1W2−−−−−−−−→ (W1 � V ) �W2

A−1
W1,V,W2−−−−−−→W1 � (V �W2)

1W1
�µW2−−−−−−→W1 �W2.
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Then the tensor product of W1 and W2 in RepV , W1 �V W2, is the cokernel of µ
(1)
W1,W2

− µ(2)
W1,W2

, which exists
because SC is abelian. Let IW1,W2

: W1 �W2 →W1 �V W2 denote the cokernel morphism, which we take even, as

we may since µ
(1)
W1,W2

− µ(2)
W1,W2

is an even morphism in SC. The multiplication action µW1�VW2
is characterized

by the commutative diagram

V � (W1 �W2)
µ

(1)
W1,W2

or µ
(2)
W1,W2 //

1V �IW1,W2

��

W1 �W2

IW1,W2

��
V � (W1 �V W2)

µW1�V W2 // W1 �V W2

The tensor product of morphisms f1 : W1 → W̃1 and f2 : W2 → W̃2 in RepV is characterized by the commuting
diagram

W1 �W2
f1�f2 //

IW1,W2

��

W̃1 � W̃2

I
W̃1,W̃2
��

W1 �V W2
f1�V f2 // W̃1 �V W̃2

In [CKM, Proposition 2.47], we showed that the universal property of the cokernel tensor product in RepV can
be expressed in terms of what we called categorical RepV -intertwining operators. For objects W1, W2, and W3, of
RepV , a categorical RepV -intertwining operator of type

(
W3

W1 W2

)
is an SC-morphism I : W1 �W2 →W3 such that

Iµ
(1)
W1,W2

= Iµ
(2)
W1,W2

= µW3(1V � I) : V � (W1 �W2)→W3.

That is, an intertwining operator intertwines the left and right actions of V on W1 �W2 with the action of V
on W3. Examples of intertwining operators include µW of type

(
W
V W

)
for an object W of RepV , and IW1,W2

of

type
(
W1�VW2

W1 W2

)
for objects W1 and W2. Any categorical intertwining operator of type

(
W3

W1 W2

)
induces a unique

RepV -morphism fI : W1 �V W2 → W3 such that I = fIIW1,W2 . For example the tensor product of morphisms

f1 : W1 → W̃1 and f2 : W2 → W̃2 is induced by the intertwining operator I
W̃1,W̃2

(f1 � f2) of type
(
W̃1�V W̃2

W1 W2

)
.

The unit object of Rep V is (V, µV ) and the unit isomorphisms lVW and rVW for an object W of RepV are
characterized by the commuting diagrams

V �W
µW

''
IV,W

��
V �V W

lVW // W

and

W � V
R−1

V,W //

IW,V

��

V �W

µW

��
W �V V

rVW // W

The associativity isomorphism for objects W1, W2, and W3 in RepV is characterized by the commutative diagram

W1 � (W2 �W3)
AW1,W2,W3 //

1W1
�IW2,W3

��

(W1 �W2) �W3

IW1,W2
�1W3

��
W1 � (W2 �V W3)

IW1,W2�V W3

��

(W1 �V W2) �W3

IW1�V W2,W3

��
W1 �V (W2 �V W3)

AV
W1,W2,W3 // (W1 �V W2) �V W3

We have an induction superfunctor F : SC → RepV defined on objects by

F(W ) = (V �W,µF(W ))
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where µF(W ) is the composition

V � (V �W )
AV,V,W−−−−−→ (V � V ) �W

µV �1W−−−−−→ V �W.

On morphisms, we define F(f) = 1V � f . Induction is a tensor superfunctor: there is an even isomorphism
ϕ : F(1)→ V (given by rV ) and an even natural isomorphism f : F ◦�→ �V ◦ (F ×F), where fW1,W2

is defined
as the composition

V � (W1 �W2)
AV,W1,W2−−−−−−→(V �W1) �W2

1V �W1
�l−1

W2−−−−−−−−→ (V �W1) � (1 �W2)

1V �W1
�(ιV �1W2

)
−−−−−−−−−−−−→ (V �W1) � (V �W2)

IV �W1,V �W2−−−−−−−−−→ (V �W1) �V (V �W2).

These isomorphisms are compatible with the unit and associativity isomorphisms of SC and RepV in the required
sense. Induction is left adjoint to the obvious forgetful functor from RepV to SC since if W is an object of SC, X
is an object of RepV and f : W → X is a morphism in SC, there is a unique morphism Ψ(f) : F(W ) → X such
that the diagram

F(W ) = V �W
Ψ(f)

((
W

(ιV �1W )l−1
W

OO

f // X

commutes. In fact, Ψ(f) = µX(1V � f).

2.2 Braided G-crossed supercategories of twisted modules

Fix a superalgebra V in a braided tensor category C with right exact tensor functors W � • and • �W for any
object W in C. We say that a subgroup G ⊆ AutSC(V )0̄ is an automorphism group if

gµV = µV (g � g)

and
gιV = ιV

for every g ∈ G. Fix an automorphism group G of V .

Definition 2.3. For g ∈ G, an object (W,µW ) in RepV is a g-twisted V -module if

µW (g � 1W )MV,W = µW ,

where MV,W = RW,VRV,W is the natural monodromy isomorphism in SC.

For g ∈ G, let Repg V denote the full subcategory of g-twisted V -modules in RepV . Then define RepG V to be
the full subcategory of RepV whose objects are isomorphic to finite biproducts of g-twisted V -modules for possibly
several different g ∈ G. The category RepG V is an F-additive monoidal supercategory. Indeed, the unit object
(V, µV ) of RepV is in Rep1 V by the supercommutativity of µV (we say that objects in Rep1 V are untwisted), and
to show that RepG V is closed under tensor products, we use the following result which is essentially part of [Ki1,
Theorem 4.7 (4)] where, however, the proof used strong assumptions on C that we do not need here:

Proposition 2.4. If W1 is a g1-twisted V -module, W2 is a g2-twisted V -module, and I is a surjective intertwining
operator of type

(
W3

W1 W2

)
, then W3 is a g1g2-twisted V -module.

Proof. We need to show that µW3
(g1g2 � 1W3

)MV,W3
= µW3

. Since I is surjective and V � • is right exact, 1V � I
is surjective as well, and it is sufficient to prove that

µW3
(g1g2 � 1W3

)MV,W3
(1V � I) = µW3

(1V � I).

Using naturality of the monodromy isomorphisms, the left side of this equation equals the composition

V � (W1 �W2)
MV,W1�W2−−−−−−−−→ V � (W1 �W2)

g1g2�1W1�W2−−−−−−−−−→ V � (W1 �W2)
1V �I−−−−→ V �W3

µW3−−−→W3.
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Using the hexagon axiom and the fact that I is an intertwining operator, this composition becomes

V � (W1�W2)
AV,W1,W2−−−−−−→ (V �W1) �W2

RV,W1
�1W2−−−−−−−−→ (W1 � V ) �W2

A−1
W1,V,W2−−−−−−→W1 � (V �W2)

1W1
�MV,W2−−−−−−−−→W1 � (V �W2)

AW1,V,W2−−−−−−→ (W1 � V ) �W2

RW1,V �1W2−−−−−−−−→ (V �W1) �W2

A−1
V,W1,W2−−−−−−→ V � (W1 �W2)

g1g2�1W1�W2−−−−−−−−−→ V � (W1 �W2)
AV,W1,W2−−−−−−→ (V �W1) �W2

µW1
�1W2−−−−−−→W1 �W2

I−→W3.

We apply the naturality of the associativity isomorphisms to g1g2�1W1�W2
to cancel the associativity isomorphism

and its inverse in the third line. Then since W1 is g1-twisted, we replace µW1
(g1 � 1W1

) with µW1
M−1

V,W1
to get

V � (W1�W2)
AV,W1,W2−−−−−−→ (V �W1) �W2

RV,W1
�1W2−−−−−−−−→ (W1 � V ) �W2

A−1
W1,V,W2−−−−−−→W1 � (V �W2)

1W1
�MV,W2−−−−−−−−→W1 � (V �W2)

AW1,V,W2−−−−−−→ (W1 � V ) �W2

RW1,V �1W2−−−−−−−−→ (V �W1) �W2

g2�1W1�W2−−−−−−−−→ (V �W1) �W2

M−1
V,W1

�1W2−−−−−−−−→ (V �W1) �W2

µW1
�1W2−−−−−−→W1 �W2

I−→W3. (2.4)

In the presence of the intertwining operator I, µW1
� 1W2

can be replaced with

(V �W1) �W2

RV,W1
�1W2−−−−−−−−→ (W1 � V ) �W2

A−1
W1,V,W2−−−−−−→W1 � (V �W2)

1W1
�µW2−−−−−−→W1 �W2.

Insert this into (2.4), apply naturality of the associativity and braiding isomorphisms to g2 � 1W1�W2
, and cancel

to obtain

V � (W1 �W2)
AV,W1,W2−−−−−−→ (V �W1) �W2

RV,W1
�1W2−−−−−−−−→ (W1 � V ) �W2

A−1
W1,V,W2−−−−−−→W1 � (V �W2)

1W1
�MV,W2−−−−−−−−→W1 � (V �W2)

1W1
�(g2�1W2

)
−−−−−−−−−−→W1 � (V �W2)

1W1
�µW2−−−−−−→W1 �W2

I−→W3.

Since W2 is g2-twisted this reduces to Iµ
(2)
W1,W2

, which equals µW3
(1V �I) because I is an intertwining operator.

Now for objects W1 and W2 in RepV , the intertwining operator IW1,W2
of type

(
W1�VW2

W1 W2

)
is surjective because

it is a cokernel morphism. Thus the preceding proposition immediately implies:

Corollary 2.5. If W1 is a g1-twisted V -module and W2 is a g2-twisted V -module, then W1�V W2 is a g1g2-twisted
V -module. In particular, RepG V is closed under tensor products.

Note that the subcategory Rep1 V is a monoidal supercategory, and it is braided [Pa, KO, CKM] with braiding
isomorphisms characterized by the commutative diagram

W1 �W2

RW1,W2 //

IW1,W2

��

W2 �W1

IW2,W1

��
W1 �V W2

RV
W1,W2 // W2 �V W1

.

The braiding isomorphisms in SC do not induce well-defined braiding isomorphisms on the entire category RepG V ,
but RepG V does admit the structure of a braided G-crossed supercategory, with braiding isomorphisms twisted
by an action of G on RepG V . We discuss this structure after presenting the definition of braided G-crossed
supercategory.

An F-additive supercategory S decomposes as a direct sum of (not necessarily finitely many) full subcategories
{Si}i∈I , denoted S =

⊕
i∈I Si, if

1. Every object in S is isomorphic to a biproduct
⊕

i∈IWi with Wi an object of Si and finitely many Wi

non-zero.

2. If Wi is an object of Si and Wj is an object of Wj for i 6= j, then HomS(Wi,Wj) = 0.
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The second condition implies that the only object in both Si and Sj for i 6= j is the zero object. Also, if an object

W is isomorphic to both
⊕

i∈IWi and
⊕

i∈I W̃i with Wi, W̃i objects in Si, then Wi
∼= W̃i for each i.

For a (braided) monoidal supercategory S, let Aut
(br)
� (S) denote the group of equivalence classes of even

(braided) tensor autoequivalences of S. Such an autoequivalence consists of a triple (T, τ, ϕ) where T : S → S is
an equivalence of categories inducing even linear maps on morphisms, τ : T ◦�→ � ◦ (T × T ) is an even natural
isomorphism, and ϕ : T (1)→ 1 is an even isomorphism. These isomorphisms must be suitably compatible with the
unit, associativity, and braiding isomorphisms (if any) of S. The composition of two autoequivalences (T1, τ1, ϕ1)
and (T2, τ2, ϕ2) is the functor T1 ◦ T2 together with the isomorphism

T1(T2(1))
T1(ϕ2)−−−−→ T1(1)

ϕ1−→ 1

and natural isomorphims

T1(T2(W1 �W2))
T1((τ2)W1,W2

)
−−−−−−−−−→ T1(T2(W1) � T2(W2))

(τ1)T2(W1),T2(W2)−−−−−−−−−−−→ T1(T2(W1)) � T1(T2(W2))

for objects W1 and W2 of S.
Now for G a (not necessarily finite) group, the following is a natural generalization of the notion of G-crossed

category from [Tu] (see also [Ki3, EGNO]) to the supercategory setting:

Definition 2.6. A braided G-crossed supercategory over F is an F-additive monoidal supercategory S with the
following structures:

1. G-grading: As a category S decomposes as a direct sum

S =
⊕
g∈G
Sg

where each Sg is a full subcategory, called the g-twisted sector. The G-grading is compatible with the monoidal
structure in the sense that:

(a) The unit object 1 is an object of S1.

(b) For objects W1 in Sg1
and W2 in Sg2

, W1 �W2 is an object of Sg1g2
.

2. G-action: There is a group homomorphism ϕ : G→ Aut�(S), denoted g 7→ (Tg, τg, ϕg), such that for g, h ∈ G
and an object W in Sg, Th(W ) is an object of Shgh−1 .

3. Braiding isomorphisms: For every g ∈ G, there is an even natural isomorphism R from the functor � on
Sg × S to the functor � ◦ (Tg × 1Sg ) ◦ σ satisfying the following properties:

(a) Compatibility with the G-action: For g ∈ G and W1 in Sg, the diagram

Th(W1 �W2)
Th(RW1,W2

)
//

τh;W1,W2

��

Th(Tg(W2) �W1)

τh;Tg(W2),W1

��
Th(W1) � Th(W2)

RTh(W1),Th(W2) // Thg(W2) � Th(W1)

commutes for all h ∈ G and all objects W2 in S.

(b) The hexagon/heptagon axioms: First, for g1, g2 ∈ G, W1 in Sg1 , and W2 in Sg2 , the diagram

W1 � (W2 �W3)
AW1,W2,W3 //

1W1
�RW2,W3

��

(W1 �W2) �W3

RW1�W2,W3

��
W1 � (Tg2(W3) �W2)

AW1,Tg2
(W3),W2

��

Tg1g2(W3) � (W1 �W2)

ATg1,g2
(W3),W1,W2

��
(W1 � Tg2

(W3)) �W2

RW1,Tg2
(W3)�1W3 // (Tg1g2

(W3) �W1) �W2
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commutes for any object W3 in S; and second, for g ∈ G and W1 in Sg, the diagram

(W1 �W2) �W3

RW1,W2
�1W3 //

A−1
W1,W2,W3

��

(Tg(W2) �W1) �W3

A−1
Tg(W2),W1,W3

��
W1 � (W2 �W3)

RW1,W2�W3

��

Tg(W2) � (W1 �W3)

1Tg(W2)�RW1,W3

++
Tg(W2 �W3) �W1

τg;W2,W3
�1W1

// (Tg(W2) � Tg(W3)) �W1
A−1

Tg(W2),Tg(W3),W1

// Tg(W2) � (Tg(W3) �W1)

commutes for all objects W2, W3 in S.

Remark 2.7. In the axioms for the braiding isomorphisms, we have implicitly assumed the homomorphism ϕ is
strict in the sense that ϕ(g1g2) = ϕ(g1)ϕ(g2). More generally, one could require that ϕ(g1)ϕ(g2) and ϕ(g1g2) be
naturally isomorphic via an isomorphism with suitable coherence properties, as in [Ki3]. One could also impose
stronger strictness conditions: in [Tu], for example, it is assumed that G acts by strict tensor functors, that is,
Tg(W1 �W2) = Tg(W1) � Tg(W2), Tg(1) = 1, and τg, ϕg are identity isomorphisms for all g ∈ G. Here, we have
chosen the level of strictness that actually occurs in the examples that we will consider.

Remark 2.8. The only modification in the notion of braided G-crossed category needed for the supercategory
setting is the evenness requirement for R and each Tg. The naturality of the braiding isomorphism R means that

for parity homogeneous morphisms f1 : W1 → W̃1 and f2 : W2 → W̃2, where W1, W̃1 are objects of Sg,

R
W̃1,W̃2

(f1 � f2) = (−1)|f1||f2|(Tg(f2) � f1)RW1,W2
.

As Tg induces even linear maps on morphisms, there is no question of whether |f2| or |Tg(f2)| should appear in the
sign factor here.

Remark 2.9. If a braided G-crossed supercategory S is rigid and W is an object of Sg, then its dual W ∗ is an
object of Sg−1 . Indeed, if W ∗ =

⊕
h∈GW

∗
h , then the restriction of the evaluation eW : W ∗ �W → 1 to W ∗h �W

is zero unless h = g−1. Similarly, the image of the coevaluation iW : 1→W �W ∗ is contained in W �W ∗g−1 , and

we find that (W ∗g−1 , eW |W∗
g−1�W

, iW ) is already a (left) dual of W .

Under mild conditions, the category RepG V of twisted modules for a superalgebra V in a braided tensor
category C is a braided G-crossed supercategory. This result was stated in [Ki3, Theorem 4.2 (2)], although a
detailed proof was not given. As a full proof seems to be missing from the literature, we will give one in Appendix
A, here only discussing the definitions of the G-action and the G-crossed braiding.

Theorem 2.10. Let C be a braided tensor category with right exact tensoring functors, V a superalgebra in C,
and G an automorphism group of V . If HomRepV (W1,W2) = 0 whenever W1 is g1-twisted, W2 is g2-twisted, and

g1 6= g2, then RepG V is a braided G-crossed supercategory.

The condition on HomRepV (W1,W2) guarantees that RepG V decomposes as a direct sum

RepG V =
⊕
g∈G

Repg V.

For g ∈ G, the superfunctor Tg : RepV → RepV is defined as follows:

� For an object (W,µW ) in RepV , Tg(W,µW ) = (W,µW (g−1 � 1W )).

� For a morphism f : W1 →W2 in RepV , Tg(f) = f .

After showing that Tg sends Repg V to Repghg
−1

V , we see that Tg restricts to a superfunctor on RepG V . The
isomorphism

ϕg : Tg(V )→ V

is g itself. Then for objects W1, W2 in Rep V , the even natural isomorphism

τg;W1,W2
: Tg(W1 �V W2)→ Tg(W1) �V Tg(W2),
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which as a morphism in SC is an isomorphism from W1 �V W2 to Tg(W1) �V Tg(W2), is characterized by the
commutative diagram

W1 �W2

IW1,W2

��

ITg(W1),Tg(W2)

**
W1 �V W2

τg;W1,W2 // Tg(W1) �V Tg(W2)

.

Note that ITg(W1),Tg(W2) does not equal IW1,W2
since it is the cokernel of a different SC-morphism into W1 �W2,

defined using different actions of V on W1 �W2. Finally for W1 a g-twisted module and W2 any object of RepG V ,
the braiding isomorphism

RVW1,W2
: W1 �V W2 → Tg(W2) �V W1

is characterized by the commutative diagram

W1 �W2

RW1,W2 //

IW1,W2

��

W2 �W1

ITg(W2),W1

��
W1 �V W2

RV
W1,W2 // Tg(W2) �V W1

.

2.3 G-equivariantization

Given a braided G-crossed supercategory S with G-action g 7→ (Tg, τg, ϕg) and braiding R, there is a braided
monoidal supercategory SG called the G-equivariantization of S with objects arising from G-invariant objects of S
(see for example Sections 2.7, 4.15 and 8.24 of [EGNO]). Formally,

� The F-additive supercategory SG has objects (W, {ϕW (g)}g∈G) where W is an object of S and the ϕW (g) :
Tg(W )→W are even isomorphisms in S such that the diagram

Tgh(W ) = Tg(Th(W ))
Tg(ϕW (h)) //

ϕW (gh)
**

Tg(W )

ϕW (g)

��
W

commutes for g, h ∈ G.

� Morphisms f : (W1, ϕW1
)→ (W2, ϕW2

) in SG are morphisms f : W1 →W2 in S such that the diagram

Tg(W1)
Tg(f) //

ϕW1
(g)

��

Tg(W2)

ϕW2
(g)

��
W1

f // W2

commutes for all g ∈ G.

For objects (W1, ϕW1
) and (W2, ϕW2

) in SG, their tensor product is (W1 �W2, ϕW1�W2
) where

ϕW1�W2
(g) = (ϕW1

(g) � ϕW2
(g))τg;W1,W2

for g ∈ G. Then the tensor product (in S) of two morphisms in SG is also a morphism in SG due to the naturality
of τg. The unit object of SG is (1, {ϕg}g∈G), and the unit and associativity isomorphisms of S are morphisms in
SG due to the compatibility of the ϕg and τg with the unit and associativity isomorphisms.

We can also define a braiding on SG as follows. For an object W in S, let πg denote projection onto the
g-graded homogeneous summand W g and let qg denote the inclusion of W g into W . Then for objects (W1, ϕW1)

and (W2, ϕW2) of SG, we define R̃W1,W2 to be the sum over g ∈ G of the compositions

W1 �W2

πg�1W2−−−−−→W g
1 �W2

RW
g
1 ,W2−−−−−→ Tg(W2) �W g

1

ϕW2
(g)�qg−−−−−−−→W2 �W1.
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Showing that R̃W1,W2
is a morphism in SG requires the compatibility of R with the G-action on S, and the hexagon

axioms for R̃ follow using the hexagon/heptagon axioms for R.
When our braided G-crossed supercategory is the category of twisted modules for a superalgebra V in a braided

tensor category C, an object of the G-equivariantization is an object (W,µW ) of RepG V equipped with a represen-
tation ϕW : G→ AutSC(W ) such that

ϕW (g)µW = µW (g � ϕW (g))

for all g ∈ G. Morphisms f : W1 → W2 in the G-equivariantization are morphisms in RepG V that commute with
the representations of G on W1 and W2.

For the rest of this section, we will assume that RepG V equals the full category Rep V ; for conditions guar-
anteeing this occurs, see Assumption 3.1 in the next section. In this case, the induction functor F : SC → Rep V
is actually a functor into the G-equivariantization, which we will denote by S(Rep V )G because we will soon use
the notation (Rep V )G for a certain subcategory. Indeed, for an object W in SC, G acts on F(W ) = V �W by
ϕF(W )(g) = g � 1W . This representation satisfies

ϕF(W )(g)µF(W ) = µF(W )(g � ϕF(W )(g))

because g is an automorphism of V . Moreover, if f : W1 → W2 is a morphism in SC, then F(f) = 1V � f is a
morphism in S(Rep V )G because

(g � 1W2
)(1V � f) = (1V � f)(g � 1W1

)

(since g is even, there is no sign factor).
The following theorem can be found in [Ki2, Mü2], but we include the proof to emphasize that it does not

require rigidity or semisimplicity:

Theorem 2.11. If RepG V = Rep V , then induction F : SC → S(Rep V )G is a braided monoidal superfunctor.

Proof. We need to check that rV : F(1) → V and fW1,W2 : F(W1 �W2) → F(W1) �V F(W2) are morphisms
in S(Rep V )G. These isomorphisms will be compatible with the unit and associativity isomorphisms in SC and
S(Rep V )G because the unit and associativity isomorphisms in S(Rep V )G are the same as those in Rep V .

The naturality of the right unit isomorphisms implies rV is an S(Rep V )G-morphism. For fW1,W2
, we need to

show
ϕF(W1)�V F(W2)(g)fW1,W2 = fW1,W2ϕF(W1�W2)(g)

for g ∈ G. The left side is the composition

V � (W1�W2)
AV,W1,W2−−−−−−→ (V �W1) �W2

1V �W1
�(ιV �1W2

)l−1
W2−−−−−−−−−−−−−−−→ (V �W1) � (V �W2)

IF(W1),F(W2)−−−−−−−−−→ (V �W1) �V (V �W2)
τg;F(W1),F(W2)−−−−−−−−−−→ Tg(V �W1) �V Tg(V �W2)

ϕF(W1)(g)�V ϕF(W2)(g)−−−−−−−−−−−−−−−→ (V �W1) �V (V �W2). (2.5)

Using the definitions,(
ϕF(W1)(g) �V ϕF(W2)(g)

)
τg;F(W1),F(W2)IF(W1),F(W2)

=
(
ϕF(W1)(g) �V ϕF(W2)(g)

)
ITg(F(W1)),Tg(F(W2))

= IF(W1),F(W2)

(
ϕF(W1)(g) � ϕF(W2)(g)

)
= IF(W1),F(W2)

(
(g � 1W1

) � (g � 1W2
)
)
.

Inserting this back into (2.5), using gιV = ιV , and applying naturality of associativity, we get

V � (W1�W2)
g�1W1�W2−−−−−−−→ V � (W1 �W2)

AV,W1,W2−−−−−−→ (V �W1) �W2

1V �W1
�(ιV ⊗1W2

)l−1
W2−−−−−−−−−−−−−−−→ (V �W1) � (V �W2)

IF(W1),F(W2)−−−−−−−−−→ (V �W1) �V (V �W2),

which is fW1,W2
ϕF(W1�W2)(g).
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We also need to verify that the natural isomorphism f is compatible with the braiding isomorphisms R in SC
and R̃V in S(Rep V )G in the sense that the diagram

F(W1 �W2)
F(RW1,W2

)
//

fW1,W2

��

F(W2 �W1)

fW2,W1

��
F(W1) �V F(W2)

R̃V
F(W1),F(W2)// F(W2) �V F(W1)

commutes. The lower left composition here is the sum over g ∈ G of the compositions

V � (W1 �W2)
AV,W1,W2−−−−−−→ (V �W1) �W2

1V �W1
�(ιV �1W2

)l−1
W2−−−−−−−−−−−−−−−→ (V �W1) � (V �W2)

IF(W1),F(W2)−−−−−−−−−→ (V �W1) �V (V �W2)
πg�V 1V �W2−−−−−−−−→ (V �W1)g �V (V �W2)

RV
(V �W1)g,V �W2−−−−−−−−−−−→ Tg(V �W2) �V (V �W1)g

ϕF(W2)(g)�V qg−−−−−−−−−−→ (V �W2) �V (V �W1).

By the definitions of the tensor product of morphisms in Rep V , the braiding RV , and ϕF(W2)(g), this is the sum
over g ∈ G of

V � (W1 �W2)
AV,W1,W2−−−−−−→ (V �W1) �W2

1V �W1
�(ιV �1W2

)l−1
W2−−−−−−−−−−−−−−−→ (V �W1) � (V �W2)

πg�1V �W2−−−−−−−→ (V �W1)g � (V �W2)
R(V �W1)g,V �W2−−−−−−−−−−−→ (V �W2) � (V �W1)g

(g�1W2
)�qg−−−−−−−−→ (V �W2) � (V �W1)

IF(W2),F(W1)−−−−−−−−−→ (V �W2) �V (V �W1).

We apply naturality of the braiding to g and use gιV = ιV to eliminate g. We then apply naturality of the braiding
to qg and get

∑
g∈G qgπg = 1V�W1

. Thus everything simplifies to

V � (W1 �W2)
AV,W1,W2−−−−−−→(V �W1) �W2

1V �W1
�(ιV �1W2

)l−1
W2−−−−−−−−−−−−−−−→ (V �W1) � (V �W2)

RV �W1,V �W2−−−−−−−−−→ (V �W2) � (V �W1)
IF(W2),F(W1)−−−−−−−−−→ (V �W2) �V (V �W1).

Now use the hexagon axiom and the unit property of V to rewrite as

V � (W1 �W2)
AV,W1,W2−−−−−−→ (V �W1) �W2

1V �W1
�(ιV �1W2

)l−1
W2−−−−−−−−−−−−−−−→ (V �W1) � (V �W2)

A−1

V,W1,V �W2−−−−−−−−→ V � (W1 � (V �W2))
1V �RW1,V �W2−−−−−−−−−−→ V � ((V �W2) �W1)

AV,V �W2,W1−−−−−−−−→ (V � (V �W2)) �W1

RV,V �W2
�1W1−−−−−−−−−−→ ((V �W2) � V ) �W1

A−1

V �W2,V,W1−−−−−−−−→ (V �W2) � (V �W1)

1V �W2
�(r−1

V �1W1
)

−−−−−−−−−−−−−→ (V �W2) � ((V � 1) �W1)
1V �W2

�((1V �ιV )�1W1
)

−−−−−−−−−−−−−−−−→ (V �W2) � ((V � V ) �W1)

1V �W2
�(µV �1W1

)
−−−−−−−−−−−−→ (V �W2) � (V �W1)

IF(W2),F(W1)−−−−−−−−−→ (V �W2) �V (V �W1). (2.6)

Next use the triangle axiom and naturality of associativity to calculate

(µV � 1W1
)
(
(1V � ιV ) � 1W1

)
(r−1
V � 1W1

)

= (µV � 1W1
)
(
(1V � ιV ) � 1W1

)
AV,1,W1

(1V � l−1
W1

)

= (µV � 1W1
)AV,V,W1

(
1V � (ιV � 1W1

)
)
(1V � l−1

W1
)

= µF(W1)

(
1V � (ιV � 1W1

)l−1
W1

)
.
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We insert this back into (2.6) and use properties of natural isomorphisms to get

V � (W1 �W2)
1V �(1W1

�(ιV �1W2
)l−1

W2
)

−−−−−−−−−−−−−−−−−→ V � (W1 � (V �W2))
1V �RW1,V �W2−−−−−−−−−−→ V � ((V �W2) �W1)

1V �(1V �W2
�(ιV �1W1

)l−1
W1

)
−−−−−−−−−−−−−−−−−−−→ V � ((V �W2) � (V �W1))

AV,F(W2),F(W1)−−−−−−−−−−→ (V � (V �W2)) � (V �W1)

RV,F(W2)�1F(W1)−−−−−−−−−−−−→ ((V �W2) � V ) � (V �W1)
A−1
F(W2),V,F(W1)−−−−−−−−−−→ (V �W2) � (V � (V �W1))

1F(W2)�µF(W1)−−−−−−−−−−→ (V �W2) � (V �W1)
IF(W2),F(W1)−−−−−−−−−→ (V �W2) �V (V �W1).

Since IF(W2),F(W1) is an intertwining operator, we can replace the fifth through seventh arrows above with µF(W2)�
1F(W1). Then applying naturality of braiding and associativity to (ιV � 1W2)l−1

W2
, we get

V � (W1 �W2)
1V �RW1,W2−−−−−−−−→ V � (W2 �W1)

1V �(1W2
�(ιV �1W1

)l−1
W1

)
−−−−−−−−−−−−−−−−−→ V � (W2 � (V �W1))

AV,W2,V �W1−−−−−−−−→ (V �W2) � (V �W1)
(1V �(ιV �1W2

)l−1
W2

)�1V �W1−−−−−−−−−−−−−−−−−−−→ (V � (V �W2)) � (V �W1)

AV,V,W2
�1V �W1−−−−−−−−−−−→ ((V � V ) �W2) � (V �W1)

(µV �1W2
)�1V �W1−−−−−−−−−−−−→ (V �W2) � (V �W1)

IF(W2),F(W1)−−−−−−−−−→ (V �W2) �V (V �W1).

Finally, we use naturality of associativity, the triangle axiom, and the right unit property of V to conclude

(µV � 1W2)AV,V,W2

(
1V � (ιV � 1W2)

)
(1V � l−1

W2
)

= (µV � 1W2
)
(
(1V � ιV ) � 1W2

)
AV,1,W2

(1V � l−1
W2

)

= (µV � 1W2
)
(
(1V � ιV ) � 1W2

)
(r−1
V � 1W2

) = 1V�W2
.

This together with naturality of associativity yields the composition

V � (W1 �W2)
1V �RW1,W2−−−−−−−−→ V � (W2 �W1)

AV,W2,W1−−−−−−→ (V �W2) �W1

1V �W2
�(ιV �1W1

)l−1
W1−−−−−−−−−−−−−−−→ (V �W2) � (V �W1)

IF(W2),F(W1)−−−−−−−−−→ (V �W2) �V (V �W1),

which is fW2,W1
F(RW1,W2

) as required.

Since we mainly want to understand the original braided tensor category C rather than the auxiliary supercate-
gory SC, we would like induction to be a functor from C (embedded into SC via W 7→ (W, 0)) into a suitable braided
tensor subcategory of S(Rep V )G. For this, we need G to include the parity automorphism PV = 1V 0̄ ⊕ (−1V 1̄) of
V . In this case, define (Rep V )G to be the full subcategory of S(Rep V )G whose objects (W,µW , ϕW ) satisfy

ϕW (PV ) = PW .

The category (Rep V )G is not a supercategory in any meaningful sense because its morphisms f : W1 →W2 satisfy

PW2f = fPW1

and hence are all even. Also, induction sends C to (Rep V )G because if W is an object of C, then F(W ) =
(V 0̄ �W,V 1̄ �W ) as an object of SC, and hence

PF(W ) = PV � 1W = ϕF(W )(PV ).

Now we have:

Theorem 2.12. Assume G contains PV and RepG V = Rep V . Then (Rep V )G is a braided tensor category and
induction F : C → (Rep V )G is a braided tensor functor.
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Proof. To show that (Rep V )G is a braided monoidal subcategory of S(Rep V )G, we just need to show that it is
closed under tensor products. Thus we show that if ϕW1

(PV ) = PW1
and ϕW2

(PV ) = PW2
for objects W1, W2 in

S(Rep V )G, then ϕW1�VW2
(PV ) = PW1�VW2

as well. Using definitions,

ϕW1�VW2
(PV )IW1,W2

= (ϕW1
(PV ) �V ϕW2

(PV ))τPV ;W1,W2
IW1,W2

= (PW1
�V PW2

)ITPV
(W1),TPV

(W2)

= IW1,W2(PW1 � PW2)

= IW1,W2PW1�W2

= PW1�VW2
IW1,W2 ,

where the last step uses the evenness of IW1,W2
. Since IW1,W2

is surjective, ϕW1�VW2
(PV ) = PW1�VW2

.
The proof that (Rep V )G is abelian, and thus a braided tensor category, is similar to the proof of [CKM,

Theorem 2.9], so we just indicate how to show (Rep V )G is closed under cokernels and why epimorphisms in
(Rep V )G are cokernels of their kernels. A morphism f : W1 →W2 in (Rep V )G is in particular an even morphism
in Rep V , so [CKM, Proposition 2.32] shows f has a cokernel (C, µC) in Rep V with even cokernel morphism
c : W2 → C. Then for g ∈ G, define ϕC(g) : C → C to be the unique SC-morphism such that the diagram

W1
f // W2

ϕW2
(g)

//

c

��

W2

c

��
C

ϕC(g) // C

commutes; ϕC(g) exists because f is a morphism in (Rep V )G:

cϕW2
(g)f = cfϕW1

(g) = 0.

To show that ϕC(g) is compatible with µC and that ϕC is a representation of G, one uses the corresponding
properties of ϕW2 and the surjectivity of c and 1V � c. Showing that (C, µC , ϕC) is a cokernel of f in (Rep V )G

uses the cokernel property (C, µC) in Rep V , the definition of ϕC , and the surjectivity of c.
Now suppose f : W1 � W2 is an epimorphism in (Rep V )G. We claim that f is also an epimorphism in

Rep V . Indeed, for h : W2 → X a morphism in Rep V such that hf = 0 and (C, c) a cokernel of f in Rep V with

c : W2 → C even, there is a unique h̃ : C → X such that h = h̃c. But we have seen that C has a unique structure
of (Rep V )G-object for which c is a morphism in (Rep V )G. So cf = 0 implies c = 0 as f is an epimorphism in

(Rep V )G. Then h = h̃c = 0 as well, showing f is an epimorphism in Rep V .
Now that f is an even epimorphism in Rep V , [CKM, Proposition 2.32] shows that f is the cokernel of its

kernel morphism k : (K,µK)→ (W1, µW1
) in Rep V . But k is also a morphism in (Rep V )G, and then one shows

that (W2, f) satisfies the universal property of the cokernel of k in (Rep V )G by applying the cokernel property of
(W2, f) in Rep V , the fact that f is a morphism in (Rep V )G, and the surjectivity of f in Rep V .

The assertion that induction is a braided tensor functor from C to (Rep V )G is immediate from the discussion
preceding the theorem and Theorem 2.11.

Remark 2.13. From now on we will slightly abuse terminology and refer to (Rep V )G as the G-equivariantization
of Rep V .

3 The main categorical theorem

We continue to fix an (abelian) F-linear braided tensor category C, a superalgebra V in C, and an automorphism
group G of V . In the preceding section, we saw that if Rep V = RepG V , that is, all objects of Rep V are
direct sums of g-twisted V -modules for g ∈ G, then Rep V is a braided G-crossed supercategory and induction
is a braided tensor functor from C to the G-equivariantization (Rep V )G. In [Ki1, Ki2, Mü2], it was shown that
Rep V = RepG V under the assumptions that C is rigid and semisimple and that the G-invariants of V equal 1.
Now, we prove the same result without semisimplicity and using rigidity only for V . Thus, our result will apply to
non-semisimple module categories for vertex operator algebras arising in logarithmic conformal field theory, many
of which are not known to be rigid. The following conditions will be in force for the rest of the section:

Assumption 3.1. The superalgebra (V, µV , ιV ) and automorphism group G satisfy:
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� G is finite and includes the parity involution PV = 1V 0̄ ⊕ (−1V 1̄), so that |G| ∈ 2Z.

� The order of G is invertible in F, so that in particular the characteristic of F is not 2.

� V is haploid in the sense that HomSC(1, V )0̄ = FιV .

� There is an even morphism εV : V → 1 in SC such that εV ιV = 11 and ιV εV = 1
|G|
∑
g∈G g.

� There is an even morphism ĩV : 1→ V � V in SC such that (V, εV µV , ĩV ) is a (left) dual of V in C, that is,

V
l−1
V−−→ 1 � V

ĩV �1V−−−−→ (V � V ) � V
A−1

V,V,V−−−−−→ V � (V � V )
1V �(εV µV )−−−−−−−−→ V � 1

rV−−→ V

and

V
r−1
V−−→ V � 1

1V �ĩV−−−−→ V � (V � V )
AV,V,V−−−−−→ (V � V ) � V

(εV µV )�1V−−−−−−−−→ 1 � V
lV−→ V

both equal the identity on V .

� The morphism 1
ĩV−→ V � V

µV−−→ V in HomC(1, V ) equals |G|ιV .

Remark 3.2. The fourth and sixth assumptions above imply that the dimension of V , defined by

dimV = εV µV ĩV ∈ EndC(1) = F,

is equal to |G|. Conversely, since V is haploid, the final condition above follows from dimV = |G|.
We now state the theorem which is the main technical result of this paper:

Theorem 3.3. Under Assumption 3.1, every object W in RepV is a direct sum W =
⊕

g∈GWg where Wg is a
(possibly zero) g-twisted V -module.

The idea of the proof is to find the projections from W to all of its g-twisted summands. That is, we need to
construct morphisms {πg : W →W}g∈G which satisfy:

1. Each πg is a morphism in RepV .

2. For each g ∈ G, the image πg(W ) is a g-twisted V -module.

3. For all g, h ∈ G, πgπh = δg,hπg, and
∑
g∈G πg = 1W .

We shall verify these properties for the morphisms πg = |G|−1Πg, where Πg : W →W is the composition

W
l−1
W−−→ 1 �W

ĩV �1W−−−−−→ (V � V ) �W
A−1

V,V,W−−−−−→ V � (V �W )
1V �MV,W−−−−−−−→ V � (V �W )

1V �(g�1W )−−−−−−−−→ V � (V �W )
1V �µW−−−−−→ V �W

µW−−→W.

We represent πg pictorially using braid diagrams as follows:

πg =
1

|G|

W

g

µW

µW

W

V V

Before proving the properties of πg listed above, we note two corollaries:
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Corollary 3.4. Under Assumption 3.1, Rep V is a braided G-crossed supercategory.

Proof. This follows immediately from Theorems 2.10 and 3.3 once we verify that HomRep V (W1,W2) = 0 when W1

is g1-twisted, W2 is g2-twisted, and g1 6= g2. Observe first that for a g-twisted module W , πg is the identity on
W by the definition of g-twisted module, associativity of µW , the final condition in Assumption 3.1, and the unit
property of W . Second, the projections πg commute with morphisms f : W1 → W2 in Rep V due to properties of
natural isomorphisms in SC and fµW1 = µW2(1V � f). So if W1 is g1-twisted and W2 is g2-twisted,

f = πg2fπg1 = fπg2πg1 = δg1,g2fπg1 = δg1,g2f,

and f = 0 if g1 6= g2.

Corollary 3.5. Under Assumption 3.1, induction F : SC → S(Rep V )G is a braided monoidal superfunctor and
restricts to a braided tensor functor F : C → (Rep V )G.

Proof. This follows directly from Theorems 2.11, 2.12, and 3.3.

The proof of Theorem 3.3 starts with some preliminary lemmas. In this section, we give proofs by braid diagram
for brevity and clarity; see Appendix B for full calculations, incorporating for example associativity isomorphisms.

Lemma 3.6. The composition 1
ĩV−→ V � V

1V �εV−−−−−→ V � 1
rV−−→ V equals ιV .

Proof. Consider the linear map Φ : HomC(V,1)→ HomC(1, V ) which sends f : V → 1 to the composition

1
ĩV−→ V � V

1V �f−−−−→ V � 1
rV−−→ V.

In particular, the morphism indicated in the statement of the lemma is Φ(εV ). Because (V, ĩV , εV µV ) is a dual of
V in C, Φ is an isomorphism with inverse sending g : 1→ V to the composition

V
r−1
V−−→ V � 1

1V �g−−−−→ V � V
εV µV−−−−→ 1.

In particular Φ−1(ιV ) = εV by the right unit property of V , so Φ(εV ) = Φ(Φ−1(ιV ) = ιV .

Lemma 3.7. The two morphisms V → V � V in C given by the compositions

V
l−1
V−−→ 1 � V

ĩV �1V−−−−→ (V � V ) � V
A−1

V,V,V−−−−−→ V � (V � V )
1V �µV−−−−−→ V � V

and

V
r−1
V−−→ V � 1

1V �ĩV−−−−→ V � (V � V )
AV,V,V−−−−−→ (V � V ) � V

µV �1V−−−−−→ V � V

are equal. Diagrammatically,

µV

V

VV

V V
=

µV

V

V V

V V
.

Proof. Since V is rigid with dual V and evaluation εV µV , V � V is also rigid with dual V � V and evaluation

eV�V : (V � V ) � (V � V )→ 1

given by the composition

(V � V ) � (V � V )
A−1

V,V,V �V−−−−−−→ V � (V � (V � V ))
1V �AV,V,V−−−−−−−→ (V � (V � V )) � V

1V �(εV µV �1V )−−−−−−−−−−−→ V � (1 � V )
1V �lV−−−−→ V � V

εV µV−−−−→ 1.
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As V � V is rigid, the map HomC(V, V � V ) → HomC((V � V ) � V,1) given by F 7→ eV�V (1V�V � F ) is an
isomorphism, so letting FL and FR denote the morphisms in the statement of the lemma, it is enough to show

eV�V (1V�V � FL) = eV�V (1V�V � FR).

In fact, we will show that these two morphisms equal εV µV (µV � 1V ), or equivalently εV µV (1V � µV )A−1
V,V,V .

We analyze eV�V (1V�V � FL) as follows:

µV

εV µV

εV µV

V V V

V V

=

µV

εV µV

εV µV

V V V

V V

= µV

εV µV

V V V

, (3.1)

where we have used the rigidity of V for the second step. On the other hand, eV�V (1V�V � FR) becomes:

µV

εV µV

εV µV

V V V

V V

=
µV

εV µV

εV µV

V V V

V V

=

µV

εV µV

εV µV

V V V

V V

, (3.2)

which by rigidity reduces to the right side of (3.1).

Lemma 3.8. For g ∈ G, the composition 1
ĩV−→ V � V

1V �g−−−−→ V � V
µV−−→ V equals |G|δg,1ιV .

Proof. Since V is haploid, the morphism in the lemma is a multiple of ιV , which we denote TrC g. By assumption,
TrC 1 = dimC V = |G|, so we just need to show TrC g = 0 for g 6= 1. We calculate using the left and right unit
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properties of V , the automorphism property of g, the associativity of µV , and Lemma 3.7:

(TrC g)1V =
g

µV

µV

V V

V

V

=
g−1

µV

µV

g−1

g

V V

V

V

=
g−1

µV

µV

g−1

g

V V

V

V

=

g−1

µV

µV

g−1

g

VV

V

V

=

gµV

µV

g−1

VV

V

V

=
g

µV

µV

g−1

VV

V

V

= (TrC g)g−1. (3.3)

Thus TrC g = 0 unless g is the identity.

Now we begin checking that the C-morphisms πg (or equivalently, the Πg) satisfy the required properties:

1. Each Πg is a morphism in RepV . We need to show that µW (1V �Πg) = ΠgµW . The proof goes as indicated
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by the braid diagrams:

W

g

µW

µW

V V

µW

V

W

=

W

g

µV

µW

V V

µW

V

W

=

V W

g

µV

µV

µW

W

V
V

=

V W

g

µV

µV

µW

W

V
V

=

V W

g

µV

µW

µW

W

V
V

=

g µW

µW

µW

W

V V

V W

=

V W

µW

g

µW

µW

W

V V

(3.4)

The third equality uses both the associativity and commutativity of µV , and the last step uses naturality of braiding
and unit isomorphisms to move the first µW .

2. For each g ∈ G, the image Πg(W ) is a g-twisted V -module. Since Πg is an even morphism in Rep V ,
Πg(W ) is an object of Rep V : it is the kernel of the (even) cokernel of Πg. Then Πg(W ) will be g-twisted if

µW (g � 1W )MV,W (1V � Πg) = µW (1V � Πg).
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By naturality of the monodromy isomorphisms, the left side is µW (g � Πg)MV,W , which we analyze as follows:

g g

µW

µW

µW

W

V W

V V

= g g

µV

µW

µW

W

V W

V V

=

g g

µV

µV

µW

W

V W

V V

=

g

µV

µV

µW

W

V W

V V

=

g

µV

µV

µW

W

V W

V V

. (3.5)

We simplify the braidings here with the Yang-Baxter relation, the commutativity of µV , the hexagon axioms, and
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the naturality of braiding:

µV

V V W

V W

=

µV

V V W

V W

=

µV

V V W

V W

=

µV

V V W

V W

=

µV

V V W

V W

(3.6)

Finally, we insert (3.6) back into (3.5) and apply Lemma 3.7:

µW

µV

µV

g

W

V W

V V

=

µW

µV

µV

g

W

V W

V V

=

µW

µV

µV

g

W

V W

V V

=

µW

µW

µW

g

W

V W

V V

, (3.7)

which is µW (1V � Πg).

3. For all g, h ∈ G, ΠgΠh = |G|δg,hΠh, and
∑
g∈G πg = 1W . Since we have just shown that Πh(W ) is an

h-twisted module for any h ∈ G, for the first relation it is enough to prove that

Πg = |G|δg,h1W
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when W is an h-twisted V -module. In fact, when W is h-twisted, Πg is given by

µW

µW

g

W

V V

W

=

µW

µW

g

W

V V

W

=

µW

µW

g

h−1

W

V V

W

=

µW

µV

h−1g

W

V V

W

, (3.8)

which is |G|δg,h1W by Lemma 3.8 and the unit property of W .
Finally we compute

∑
g∈G πg using bilinearity of composition and tensor products of morphisms in a tensor

category, the assumption 1
|G|
∑
g∈G g = ιV εV , the triviality of M1,W , and the associativity of µW :

µW

µW

1
|G|
∑
g∈G g

W

V V

W

=

µW

µW

ιV εV

W

V V

W

=

µW

µW

ιV

εV

W

V V

W

=

µW

µV

ιV

εV

W

V V

W

, (3.9)

which is the identity on W by Lemma 3.6 and the unit property of W . This completes the proof of the theorem.

Remark 3.9. When g = 1, πg projects W onto its maximal untwisted submodule. This projection is defined for
general rigid commutative algebra objects in braided tensor categories (see [KO, Lemma 4.3]).

4 Twisted modules for vertex operator superalgebras

Here we interpret the categorical results of the preceding sections as theorems for vertex operator (super)algebras.

4.1 Definitions

There are several slightly variant notions of vertex operator superalgebra (see for example [DL, Xu, Li, CKL]); we
will use the following definition:

Definition 4.1. A vertex operator superalgebra is a 1
2Z-graded superspace V =

⊕
n∈ 1

2Z
V(n) equipped with an even

vertex operator map

Y : V ⊗ V → V [[x, x−1]]

24



u⊗ v 7→ Y (u, x)v =
∑
n∈Z

unv x
−n−1

and two distinguished vectors 1 ∈ V(0) ∩ V 0̄ called the vacuum and ω ∈ V(2) ∩ V 0̄ called the conformal vector. The
data satisfy the following axioms:

1. Grading compatibility : For i ∈ Z/2Z, V i =
⊕

n∈ 1
2Z
V(n) ∩ V i.

2. The grading restriction conditions: For each n ∈ 1
2Z, V(n) is finite dimensional, and for n ∈ 1

2Z sufficiently
negative, V(n) = 0.

3. Lower truncation: For any u, v ∈ V , Y (u, x)v ∈ V ((x)), that is, unv = 0 for n sufficiently negative.

4. The vacuum property : Y (1, x) = 1V .

5. The creation property : For any v ∈ V , Y (v, x)1 ∈ V [[x]] with constant term v.

6. The Jacobi identity : For any parity-homogeneous u, v ∈ V ,

x−1
0 δ

(
x1 − x2

x0

)
Y (u, x1)Y (v, x2)− (−1)|u||v|x−1

0 δ

(
−x2 + x1

x0

)
Y (v, x2)Y (u, x1)

= x−1
2 δ

(
x1 − x0

x2

)
Y (Y (u, x0)v, x2).

7. The Virasoro algebra properties: If Y (ω, x) =
∑
n∈Z L(n)x−n−2, then

[L(m), L(n)] = (m− n)L(m+ n) +
m3 −m

12
δm+n,0c1V ,

where c ∈ C is the central charge of V . Moreover, for any n ∈ 1
2Z, V(n) is the eigenspace for L(0) with

eigenvalue n; for v ∈ V(n), we say that n is the (conformal) weight of v.

8. The L(−1)-derivative property : For any v ∈ V ,

Y (L(−1)v, x) =
d

dx
Y (v, x).

Remark 4.2. Some definitions of vertex operator superalgebra require V ī =
⊕

n∈ i
2 +Z V(n) for i = 0, 1, but this is

too restrictive. For example, vertex operator superalgebras based on affine Lie superalgebras are Z-graded.

Next we recall the definition of automorphism of a vertex operator superalgebra:

Definition 4.3. An automorphism of a vertex operator superalgebra (V, Y,1, ω) is an even linear automorphism
g of V such that g · 1 = 1, g · ω = ω, and for any v ∈ V ,

g · Y (v, x) = Y (g · v, x)g.

Remark 4.4. An automorphism g preserves all the vertex operator superalgebra structure of V , including both
gradings: the Z/2Z grading because g is even and the 1

2Z-grading because

gY (ω, x) = Y (g · ω, x)g = Y (ω, x)g

implies g commutes with L(0).

Remark 4.5. Since Y , 1, and ω are all even in a vertex operator superalgebra V , the parity automorphism
PV = 1V 0̄ ⊕ (−1V 1̄) is an automorphism of the vertex operator superalgebra structure.

Let g be any even grading-preserving linear automorphism of a vertex operator superalgebra V . Then since
V(n) is finite dimensional for any n ∈ 1

2Z, g|V(n)
is the exponential of some even linear endomorphism of V(n). Thus

g = e2πiγ where γ is a (non-unique) even grading-preserving linear endomorphism of V . For concreteness, we choose
a specific γ, following [Ba, HY]: On each V(n), g decomposes uniquely as the product of commuting semisimple
and unipotent parts, and the unipotent part is the exponential of a nilpotent endomorphism. Putting these parts
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together, g = σe2πiN where σ is semisimple and N is locally nilpotent. On any generalized g-eigenspace of V , σ
equals a constant e2πiα for a unique α ∈ C such that 0 ≤ Reα < 1. We define γ = α +N on such a generalized
eigenspace. As V is the direct sum of its generalized g-eigenspaces, this completely specifies γ.

For any grading-preserving linear endomorphism γ of V , necessarily decomposable as a sum of commuting
grading-preserving semisimple and locally nilpotent parts γS and γN , we define the operator

xγ : V → V [log x]{x}

such that if v ∈ V is a generalized eigenvector for γ with generalized eigenvalue α,

xγ · v = xαe(log x)γN · v,

where the exponential sum truncates because γN is locally nilpotent. Now we can define twisted modules associated
to an automorphism of a vertex operator superalgebra:

Definition 4.6. Let g = e2πiγ be an automorphism of a vertex operator superalgebra V with γ chosen as above.
A grading-restricted generalized g-twisted V -module is a C-graded superspace W =

⊕
h∈CW[h] equipped with an

even vertex operator map

YW : V ⊗W →W [log x]{x}

v ⊗ w 7→ YW (v, x)w =
∑
h∈C

∑
k∈N

vh;kw x
−h−1(log x)k

satisfying the following properties:

1. Grading compatibility : For i ∈ Z/2Z, W i =
⊕

h∈CW[h] ∩W i,

2. The grading restriction conditions: For any h ∈ C, W[h] is finite dimensional and W[h+r] = 0 for r ∈ R
sufficiently negative.

3. Lower truncation: For any v ∈ V , w ∈W , and h ∈ C, vh+n;kw = 0 for n ∈ N sufficiently large, independently
of k ∈ N.

4. The g-equivariance property : For any v ∈ V , YW (g · v, e2πix) = YW (v, x).

5. The vacuum property : YW (1, x) = 1W .

6. The Jacobi identity : For any parity-homogeneous u, v ∈ V ,

x−1
0 δ

(
x1 − x2

x0

)
YW (u, x1)YW (v, x2)− (−1)|u||v|x−1

0 δ

(
−x2 + x1

x0

)
YW (v, x2)YW (u, x1)

= x−1
1 δ

(
x2 + x0

x1

)
YW

(
Y

((
x2 + x0

x1

)γ
· u, x0

)
v, x2

)
.

7. If YW (ω, x) =
∑
n∈Z LW (n)x−n−2, then for any h ∈ C, W[h] is the generalized eigenspace of LW (0) with

generalized eigenvalue h.

8. The L(−1)-derivative property : For any v ∈ V ,

YW (L(−1)v, x) =
d

dx
YW (v, x).

Remark 4.7. We will sometimes refer to a grading-restricted generalized g-twisted V -module simply as a g-
twisted V -module, although note that in the literature this term sometimes refers to modules on which LW (0) acts
semisimply. The g = 1V case of Definition 4.6 is the definition of (grading-restricted generalized) V -module.

Remark 4.8. Although the logarithm of g is not unique, Definition 4.6 at least does not depend on the choice
of semisimple part of γ. If γ′ is another choice of logarithm with locally nilpotent part N (that is, we lift the
restriction on the real part of the eigenvalues of γ′), then for any v ∈ V ,

xγ
′
· v =

∑
xγ+ni · vi

for some integers ni and vectors vi such that v =
∑
vi. Then in the Jacobi identity, the extra factors of

(
x2+x0

x1

)ni

absorb into the delta function. Our specific choice of semisimple part of γ was chosen for simplicity and for
consistency with [Hu4, Ba, HY].

26



Remark 4.9. When g has infinite order, it follows from [Ba, Theorem 5.2] and [HY, Theorem 2.7] that the Jacobi
identity in Definition 4.6 is equivalent to the duality property in Huang’s definition of twisted module [Hu4] (see
also [Hu6, Theorem 3.8]). In fact, the only difference between Definition 4.6 and the definition of twisted module
given in [HY] is that here we do not assume a linear automorphism gW of a g-twisted V -module W such that

gW · YW (v, x)w = YW (g · v, x)gW · w. (4.1)

Actually, we automatically have such a gW in some cases. When V is Z-graded, we can take gW = e−2πiLW (0) and
when V ī =

⊕
n∈ i

2 +Z for i = 0, 1, we can take gW = PW e
−2πiLW (0). To show that such gW satisfy (4.1), one uses

the evenness of YW and the LW (0)-conjugation formula

ehLW (0)YW (v, x)e−hLW (0) = YW (ehL(0) · v, ehx) (4.2)

for h ∈ C, v ∈ V (see for instance [HLZ2, Proposition 3.36(b)], which applies because YW is an intertwining
operator among modules for the vertex operator subalgebra of even g-fixed points in V ).

The following equivalent form of the g-equivariance property of a g-twisted V -module will be useful:

Lemma 4.10. The lower truncation and g-equivariance properties of Definition 4.6 are equivalent to the condition
that for any v ∈ V and w ∈W ,

YW (xγ · v, x)w ∈W ((x)).

Proof. If YW satisfies lower truncation and g-equivariance, then for v ∈ V , the g-equivariance property implies

YW ((e2πix)γ · v, e2πix) = Y (gxγ · v, e2πix) = Y (xγ · v, x).

But any f(x) ∈ (EndW )[log x]{x} that satisfies f(e2πix) = f(x) must be a Laurent series. To show this, suppose
f(x) =

∑
h∈C,k∈N fh,k x

h(log x)k, so that

f(e2πix) =
∑

h∈C,k∈N
e2πihfh,k x

h(log x+ 2πi)k. (4.3)

If h ∈ C satisfies fh,k 6= 0 for some k ∈ N, let K be maximal so that fh,K 6= 0. We must show that h ∈ Z and
K = 0. Since f(e2πix) = f(x), the coefficient of xh(log x)K in f(e2πix) equals the coefficient of xh(log x)K in f(x).
So (4.3) implies e2πihfh,K = fh,K . Since fh,K 6= 0, this means e2πih = 1, or h ∈ Z.

Next, if K > 0, we compare coefficients of xh(log x)K−1 in f(e2πix) and f(x) and find

e2πih(fh,K−1 + 2πiKfh,K) = fh,K−1.

We already know e2πih = 1, so 2πiKfh,K = 0. This is a contradiction since fh,K 6= 0, so K = 0.
Now for w ∈W , lower truncation implies YW (xγ ·v, x)w is also lower-truncated, that is, YW (xγ ·v, x)w ∈W ((x)).
Conversely, assume YW satisfies YW (xγ · v, x)w ∈W ((x)) for v ∈ V , w ∈W . To show lower truncation, assume

without loss of generality that v is a generalized eigenvector for γ with generalized eigenvalue α. Then

YW (v, x)w = YW (xγx−γ · v, x)w =
∑
i≥0

(−1)i

i!
x−α(log x)iYW (xγ · N iv, x)w.

As the sum over i is finite, lower truncation follows because each YW (xγ · N iv, x)w ∈W ((x)). Moreover, since

YW ((e2πix)γ · N iv, e2πix) = YW (xγ · N iv, x)

for each i, we get

YW (v, x) = YW (xγx−γ · v, x) = YW ((e2πix)γx−γ · v, e2πix) = YW (e2πiγxγx−γ · v, e2πix) = YW (g · v, e2πix),

which is the g-equivariance property.
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4.2 General theorems

Let G be an automorphism group of a vertex operator superalgebra V that includes PV . Then the G-fixed points

V G = {v ∈ V | g · v = v for all g ∈ G}

form a vertex operator subalgebra of V 0̄. If C is a category of grading-restricted generalized V G-modules that
includes V and admits vertex tensor category structure as constructed in [HLZ1]-[HLZ8], then by [HKL, Theorem
3.2], [CKL, Theorem 3.13], V is a superalgebra in the braided tensor category C. Thus as in Section 2, we have
the monoidal supercategory Rep V of Z/2Z-graded V G-modules in C that admit even, unital, and associative V -
actions. In this setting, we need to verify that the definition of g-twisted V -module for g ∈ G from the previous
subsection agrees with the categorical definition of Section 2.2. To accomplish this, we first recall from [CKM] how
to characterize modules in Rep V in terms of intertwining operators:

Proposition 4.11. [CKM, Proposition 3.46] Let G be an automorphism group of a vertex operator superalgebra V
that includes PV and let C be a category of grading-restricted generalized V G-modules that includes V and admits
vertex tensor category structure. Then an object of Rep V is precisely a V G-module W in C equipped with an even
V G-module intertwining operator YW of type

(
W
V W

)
satisfying the following two properties:

1. Unit: YW (1, x) = 1W .

2. Associativity: For v1, v2 ∈ V , w ∈W , and w′ ∈W ′ =
⊕

h∈CW
∗
[h], the multivalued analytic functions

P (z1, z2) = 〈w′, YW (v1, z1)YW (v2, z2)w〉

on the region |z1| > |z2| > 0 and

I(z1, z2) = 〈w′, YW (Y (v1, z1 − z2)v2, z2)w〉

on the region |z2| > |z1 − z2| > 0 have equal restrictions to their common domain. Specifically, the equality

〈w′, YW (v1, e
ln r1)YW (v2, e

ln r2)w〉 = 〈w′, YW (Y (v1, r1 − r2)v2, e
ln r2)w〉

of single-valued branches holds on the simply-connected region r1 > r2 > r1 − r2 > 0 of (R+)2, where the
notation means the real-valued branch ln of logarithm on R+ is used to evaluate powers and logarithms.

Remark 4.12. The associativity property of a module in Rep V is stated somewhat differently in [CKM, Propo-
sition 3.46], using a simply-connected open region of (C×)2 containing the region r1 > r2 > r1 − r2 > 0 in its
boundary. However, this difference is irrelevant in light of Proposition 3.18 and Remark 3.19 of [CKM].

Next, the relationship between the intertwining operator YW and the morphism µW : V � W → W for a
module W in Rep V , given in the proof of [CKM, Proposition 3.46], together with [CKM, Equation 3.15] for the
monodromy isomorphism in C, imply:

Proposition 4.13. In the setting of Proposition 4.11, a module W in Rep V is a g-twisted V -module for g ∈ G
in the sense of Definition 2.3, that is,

µW (g � 1W )MV,W = µW ,

if and only if YW satisfies the g-equivariance property of Definition 4.6.

Now we establish the equivalence of Definitions 2.3 and 4.6. The proof is technical but uses standard vertex
algebraic techniques and has similarities to the proofs of [LL, Theorems 3.6.3 and 4.4.5], [HY, Theorem 2.10],
[CKM, Theorem 3.53], and [DLXY, Lemma 3.2].

Theorem 4.14. In the setting of Proposition 4.11, a V G-module in C is a g-twisted V -module for some g ∈ G in
the sense of Definition 2.3 if and only if it is g-twisted in the sense of Definition 4.6.

Proof. If W is a g-twisted V -module in the sense of Definition 2.3, then by Propositions 4.11 and 4.13, W satisfies
the g-equivariance and vacuum properties of Definition 4.6. Also, W satisfies all grading conditions in Definition
4.6 because it is a grading-restricted generalized V G-module, and YW satisfies lower truncation and the L(−1)-
derivative property because it is an intertwining operator among V G-modules. It remains to derive the Jacobi
identity from the associativity of YW .
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By [CKM, Remark 3.47], YW satisfies the following skew-associativity property in addition to associativity: for
w ∈ W , w′ ∈ W ′, and parity-homogeneous v1, v2 ∈ V , the multivalued analytic functions I(z1, z2) on the region
|z2| > |z1 − z2| > 0 and

Q(z1, z2) = (−1)|v1||v2|〈w′, YW (v2, z2)YW (v1, z1)w〉

on the region |z2| > |z1| > 0 have equal restrictions to their common domain. Specifically, the equality

(−1)|v1||v2|〈w′, YW (v2, e
ln r2)YW (v1, e

ln r1)w〉 = 〈w′, YW (Y (v1, r1 − r2)v2, e
ln r2)w〉

of single-valued branches holds on the simply-connected region r2 > r1 > r2 − r1 > 0 of (R+)2. Then we use
[Hu1, Lemma 4.1] to extend the multivalued analytic functions P (z1, z2), Q(z1, z2), and I(z1, z2), which agree on
their common domains, to a multivalued analytic function F (v1; z1, z2) defined on (C×)2 \ {(z, z) | z ∈ C×}. (The
convergence, associativity, and commutativity properties for intertwining operators among V G-modules required in
the proof of this lemma from [Hu1] are subsumed under the assumption that these intertwining operators satisfy the
sufficient conditions of [HLZ1]-[HLZ8] for vertex tensor category structure on C.) For γ a grading-preserving linear
endomorphism of V such that e2πiγ = g, we define a new multivalued analytic function f(z1, z2) = F (zγ1 v1; z1, z2).

We now define an (a priori multivalued) function of the single variable z1. Fix r2 ∈ R+ and choose r1 ∈ R+

such that r2 > r1 > r2 − r1 > 0. Then for z1 ∈ C \ {0, r2}, define fr2(z1) to take all values of f(z1, r2) that can be
obtained by analytic continuation along continuous paths from r1 to z1 in C \ {0, r2}, starting from the value

(−1)|v1||v2|〈w′, YW (v2, e
ln r2)YW (e(ln r1)γv1,e

ln r1)w〉 = 〈w′, YW (Y (e(ln r1)γv1, r1 − r2)v2, e
ln r2)w〉

=

〈
w′, YW

(
Y

(
e(ln r2)γ

(
1 +

r1 − r2

r2

)γ
v1, r1 − r2

)
v2, e

ln r2

)
w

〉
of f(r1, r2). We claim that fr2(z1) is actually single-valued, that is, the value of fr2(z1) obtained by analytic
continuation from r1 to z1 is independent of the path. Equivalently, analytic continuation along any continuous
path from r1 to r1 in C \ {0, r2} does not change the starting value of f(r1, r2). To prove this, note that any
continuous path from r1 to itself in C \ {0, r2} is homotopic to a sequence of loops based at r1 with each loop
encircling either r2 or 0 and remaining within the region r2 > |z1 − r2| > 0 or r2 > |z1| > 0, respectively. But the
value of f(r1, r2) does not change going around r2 because the series

Y

(
e(ln r2)γ

(
1 +

x0

r2

)γ
v1, x0

)
v2

has no monodromy in x0, and the value of f(r1, r2) does not change going around 0 because YW (xγ1v1, x1)w has no
monodromy in x1 by the g-equivariance property (recall Lemma 4.10).

The analytic function fr2(z1) has singularities at 0, r2, and ∞. Its Laurent series expansion around ∞ is

Pr2(x1)|x1=z1 = 〈w′, YW (xγ1v1, x1)YW (v2, e
ln r2)w〉|x1=z1 ,

its Laurent series expansion around 0 is

Qr2(x1)|x1=z1 = (−1)|v1||v2|〈w′, YW (v2, e
ln r2)YW (xγ1v1, x1)w〉|x1=z1 ,

and its is Laurent series expansion around r2 is

Ir2(x0)|x0=z1−r2 =

〈
w′, YW

(
Y

(
e(ln r2)γ

(
1 +

x0

r2

)γ
v1, x0

)
v2, e

ln r2

)
w

〉
.

All singularities are poles because W is grading restricted and because YW is lower truncated, so fr2 is a rational
function:

fr2(z1) =
pr2(z1)

zM1 (z1 − r2)N

where pr2(z1) is a polynomial and M,N ∈ N. Then

Pr2(x1) =
pr2(x1)

xM1 (x1 − r2)N
, Qr2(x1) =

pr2(x1)

xM1 (−r2 + x1)N
, Ir2(x0) =

pr2(r2 + x0)

(r2 + x0)MxN0
,

where the binomial terms are expanded in non-negative powers of the second variable.
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To get a Jacobi identity involving r2, we multiply both sides of the three-term delta-function identity

x−1
0 δ

(
x1 − r2

x0

)
− x−1

0 δ

(
−r2 + x1

x0

)
= r−1

2 δ

(
x1 − x0

r2

)
by pr2(x1)/xM1 xN0 . Delta-function substitution properties from [LL, Remark 2.3.25] then yield

x−1
0 δ

(
x1 − r2

x0

)
Pr2(x1)− x−1

0 δ

(
−r2 + x1

x0

)
Qr2(x1) = r−1

2 δ

(
x1 − x0

r2

)
Ir2(x0).

Since the w and w′ in the definition of P , Q, and I were arbitrary, we get the Jacobi identity

x−1
0 δ

(
x1 − r2

x0

)
YW (xγ1v1, x1)YW (v2, e

ln r2)− (−1)|v1||v2|x−1
0 δ

(
−r2 + x1

x0

)
YW (v2, e

ln r2)YW (xγ1v1, x1)

= r−1
2 δ

(
x1 − x0

r2

)
YW

(
Y

(
e(ln r2)γ

(
1 +

x0

r2

)γ
v1, x0

)
v2, e

ln r2

)
. (4.4)

To replace the real number r2 in the Jacobi identity by the formal variable x2, we use the method of [HLZ3,
Proposition 4.8]. First replace v1 in (4.4) with x−γ1 (r2x

−1
2 )L(0), and then make the substitutions x0 7→ x0r2x

−1
2 and

x1 7→ x1e
ln r2x−1

2 . This yields the identity

r−1
2 x2x

−1
0 δ

(
x1 − x2

x0

)
YW ((r2x

−1
2 )L(0)v1, x1e

ln r2x−1
2 )YW (v2, e

ln r2)

− (−1)|v1||v2|r−1
2 x2x

−1
0 δ

(
−x2 + x1

x0

)
YW (v2, e

ln r2)YW ((r2x
−1
2 )L(0)v1, x1e

ln r2x−1
2 )

= r−1
2 δ

(
x1 − x0

x2

)
YW

(
Y

((
x2 + x0

x1

)γ
(r2x

−1
2 )L(0)v1, x0r2x

−1
2

)
v2, e

ln r2

)
.

By the L(0)-conjugation property of V G-module intertwining operators applied to YW and Y , this is equivalent to

r−1
2 x2x

−1
0 δ

(
x1 − x2

x0

)
e(ln r2)L(0)x

−L(0)
2 YW (v1, x1)YW ((r−1

2 x2)L(0)v2, x2)e−(ln r2)L(0)x
L(0)
2

− (−1)|v1||v2|r−1
2 x2x

−1
0 δ

(
−x2 + x1

x0

)
e(ln r2)L(0)x

−L(0)
2 YW ((r−1

2 x2)L(0)v2, x2)YW (v1, x1)e−(ln r2)L(0)x
L(0)
2

= r−1
2 δ

(
x1 − x0

x2

)
e(ln r2)L(0)x

−L(0)
2 YW

(
Y

((
x2 + x0

x1

)γ
v1, x0

)
(r−1

2 x2)L(0)v2, x2

)
e−(ln r2)L(0)x

L(0)
2 .

To get the Jacobi identity of Definition 4.6 from this identity, just multiply both sides by r2x
−1
2 e−(ln r2)L(0)x

L(0)
2

on the left and e(ln r2)L(0)x
−L(0)
2 on the right, then replace v2 with (r2x

−1
2 )L(0)v2. This completes the proof that a

g-twisted V -module in the sense of Definition 2.3 is a g-twisted V -module in the sense of Definition 4.6.
Conversely, suppose a grading-restricted generalized V G-module (W,YW ) in C is a g-twisted V -module in the

sense of the Definition 4.6. We just need to show that YW satisfies the associativity property of [CKM, Proposition
3.46], as the unit property YW (1, x) = 1W of Proposition 4.11 is already part of Definition 4.6 and

µW (g � 1W )MV,W = µW

follows from the g-equivariance property by Proposition 4.13.
We start by noting the following weak associativity for u, v ∈ V . Replacing u in the Jacobi identity with xγ1 · u

and extracting a sufficiently negative (integer) power of x1, we get

YW ((x0 + x2)γ+M · u, x0 + x2)YW (v, x2)w = YW (Y ((x2 + x0)γ+M · u, x0)v, x2)w

as series in x0 and x2 when M ∈ N is sufficiently large (depending on u and w). If we further replace v by xγ2 ·v and
pair with w′ ∈W ′, the grading-restriction conditions, lower truncation, and g-equivariance show that the series

〈w′, YW ((x0 + x2)γ+M · u, x0 + x2)YW (xγ2 · v, x2)w〉 and 〈w′, YW (Y ((x2 + x0)γ+M · u, x0)xγ2 · v, x2)w〉

equal a common Laurent polynomial in x0 and x2.
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Now take v1, v2 ∈ V , w ∈ W , and w′ ∈ W ′, assuming without loss of generality that v1 and v2 are generalized
eigenvectors for γ with generalized eigenvalues α1 and α2, respectively. Then

〈w′, YW (Y (v1, x0)v2, x2)w〉 = 〈w′, YW (Y ((x2 + x0)γ+M (x2 + x0)−γ−M · v1, x0)xγ2x
−γ
2 · v2, x2)w〉

=

I∑
i=0

J∑
j=0

(−1)i+j

i!j!
(x2 + x0)−α1−Mx−α2

2 (log(x2 + x0))i(log x2)j ·

· 〈w′, YW (Y ((x2 + x0)γ+M · N iv1, x0)xγ2 · N jv2, x2)w〉

for any M ∈ N. Since I and J are finite, we use weak associativity to choose M sufficiently large so that each

〈w′, YW (Y ((x2 + x0)γ+M · N iv1, x0)xγ2 · N jv2, x2)w〉

is a Laurent polynomial pi,j(x0, x2). The same argument applied to 〈w′, YW (v1, x0 + x2)YW (v2, x2)w2〉 together
with weak associativity shows that

〈w′, YW (v1, x0 + x2)YW (v2, x2)w2〉 =

I∑
i=0

J∑
j=0

(−1)i+j

i!j!
(log(x0 + x2))i(log x2)j · pi,j(x0, x2)

(x0 + x2)α1+Mxα2
2

,

and thus

〈YW (v1, x1)YW (v2, x2)w〉 =

I∑
i=0

J∑
j=0

(−1)i+j

i!j!
(log x1)i(log x2)j · pi,j(x1 − x2, x2)

xα1+M
1 xα2

2

.

Now for any r1, r2 ∈ R such that r1 > r2 > r1 − r2 > 0, make the substitutions x1 7→ eln r1 , x2 7→ eln r2 and
x0 7→ r1 − r2. Using log(1 + x) for a real number x to denote the power series expansion of ln(1 + x) when |x| < 1,
we get

〈w′, YW (Y (v1,r1 − r2)v2, e
ln r2)w〉

=

I∑
i=0

J∑
j=0

(−1)i+j

i!j!

(
ln r2 + log

(
1 +

r1 − r2

r2

))i
(ln r2)j · pi,j(r1 − r2, r2)(

1 + r1−r2
r2

)α1+M

e(α1+α2+M) ln r2

=

I∑
i=0

J∑
j=0

(−1)i+j

i!j!
(ln r1)i(ln r2)j · pi,j(r1 − r2, r2)

e(α1+M) ln r1eα2 ln r2

= 〈w′, YW (v1, e
ln r1)YW (v2, e

ln r2)w〉.

Thus the multivalued functions 〈w′, YW (v1, z1)YW (v2, z2)w〉 and 〈w′, YW (Y (v1, z1− z2)v2, z2)w〉 have equal restric-
tions to their common domain, with equality of single-valued branches on a simply-connected domain as specified
in the associativity property of [CKM, Proposition 3.46]. This proves that W is a g-twisted V -module in the sense
of Definition 2.3.

Now that we have unified the categorical and vertex algebraic definitions of twisted module, we apply the
categorical theorems of the previous sections to vertex operator superalgebras. In the next theorem, we verify the
conditions of Assumption 3.1 using results from [DLM] and [McR]:

Theorem 4.15. Let V be a simple vertex operator superalgebra, G a finite automorphism group of V that includes
PV , and C an abelian category of grading-restricted generalized V G-modules that includes V and admits vertex
tensor category structure as in [HLZ1]-[HLZ8]. Then:

1. Every indecomposable object of the monoidal supercategory Rep V is a g-twisted V -module for some g ∈ G.

2. The monoidal supercategory Rep V admits the structure of a braided G-crossed supercategory.

Proof. Because of the dictionary between twisted modules for vertex operator superalgebras and twisted modules
for superalgebra objects in braided tensor categories provided by [HKL, Theorem 3.2], [CKL, Theorem 3.13], and
Theorem 4.14, the conclusions follow from Theorem 2.10 (or Corollary 3.4) and Theorem 3.3 once we verify the
necessary conditions. The assumption in Theorem 2.10 that tensoring functors in C are right exact, needed for the
construction of the monoidal supercategory structure on Rep V , follows from [HLZ3, Proposition 4.26]. It remains
to verify the conditions of Assumption 3.1.
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The first two conditions on G in Assumption 3.1 hold by assumption and because F here is C. For the remaining
conditions, we use [DLM, Theorem 2.4] (see also [McR, Theorem 3.2] which covers the superalgebra generality)
which states that V is a semisimple G× V G-module:

V =
⊕
χ∈Ĝ

Mχ ⊗ Vχ (4.5)

where the Mχ are irreducible G-modules with character χ and the Vχ are non-zero, simple, and distinct V G-modules.
Since V G is paired with the one-dimensional trivial character of G in this decomposition, HomV G(V G, V ) = CιV
where ιV is the inclusion, and thus V is haploid. Next we define the V G-module homomorphism εV : V → V G to
be projection onto V G with respect to the decomposition (4.5). Then εV ιV is the identity on V G, while ιV εV is
projection onto the subspace of G-fixed points in V and hence equals 1

|G|
∑
g∈G g.

To verify the rigidity and dimension conditions of Assumption 3.1, we first note that C includes each irreducible
V G-module Vχ because C is abelian and includes V . Then the assumptions of [McR, Corollary 4.8] hold, so there
is a fully faithful braided tensor functor

Φ : RepZ/2Z G→ C

such that Φ(M∗χ) ∼= Vχ for χ ∈ Ĝ. Here RepZ/2Z G is the tensor category of finite-dimensional G-modules with the

usual symmetric braiding on Mχ ⊗Mψ for χ, ψ ∈ Ĝ modified by (−1)ij when Mχ ⊗ Vχ ⊆ V ī and Mψ ⊗ Vψ ⊆ V j̄

(see [McR, Section 2.2]). This category is a ribbon tensor category with twist (−1)i on Mχ for χ ∈ Ĝ when

Mχ ⊗ Vχ ⊆ V ī. Because Φ is fully faithful, it is a braided tensor equivalence from RepZ/2Z G to its image CV ⊆ C,
so that CV inherits the ribbon structure of RepZ/2Z G via Φ. (Note, however, that this ribbon structure does not

come from conformal weight gradings unless V 0̄ is the Z-graded part of V and V 1̄ is the (Z + 1
2 )-graded part.)

Since V ∼=
⊕

χ∈ĜMχ⊗Φ(M∗χ) is an object of CV , it is a rigid V G-module. Then since V is simple, [KO, Lemma

1.20] shows that V is self-dual with evaluation εV µV : V � V → V G and some coevaluation ĩV : V G → V � V .

Moreover, we may assume ĩV is even: given a parity decomposition ĩV = ĩ0̄V + ĩ1̄V , rigidity implies

1V = rV (1V � εV µV )A−1
V,V,V (̃i0̄V � 1V )l−1

V + rV (1V � εV µV )A−1
V,V,V (̃i1̄V � 1V )l−1

V

where, because εV µV is even, the first and second terms on the right side are the even and odd parts of 1V ,
respectively. Thus the first rigidity axiom holds with ĩ0̄V replacing ĩV , and similarly for the second rigidity axiom.
This verifies the fifth condition of Assumption 3.1.

Finally, we need to show εV µV ĩV = |G|1V G . It is enough to show that dV = εV µV ĩV is the categorical dimension
of V in the ribbon category CV since by Section 2.2 and Corollary 4.8 of [McR],

dimCV V =
∑
χ∈Ĝ

(dimCMχ)(dimCV Vχ) =
∑
χ∈Ĝ

(dimCMχ)(dimCV Φ(M∗χ))

=
∑
χ∈Ĝ

(dimCMχ)(dimRepZ/2Z GM
∗
χ) =

∑
χ∈Ĝ

(dimCMχ)(dimCM
∗
χ)

=
∑
χ∈Ĝ

dimC EndMχ = dimC C[G] = |G|.

Because ĩV and µV are even, we have dV = dV 0̄ + dV 1̄ where dV ī is the composition

V G
ĩV−→ V � V

pī−→ V ī � V ī
µV−−→ V 0̄ εV−−→ V G

for i = 0, 1, with pī the canonical projection. We need to show that

dV ī = dimCV V
ī (4.6)

for i = 0, 1, with the categorical dimension defined as usual to be

V G
i
V ī−−→ V ī � V ī

θ
V ī�1

V ī−−−−−−→ V ī � V ī
R

V ī,V ī

−−−−−→ V ī � V ī
e
V ī−−→ V G,

where eV ī and iV ī are an evaluation and coevaluation for V ī, respectively. Because ĩV and εV µV are even, we

can take eV ī = εV µV |V ī�V ī and iV ī = pī̃iV . Then (4.6) follows because the twists satisfy θV ī = (−1)i and
supercommutativity of V implies µVRV ī,V ī = (−1)iµV |V ī�V ī .
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Before relating C to the equivariantization of the braided G-crossed supercategory Rep V , we discuss why the
monoidal structure on Rep V is natural from a vertex algebraic point of view. For more details, see [CKM, Section
3.5]. Given three modules W1, W2, and W3 in Rep V , we say that an even or odd V G-module intertwining operator
Y of type

(
W3

W1 W2

)
is a V -intertwining operator if for any w2 ∈ W2, w′3 ∈ W ′3, and parity-homogeneous v ∈ V ,

w1 ∈W1, the multivalued analytic functions

(−1)|Y||v|〈w′3, YW3(v, z1)Y(w1, z2)w2〉, |z1| > |z2| > 0,

(−1)|v||w1|〈w′3,Y(w1, z2)YW2
(v, z1)w2〉, |z2| > |z1| > 0,

〈w′3,Y(YW1
(v, z1 − z2)w1, z2)w2〉, |z2| > |z1 − z2| > 0 (4.7)

defined on the indicated regions have equal restrictions to their common domains, with specified equalities of certain
single-valued branches on certain simply-connected domains (detailed in the statement of [CKM, Theorem 3.44]).
Such intertwining operators correspond precisely to the categorical Rep V -intertwining operators of type

(
W3

W1 W2

)
defined in Section 2.1. When W1 is g1-twisted, W2 is g2-twisted, and W3 is g1g2-twisted (recall Proposition 2.4), it
is natural to call Y a twisted intertwining operator.

Remark 4.16. Note that definitions of twisted intertwining operator exist already in the literature: see [Xu] (for
commuting g1 and g2) and [Hu5] (for general g1 and g2). When g1 and g2 commute, the definition here agrees
with that of [Xu] (see [DLXY, Theorem 3.6], whose proof uses a slight modification of [CKM, Theorem 3.53]). For
general g1 and g2, the definition here is at least closely related to that of [Hu5], which is also based on equality of
the multivalued functions (4.7). However, the definition in [Hu5] additionally includes a restriction on the shape of
the multivalued functions (4.7) (essentially, they are required to be minor relaxations of rational functions) that it
is not clear V -intertwining operators among twisted modules will satisfy when g1 and g2 do not commute. We plan
to address the question of whether or not twisted intertwining operators as defined here satisfy the extra condition
of [Hu5] in future work.

If there is in fact a discrepancy between the two definitions of twisted intertwining operator for non-commuting
g1 and g2, then the definition given here is probably more natural, since it encompasses the full range of V G-module
intertwining operators that are compatible with the V -actions on twisted modules (in the sense that the multivalued
functions (4.7) agree). In any case, and as we discuss below, the results of [CKM] show that our definition of V -
intertwining operator/twisted intertwining operator is the correct one if we want twisted intertwining operators
to characterize the tensor category structure on Rep V . In particular, a more restrictive definition of twisted
intertwining operator would define a different tensor product operation on Rep V . These different tensor product
modules would be proper quotients of the tensor product modules used in this paper, and they would not be related
by induction to tensor products of V G-modules as in Theorem 4.17 below.

With the definition of twisted intertwining operator given here, Proposition 2.4 and [CKM, Proposition 3.50]
show that the tensor product in Rep V satisfies a natural vertex algebraic universal property. If W1 is a g1-twisted
V -module and W2 is a g2-twisted V -module, then the tensor product W1 �V W2 is a g1g2-twisted V -module
equipped with a canonical even twisted intertwining operator YW1,W2

of type
(
W1�VW2

W1 W2

)
corresponding to the

categorical intertwining operator IW1,W2 : W1 �W2 → W1 �V W2. Then if W3 is any g1g2-twisted V -module and

Y any twisted intertwining operator of type
(

W3

W1 W2

)
, there is a unique V -homomorphism

f : W1 �V W2 →W3

such that Y = f ◦ YW1,W2 . This universal property is comparable to the one in [HLZ3, Definition 4.15] satisfied by
the P (z)-tensor product of (untwisted) V -modules.

We can also naturally describe the unit and associativity isomorphisms in Rep V using intertwining operators.
From [CKM, Section 3.5.4], the left and right unit isomorphisms

lVW : V �V W →W, rVW : W �V V →W

associated to a module (W,YW ) in Rep V are characterized by

lVW (YV,W (v, x)w) = YW (v, x)w, rVW (YW,V (w, x)v) = (−1)|v||w|exL(−1)YW (v, e−πix)w

for parity-homogeneous v ∈ V , w ∈ W . Note that for the right unit isomorphisms, we need to specify the branch
of log(−1) used for the substitution x 7→ −x since YW may involve non-integral powers of x.

For three modules W1, W2, and W3 in Rep V , [CKM, Proposition 3.62] shows that the associativity isomorphism

AVW1,W2,W3
: W1 �V (W2 �V W3)→ (W1 �V W2) �V W3
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is characterized by the equality〈
w′,AVW1,W2,W3

(
YW1,W2�VW3

(w1, e
ln r1)YW2,W3

(w2, e
ln r2)w3

)〉
=
〈
w′,YW1�VW2,W3

(
YW1,W2

(w1, e
ln(r1−r2))w2, e

ln r2
)
w3

〉
for w1 ∈ W1, w2 ∈ W2, w3 ∈ W3, and w′ in the contragredient module ((W1 �V W2) �V W3)

′
. Here r1 and r2 are

any positive real numbers that satisfy r1 > r2 > r1 − r2 > 0.
We also describe the braided G-crossed supercategory structure on Rep V of Theorem 2.10 with intertwining

operators. For the G-action on Rep V ,

Tg(W,YW ) = (W,YW ◦ (g−1 ⊗ 1W ))

for g ∈ G. Then as in [CKM, Section 3.5.5], for a g-twisted V -module W1 and any W2 in Rep V , the braiding
isomorphism

RVW1,W2
: W1 �V W2 → Tg(W2) �V W1

and its inverse are characterized by

(RVW1,W2
)±1(YW1,W2(w1, x)w2) = (−1)|w1||w2|exL(−1)YTg(W2),W1

(w2, e
±πix)w1

for parity-homogeneous w1 ∈W1, w2 ∈W2.
Now we prove the final theorem of this section; for C rigid and semisimple, it has appeared as [Ki2, Theorem

1.5] and [Mü2, Theorem 3.12]. Here we assume only the existence of a suitable tensor category of V G-modules.

Theorem 4.17. Let V be a simple vertex operator superalgebra, G a finite automorphism group of V that includes
PV , and C an abelian category of grading-restricted generalized V G-modules that includes V and admits vertex
tensor category structure as in [HLZ1]-[HLZ8]. Then the induction functor F : C → (Rep V )G is an equivalence of
braided tensor categories.

The proof requires a generalization of [DM, Lemma 3.1]:

Lemma 4.18. In the setting of Theorem 4.17, in particular assuming V is simple, let W be a module in Rep V ,
{v(i)}Ii=1 ⊆ V a set of linearly-independent L(0)-eigenvectors, and {w(i)}Ii=1 ⊆ W a set of parity-homogeneous
(non-zero) L(0)-eigenvectors. Then

I∑
i=1

YW (v(i), x)w(i) 6= 0.

Proof. We will show that if
∑I
i=1 YW (v(i), x)w(i) = 0 when the v(i) are linearly independent L(0)-eigenvectors and

the w(i) are parity-homogeneous and contained in L(0)-eigenspaces of W , then the w(i) must all be zero.
If the sum is zero, then also

0 =

I∑
i=1

YW (v(i), eln r2)w(i) ∈W =
∏
h∈C

W[h]

for any fixed r2 ∈ R+. We first show that the sum is still zero after replacing each v(i) with unv
(i) for any

u ∈ V and n ∈ Z. This uses the associativity of YW from the proof of Theorem 4.14: for r1 ∈ R+ such that
r1 > r2 > r1 − r2 > 0 and w′ ∈W ′,

∑
n∈Z

I∑
i=1

〈w′, YW (unv
(i), eln r2)w(i)〉(r1 − r2)−n−1 =

I∑
i=1

〈w′, YW (Y (u, r1 − r2)v(i), eln r2)w(i)〉

=

〈
w′, YW (u, eln r1)

I∑
i=1

YW (v(i), eln r2)w(i)

〉
= 0.

Thus the Laurent series
∑
n∈Z

∑I
i=1〈w′, YW (unv

(i), eln r2)w(i)〉z−n−1
0 , which converges absolutely in the region

0 < |z0| < r2, is identically zero on a non-empty open interval of the real line, and hence is identically zero on its
entire domain. Then each coefficient

I∑
i=1

〈w′, YW (unv
(i), eln r2)w(i)
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of the Laurent series is zero.
We have not yet used the linear indepedence or conformal weight homogeneity of the v(i), so we can iterate this

argument to show that, if A ⊆ EndC V is the subalgebra generated by the un for u ∈ V and n ∈ Z, then

I∑
i=1

〈w′, YW (a · v(i), eln r2)w(i) = 0

for any a ∈ A. Letting A0 ⊆ A denote the subalgebra of conformal-weight-grading-preserving operators, each
conformal weight space V(n) is a (finite-dimensional) irreducible A0-module because V is simple. Moreover, they

are inequivalent A0-modules because L(0) ∈ A0 acts differently on each one. Thus the finitely many v(i) are
contained in a finite-dimensional completely-reducible A0-module. Then the Jacobson Density Theorem (see for
example [Ja, Section 4.3]) implies that for any i ∈ {1, . . . , I}, there is some ai ∈ A0 such that ai · v(j) = δi,jv

(j) for
all j ∈ {1, . . . I}. In particular,

YW (v(i), eln r2)w(i) = 0

for each i. Now using the assumption that v(i) and w(i) are L(0)-eigenvectors, we also have

0 =
( x

eln r2

)L(0)

YW (v(i), eln r2)w(i)

= YW

((
x

r2

)L(0)

v(i), x

)( x

eln r2

)L(0)

w(i)

=
( x

eln r2

)wt v(i)+wtw(i)

YW (v(i), x)w(i),

so that YW (v(i), x)w(i) = 0 for each i.
Now for each i, the annihilator

AnnV (w(i)) = {v ∈ V |YW (v, x)w(i) = 0}

is non-zero, containing v(i). But because each w(i) is parity-homogeneous, AnnV (w(i)) is a (two-sided) ideal of V
by [CKM, Lemma 3.73]. Since V is simple, this means AnnV (w(i)) = V , forcing

w(i) = YW (1, x)w(i) = 0

for all i.

Now we proceed with the proof of Theorem 4.17:

Proof. Since induction is a braided tensor functor by Theorems 2.11 and 2.12, we just need to show it is an
equivalence of categories. For this we use the G-invariants functor from (Rep V )G to C:

� For an object (W,YW , ϕW ) in (Rep V )G, we define

WG = {w ∈W |ϕW (g)w = w for all g ∈ G}.

Since ϕW (g) ◦ YW = YW ◦ (g ⊗ ϕW (g)) for g ∈ G, each ϕW (g) is a V G-module endomorphism. Then WG, as
the image of 1

|G|
∑
g∈G ϕW (g), is an object of C because C is abelian.

� For a morphism f : (W1, YW1
, ϕW1

)→ (W2, YW2
, ϕW2

) in (Rep V )G, we define fG = f |WG
1

. Since f intertwines

the G-actions on W1 and W2, the image of fG is contained in WG
2 . Hence

fG : WG
1 →WG

2

is a morphism in C.

Now to show that induction is an equivalence of categories, we will find natural isomorphisms F(W )G ∼= W for W
in C and F(WG) ∼= W for (W,YW , ϕW ) in (Rep V )G.

First if W is an object of C, then F(W ) = V �W and ϕF(W )(g) = g � 1W for g ∈ G. Thus

lW (εV � 1W )|F(W )G : F(W )G →W
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is a natural isomorphism, with inverse (ιV � 1W )l−1
W because εV ιV = 1V G and

(ιV εV � 1W )|F(W )G =
1

|G|
∑
g∈G

g � 1W |F(W )G =
1

|G|
∑
g∈G

ϕF(W )(g)|F(W )G = 1F(W )G .

Now if (W,µW , ϕW ) is an object of (Rep V )G, let ιW : WG →W denote the inclusion. Note that ϕW (g)ιW = ιW
for all g ∈ G. We take the V G-module homomorphism

ΨW = µW (1V � ιW ) : V �WG →W.

The associativity of µW implies ΨW is a morphism in Rep V , and ΨW is a morphism in (Rep V )G because

ϕW (g)ΨW = ϕW (g)µW (1V � ιW )

= µW (g � ϕW (g))(1V � ιW )

= µW (1V � ιW )(g � 1WG)

= ΨWϕF(WG)(g)

for g ∈ G. The homomorphisms ΨW are natural because if f : W1 →W2 is a morphism in (Rep V )G, then

ΨW2F(fG) = µW2(1V � ιW2)(1V � f |WG
1

)

= µW2(1V � f)(1V � ιW1)

= fµW1(1V � ιW1)

= fΨW1 .

We need to show that each ΨW is actually an isomorphism.
As a V G-module, F(WG) =

⊕
χ∈Ĝ V

χ �WG, where V χ = Mχ ⊗ Vχ is the sum of all G-modules isomorphic to

Mχ in V . Also W is a semisimple G-module because it is a V G-module with finite-dimensional L(0)-generalized
eigenspaces and because L(0) commutes with each ϕW (g). So W =

⊕
χ∈ĜW

χ where Wχ is the sum of all G-

submodules of W isomorphic to Mχ. As ΨW intertwines the G-actions on F(WG) and W , it maps each V χ�WG

to Wχ. Moreover,
ΨW |V G�WG : V G �WG →WG

is an isomorphism, since it amounts to lWG by the unit property of µW . Consequently, the kernel and cokernel of
ΨW are objects of (Rep V )G with no G-invariants.

To complete the proof, we show that any object W of (Rep V )G with WG = 0 is itself 0; equivalently, if W 6= 0,
then WG 6= 0 as well. As before, W =

⊕
χ∈ĜW

χ where Wχ is the sum of all G-submodules of W that are
isomorphic to Mχ. If W 6= 0, then Wχ 6= 0 for some χ; let χ∗ to denote the character of G dual to χ. Now choose

a basis {v(i)}Ii=1 ⊆ V χ
∗

(n) for some copy of Mχ∗ contained in a non-zero homogeneous subspace of V . Then choose

{w(i)}Ii=1 ⊆W
χ
[h] to be a dual basis for some copy of Mχ contained in some non-zero homogeneous subspace of W .

Although L(0) might not act semisimply on W , the L(0)-eigenspace of Wχ with eigenvalue h will be non-zero, so
we may assume the w(i) are L(0)-eigenvectors. Moreover, because ϕW (PV ) = PW , the G-submodule Wχ is either
purely even or purely odd, so the w(i) are parity-homogeneous. We now apply Lemma 4.18 to conclude that

I∑
i=1

YW (v(i), x)w(i) 6= 0.

But we have chosen the v(i) and w(i) so that
∑I
i=1 v

(i) ⊗ w(i) ∈ (V ⊗W )G. Thus because each coefficient of YW
provides a G-module homomorphism from V ⊗W to W , we have

I∑
i=1

YW (v(i), x)w(i) ∈WG[log x]{x}

and WG 6= 0.
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4.3 Z/2Z-equivariantization for superalgebras

Here we discuss the implications of Theorems 4.15 and 4.17 in perhaps the simplest non-trivial case: V is a vertex
operator superalgebra and G = 〈PV 〉 ∼= Z/2Z so that V G = V 0̄. Let V be simple and C an abelian category
of grading-restricted generalized V 0̄-modules that includes V and admits vertex tensor category structure as in
[HLZ1]-[HLZ8]. By Theorem 4.17, C is braided tensor equivalent to the Z/2Z-equivariantization of Rep V , which
by Theorem 4.15 is the category of untwisted and parity-twisted V -modules (referred to in the physics literature
as the Neveu-Schwarz and Ramond sectors, respectively). Here we explicitly describe (Rep V )Z/2Z.

Objects. By Theorem 4.15, the objects of Rep V are (direct sums of) untwisted and parity-twisted V -modules.
Then objects of (Rep V )Z/2Z are such modules with the additional data of a Z/2Z-action; however, PV must act
as PW on a module W in (Rep V )Z/2Z, so the additional data is simply the parity decomposition of W .

Morphisms. Morphisms in (Rep V )Z/2Z are homomorphisms of (twisted) V -modules that also preserve parity
decompositions, that is, they must be even. This means that (Rep V )Z/2Z is the underlying category of the
supercategory Rep V .

Tensor product functor. The tensor product W1 �V W2 of two (twisted) V -modules is characterized by a

universal property: There is an (even) twisted intertwining operator YW1,W2 of type
(
W1�VW2

W1 W2

)
such that for any

(twisted) V -moduleW3 and (even) twisted intertwining operator Y of type
(

W3

W1 W2

)
, there is a unique homomorphism

f : W1 �V W2 →W3

such that f ◦ YW1,W2
= Y.

The tensor product of two homomorphisms f1 : W1 → W̃1 and f2 : W2 → W̃2 in (Rep V )Z/2Z is induced by the

intertwining operator Y
W̃1,W̃2

◦ (f1 ⊗ f2) of type
(
W̃1�V W̃2

W1 W2

)
and the universal property of W1 �V W2.

Unit isomorphisms. The unit object of (Rep V )Z/2Z is V and for any module (W,YW ) in (Rep V )Z/2Z, the
left and right unit isomorphisms are characterized respectively by

lVW (YV,W (v, x)w) = YW (v, x)w, rVW (YW,V (w, x)v) = (−1)|v||w|exL(−1)YW (v, e−πix)w

for parity-homogeneous v ∈ V , w ∈W .
Associativity isomorphisms. For three modules W1, W2, and W3 in (Rep V )Z/2Z, the associativity isomor-

phism AVW1,W2,W3
is characterized by the equality〈
w′,AVW1,W2,W3

(
YW1,W2�VW3

(w1, e
ln r1)YW2,W3

(w2, e
ln r2)w3

)〉
=
〈
w′,YW1�VW2,W3

(
YW1,W2

(w1, e
ln(r1−r2))w2, e

ln r2
)
w3

〉
for w1 ∈W1, w2 ∈W2, w3 ∈W3, and w′ ∈ ((W1 �V W2) �V W3)

′
, and r1, r2 ∈ R+ satisfy r1 > r2 > r1 − r2 > 0.

Braiding isomorphisms. If W1 is untwisted and W2 is any module in (Rep V )Z/2Z, the braiding isomorphism

R̃VW1,W2
is given by

R̃VW1,W2
(YW1,W2

(w1, x)w2) = (−1)|w1||w2|exL(−1)YW2,W1
(w2, e

πix)w1

for parity-homogeneous w1 ∈W1, w2 ∈W2. If W1 is parity-twisted, then

R̃VW1,W2
(YW1,W2

(w1, x)w2) = (PW2
�V 1W1

)
(
RVW1,W2

(YW1,W2
(w1, x)w2)

)
= (PW2

�V 1W1
)
(

(−1)|w1||w2|exL(−1)YPV (W2),W1
(w2, e

πix)w1

)
= (−1)|w1||w2|exL(−1)YW2,W1

(PW2
(w2), eπix)w1

for parity-homogeneous w1 ∈ W1, w2 ∈ W2. Recall that PV (W2) is the superspace W2 with vertex operator
YW2(PV (·), x).

This is a complete description of C as a braided tensor category, assuming one understands untwisted and
parity-twisted V -modules and the twisted intertwining operators among them, since C is braided tensor equivalent
to (Rep V )Z/2Z by Theorem 4.17. For example, the following is a simple consequence of Theorem 4.17 in this
setting:

Corollary 4.19. Let V be a simple vertex operator superalgebra and C an abelian category of grading-restricted
generalized V 0̄ modules that includes V and admits vertex tensor category structure as in [HLZ1]-[HLZ8]. Then
every indecomposable V 0̄-module in C is the even summand of an untwisted or parity-twisted V -module.
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Proof. From the proof of Theorem 4.17, any (indecomposable) V 0̄-module W in C is isomorphic to the even part
of V �W . Since W is indecomposable, this even part cannot be divided between non-zero untwisted and twisted
summands of V �W . So W is the even summand of either an untwisted or parity-twisted V -module in C.

If V 0̄ is C2-cofinite and non-negatively graded, with V 0̄
(0) = C1 (that is, V 0̄ has positive energy/is CFT-type),

then the full category of grading-restricted generalized V 0̄-modules has vertex tensor category structure [Hu3].
Thus all our results apply when V is simple, G = 〈PV 〉, and V 0̄ is C2-cofinite and positive energy. Examples
of such V with non-semisimple modules (that is, they are not rational) include the symplectic fermion vertex
operator superalgebras SF (d), d ∈ Z+, of d pairs of symplectic fermions [Ka, Ab, Ru]. In fact, a major motivation
for this paper was the problem of showing that the category of grading-restricted generalized SF (d)0̄-modules
is braided tensor equivalent to the braided tensor category constructed by Runkel in [Ru]. If this equivalence
holds, then [GR, FGR] would show that the category of SF (d)0̄-modules is braided equivalent to the category of
finite-dimensional representations of a quasi-Hopf algebra and is a (non-semisimple) modular tensor category.

The category in [Ru] seems to be the equivariantization of the braided Z/2Z-crossed supercategory of (twisted)
SF (d)-modules that we have discussed here, and thus by Theorem 4.17 it should indeed be equivalent to the category
of SF (d)0̄-modules. Especially, the objects of Runkel’s category are untwisted and parity-twisted SF (d)-modules,
and the tensor product is characterized by a universal property involving what are called vertex operators. Thus
showing that the tensor product of [Ru] agrees with that on (Rep SF (d))Z/2Z would require showing that Runkel’s
vertex operators extend to what we have called twisted intertwining operators here. The associativity isomorphisms
in [Ru] are defined with the help of partially-conjectural formulas for compositions of vertex operators in [Ru, Table
1]. Thus a proof of these formulas, using properties of twisted intertwining operators, will be necessary for showing
that the associativity isomorphisms of [Ru] agree with those on (Rep SF (d))Z/2Z. We plan to resolve these issues
and complete the identification of (Rep SF (d))Z/2Z with the braided tensor category of [Ru] in future work.

4.4 Application to orbifold rationality

We say that a vertex operator algebra V is strongly rational if it satisfies the following conditions:

� V is simple and self-contragredient.

� Positive energy: V(n) = 0 for n < 0 and V(0) = C1. (Such V is also said to be CFT-type.)

� C2-cofiniteness: dimV/C2(V ) <∞ where C2(V ) = span {u−2v |u, v ∈ V }.

� Rationality: Every N-gradable weak V -module W =
⊕

n∈NW (n) (where the W (n) could be infinite dimen-
sional) is a direct sum of simple grading-restricted V -modules.

The orbifold rationality problem asks whether strong rationality of V implies strong rationality of V G when G is
a finite automorphism group. The answer is yes for G solvable by [CM], but the problem has remained open for
general finite G. Here we show that Theorem 4.15 combined with [CM] reduces the orbifold rationality problem to
the question of C2-cofiniteness for V G.

We first show that if V is strongly rational and G is a finite automorphism group of V , then categories of
V G-modules that admit vertex tensor category structure are semisimple:

Theorem 4.20. Let V be a strongly rational vertex operator algebra and G any finite group of automorphisms of
V . If C is an abelian category of grading-restricted generalized V G-modules that includes V and admits vertex and
braided tensor category structure as in [HLZ1]-[HLZ8], then C is semisimple.

For a category C of V G-modules as in the statement of the theorem, we will use RepC V to denote the braided
G-crossed category of twisted V -modules in C because we will soon need to consider twisted V -modules in smaller
braided tensor categories. The following lemma reduces semisimplicity of C to semisimplicity of RepC V :

Lemma 4.21. If RepC V is semisimple, then C is also semisimple.

Proof. We need to show that if f : W1 → W2 is a surjection in C, then there exists σ : W2 → W1 such that
fσ = 1W2 . Since the functor V � • is right exact, 1V � f : V �W1 → V �W2 is a surjection in RepC V . Then
because RepC V is semisimple, there is some s : V �W2 → V �W1 such that (1V � f)s = 1V�W2

. We define
σ : W2 →W1 in C to be the composition

W2

l−1
W2−−→ V G �W2

ιV �1W2−−−−−→ V �W2
s−→ V �W1

εV �1W1−−−−−→ V G �W1

lW1−−→W1.
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Then

fσ = flW1(εV � 1W1)s(ιV � 1W2)l−1
W2

= lW2
(εV � 1W2

)(1V � f)s(ιV � 1W2
)l−1
W2

= lW2
(εV � 1W2

)(ιV � 1W2
)l−1
W2

= lW2
l−1
W2

= 1W2

as desired.

Remark 4.22. Here is a less elementary proof of the lemma: If RepC V is semisimple, then so is (RepC V )G by
Maschke’s Theorem. Then C is semisimple by Theorem 4.17.

Now we prove the theorem by showing that RepC V is semisimple:

Proof. Since every object of RepC V is a direct sum of twisted modules by Theorem 4.15, it is enough to show
that the category Repg V of g-twisted V -modules is semisimple for any g ∈ G. Fix g ∈ G and let D be the
category of grading-restricted generalized V 〈g〉-modules. By the main theorem of [CM], V 〈g〉 is strongly rational
so that D is a (semisimple) modular tensor category [Hu2]. Moreover, Theorem 4.15 shows that the subcategory
RepD V ⊆ RepC V consisting of untwisted V 〈g〉-modules is a braided 〈g〉-crossed tensor category and

RepD V =

|g|−1⊕
i=0

Repg
i

V.

Thus it is enough to show RepD V is semisimple. This follows from Lemma 1.20 and Theorem 3.3 of [KO], since
D is semisimple and rigid, V is a simple algebra in D, and dimD V = |g| 6= 0 [McR, Proposition 4.15].

As a corollary, we get strong rationality of V G from strong rationality of V and C2-cofiniteness of V G:

Corollary 4.23. Let V be a strongly rational vertex operator algebra and G any finite group of automorphisms of
V . If V G is C2-cofinite, then V G is strongly rational.

Proof. Positive energy for V G follows immediately from positive energy for V . Since V is also simple, V G is
simple by the main theorem of [DLM]. The self-contragrediency and positive energy of V mean that there is a
nondegenerate invariant bilinear form

(·, ·) : V × V → C

such that (1,1) 6= 0. This restricts to a non-zero invariant bilinear form on V G, which must be nondegenerate since
V G is simple. Thus V G is also self-contragredient.

Since V G has positive energy and is C2-cofinite, Lemma 3.6 and Proposition 3.7 of [CM] (see also [McR,
Proposition 4.16]) imply that V G will be rational if its full category of grading-restricted generalized modules is
semisimple. But this category admits vertex tensor category structure by Proposition 4.1 and Theorem 4.11 of
[Hu3], so Theorem 4.20 applies.

Remark 4.24. The recent preprint [Mi2] has proposed an argument for proving C2-cofiniteness of V G for general
finite G and positive energy, self-contragredient, C2-cofinite V , but unfortunately it seems to have a gap.

A Proof of Theorem 2.10

We use the notation and setting of Section 2.2. We have already seen that RepG V is an F-additive supercategory
with a G-grading, and Corollary 2.5 shows that RepG V has a monoidal structure compatible with the grading. It
remains to show that the G-action and braiding isomorphisms on RepG V discussed in Section 2.2 are well defined
and satisfy the required properties.

First we show that Tg is a superfunctor on RepG V . To show that (Tg(W ), µTg(W )) is an object of RepV , we
first verify associativity:

µTg(W )(1V � µTg(W )) = µW (1V � µW )(g−1 � (g−1 � 1W ))

39



= µW (µV � 1W )AV,V,W (g−1 � (g−1 � 1W ))

= µW (g−1 � 1V )(µV � 1W )AV,V,W
= µTg(W )(µV � 1V )AV,V,Tg(W ),

using g−1µV = µV (g−1 � g−1). For the unit property,

µTg(W )(ιV � 1W )l−1
Tg(W ) = µW (g−1 � 1W )(ιV � 1W )l−1

W = µW (ιV � 1W )l−1
W = 1W = 1Tg(W )

using g−1ιV = ιV . A morphism f : W1 →W2 in RepV is still a morphism from Tg(W1) to Tg(W2) because

fµTg(W1) = fµW1(g−1 � 1W ) = µW2(1V � f)(g−1 � 1W ) = µW2(g−1 � 1W )(1V � f) = µTg(W2)(1V � f).

Because g−1 is even, we avoid a sign factor in the third equality here. Clearly Tg induces an even linear map on

morphisms, so Tg is a superfunctor on Rep V . Then Tg restricts to a superfunctor on RepG V because if (W,µW )
is an h-twisted V -module for h ∈ G, then (Tg(W ), µTg(W )) is a ghg−1-twisted V -module. Indeed,

µTg(W )(ghg
−1 � 1Tg(W ))MV,Tg(W ) = µW (g−1 � 1W )(ghg−1 � 1W )MV,W

= µW (h� 1W )MV,W (g−1 � 1W )

= µW (g−1 � 1W ) = µTg(W ),

using the naturality of the monodromy isomorphisms in the second equality.
Next we construct the even natural isomorphism τg : Tg ◦�V → �V ◦ (Tg × Tg). For objects W1, W2 in RepV ,

recall that (W1 �V W2, IW1,W2) is the cokernel of the morphism µ
(1)
W1,W2

− µ(2)
W1,W2

and similarly for (Tg(W1) �V
Tg(W2), ITg(W1),Tg(W2)). We claim that there are unique morphisms

τg;W1,W2
: W1 �V W2 → Tg(W1) �V Tg(W2), τ̃g;W1,W2

: Tg(W1) �V Tg(W2)→W1 �V W2

in SC such that the diagrams
W1 �W2

IW1,W2

��

ITg(W1),Tg(W2)

**
W1 �V W2

τg;W1,W2 //
Tg(W1) �V Tg(W2)

τ̃g;W1,W2

oo

commute. This follows from the universal properties of the cokernels and the equalities

ITg(W1),Tg(W2)(µ
(1)
W1,W2

− µ(2)
W1,W2

)

= ITg(W1),Tg(W2)(µ
(1)
W1,W2

− µ(2)
W1,W2

)(g−1 � 1W1�W2
)(g � 1W1�W2

)

= ITg(W1),Tg(W2)(µ
(1)
Tg(W1),Tg(W2) − µ

(2)
Tg(W1),Tg(W2))(g � 1W1�W2

) = 0

and

IW1,W2
(µ

(1)
Tg(W1),Tg(W2) − µ

(2)
Tg(W1),Tg(W2)) = IW1,W2

(µ
(1)
W1,W2

− µ(2)
W1,W2

)(g−1 � 1W1�W2
) = 0.

These equalities use the definitions of the µ(i), the naturality of associativity and braiding isomorphisms in SC,
and the evenness of all morphisms involved. Now τg;W1,W2

and τ̃g;W1,W2
are mutual inverses: because

τ̃g;W1,W2
τg;W1,W2

IW1,W2
= τ̃g;W1,W2

ITg(W1),Tg(W2) = IW1,W2

and IW1,W2 is surjective, τ̃g;W1,W2τg;W1,W2 = 1W1�VW2
, and similarly τg;W1,W2 τ̃g;W1,W2 = 1Tg(W1)�V Tg(W2). Also,

τg;W1,W2 is even because IW1,W2 and ITg(W1),Tg(W1) are even and surjective.
Now we show that τg;W1,W2

is a morphism in RepV from Tg(W1�V W2) to Tg(W1)�V Tg(W2). Then its inverse
τ̃g;W1,W2

: Tg(W1) �V Tg(W2) → Tg(W1 �V W2) will also be a morphism in RepV . This uses the commutative
diagrams

V � (W1 �W2)
µ

(i)
W1,W2

(g−1�1W1�W2
)
//

1V �IW1,W2

��

W1 �W2

IW1,W2

��

ITg(W1),Tg(W2)

++
V � Tg(W1 �V W2)

µTg(W1�V W2) // Tg(W1 �V W2)
τg;W1,W2 // Tg(W1) �V Tg(W2)
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for i = 1 or i = 2 and

V � (W1 �W2)

1V �IW1,W2

��

1V �ITg(W1),Tg(W2)

++
V � Tg(W1 �V W2)

1V �τg;W1,W2 // V � (Tg(W1) �V Tg(W2))
µTg(W1)�V Tg(W2) // Tg(W1) �V Tg(W2)

.

The top compositions in these two diagrams agree because ITg(W1),Tg(W2) is an intertwining operator and because

µ
(i)
W1,W2

(g−1 � 1W1�W2
) = µ

(i)
Tg(W1),Tg(W2) for i = 1, 2. Thus

τg;W1,W2
µTg(W1�VW2)(1V � IW1,W2

) = µTg(W1)�V Tg(W2)(1V � τg;W1,W2
)(1V � IW1,W2

)

as well. Since IW1,W2
is a surjective cokernel morphism and V � • is right exact, 1V � IW1,W2

is surjective as well
and it follows that τg;W1,W2

is a morphism in RepV .

Next we show that the τg;W1,W2
define a natural isomorphism, that is, for morphisms f1 : W1 → W̃1 and

f2 : W2 → W̃2 in RepV ,
τ
g;W̃1,W̃2

Tg(f1 �V f2) = (Tg(f1) �V Tg(f2))τg;W1,W2
.

This follows from the commutative diagrams

W1 �W2
f1�f2 //

IW1,W2

��

W̃1 � W̃2

I
W̃1,W̃2
��

I
Tg(W̃1),Tg(W̃2)

))
W1 �V W2

f1�V f2 // W̃1 �V W̃2

τ
g;W̃1,W̃2 // Tg(W̃1) �V Tg(W̃2)

and

W1 �W2

IW1,W2

tt

f1�f2 //

ITg(W1),Tg(W2)

��

W̃1 � W̃2

I
Tg(W̃1),Tg(W̃2)

��
W1 �V W2

τg;W1,W2 // Tg(W1) �V Tg(W2)
Tg(f1)�V Tg(f2) // Tg(W̃1) �V Tg(W̃2)

,

as well as the surjectivity of IW1,W2 .
The even natural isomorphism τg needs to be compatible with the associativity isomorphisms in the sense that

the diagram

Tg(W1 �V (W2 �V W3))
Tg(AV

W1,W2,W3
)

//

τg;W1;W2�V W3

��

Tg((W1 �V W2) �V W3)

τg;W1�V W2,W3

��
Tg(W1) �V Tg(W2 �V W3)

1Tg(W1)�V τg;W2,W3

��

Tg(W1 �V W2) �V Tg(W3)

τg;W1,W2
�V 1Tg(W3)

��
Tg(W1) �V (Tg(W2) �V Tg(W3))

AV
Tg(W1),Tg(W2),Tg(W3) // (Tg(W1) �V Tg(W2)) �V Tg(W3)

commutes for any objects W1, W2, and W3 in RepV . For the proof, recall that Tg(W ) = W as objects of SC and
Tg(f) = f when (W,µW ) is an object and f is a morphism in RepV . Consider the composition

W1 � (W2�W3)
1W1

�IW2,W3−−−−−−−−→W1 � (W2 �V W3)
IW1,W2�V W3−−−−−−−−−→W1 �V (W2 �V W3)

AV
W1,W2,W3−−−−−−−→ (W1 �V W2) �V W3

τg;W1�V W2,W3−−−−−−−−−−→ Tg(W1 �V W2) �V Tg(W3)

τg;W1,W2
�V 1Tg(W3)−−−−−−−−−−−−−→ (Tg(W1) �V Tg(W2)) �V Tg(W3).

By the definition of the associativity isomorphisms in RepV , this equals

W1 � (W2�W3)
AW1,W2,W3−−−−−−−→ (W1 �W2) �W3

IW1,W2
�1W3−−−−−−−−→ (W1 �V W2) �W3
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IW1�V W2,W3−−−−−−−−−→ (W1 �V W2) �V W3

τg;W1�V W2,W3−−−−−−−−−−→ Tg(W1 �V W2) �V Tg(W3)

τg;W1,W2
�V 1Tg(W3)−−−−−−−−−−−−−→ (Tg(W1) �V Tg(W2)) �V Tg(W3).

Then the definition of τg;W1�VW2,W3
implies that we get

W1�(W2 �W3)
AW1,W2,W3−−−−−−−→ (W1 �W2) �W3

IW1,W2
�1W3−−−−−−−−→ (W1 �V W2) �W3

ITg(W1�V W2),Tg(W3)−−−−−−−−−−−−−−→ Tg(W1 �V W2) �V Tg(W3)
τg;W1,W2

�V 1Tg(W3)−−−−−−−−−−−−−→ (Tg(W1) �V Tg(W2)) �V Tg(W3). (A.1)

From the definition of the tensor product of morphisms in RepV ,

(τg;W1,W2
�V 1Tg(W3))ITg(W1�VW2),Tg(W3) = ITg(W1)�V Tg(W2),Tg(W3)(τg;W1,W2

� 1Tg(W3)),

and then the definition of τg;W1,W2
implies that (A.1) becomes

W1 � (W2 �W3)
AW1,W2,W3−−−−−−−→(W1 �W2) �W3

ITg(W1),Tg(W2)�1W3−−−−−−−−−−−−−→ (Tg(W1) �V Tg(W2)) � Tg(W3)

ITg(W1)�V Tg(W2),Tg(W3)−−−−−−−−−−−−−−−−→ (Tg(W1) �V Tg(W2)) �V Tg(W3).

Next, the definition of the associativity isomorphisms in RepV implies that this composition equals

W1 � (W2 �W3)
1W1

�ITg(W2),Tg(W3)−−−−−−−−−−−−−→Tg(W1) � (Tg(W2) �V Tg(W3))

ITg(W1),Tg(W2)�V Tg(W3)−−−−−−−−−−−−−−−−→ Tg(W1) �V (Tg(W2) �V Tg(W3))

AV
Tg(W1),Tg(W2),Tg(W3)−−−−−−−−−−−−−−−→ (Tg(W1) �V Tg(W2)) �V Tg(W3).

We replace ITg(W2),Tg(W3) with τg;W2,W3
IW2,W3

and use the definition of tensor product of morphisms in RepV :

W1 � (W2 �W3)
1W1

�IW2,W3−−−−−−−−→W1 � (W2 �V W3)
ITg(W1),Tg(W2�V W3)−−−−−−−−−−−−−−→ Tg(W1) �V Tg(W2 �V W3)

1Tg(W1)�V τg;W2,W3−−−−−−−−−−−−−→ Tg(W1) �V (Tg(W2) �V Tg(W3))

AV
Tg(W1),Tg(W2),Tg(W3)−−−−−−−−−−−−−−−→ (Tg(W1) �V Tg(W2)) �V Tg(W3).

Finally we use the definition of τg;W1,W2�VW3
to obtain

W1�(W2 �W3)
1W1

�IW2,W3−−−−−−−−→W1 � (W2 �V W3)
IW1,W2�V W3−−−−−−−−−→W1 �V (W2 �V W3)

τg;W1,W2�V W3−−−−−−−−−−→ Tg(W1) �V Tg(W2 �V W3)
1Tg(W1)�V τg;W2,W3−−−−−−−−−−−−−→ Tg(W1) �V (Tg(W2) �V Tg(W3))

AV
Tg(W1),Tg(W2),Tg(W3)−−−−−−−−−−−−−−−→ (Tg(W1) �V Tg(W2)) �V Tg(W3),

and compatibility follows from the surjectivity of 1W1
� IW1,W2

and IW1,W2�VW3
, and hence of their composition.

Now the even morphism ϕg = g : Tg(V )→ V needs to be an isomorphism in RepV . In fact,

gµTg(V ) = gµV (g−1 � 1V ) = µV (1 � g)

because g is an automorphism of V . The isomorphism ϕg also needs to be compatible with τg and the unit
isomorphisms in RepV in the sense that

lVTg(W )(ϕg �V 1Tg(W ))τg;V,W = Tg(l
V
W ) : Tg(V �V W )→ Tg(W ) (A.2)

and

rVTg(W )(1Tg(W ) �V ϕg)τg;W,V = Tg(r
V
W ) : Tg(W �V V )→ Tg(W ) (A.3)
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for any object W in RepV . Since IV,W and IW,V are surjective, it is sufficient to show that the equalities in (A.2)
and (A.3) hold when both sides are precomposed with

IV,W : V �W → V �V W = Tg(V �V W )

and
IW,V : W � V →W �V V = Tg(W �V W ),

respectively.
For (A.2), we get the composition

V �W
IV,W−−−→ Tg(V �V W )

τg;V,W−−−−→ Tg(V ) �V Tg(W )
g�V 1Tg(W )−−−−−−−→ V �V Tg(W )

lVTg(W )−−−−→ Tg(W ).

Using τg;V,W IV,W = ITg(V ),Tg(W ) and the definition of the tensor product of morphisms in RepV , this becomes

V �W
g�1W−−−−→ V �W

IV,Tg(W )−−−−−−→ V �V Tg(W )
lVTg(W )−−−−→ Tg(W ).

By the definition of the left unit isomorphism in RepV , the last two arrows above can be replaced with µTg(W ) =
µW (g−1 � 1W ), so that in total the composition is simply µW . But this is

lVW IV,W = Tg(l
V
W )IV,W ,

as required. Now for (A.3), we have the composition

W � V
IW,V−−−→W �V V

τg;W,V−−−−→ Tg(W ) �V Tg(V )
1Tg(W )�V g
−−−−−−−→ Tg(W ) �V V

rVTg(W )−−−−→ Tg(W ).

Similar to before, this composition is

W � V
1W�g−−−−→W � V

ITg(W ),V−−−−−−→ Tg(W ) �V V
rVTg(W )−−−−→ Tg(W ).

By definition of rVTg(W ), this equals

W � V
1W�g−−−−→W � V

R−1
V,W−−−−→ V �W

µTg(W )−−−−−→ Tg(W ).

Since µTg(W ) = µW (g−1 � 1W ), naturality of the braiding isomorphisms in SC implies that we get

W � V
R−1

V,W−−−−→ V �W
µW−−→W = Tg(W ).

By definition, this is rVW IW,V = Tg(r
V
W )IW,V , as desired. This completes the proof that (Tg, τg, ϕg) is a tensor

endofunctor of RepV , restricting to a tensor endofunctor on RepG V .
To finish the construction of the G-action on RepG V , we need to prove that g 7→ (Tg, τg, ϕg) is a group

homomorphism. Note first that (T1, τ1, ϕ1) is the identity functor on RepV and RepG V , and we also need to show
that (Tgh, τgh, ϕgh) is the composition of (Tg, τg, ϕg) and (Th, τh, ϕh) for g, h ∈ G, that is:

� Tg(Th(W,µW )) = Tgh(W,µW ) for any object (W,µW ) in RepV , and Tg(Th(f)) = Tgh(f) for any morphism
in RepV .

� τg;Th(W1),Th(W2)Tg(τh;W1,W2
) = τgh;W1,W2

for all objects W1 and W2 in RepV .

� ϕgTg(ϕh) = ϕgh.

The first point is easy because

µTg(Th(W )) = µTh(W )(g
−1 � 1W ) = µW (h−1 � 1W )(g−1 � 1W ) = µW ((gh)−1 � 1W ) = µTgh(W )

and because Tg(Th(f)) = f = Tgh(f). Also, ϕgTg(ϕh) = gh = ϕgh. Then because τgh;W1,W2
is the unique morphism

such that
W1 �W2

IW1,W2

��

ITgh(W1),Tgh(W2)

**
Tgh(W1 �V W2)

τgh;W1,W2 // Tgh(W1) �V Tgh(W2)
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commutes, the commutative diagram

W1 �W2

IW1,W2

ss
ITh(W1),Th(W2)

��

ITg(Th(W1)),Tg(Th(W2))

++
Tg(Th(W1 �V W2))

Tg(τh;W1,W2
)
// Tg(Th(W1) �V Th(W2))

τg;Th(W1),Th(W2)

// Tg(Th(W1)) �V Tg(Th(W2))

shows that the second point holds as well.
Having constructed the G-action on RepG V , we now construct the braiding isomorphisms. For objects W1, W2

in RepG V with W1 a g-twisted V -module for some g ∈ G, we will show that there are unique morphisms RVW1,W2

and (RVW1,W2
)−1 such that

W1 �W2

IW1,W2

��

RW1,W2 // W2 �W1

ITg(W2),W1

��
W1 �V W2

RV
W1,W2 // Tg(W2) �V W1

and W2 �W1

ITg(W2),W1

��

R−1
W1,W2 // W1 �W2

IW1,W2

��
Tg(W2) �V W1

(RV
W1,W2

)−1

// W1 �V W2

commute. Such morphisms would be mutual inverses by the surjectivity of IW1,W2
and ITg(W2),W1

, so it remains

to show their existence as morphisms in SC and that RVW1,W2
is a morphism in RepV .

The existence and uniqueness of the morphisms RVW1,W2
and (RVW1,W2

)−1 in SC will follow from the universal
properties of the cokernels (W1 �V W2, IW1,W2

) and (Tg(W2) �V W1, ITg(W2),W1
) provided we can show:

ITg(W2),W1
RW1,W2

µ
(1)
W1,W2

= ITg(W2),W1
RW1,W2

µ
(2)
W1,W2

(A.4)

IW1,W2R−1
W1,W2

µ
(1)
Tg(W2),W1

= IW1,W2R−1
W1,W2

µ
(2)
Tg(W2),W1

(A.5)

To verify (A.4), we start with ITg(W2),W1
RW1,W2µ

(2)
W1,W2

, which is the composition

V�(W1 �W2)
AV,W1,W2−−−−−−→ (V �W1) �W2

RV,W1
�1W2−−−−−−−−→ (W1 � V ) �W2

A−1
W1,V,W2−−−−−−→W1 � (V �W2)

1W1
�µW2−−−−−−→W1 �W2

RW1,W2−−−−−→W2 �W1

ITg(W2)�W1−−−−−−−−→ Tg(W2) �V W1.

By the naturality of the braiding isomorphisms and the hexagon axiom in SC, this equals

V � (W1 �W2)
AV,W1,W2−−−−−−→ (V �W1) �W2

MV,W1
�1W2−−−−−−−−→ (V �W1) �W2

A−1
V,W1,W2−−−−−−→ V � (W1 �W2)

1V �RW1,W2−−−−−−−−→ V � (W2 �W1)
AV,W2,W1−−−−−−→ (V �W2) �W1

µW2
�1W1−−−−−−→W2 �W1

ITg(W2),W1−−−−−−−→ Tg(W2) �V W1.

We replace µW2
with µTg(W2)(g�1W2

) and then use the intertwining operator property of ITg(W2),W1
and naturality

of the associativity isomorphisms:

V � (W1 �W2)
AV,W1,W2−−−−−−→ (V �W1) �W2

MV,W1
�1W2−−−−−−−−→ (V �W1) �W2

(g�1W1
)�1W2−−−−−−−−−→ (V �W1) �W2

A−1
V,W1,W2−−−−−−→ V � (W1 �W2)

1V �RW1,W2−−−−−−−−→ V � (W2 �W1)
AV,W2,W1−−−−−−→ (V �W2) �W1

RV,W2
�1W1−−−−−−−−→ (W2 � V ) �W1

A−1
W2,V,W1−−−−−−→W2 � (V �W1)

1W2
�µW1−−−−−−→W2 �W1

ITg(W2),W1−−−−−−−→ Tg(W2) �V W1.

Now we apply the hexagon axiom and naturality of the braiding in SC to reduce this composition to

V � (W1 �W2)
AV,W1,W2−−−−−−→(V �W1) �W2

MV,W1
�1W2−−−−−−−−→ (V �W1) �W2

(g�1W1
)�1W2−−−−−−−−−→ (V �W1) �W2

µW1
�1W2−−−−−−→W1 �W2

RW1,W2−−−−−→W2 �W1

ITg(W2),W1−−−−−−−→ Tg(W2) �V W1.

We replace µW1
(g � 1W1

)MV,W1
with µW1

since W1 is a g-twisted V -module, and the resulting composition is

ITg(W2),W1
RW1,W2

µ
(1)
W1,W2

, as desired.
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Now to prove (A.5), we start with IW1,W2R−1
W1,W2

µ
(1)
Tg(W2),W1

, which is the composition

V � (W2 �W1)
AV,W2,W1−−−−−−→(V �W2) �W1

(g−1�1W2
)�1W1−−−−−−−−−−−→ (V �W2) �W1

µW2
�1W1−−−−−−→W2 �W1

R−1
W1,W2−−−−−→W1 �W2

IW1,W2−−−−−→W1 �V W2.

Using naturality of the braiding isomorphisms and the hexagon axiom in SC, this becomes

V�(W2 �W1)
1V �R−1

W1,W2−−−−−−−−→ V � (W1 �W2)
AV,W1,W2−−−−−−→ (V �W1) �W2

R−1
W1,V �1W2−−−−−−−−→ (W1 � V ) �W2

A−1
W1,V,W2−−−−−−→W1 � (V �W2)

1W1
�(g−1�1W2

)
−−−−−−−−−−−→W1 � (V �W2)

1W1
�µW2−−−−−−→W1 �W2

IW1,W2−−−−−→W1 �V W2.

Since IW1,W2
is an intertwining operator,

IW1,W2
(1W1

� µW2
) = IW1,W2

(µW1
� 1W2

)(R−1
V,W1

� 1W2
)AW1,V,W2

;

this leads to the composition

V � (W2 �W1)
1V �R−1

W1,W2−−−−−−−−→ V � (W1 �W2)
AV,W1,W2−−−−−−→ (V �W1) �W2

M−1
V,W1

�1W2−−−−−−−−→ (V �W1) �W2

(g−1�1W1
)�1W2−−−−−−−−−−−→ (V �W1) �W2

µW1
�1W2−−−−−−→W1 �W2

IW1,W2−−−−−→W1 �V W2.

Since W1 is a g-twisted V -module, we can eliminate (g−1 � 1W1)M−1
W1,W2

here and then add associativity and
braiding isomorphisms and their inverses to obtain:

V � (W2 �W1)
AV,W2,W1−−−−−−→ (V �W2) �W1

RV,W2
�1W1−−−−−−−−→ (W2 � V ) �W1

R−1
V,W2

�1W1−−−−−−−−→ (V �W2) �W1

A−1
V,W2,W1−−−−−−→ V � (W2 �W1)

1V �R−1
W1,W2−−−−−−−−→ V � (W1 �W2)

AV,W1,W2−−−−−−→ (V �W1) �W2

µW1
�1W2−−−−−−→W1 �W2

IW1,W2−−−−−→W1 �V W2.

By the hexagon axiom and naturality of the braiding isomorphisms, this is

V � (W2 �W1)
AV,W2,W1−−−−−−→ (V �W2) �W1

RV,W2
�1W1−−−−−−−−→ (W2 � V ) �W1

A−1
W2,V,W1−−−−−−→W2 � (V �W1)

1W2
�µW1−−−−−−→W2 �W1

R−1
W1,W2−−−−−→W1 �W2

IW1,W2−−−−−→W1 �V W2,

which is the right side of (A.5). We have now proved that RVW1,W2
exists and is an isomorphism in SC.

Now we prove that RVW1,W2
is a morphism in RepV (and thus in RepG V ). From the commutative diagrams

V � (W1 �W2)

1V �IW1,W2

��

µ
(i)
W1,W2 // W1 �W2

IW1,W2

��

RW1,W2 // W2 �W1

ITg(W2),W1

��
V � (W1 �V W2)

µW1�V W2 // W1 �V W2

RV
W1,W2 // Tg(W2) �V W1

and

V � (W1 �W2)

1V �IW1,W2

��

1V �RW1,W2 // V � (W2 �W1)

1V �ITg(W2),W1

��

µ
(i)

Tg(W2),W1 // W2 �W1

ITg(W2),W1

��
V � (W1 �V W2)

1V �RV
W1,W2 // V � (Tg(W2) �V W1)

µTg(W2),W1 // Tg(W2) �V W1

for i = 1 and i = 2, together with the surjectivity of 1V � IW1,W2
, it is sufficient to show

ITg(W2),W1
RW1,W2µ

(1)
W1,W2

= ITg(W2),W1
µ

(2)
Tg(W2),W1

(1V �RW1,W2).
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We start with the right side of this equation, which is the composition

V � (W1 �W2)
1V �RW1,W2−−−−−−−−→ V � (W2 �W1)

AV,W2,W1−−−−−−→ (V �W2) �W1

RV,W2
�1W1−−−−−−−−→ (W2 � V ) �W1

A−1
W2,V,W1−−−−−−→W2 � (V �W1)

1W2
�µW1−−−−−−→W2 �W1

ITg(W2),W1−−−−−−−→ Tg(W2) �V W1.

By the hexagon axioms in SC, this composition simplifies to

V � (W1 �W2)
AV,W1,W2−−−−−−→ (V �W1) �W2

RV �W1,W2−−−−−−−→W2 � (V �W1)

1W2
�µW1−−−−−−→W2 �W1

ITg(W2),W1−−−−−−−→ Tg(W2) �V W1.

Then we get ITg(W2),W1
RW1,W2µ

(1)
W1,W2

from the naturality of the braiding isomorphisms.

Next we show that the RVW1,W2
define an even natural isomorphism from � to � ◦ (Tg × 1Repg V ) ◦ σ, that is,

for parity-homogeneous morphisms f1 : W1 → W̃1 in Repg V and f2 : W2 → W̃2 in RepV ,

RV
W̃1,W̃2

(f1 �V f2) = (−1)|f1||f2|(Tg(f2) �V f1)RW1,W2
.

First, RVW1,W2
is even because RW1,W2 , IW1,W2 , and ITg(W2),W1

are even. Then from the commutativity of

W1 �W2

IW1,W2

��

f1�f2 // W̃1 � W̃2

I
W̃1,W̃2
��

R
W̃1,W̃2 // W̃2 � W̃1

I
Tg(W̃2),W̃1

��
W1 �V W2

f1�V f2 // W̃1 �V W̃2

RV

W̃1,W̃2 // Tg(W̃2) �V W̃1

and

W1 �W2

IW1,W2

��

RW1,W2 // W2 �W1

ITg(W2),W1

��

f2�f1 // W̃2 � W̃1

I
Tg(W̃2),W̃1

��
W1 �V W2

RV
W1,W2 // Tg(W2) �V W1

Tg(f2)�V f1 // Tg(W̃2) �V W̃1

,

the surjectivity of IW1,W2
, and the naturality of the braiding in SC, we get the naturality of RV .

To complete the proof, we need to check that the braiding RV is compatible with the G-action and satisfies the
hexagon/heptagon axioms. First, for g, h ∈ G, W1 a g-twisted V -module, and W2 any object in RepV , we need

τh;Tg(W2),W1
Th(RVW1,W2

) = RVTh(W1),Th(W2)τh;W1,W2 .

This follows from the commutative diagrams

W1 �W2

IW1,W2

��

RW1,W2 // W2 �W1

ITg(W2),W1

��

IThg(W2),Th(W1)

++
Th(W1 �V W2)

Th(RV
W1,W2

)
// Th(Tg(W2) �V W1)

τh;Tg(W2),W1 // Thg(W2) �V Th(W1)

and

W1 �W2

IW1,W2

tt
ITh(W1),Th(W2)

��

RW1,W2 // W2 �W1

IThg(W2),Th(W1)

��
Th(W1 �V W2)

τh;W1,W2

// Th(W1) �V Th(W2)
RV

Th(W1),Th(W2)

// Thg(W2) �V Th(W1)

as well as the surjectivity of IW1,W2
. In the second diagram here, the image of RVTh(W1),Th(W2) is indeed Tgh(W2)�V

Th(W1): because W1 is g-twisted, Th(W1) is hgh−1-twisted, and then Thgh−1(Th(W2)) = Thg(W2).

46



Now suppose g1, g2 ∈ G, W1 is a g1-twisted V -module, W2 is a g2-twisted V -module, and W3 is any object of
RepV . The first hexagon axiom follows from the commutative diagrams

W1 � (W2 �W3)

1W1
�RW2,W3

��

1W1
�IW2,W3 // W1 � (W2 �V W3)

1W1
�RV

W2,W3

��

IW1,W2�V W3 // W1 �V (W2 �V W3)

1W1
�VRV

W2,W3

��
W1 � (W3 �W2)

AW1,W3,W2

��

1W1
�ITg2

(W3),W2 // W1 � (Tg2
(W3) �V W2)

IW1,Tg2
(W3)�V W2 // W1 �V (Tg2

(W3) �V W2)

AV
W1,Tg2

(W3),W2

��
(W1 �W3) �W2

RW1,W3
�1W2

��

IW1,Tg2 (W3)�1W2 // (W1 �V Tg2(W3)) �W2

RV
W1,Tg2

(W3)�1W2

��

IW1�V Tg2 (W3),W2 // (W1 �V Tg2(W3)) �V W2

RV
W1,Tg2

(W3)�V 1W2

��
(W3 �W1) �W2

ITg1g2
(W3),W1

�1W2// (Tg1g2
(W3) �V W1) �W2

ITg1g2
(W3)�V W1,W2// (Tg1g2

(W3) �V W1) �V W2

and

W1 � (W2 �W3)

AW1,W2,W3

��

1W1
�IW2,W3 // W1 � (W2 �V W3)

IW1,W2�V W3 // W1 �V (W2 �V W3)

AV
W1,W2,W3

��
(W1 �W2) �W3

RW1�W2,W3

��

IW1,W2
�1W3 // (W1 �V W2) �W3

RW1�V W2,W3

��

IW1�V W2,W3 // (W1 �V W2) �V W3

RV
W1�V W2,W3

��
W3 � (W1 �W2)

AW3,W1,W2

��

1W3
�IW1,W2 // W3 � (W1 �V W2)

ITg1g2
(W3),W1�V W2 // Tg1g2

(W3) �V (W1 �V W2)

AV
Tg1g2

(W3),W1,W2

��
(W3 �W1) �W2

ITg1g2 (W3),W1
�1W2// (Tg1g2(W3) �V W1) �W2

ITg1g2 (W3)�V W1,W2// (Tg1g2(W3) �V W1) �V W2

,

the surjectivity of IW1,W2�VW3
(1W1 � IW2,W3), and the hexagon axioms in SC. For the heptagon, take g ∈ G, a

g-twisted V -module W1, and any objects W2, W3 in RepV . Then the commutative diagrams

(W1 �W2) �W3

A−1
W1,W2,W3

��

IW1,W2
�1W3 // (W1 �V W2) �W3

IW1�V W2,W3 // (W1 �V W2) �V W3

(AV
W1,W2,W3

)−1

��
W1 � (W2 �W3)

RW1,W2�W3

��

1W1
�IW2,W3 // W1 � (W2 �V W3)

RW1,W2�V W3

��

IW1,W2�V W3 // W1 �V (W2 �V W3)

RV
W1,W2�V W3

��
(W2 �W3) �W1

A−1
W2,W3,W1

��

ITg(W2),Tg(W3)�1W1

++

IW2,W3
�1W1 // (W2 �V W3) �W1

τg;W2,W3
�1W1

��

ITg(W2�V W3),W1 // Tg(W2 �V W3) �V W1

τg;W2,W3
�V 1W1

��
W2 � (W3 �W1)

1W2
�ITg(W3),W1

++

(Tg(W2) �V Tg(W3)) �W1

ITg(W2)�V Tg(W3),W1// (Tg(W2) �V Tg(W3)) �V W1

(AV
Tg(W2),Tg(W3),W1

)−1

��
W2 � (Tg(W3) �V W1)

ITg(W2),Tg(W3)�V W1

// Tg(W2) �V (Tg(W3) �V W1)
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and

(W1 �W2) �W3

RW1,W2
�1W3

��

IW1,W2
�1W3 // (W1 �V W2) �W3

RV
W1,W2

�1W3

��

IW1�V W2,W3 // (W1 �V W2) �V W3

RV
W1,W2

�V 1W3

��
(W2 �W1) �W3

A−1
W2,W1,W3

��

ITg(W2),W1
�1W3 // (Tg(W2) �V W1) �W3

ITg(W2)�V W1,W3 // (Tg(W2) �V W1) �V W3

(AV
Tg(W2),W1,W3

)−1

��
W2 � (W1 �W3)

1W2
�RW1,W3

��

1W2
�IW1,W3 // W2 � (W1 �V W3)

1W2
�RV

W1,W3

��

ITg(W2),W1�V W3 // Tg(W2) �V (W1 �V W3)

1W2
�VRV

W1,W3

��
W2 � (W3 �W1)

1W2
�ITg(W3),W1 // W2 � (Tg(W3) �V W1)

ITg(W2),Tg(W3)�V W1// Tg(W2) �V (Tg(W3) �V W1)

,

the surjectivity of IW1�VW2,W3
(IW1,W2

� 1W3
), and the hexagon axiom in SC complete the proof of the theorem.

B Details for Theorem 3.3

Here we provide detailed calculations for the proofs of Section 3, incorporating all unit and associativity isomor-
phisms and making heavy use of the triangle, pentagon, and hexagon axioms.

Equations (3.1) and (3.2). We consider eV�V (1V�V � FL), which is given by the composition

(V�V ) � V
1V �V �l−1

V−−−−−−−→ (V � V ) � (1 � V )
1V �V �(̃iV �1V )−−−−−−−−−−→ (V � V ) � ((V � V ) � V )

1V �V �A−1
V,V,V−−−−−−−−−→ (V � V ) � (V � (V � V ))

1V �V �(1V �µV )−−−−−−−−−−−→ (V � V ) � (V � V )
A−1

V,V,V �V−−−−−−→ V � (V � (V � V ))

1V �AV,V,V−−−−−−−→ V � ((V � V ) � V )
1V �(εV µV �1V )−−−−−−−−−−−→ V � (1 � V )

1V �lV−−−−→ V � V
εV µV−−−−→ 1.

We move the second associativity isomorphism to the front using its naturality and we move the first µV back using
naturality of the associativity and left unit isomorphisms:

(V � V ) � V
A−1

V,V,V−−−−−→ V � (V � V )
1V �(1V �l−1

V )
−−−−−−−−−→ V � (V � (1 � V ))

1V �(1V �(̃iV �1V ))−−−−−−−−−−−−→ V � (V � ((V � V ) � V ))

1V �(1V �A−1
V,V,V )

−−−−−−−−−−−−→ V � (V � (V � (V � V )))
1V �AV,V,V �V−−−−−−−−−→ V � ((V � V ) � (V � V ))

1V �(εV µV �1V �V )−−−−−−−−−−−−−→ V � (1 � (V � V ))
1V �lV �V−−−−−−→ V � (V � V )

1V �µV−−−−−→ V � V
εV µV−−−−→ 1.

We rewrite using the triangle axiom and naturality of the associativity isomorphisms:

(V � V ) � V
A−1

V,V,V−−−−−→ V � (V � V )
1V �(r−1

V �1V )
−−−−−−−−−→ V � ((V � 1) � V )

1V �((1V �ĩV )�1V )−−−−−−−−−−−−→ V � ((V � (V � V )) � V )

1V �A−1

V,V �V,V−−−−−−−−−→ V � (V � ((V � V ) � V ))
1V �(1V �A−1

V,V,V )
−−−−−−−−−−−−→ V � (V � (V � (V � V )))

1V �AV,V,V �V−−−−−−−−−→ V � ((V � V ) � (V � V ))
1V �AV �V,V,V−−−−−−−−−→ V � (((V � V ) � V ) � V )

1V �((εV µV �1V )�1V )−−−−−−−−−−−−−−−→ V � ((1 � V ) � V )
1V �(lV �1V )−−−−−−−−→ V � (V � V )

1V �µV−−−−−→ V � V
εV µV−−−−→ 1.

Now we replace the associativity isomorphisms in the second and third lines with 1V � (AV,V,V � 1V ) using the
pentagon axiom, and then by rigidity of V , the whole composition collapses to

(V � V ) � V
A−1

V,V,V−−−−−→ V � (V � V )
1V �µV−−−−−→ V � V

εV µV−−−−→ 1 (B.1)

as required.
On the other hand, eV�V (1V�V � FR) is the composition

(V�V ) � V
1V �V �r−1

V−−−−−−−→ (V � V ) � (V � 1)
1V �V �(1V �ĩV )−−−−−−−−−−→ (V � V ) � (V � (V � V ))
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1V �V �AV,V,V−−−−−−−−−→ (V � V ) � ((V � V ) � V )
1V �V �(µV �1V )−−−−−−−−−−−→ (V � V ) � (V � V )

A−1

V,V,V �V−−−−−−→ V � (V � (V � V ))

1V �AV,V,V−−−−−−−→ V � ((V � V ) � V )
1V �(εV µV �1V )−−−−−−−−−−−→ V � (1 � V )

1V �lV−−−−→ V � V
εV µV−−−−→ 1.

As before, we move A−1
V,V,V�V forward and the first µV back; we also apply the associativity of µV :

(V � V ) � V
A−1

V,V,V−−−−−→ V � (V � V )
1V �(1V �r−1

V )
−−−−−−−−−→ V � (V � (V � 1))

1V �(1V �(1V �ĩV ))−−−−−−−−−−−−→ V � (V � (V � (V � V )))

1V �(1V �AV,V,V )−−−−−−−−−−−−→ V � (V � ((V � V ) � V ))
1V �AV,V �V,V−−−−−−−−−→ V � ((V � (V � V )) � V )

1V �(AV,V,V �1V )−−−−−−−−−−−−→ V � (((V � V ) � V ) � V )
1V �((µV �1V )�1V )−−−−−−−−−−−−−→ V � ((V � V ) � V )

1V �(εV µV �1V )−−−−−−−−−−−→ V � (1 � V )
1V �lV−−−−→ V � V

εV µV−−−−→ 1.

Now we rewrite the associativity isomorphisms in the second and third rows as AV�V,V,VAV,V,V�V using the
pentagon axiom, and then we apply the naturality of these isomorphisms:

(V � V ) � V
A−1

V,V,V−−−−−→ V � (V � V )
1V �(1V �r−1

V )
−−−−−−−−−→ V � (V � (V � 1))

1V �AV,V,1−−−−−−−→ V � ((V � V ) � 1)

1V �(1V �V �ĩV )−−−−−−−−−−→ V � ((V � V ) � (V � V ))
1V �(µV �1V �V )−−−−−−−−−−−→ V � (V � (V � V ))

1V �AV,V,V−−−−−−−→ V � ((V � V ) � V )

1V �(εV µV �1V )−−−−−−−−−−−→ V � (1 � V )
1V �lV−−−−→ V � V

εV µV−−−−→ 1.

Next we use the identity AV,V,1(1V � r−1
V ) = r−1

V�V and the naturality of the right unit isomorphisms:

(V � V ) � V
A−1

V,V,V−−−−−→ V�(V � V )
1V �µV−−−−−→ V � V

1V �r−1
V−−−−−→ V � (V � 1)

1V �(1V �ĩV )−−−−−−−−→ V � (V � (V � V ))

1V �AV,V,V−−−−−−−→ V � ((V � V ) � V )
1V �(εV µV �1V )−−−−−−−−−−−→ V � (1 � V )

1V �lV−−−−→ V � V
εV µV−−−−→ 1.

Finally, this composition collapses to (B.1) by the rigidity of V .

Equation (3.3). By the left unit property of V , (TrC g)1V is the composition

V
l−1
V−−→ 1 � V

ĩV �1V−−−−→ (V � V ) � V
(1V �g)�1V−−−−−−−−→ (V � V ) � V

µV �1V−−−−−→ V � V
µV−−→ V.

Because g is an automorphism of V , this agrees with

V
l−1
V−−→ 1 � V

ĩV �1V−−−−→ (V � V ) � V
(g−1�1V )�g−1

−−−−−−−−−−→ (V � V ) � V
µV �1V−−−−−→ V � V

µV−−→ V
g−→ V.

We then use associativity of µV and naturality of associativity and unit isomorphisms to rewrite as

V
g−1

−−→ V
l−1
V−−→ 1 � V

ĩV �1V−−−−→ (V � V ) � V
A−1

V,V,V−−−−−→ V � (V � V )
1V �µV−−−−−→ V � V

g−1�1V−−−−−→ V � V
µV−−→ V

g−→ V.

Next we use Lemma 3.7 and the automorphism property of g to obtain

V
g−1

−−→ V
r−1
V−−→ V � 1

1V �ĩV−−−−→ V � (V � V )
AV,V,V−−−−−→ (V � V ) � V

µV �1V−−−−−→ V � V
1V �g−−−−→ V � V

µV−−→ V.

Naturality of the associativity isomorphisms and one more application of the associativity of µV then yields

V
g−1

−−→ V
r−1
V−−→ V � 1

1V �ĩV−−−−→ V � (V � V )
1V �(1V �g)−−−−−−−−→ V � (V � V )

1V �µV−−−−−→ V � V
µV−−→ V,

which is (TrC g)g−1 by the right unit property of V .

Equation (3.4). We start with µW (1V � Πg), which is the composition

V �W
1V �l−1

W−−−−−→ V � (1 �W )
1V �(̃iV �1W )−−−−−−−−−→ V � ((V � V ) �W )

1V �A−1
V,V,W−−−−−−−−→ V � (V � (V �W ))
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1V �(1V �[(g�1W )MV,W ])−−−−−−−−−−−−−−−−−→ V � (V � (V �W ))
1V �(1V �µW )−−−−−−−−−→ V � (V �W )

1V �µW−−−−−→ V �W
µW−−→W.

We replace the first arrow using the triangle axiom and the triviality of R1,V and rewrite the last two arrows using
associativity of µV and µW :

V �W
l−1
V �1W−−−−−→ (1 � V ) �W

R1,V �1W−−−−−−−→ (V � 1) �W
A−1

V,1,W−−−−−→ V � (1 �W )
1V �(̃iV �1W )−−−−−−−−−→ V � ((V � V ) �W )

1V �A−1
V,V,W−−−−−−−−→ V � (V � (V �W ))

1V �(1V �[(g�1W )MV,W ])−−−−−−−−−−−−−−−−−→ V � (V � (V �W ))
1V �AV,V,W−−−−−−−−→ V � ((V � V ) �W )

1V �(µV �1W )−−−−−−−−−→ V � (V �W )
1V �µW−−−−−→ V �W

µW−−→W.

Now we write l−1
V � 1W = A1,V,W l

−1
V�W and apply naturality of associativity and braiding isomorphisms to ĩV ;

meanwhile we rewrite the last three arrows using associativity again and naturality of the associativity isomor-
phisms:

V �W
l−1

V �W−−−−→ 1 � (V �W )
ĩV �1V �W−−−−−−−→ (V � V ) � (V �W )

AV �V,V,W−−−−−−−→ ((V � V ) � V ) �W

RV �V,V �1W−−−−−−−−−→ (V � (V � V )) �W
A−1

V,V �V,W−−−−−−−→ V � ((V � V ) �W )
1V �A−1

V,V,W−−−−−−−−→ V � (V � (V �W ))

1V �(1V �[(g�1W )MV,W ])−−−−−−−−−−−−−−−−−→ V � (V � (V �W ))
1V �AV,V,W−−−−−−−−→ V � ((V � V ) �W )

AV,V �V,W−−−−−−−→ (V � (V � V )) �W

(1V �µV )�1W−−−−−−−−−→ (V � V ) �W
µV �1W−−−−−→ V �W

µW−−→W.

Next we apply the hexagon and pentagon axioms to the arrows in the second line above; we also apply the
associativity µV and the pentagon axiom towards the end of the composition:

V �W
l−1

V �W−−−−→ 1 � (V �W )
ĩV �1V �W−−−−−−−→ (V � V ) � (V �W )

AV �V,V,W−−−−−−−→ ((V � V ) � V ) �W

A−1
V,V,V �1W

−−−−−−−−→ (V � (V � V )) �W
(1V �RV,V )�1W−−−−−−−−−−−→ (V � (V � V )) �W

AV,V,V �1W−−−−−−−−→ ((V � V ) � V ) �W

(RV,V �1V )�1W−−−−−−−−−−−→ ((V � V ) � V ) �W
A−1

V �V,V,W−−−−−−−→ (V � V ) � (V �W )
A−1

V,V,V �W−−−−−−−→ V � (V � (V �W ))

1V �(1V �[(g�1W )MV,W ])−−−−−−−−−−−−−−−−−→ V � (V � (V �W ))
AV,V,V �W−−−−−−−→ (V � V ) � (V �W )

AV �V,V,W−−−−−−−→ ((V � V ) � V ) �W

(µV �1V )�1W−−−−−−−−−→ (V � V ) �W
µV �1W−−−−−→ V �W

µW−−→W.

We use naturality of the associativity isomorphisms to cancel AV,V,V�W and its inverse here. With this done, we
move the second RV,V using naturality of the associativity isomorphisms, in order to cancel it against the first µV
using commutativity of µV . Then we begin rewriting the fifth line using associativity again:

V �W
l−1

V �W−−−−→ 1 � (V �W )
ĩV �1V �W−−−−−−−→ (V � V ) � (V �W )

AV �V,V,W−−−−−−−→ ((V � V ) � V ) �W

A−1
V,V,V �1W

−−−−−−−−→ (V � (V � V )) �W
(1V �RV,V )�1W−−−−−−−−−−−→ (V � (V � V )) �W

AV,V,V �1W−−−−−−−−→ ((V � V ) � V ) �W

A−1

V �V,V,W−−−−−−−→ (V � V ) � (V �W )
1V �V �[(g�1W )MV,W ]−−−−−−−−−−−−−−−→ (V � V ) � (V �W )

AV �V,V,W−−−−−−−→ ((V � V ) � V ) �W

A−1
V,V,V �1W

−−−−−−−−→ (V � (V � V )) �W
(1V �µV )�1W−−−−−−−−−→ (V � V ) �W

µV �1W−−−−−→ V �W
µW−−→W.

We now rewrite the last five arrows using associativity of µW , naturality of the associativity isomorphisms, and
the pentagon axiom. Then we use commutativity to insert an RV,V in front of µV :

V �W
l−1

V �W−−−−→ 1 � (V �W )
ĩV �1V �W−−−−−−−→ (V � V ) � (V �W )

AV �V,V,W−−−−−−−→ ((V � V ) � V ) �W

A−1
V,V,V �1W

−−−−−−−−→ (V � (V � V )) �W
(1V �RV,V )�1W−−−−−−−−−−−→ (V � (V � V )) �W

AV,V,V �1W−−−−−−−−→ ((V � V ) � V ) �W

A−1

V �V,V,W−−−−−−−→ (V � V ) � (V �W )
1V �V �[(g�1W )MV,W ]−−−−−−−−−−−−−−−→ (V � V ) � (V �W )

A−1

V,V,V �W−−−−−−−→ V � (V � (V �W ))

1V �AV,V,W−−−−−−−−→ V � ((V � V ) �W )
1V �(RV,V �1W )−−−−−−−−−−−→ V � ((V � V ) �W )

1V �(µV �1W )−−−−−−−−−→ V � (V �W )
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1V �µW−−−−−→ V �W
µW−−→W.

Next we use naturality of the associativity isomorphisms to move A−1
V,V,V�W , the pentagon axiom in the second

and third rows, the associativity of µW , and naturality of the associativity and braiding isomorphisms to move g:

V �W
l−1

V �W−−−−→ 1 � (V �W )
ĩV �1V �W−−−−−−−→ (V � V ) � (V �W )

AV �V,V,W−−−−−−−→ ((V � V ) � V ) �W

A−1
V,V,V �1W

−−−−−−−−→ (V � (V � V )) �W
(1V �RV,V )�1W−−−−−−−−−−−→ (V � (V � V )) �W

A−1

V,V �V,W−−−−−−−→ V � ((V � V ) �W )

1V �A−1
V,V,W−−−−−−−−→ V � (V � (V �W ))

1V �(1V �MV,W )−−−−−−−−−−−→ V � (V � (V �W ))
1V �AV,V,W−−−−−−−−→ V � ((V � V ) �W )

1V �(RV,V �1W )−−−−−−−−−−−→ V � ((V � V ) �W )
1V �A−1

V,V,W−−−−−−−−→ V � (V � (V �W ))
1V �(1V �µW )−−−−−−−−−→ V � (V �W )

1V �(g�1W )−−−−−−−−→ V � (V �W )
1V �µW−−−−−→ V �W

µW−−→W.

Now we use naturality of the associativity isomorphisms to move the firstRV,V , and then we use the pentagon axiom
to rewrite the first three associativity isomorphisms and the hexagon axiom to rewrite all braiding isomorphisms:

V �W
l−1

V �W−−−−→ 1 � (V �W )
ĩV �1V �W−−−−−−−→ (V � V ) � (V �W )

A−1

V,V,V �W−−−−−−−→ V � (V � (V �W ))

1V �AV,V,W−−−−−−−−→ V � ((V � V ) �W )
1V �A−1

V,V,W−−−−−−−−→ V � (V � (V �W ))
1V �RV,V �W−−−−−−−−−→ V � ((V �W ) � V )

1V �A−1
V,W,V−−−−−−−−→ V � (V � (W � V ))

1V �AV,W,V−−−−−−−−→ V � ((V �W ) � V )
1V �RV �W,V−−−−−−−−−→ V � (V � (V �W ))

1V �AV,V,W−−−−−−−−→ V � ((V � V ) �W )
1V �A−1

V,V,W−−−−−−−−→ V � (V � (V �W ))
1V �(1V �µW )−−−−−−−−−→ V � (V �W )

1V �(g�1W )−−−−−−−−→ V � (V �W )
1V �µW−−−−−→ V �W

µW−−→W.

We cancel all pairs of associativity isomorphisms and their inverses and then apply naturality of the associativity,
braiding, and unit isomorphisms to the first µW to finally obtain

V �W
µW−−→W

l−1
W−−→ 1 �W

ĩV �1W−−−−−→ (V � V ) �W
A−1

V,V,W−−−−−→ V � (V �W )

1V �MV,W−−−−−−−→ V � (V �W )
1V �(g�1W )−−−−−−−−→ V � (V �W )

1V �µW−−−−−→ V �W
µW−−→W,

which is ΠgµW .

Equations (3.5) through (3.7). The morphism µW (g � Πg)MV,W is the composition

V �W
MV,W−−−−→ V �W

1V �l−1
W−−−−−→ V � (1 �W )

1V �(̃iV �1W )−−−−−−−−−→ V � ((V � V ) �W )
1V �A−1

V,V,W−−−−−−−−→ V � (V � (V �W ))

g�(1V �[(g�1W )MV,W ])−−−−−−−−−−−−−−−−→ V � (V � (V �W ))
1V �(1V �µW )−−−−−−−−−→ V � (V �W )

1V �µW−−−−−→ V �W
µW−−→W. (B.2)

We begin by rewriting the second, third, and fourth arrows:

(1V �A−1
V,V,W )(1V � (̃iV � 1W ))A−1

V,1,W (r−1
V � 1W )

= (1V �A−1
V,V,W )A−1

V,V�V,W ((1V � ĩV ) � 1W )(R1,V � 1W )(l−1
V � 1W )

= (1V �A−1
V,V,W )A−1

V,V�V,W (RV�V,V � 1W )((̃iV � 1V ) � 1W )A1,V,W l
−1
V�W

= A−1
V,V,V�WA

−1
V�V,V,W ((RV,V � 1V ) � 1W )(AV,V,V � 1W )((1V �RV,V ) � 1W )◦

◦ (A−1
V,V,V � 1W )AV�V,V,W (̃iV � 1V�W )l−1

V�W , (B.3)

where the last equality uses both the hexagon and pentagon axioms. We also rewrite the last three arrows of (B.2)
using the associativity and commutativity of µW and µV as well as the pentagon axiom:

µW (1V � µW )(1V � (1V � µW )) = µW (1V � µW )(1V � (µV � 1W ))(1V �AV,V,W )

= µW (µV � 1W )AV,V,W (1V � (µV � 1W ))(1V � (RV,V � 1W ))(1V �AV,V,W )
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= µW (µV � 1W )((1V � µV ) � 1W )((1V �RV,V ) � 1W )AV,V�V,W (1V �AV,V,W )

= µW (µV � 1W )((µV � 1V ) � 1W )(AV,V,V � 1W )((1V �RV,V ) � 1W )(A−1
V,V,V � 1W )AV�V,V,WAV,V,V�W .

(B.4)

We insert (B.3) and (B.4) into (B.2), canceling AV,V,V�W with its inverse:

V �W
MV,W−−−−→ V �W

l−1

V �W−−−−→ 1 � (V �W )
ĩV �1V �W−−−−−−−→ (V � V ) � (V �W )

AV �V,V,W−−−−−−−→ ((V � V ) � V ) �W

A−1
V,V,V �1W

−−−−−−−−→ (V � (V � V )) �W
(1V �RV,V )�1W−−−−−−−−−−−→ (V � (V � V )) �W

AV,V,V �1W−−−−−−−−→ ((V � V ) � V ) �W

(RV,V �1V )�1W−−−−−−−−−−−→ ((V � V ) � V ) �W
A−1

V �V,V,W−−−−−−−→ (V � V ) � (V �W )
(g�1V )�[(g�1W )MV,W ]−−−−−−−−−−−−−−−−→ (V � V ) � (V �W )

AV �V,V,W−−−−−−−→ ((V � V ) � V ) �W
A−1

V,V,V �1W

−−−−−−−−→ (V � (V � V )) �W
(1V �RV,V )�1W−−−−−−−−−−−→ (V � (V � V )) �W

AV,V,V �1W−−−−−−−−→ ((V � V ) � V ) �W
(µV �1V )�1W−−−−−−−−−→ (V � V ) �W

µV �1W−−−−−→ V �W
µW−−→W.

Next we apply naturality of the left unit isomorphisms to the first two arrows and naturality of the associativity
and braiding isomorphisms to g. Then we use the automorphism property of g and finally apply naturality of
associativity to the second RV,V :

V �W
l−1

V �W−−−−→ 1 � (V �W )
ĩV �1V �W−−−−−−−→ (V � V ) � (V �W )

1V �V �MV,W−−−−−−−−−→ (V � V ) � (V �W )

AV �V,V,W−−−−−−−→ ((V � V ) � V ) �W
A−1

V,V,V �1W

−−−−−−−−→ (V � (V � V )) �W
(1V �RV,V )�1W−−−−−−−−−−−→ (V � (V � V )) �W

AV,V,V �1W−−−−−−−−→ ((V � V ) � V ) �W
A−1

V �V,V,W−−−−−−−→ (V � V ) � (V �W )
1V �V �MV,W−−−−−−−−−→ (V � V ) � (V �W )

AV �V,V,W−−−−−−−→ ((V � V ) � V ) �W
(RV,V �1V )�1W−−−−−−−−−−−→ ((V � V ) � V ) �W

A−1
V,V,V �1W

−−−−−−−−→ (V � (V � V )) �W

(1V �RV,V )�1W−−−−−−−−−−−→ (V � (V � V )) �W
AV,V,V �1W−−−−−−−−→ ((V � V ) � V ) �W

(µV �1V )�1W−−−−−−−−−→ (V � V ) �W

(g�1V )�1W−−−−−−−−→ (V � V ) �W
µV �1W−−−−−→ V �W

µW−−→W. (B.5)

Now we use the hexagon axiom and commutativity of µV to simplify the penultimate seven arrows:

µV (g � 1V )(µV � 1V )AV,V,V (1V �RV,V )A−1
V,V,V (RV,V � 1V ) = µV (g � 1V )(µV � 1V )RV,V�VA−1

V,V,V

= µVRV,V (1V � g)(1V � µV )A−1
V,V,V = µV (1V � g)(1V � µV )A−1

V,V,V .

We also rewrite associativity isomorphisms in the second and third lines of (B.5) using the pentagon axiom:

V �W
l−1

V �W−−−−→ 1 � (V �W )
ĩV �1V �W−−−−−−−→ (V � V ) � (V �W )

1V �V �MV,W−−−−−−−−−→ (V � V ) � (V �W )

A−1

V,V,V �W−−−−−−−→ V � (V � (V �W )
1V �AV,V,W−−−−−−−−→ V � ((V � V ) �W )

AV,V �V,W−−−−−−−→ (V � (V � V )) �W

(1V �RV,V )�1W−−−−−−−−−−−→ (V � (V � V )) �W
A−1

V,V �V,W−−−−−−−→ V � ((V � V ) �W )
1V �A−1

V,V,W−−−−−−−−→ V � (V � (V �W ))

AV,V,V �W−−−−−−−→ (V � V ) � (V �W )
1V �V �MV,W−−−−−−−−−→ (V � V ) � (V �W )

AV �V,V,W−−−−−−−→ ((V � V ) � V ) �W

A−1
V,V,V �1W

−−−−−−−−→ (V � (V � V )) �W
(1V �µV )�1W−−−−−−−−−→ (V � V ) �W

(1V �g)�1W−−−−−−−−→ (V � V ) �W
µV �1W−−−−−→ V �W

µW−−→W.

Again using naturality of associativity and the pentagon axiom, we get:

V �W
l−1

V �W−−−−→ 1 � (V �W )
ĩV �1V �W−−−−−−−→ (V � V ) � (V �W )

A−1

V,V,V �W−−−−−−−→ V � (V � (V �W ))

1V �(1V �MV,W )−−−−−−−−−−−→ V � (V � (V �W ))
1V �AV,V,W−−−−−−−−→ V � ((V � V ) �W )

1V �(RV,V �1W )−−−−−−−−−−−→ V � ((V � V ) �W )

1V �A−1
V,V,W−−−−−−−−→ V � (V � (V �W ))

1V �(1V �MV,W )−−−−−−−−−−−→ V � (V � (V �W ))
1V �AV,V,W−−−−−−−−→ V � ((V � V ) �W )

AV,V �V,W−−−−−−−→ (V � (V � V )) �W
(1V �µV )�1W−−−−−−−−−→ (V � V ) �W

(1V �g)�1W−−−−−−−−→ (V � V ) �W
µV �1W−−−−−→ V �W

µW−−→W.
(B.6)
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We now analyze the isomorphism V � (V �W )→ (V � V ) �W in the fourth through ninth arrows. We apply
the Yang-Baxter relation once to get

V � (V �W )
1V �RV,W−−−−−−−→ V � (W � V )

AV,W,V−−−−−→ (V �W ) � V
RV,W�1V−−−−−−−→ (W � V ) � V

A−1
W,V,V−−−−−→W � (V � V )

1W�RV,V−−−−−−−→W � (V � V )
AW,V,V−−−−−→ (W � V ) �W

RW,V �1V−−−−−−−→ (V �W ) � V
A−1

V,W,V−−−−−→ V � (W � V )

1V �RW,V−−−−−−−→ V � (V �W )
AV,V,W−−−−−→ (V � V ) �W

and a second time to obtain

V � (V �W )
1V �RV,W−−−−−−−→ V � (W � V )

AV,W,V−−−−−→ (V �W ) � V
RV,W�1V−−−−−−−→ (W � V ) � V

RW,V �1V−−−−−−−→ (V �W ) � V

A−1
V,W,V−−−−−→ V � (W � V )

1V �RW,V−−−−−−−→ V � (V �W )
AV,V,W−−−−−→ (V � V ) �W

RV,V �1W−−−−−−−→ (V � V ) �W.

By the hexagon axiom, this equals

V � (V �W )
AV,V,W−−−−−→ (V � V ) �W

RV �V,W−−−−−−→W � (V � V )
AW,V,V−−−−−→ (W � V ) � V

A−1
W,V,V−−−−−→W � (V � V )

RW,V �V−−−−−−→ (V � V ) �W
RV,V �1W−−−−−−−→ (V � V ) �W.

We cancel associativity isomorphisms and insert this composition into (B.6):

V �W
l−1

V �W−−−−→ 1 � (V �W )
ĩV �1V �W−−−−−−−→ (V � V ) � (V �W )

A−1

V,V,V �W−−−−−−−→ V � (V � (V �W ))

1V �AV,V,W−−−−−−−−→ V � ((V � V ) �W )
1V �MV �V,W−−−−−−−−−→ V � ((V � V ) �W )

1V �(RV,V �1W )−−−−−−−−−−−→ V � ((V � V ) �W

AV,V �V,W−−−−−−−→ (V � (V � V )) �W
(1V �µV )�1W−−−−−−−−−→ (V � V ) �W

(1V �g)�1W−−−−−−−−→ (V � V ) �W
µV �1W−−−−−→ V �W

µW−−→W.

By the naturality of associativity and monodromy, the commutativity of µV , and properties of the left unit iso-
morphism, we now get

V �W
l−1
V �1W−−−−−→ (1 � V ) �W

(̃iV �1V )�1W−−−−−−−−−→ ((V � V ) � V ) �W
A−1

V �V,V,W−−−−−−−→ (V � V ) � (V �W )

A−1

V,V,V �W−−−−−−−→ V � (V � (V �W ))
1V �AV,V,W−−−−−−−−→ V � ((V � V ) �W )

1V �(µV �1W )−−−−−−−−−→ V � (V �W )

1V �MV,W−−−−−−−→ V � (V �W )
AV,V,W−−−−−→ (V � V ) �W

(1V �g)�1W−−−−−−−−→ (V � V ) �W
µV �1W−−−−−→ V �W

µW−−→W.

By the pentagon axiom, the third through fifth arrows equal A−1
V,V�V,W (A−1

V,V,V � 1W ). We also use naturality of
the associativity isomorphisms and associativity of µV to end up with:

V �W
l−1
V �1W−−−−−→ (1 � V ) �W

(̃iV �1V )�1W−−−−−−−−−→ ((V � V ) � V ) �W
A−1

V,V,V �1W

−−−−−−−−→ (V � (V � V )) �W

(1V �µV )�1W−−−−−−−−−→ (V � V ) �W
A−1

V,V,W−−−−−→ V � (V �W )
1V �[(g�1W )MV,W ]−−−−−−−−−−−−−→ V � (V �W )

1V �µW−−−−−→ V �W
µW−−→W.

At this point, we use Lemma 3.7 to replace the morphism V → V � V in the first four arrows with

(µV � 1V )AV,V,V (1V � ĩV )r−1
V .

Inserting this into the above composition and using the triangle axiom, we get

V �W
1V �l−1

W−−−−−→ V � (1 �W )
AV,1,W−−−−−→ (V � 1) �W

(1V �ĩV )�1W−−−−−−−−−→ (V � (V � V )) �W

AV,V,V �1W−−−−−−−−→ ((V � V ) � V ) �W
(µV �1V )�1W−−−−−−−−−→ (V � V ) �W

A−1
V,V,W−−−−−→ V � (V �W )

1V �[(g�1W )MV,W ]−−−−−−−−−−−−−→ V � (V �W )
1V �µW−−−−−→ V �W

µW−−→W.

Using naturality of the associativity and the pentagon, we obtain

V �W
1V �l−1

W−−−−−→V � (1 �W )
1V �(̃iV �1W )−−−−−−−−−→ V � ((V � V ) �W )

1V �A−1
V,V,W−−−−−−−−→ V � (V � (V �W ))
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AV,V,V �W−−−−−−−→ (V � V ) � (V �W )
1V �V �[(g�1W )MV,W ]−−−−−−−−−−−−−−−→ (V � V ) � (V �W )

1V �V �µW−−−−−−−→ (V � V ) �W
µV �1W−−−−−→ V �W

µW−−→W.

Finally, by naturality of the associativity isomorphisms and the associativity of µV and µW , this equals

V �W
1V �l−1

W−−−−−→V � (1 �W )
1V �(̃iV �1W )−−−−−−−−−→ V � ((V � V ) �W )

1V �A−1
V,V,W−−−−−−−−→ V � (V � (V �W ))

1V �(1V �[(g�1W )MV,W ])−−−−−−−−−−−−−−−−−→ V � (V � (V �W ))
1V �(1V �µW )−−−−−−−−−→ V � (V �W )

1V �µW−−−−−→ V �W
µW−−→W,

which is µW (1V � Πg).

Equations (3.8) and (3.9). When W is h-twisted, Πg is the composition

W
l−1
W−−→ 1 �W

ĩV �1W−−−−−→ (V � V ) �W
A−1

V,V,W−−−−−→ V � (V �W )
1V �(h−1g�1W )−−−−−−−−−−→ V � (V �W )

1V �µW−−−−−→ V �W
µW−−→W.

Naturality of the associativity isomorphisms and associativity of µW imply this is

W
l−1
W−−→ 1 �W

ĩV �1W−−−−−→ (V � V ) �W
(1V �h−1g)�1W−−−−−−−−−−→ (V � V ) �W

µV �1W−−−−−→ V �W
µW−−→W,

which is the right side of (3.8). Finally,
∑
g∈G πg is the composition

W
l−1
W−−→ 1 �W

ĩV �1W−−−−−→ (V � V ) �W
A−1

V,V,W−−−−−→ V � (V �W )
1V �MV,W−−−−−−−→ V � (V �W )

1V �( 1
|G|

∑
g∈G g�1V )

−−−−−−−−−−−−−−→ V � (V �W )
1V �µW−−−−−→ V �W

µW−−→W.

Using 1
|G|
∑
g∈G g = ιV εV and the unit property of W , we get

W
l−1
W−−→ 1 �W

ĩV �1W−−−−−→ (V � V ) �W
A−1

V,V,W−−−−−→ V � (V �W )
1V �MV,W−−−−−−−→ V � (V �W )

1V �(εV �1W )−−−−−−−−−→ V � (1 �W )
1V �lW−−−−−→ V �W

µW−−→W.

Then we simplify using naturality of the monodromy and associativity isomorphisms together withM1,W = 11,W :

W
l−1
W−−→ 1 �W

ĩV �1W−−−−−→ (V � V ) �W
(1V �εV )�1W−−−−−−−−−→)(V � 1) �W

A−1
V,1,W−−−−−→ V � (1 �W )

1V �lW−−−−−→ V �W
µW−−→W.

Now (1V � lW )A−1
V,1,W = rV � 1W by the triangle axiom and we get

W
l−1
W−−→ 1 �W

[rV (1V �εV )̃iV ]�1W−−−−−−−−−−−−−→ V �W
µW−−→W.

This is the right side of (3.9) by the unit property of W .
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