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Abstract

A two-dimensional chiral conformal field theory can be viewed mathematically as the representation theory
of its chiral algebra, a vertex operator algebra. Vertex operator algebras are especially well suited for studying
logarithmic conformal field theory (in which correlation functions have logarithmic singularities arising from
non-semisimple modules for the chiral algebra) because of the logarithmic tensor category theory of Huang,
Lepowsky, and Zhang. In this paper, we study not-necessarily-semisimple or rigid braided tensor categories
C of modules for the fixed-point vertex operator subalgebra VE of a vertex operator (super)algebra V' with
finite automorphism group G. The main results are that every V¢-module in C with a unital and associative
V-action is a direct sum of g-twisted V-modules for possibly several g € G, that the category of all such twisted
V-modules is a braided G-crossed (super)category, and that the G-equivariantization of this braided G-crossed
(super)category is braided tensor equivalent to the original category C of V% -modules. This generalizes results
of Kirillov and Miiger proved using rigidity and semisimplicity. We also apply the main results to the orbifold
rationality problem: whether V¢ is strongly rational if V is strongly rational. We show that V¢ is indeed
strongly rational if V is strongly rational, G is any finite automorphism group, and V< is Ca-cofinite.
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Orbifolding is a way to produce new conformal field theories from old ones. Mathematically, a two-dimensional
(chiral) conformal field theory can be treated as the representation theory of its chiral algebra, a vertex operator
algebra, and from this point of view, an orbifold conformal field theory amounts to the representation theory of the
fixed-point subalgebra V& of an automorphism group G of the original vertex operator algebra V. In the physics
literature, systematic study of orbifolds for rational conformal field theories began in [DVVV]. A key feature is



the adddition of twisted sectors to the Hilbert space of the original conformal field theory, which correspond in
mathematics to categories of twisted V-modules associated to automorphisms in G. In the mathematics literature,
twisted modules for lattice vertex operator algebras had already been introduced in [FLM] for the construction of
the moonshine module, a vertex operator algebra on which the Monster finite simple group acts by automorphisms.

Perhaps the first question in orbifold conformal field theory is, how are representations of the orbifold V¢ related
to the representations of V and G7 In particular, can the tensor category structures on the three categories of V-,
G-, and V%-modules be related? In this paper, for finite G, we answer these questions under minimal assumptions,
namely that V¢ actually has a module category C that both includes V and admits vertex and braided tensor
category structures as in [HLZ1]-[HLZ8] (see also the review article [HL]). These conditions hold for many vertex
operator algebras in logarithmic conformal field theory, where correlation functions have logarithmic singularities
arising from (necessarily non-semisimple) modules on which the Virasoro operator L(0) acts non-semisimply. For
example, by [Hu3], our results apply when V¢ is positive energy (also called CFT-type) and Cs-cofinite. Moreover,
V¢ indeed satisfies these conditions if V' itself is simple, positive energy, Ca-cofinite and G is finite solvable [Mil].
(An effort to extend this result to general finite groups has recently appeared in [Mi2], but unfortunately there
appears to be a gap in the argument at the moment.)

In the narrower setting of rational conformal field theory, when V& is a so-called “strongly rational” vertex
operator algebra (with a semisimple modular tensor category of representations [Hu2]), it follows from the work
of Kirillov [Kil]-[Ki3] and Miiger [Miil]-[Mii2] how to describe the category of V-modules in terms of V- and
G-modules. Take the category Rep V of all V¥-modules which admit suitably associative and unital actions of
V. This category is semisimple and every simple object is a g-twisted V-module for some g € G, and from there
it follows that Rep V is a braided G-crossed tensor category in the sense of Turaev [Tu]. Any braided G-crossed
tensor category has an associated braided tensor category called the G-equivariantization. For Rep V', objects of
the equivariantization (Rep V)¢ are modules in Rep V equipped with a compatible G-module structure; morphisms
commute with both V- and G-actions. Finally, (Rep V)¢ is braided tensor equivalent to the original category of
V% modules: taking G-fixed points gives the functor from (Rep V)¢ to V%-modules, while there is an induction
functor in the other direction.

The main result of this paper is that these results remain true for vertex operator algebras, and indeed vertex
operator superalgebras, in logarithmic conformal field theory. In this setting, we must first choose a category C of
V&-modules that has braided tensor category structure: for positive-energy Co-cofinite V¢, this could be the full
category of grading-restricted generalized ¥V “-modules, but in general we may need to choose a proper subcategory.
Then we take Rep V to be the category of V¢-modules in C that admit suitably associative and unital V-actions;
when V' is a superalgebra, we also require modules in Rep V' to have Z/2Z-gradings such that the V-action is even.
Note that Rep V' depends on the choice of C, and it inherits tensor (super)category structure from C [KO, CKM].
Now our main result gives the relation between the tensor category structures on C and Rep V; summarizing
Theorems 4.15 and 4.17:

Main Theorem 1. Let V be a simple vertex operator superalgebra, G a finite automorphism group of V that
includes the parity involution, C an abelian category of grading-restricted generalized V& -modules that includes V
and admits vertex and braided tensor category structures as in [HLZ1]-[HLZS], and Rep V the supercategory of
7.)27.-graded VE -modules in C that admit even, unital, and associative V -actions (defined precisely in Section 2.1
below). Then:

1. Every indecomposable object of Rep V is a g-twisted V-module for some g € G.
2. The category Rep V' admits the structure of a braided G-crossed supercategory.
3. The induction functor F : C — (Rep V)¢ is an equivalence of braided tensor categories.

In particular, we do not assume that any category of V¢-modules is semisimple. More importantly, we do not
assume that any category of V-modules is rigid, that is, that its objects have duals. It is usually difficult to show
that a tensor category of modules for a vertex operator algebra is rigid, and the only general rigidity theorem, due
to Huang [Hu2], applies only to rational vertex operator algebras. This is why the work of Kirillov and Miiger,
which uses rigidity, does not apply in the generality of the main theorem. For example, [Kil, Ki2] show that a
simple object W in Rep V is g-twisted by constructing g, which must be an endomorphism of V' having something
to do with . But the only way to construct such an endomorphism is to create a copy of W (and its dual) using
rigidity and have them interact with V' in some way.

In Section 3, we prove that indecomposable objects of Rep V are g-twisted by constructing the complete set of
projections from any object W in Rep V onto its g-twisted summands for g € G. The formula for the projections



generalizes a construction from [KO] and requires rigidity only for V' itself: the projection 7, onto the g-twisted
summand must be an endomorphism of W having something to do with g, so the formula for 7, uses rigidity to
create a copy of V on which g can act. But we do not even need to assume the rigidity of V as a V%-module,
because this follows from results in [McR]. For G finite abelian, a variant of Main Theorem 1(1), also without
assuming rigidity, has appeared previously in [CM, Corollary 4.3].

Main Theorem 1 can be used when rigidity is expected but not known a priori. In Section 4.4, we consider
the orbifold rationality problem: if V' is strongly rational and G is finite, is V¢ also strongly rational? Carnahan
and Miyamoto have shown [CM] that the answer is yes if G is cyclic (and by extension if G is solvable), but the
question has remained open for general finite G. One needs to show that V& is both C-cofinite and rational,
and in the presence of Cy-cofiniteness, rationality means that the category of (grading-restricted) V&-modules is
semisimple. In Theorem 4.20 and Corollary 4.23 below, we reduce the orbifold rationality problem to the question
of Csy-cofiniteness for VE:

Main Theorem 2. Let V be a strongly rational vertex operator algebra and G any finite group of automorphisms
of V.. If C is an abelian category of grading-restricted generalized VC-modules that includes V' and admits vertex
tensor category structure as in [HLZ1]-[HLZS], then C is semisimple. In particular, if VC is Cy-cofinite, then V¢
is strongly rational.

The idea is to show that Rep V is semisimple under the conditions of Main Theorem 2, because it is easy to
show that this implies C is semisimple. But because every module in Rep V is a direct sum of g-twisted modules
for certain g € G, it is enough to show that the category of g-twisted modules is semisimple for any fixed g € G.
This then follows using the rationality of each V{9 proved in [CM].

The equivalence in Main Theorem 1 between C and the G-equivariantization of Rep V has interesting implica-
tions even in what is perhaps the simplest non-trivial case: V' is a superalgebra and G = Z/2Z is generated by the
parity involution, so that V'@ is the even vertex operator subalgebra V9. In this case, the objects of (Rep V)%/%%
are simply the ordinary and parity-twisted V-modules (Neveu-Schwarz and Ramond sectors in physics terminology)
equipped with parity decompositions. In particular, morphisms in (Rep V)Z/ 2Z must be even. Applying the induc-
tion functor then shows that every indecomposable module in the base category C of V%-modules is the even part of
either a Neveu-Schwarz or Ramond V-module (equivalently, the odd part since reversing the parity decomposition
yields another module in (Rep V)%/%%).

Examples of vertex operator superalgebras with non-semisimple representation theory that can be studied using
Main Theorem 1 include the symplectic fermion superalgebras SF(d), d € Z, of d pairs of symplectic fermions [Ka,
Ab, Rul. As the even subalgebras SF(d)" are Cs-cofinite [Ab], the full categories of grading-restricted, generalized
SF(d)°-modules have braided tensor category structure [Hu3]. In fact, one of the goals that stimulated the work in
this paper was to understand Runkel’s construction [Ru] of a braided tensor category conjecturally equivalent to the
Huang-Lepowsky-Zhang braided tensor category (as in [HLZ1]-[HLZ8]) of grading-restricted generalized SF(d)°-
modules. The braided tensor category in [Ru] was constructed using Neveu-Schwarz and Ramond SF(d)-modules
and seems to be the Z/2Z-equivariantization of Rep SF(d). In future work, we plan to verify the identification
of (Rep SF(d))?/?* with Runkel’s braided tensor category, thus proving (in light of Main Theorem 1(3)) the
conjectured equivalence with the Huang-Lepowsky-Zhang braided tensor category of SF(d)’-modules. As Runkel’s
category is braided tensor equivalent to a non-semisimple modular tensor category of finite-dimensional modules
for a quasi-Hopf algebra [GR, FGR], this would provide a family of examples of non-rational Cs-cofinite vertex
operator algebras whose module categories admit non-semisimple modular tensor category structure.

The methods of this paper are primarily categorical, using the theory of commutative associative (super)algebras
in braided tensor categories developed in, for instance, [KO] and expanded upon in [CKM]. To apply results on
algebras in tensor categories to vertex operator algebras, we use the identification from [HKL] of vertex operator
algebra extensions with algebras in a braided tensor category of modules for a vertex operator subalgebra. This
result was extended to superalgebras in [CKL], and the relationship between the module categories of vertex
operator (super)algebra extensions and (super)algebras in a braided tensor category was established in [CKM].
Tensor-categorical techniques have proven highly useful in the representation theory of vertex operator algebras
in recent years: in this paper, we use braid diagrams to concisely express proofs that would otherwise require
complex manipulations of compositions of up to four vertex algebraic intertwining operators (6-point correlation
functions in conformal-field-theoretic terminology). That tensor-categorical techniques can be used at all to study
vertex operator algebras is a consequence of the work of Huang-Lepowsky-(Zhang), culminating in [HLZ1]-[HLZS8],
developing the (logarithmic) vertex tensor category theory for module categories of a vertex operator algebra.
The reader may notice that while the present paper is designed to handle vertex operator algebras in logarithmic
conformal field theory, very few logarithms appear explicitly. This is because most of the complex analysis needed
for this paper has been worked out already in [HLZ1]-[HLZ8] as well as subsequent works such as [CKM].



The remaining contents of this paper are structured as follows. In Section 2.1, we present definitions and basic
results on superalgebras V' in braided tensor categories C, including an overview of the monoidal supercategory
structure on the representation category Rep V' and the induction tensor functor from C to Rep V (see [CKM]
for a fuller discussion). In Section 2.2, we define the notion of g-twisted V-module in Rep V, associated to
an automorphism g of the superalgebra V', as well as the notion of braided G-crossed supercategory, a suitable
supercategory version of the notion of braided G-crossed category from [Tu]. We also discuss how categories of
twisted V-modules provide examples of braided G-crossed supercategories. This result seems to be well known,
since it is stated as a theorem in [Ki3], but a detailed proof seems to be missing from the literature. We provide one
in Appendix A. In Section 2.3 we give the definition of G-equivariantization of a braided G-crossed supercategory
and show that in the case of twisted modules for a superalgebra, induction is a braided tensor functor from C to
the G-equivariantization (Rep V)%, provided that every object in Rep V is a direct sum of twisted modules. This
result is also known, appearing in [Kil] and [Mii2], but we include a full proof to emphasize that it does not require
C to be semisimple or rigid.

In Section 3, we prove the main categorical result of this paper (Theorem 3.3): under some conditions which
do not include rigidity or semisimplicity of C, every object in Rep V is a direct sum of g-twisted V-modules for
possibly several g € G. In particular, Rep V is a braided G-crossed supercategory and induction is a braided tensor
functor from C to (Rep V)%. In the proof of Theorem 3.3, we use braid diagrams for brevity and clarity, but the
reader interested in fuller details may consult Appendix B.

In Section 4, we interpret the categorical results of the previous two sections as theorems for vertex operator
(super)algebras using the connection between vertex operator superalgebra extensions and superalgebras in braided
tensor categories established in [HKL, CKL, CKM]. After reviewing the definitions of vertex operator superalgebras
and their g-twisted modules in Section 4.1, we prove the main general theorems in Section 4.2. First we show that
the categorical and vertex algebraic notions of g-twisted V-module agree when V is a vertex operator superalgebra,
and then we prove the first two parts of Main Theorem 1 by verifying the conditions of Theorem 3.3 using [DLM]
and [McR]. Then after arguing that the braided G-crossed supercategory structure on Rep V' is natural from a
vertex algebraic point of view, we prove the third part of Main Theorem 1 in Theorem 4.17. In Section 4.3, we
describe the braided tensor category structure on the Z/2Z-equivariantization of Rep V when V' is a superalgebra
and Z/27 is generated by the parity automorphism; by Main Theorem 1(3), this provides a description of the
braided tensor category of modules for the even subalgebra VY. Finally, in Section 4.4, we prove Main Theorem 2.
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2 Braided G-crossed supercategories

In this section, we collect definitions and results on braided G-crossed supercategories of twisted modules for a
superalgebra V in a braided tensor category associated to a group G of automorphisms of V. For more details see,
for example, [Tu], [KO], [Kil]-[Ki3], [EGNO], and [CKM].

2.1 Superalgebra objects in supercategories

See [BE] for a helpful analysis of the relations between various notions of supercategory in the mathematical
literature. Here we fix a field F of characteristic not equal to 2 and work with F-linear supercategories (in the
terminology of [BE]) whose morphism sets are F-superspaces. We will denote the parity of a morphism f in a
supercategory by |f| € Z/2Z. Composition of morphisms in an F-linear supercategory is an even linear map
between superspaces, in the sense that

[fgl = f1+ 9]

when f and g have parity. Superfunctors between supercategories induce even linear maps on morphisms. If § is
a supercategory, then so is § X & with composition of morphisms defined by

(f1, f2) (g1, 92) = (=)0 (f191, fogo) (2.1)

when fy and g; have parity. Also, S x S has a supersymmetry superfunctor o given on objects by o(W1, Ws) =
(Wo, W1) and on parity-homogeneous morphisms by o(f1, f2) = (=1)F1l121(fy, f1).



A monoidal supercategory S is a supercategory with monoidal category structure: a tensor product superfunctor
K:SxS — S, aunit object 1, even natural left and right unit isomorphisms [ and r, and even natural associativity
isomorphisms 4, which satisfy the triangle and pentagon axioms. Since K is a superfunctor, it induces an even
linear map on morphisms: |f; X fo| = |f1| + |f2| when f; and fy are parity-homogeneous, and by (2.1),

(f1 B f2)(g1 B g2) = (=1)2 1191 (f191) K (f290) (2.2)

for appropriately composable morphisms with fo and g; parity-homogeneous (this is called the super interchange
law in [BE]).

The monoidal supercategory S is braided if it has an even natural braiding isomorphism R : ¥ — Ko ¢. From
the definition of o, for parity-homogeneous morphisms f; : W7 — W7 and fo : Wo — Ws in S,

Ry, 7, (f1 B f2) = (=121 ¥ fr)Rw, s (2.3)

We will say that a (braided) monoidal supercategory is rigid if every object W has a (left) dual W* for which the
evaluation morphism ey : W* X W — 1 and coevaluation morphism ¢y : 1 — W X W* are both even.

All F-linear supercategories S in this paper will be F-additive in the sense that S has a zero object and the
biproduct @ W; of any finite set of objects {W;} in S exists. We will not generally require our supercategories
to be abelian, as kernels and cokernels of non-parity-homogeneous morphisms may not exist in our examples. By
an F-additive monoidal supercategory, we will mean an F-additive supercategory with a monoidal supercategory
structure such that the tensor product of morphisms is bilinear.

Now we recall the main definitions and results from [CKM, Section 2.2]. Fix an F-linear (abelian) braided
tensor category C, with unit object 1, left and right unit isomorphisms [ and r, associativity isomorphisms A, and
braiding isomorphisms R. The only additional requirement is that for any object W in C, the functors W X e and
o X W are right exact. We define an auxiliary supercategory SC whose objects are ordered pairs W = (WO wh),
with W9 and W' objects of C, and whose morphisms are given by

Homge (W1, Wa) = Home (WY & W, W @ W)).

Every object W of SC has a parity involution Py € Endsc(W) given by

PW = 1wﬁ EB (_1wi)
The parity involutions determine the superspace structure of the morphism spaces in SC: f € Homge (W7, W2) has
parity |f| € Z/2Z if

fPw, = (=) Py, 1.
The supercategory SC is also F-additive with zero object 0 = (0,0) and biproducts defined by Wy @& W, =
(WP & WY Wl @ Wi). Moreover, SC is abelian, with every morphism having a kernel and cokernel, because
C is. However, if f : W7 — W5 is a morphism in SC, we cannot assume the kernel morphism & : Ker f — W; and
cokernel morphism ¢ : Wy — Coker f are even. They can be taken to be even if f is parity homogeneous. Moreover
every parity-homogeneous monomorphism in SC is the kernel of an even morphism, and every parity-homogeneous

epimorphism in SC is the cokernel of an even morphism (see [CKM, Proposition 2.15]).
Next, SC has braided tensor supercategory structure as follows: for objects W7, W5 in SC,

WiE W, = (WP R WE) @ (W) B W), (WP R W) e (Wi ®Wj)) .
For morphisms f; : W — Wl and fo: Wy — WQ in SC, the tensor product f; X fo must be a C-morphism
P wirnwe:- H W rRWE
i1,i2€L/2Z J1,2€L/2Z
Since the tensor product in C distributes over biproducts, f; X fs in SC can be identified with a C-morphism
(WY @ W) B (WY © W3) — (W) @ W) B (W) & W),

and this C-morphism is ( f Pg,{;fl) X fo when f5 is parity-homogeneous. The factor P“,[j,cf allows the super interchange

law (2.2) to hold.



The unit object in SC is 1 = (1,0), so for any object W = (W9, W) in SC, we can identify
IXRW =1RW° 1R W), WK1=W'K1,W' K1)

by first identifying 0 X Wi = 0 = WX 0 for i € Z/2Z and then identifying (1K W) @ 0 = 1 X W? Under
these identifications, the unit isomorphisms for W in SC are given by Iy = ly0 @ 1 and rw = rypo @ ryi. The
associativity isomorphism for objects W7, Wy, and W3 in SC is

Awraws = (D Ay )0 (B Awiwswn )

i1+iz+i3=0 i14io+izg=1

For objects W7 and W5 in SC, the braiding isomorphism is

Rw,.w, :< D (_1)i1i2RWf1,W£2> @< >, (—1)m2RWf1,W;2).

i1+i2=0 i14ia=1

The sign factors in the braiding isomorphisms guarantee that (2.3) holds. As for C, the functors W X e and ¢ X W
on SC are right exact for any object W.

Now we define a superalgebra in the braided tensor category C to be a commutative associative algebra, with
even structure morphisms, in SC. Specifically:

Definition 2.1. A superalgebra in C is an object V = (VG, Vi) in SC equipped with even morphisms puy : VXV —
V and ¢y : 1 — V that satisfy the following conditions:

L. Left unit: py (ev B 1y)iy!' = 1y.
2. Associativity: pyv(ly Rpuy) = py(pv B 1y)Avyy.
3. Supercommutativity: gy = py Ry v.

Remark 2.2. No sign factor is needed in the supercommutativity axiom because this is built into the braiding
isomorphisms in SC. Also, the left unit and supercommutativity axioms together imply the right unit property:
/,Lv(lv X Lv)T‘jl = 1v.

Given a superalgebra V' in C, we define the supercategory Rep V' of (left) V-modules with objects (W, uw )
where W is an object of SC and py : VX W — W is an even morphism in SC satisfying

1. Unit: pw ey X 1W)l1},1 = 1w, and
2. Associativity: pw (ly B puw) = pw (py X 1w)Avvw.
A morphism f: (Wy, pw,) = (Wa, uw,) in Rep V' is an SC-morphism f : W7 — W such that

Fuw, = pw, (1y B f).

The parity of a morphism in RepV agrees with its parity as a morphism in SC. The supercategory RepV is
an F-additive supercategory (see for instance [CKM, Proposition 2.32]) but is not necessarily abelian because the
natural actions of V' on the kernel and cokernel of a morphism in Rep V' might not be even unless the morphism is
parity-homogeneous. However, the underlying category Rep V', which has the same objects as Rep V' but only the
even morphisms, is an F-linear abelian category.

The supercategory Rep V' also has a monoidal supercategory structure as follows. Given two objects W7, Wy of
RepV, V can act on either factor of Wi X Ws: define ,u%,)hwz to be the composition

Av,wy Wy

X
VR (W B W) Y (v g, )W, S w1y,

and define “g/)l,Wz to be the composition

Av,wy wy Rv,w, Mlw,
T,

VR (W, K Ws) (VREW,) KW, W, RV) KW,

—1
Awl,v,w2 1w, Muw,
_—

Wy R (V& Ws) Wy & Wo.



Then the tensor product of Wi and W5 in Rep V', Wy Ky, Wh, is the cokernel of M%II/)LWQ — M%f,)l’wz, which exists

because SC is abelian. Let Iy, w, : W1 X Wy — W Ky Wy denote the cokernel morphism, which we take even, as
. o @ . L e . . .

we may since iy, yw, — Ky, w, 1S an even morphism in SC. The multiplication action pyw,m, w, is characterized

by the commutative diagram

V&(W1|ZW2) W1®W2
ilV&IWLWz J(lewwz
® 1 2
VR (W Ry We) —5V™2 ), W

The tensor product of morphisms f; : W; — Wl and fo : Wy — WQ in RepV is characterized by the commuting
diagram

1K Irr o
W R W, — 122 W kW,

ilwleQ llﬁ/lywz

X —~ —~
Wy Ky Wa & Wi Ky Wo

In [CKM, Proposition 2.47], we showed that the universal property of the cokernel tensor product in Rep V' can

be expressed in terms of what we called categorical Rep V-intertwining operators. For objects W7, W5, and W3, of

Rep V, a categorical Rep V-intertwining operator of type (W‘;ngz) is an SC-morphism I : W; KW, — W3 such that

IM(VII/)l,Wz = Iug/)l,wz = pw, (Ly WT) - V(W KW,) — Ws.

That is, an intertwining operator intertwines the left and right actions of V' on W7 X Wy with the action of V
on W3. Examples of intertwining operators include py of type (VVZV) for an object W of RepV, and Iw, w, of

type (W‘}E“jvl;w) for objects W1 and W5. Any categorical intertwining operator of type (W‘:V{j%) induces a unique
Rep V-morphism f; : W1 Ky Wy — W3 such that I = frlw, w,. For example the tensor product of morphisms

fr: W — Wl and fo: Wy — Wg is induced by the intertwining operator le Wz( f1 X f3) of type (W;V?‘&/?z)
The unit object of Rep V is (V,uy) and the unit isomorphisms If;, and 7, for an object W of RepV are

characterized by the commuting diagrams

VW
lIV,W 122%7%
e
VR, W —Y W
and
WKV Y VRW
ilw,v lﬂw
7'V
WKy V v w

The associativity isomorphism for objects W7, W5, and W3 in Rep V' is characterized by the commutative diagram

Awy,wa, W

Wy K (W K Ws) (W1 K W) KW,

llwlgfwszis llwlv“@&lwis
Wy R (Ws Ry W) (W1 Ry W) ) W

lIWIvWZIZVWB llwlngz,wg

v
AW17W2,W3

Wi Ry (Wo Ry Ws) (W1 By Wa) By W3

We have an induction superfunctor F : SC — Rep V' defined on objects by
FW)=(VK W#f(w))



where 17w is the composition

Av,v,w

VRVEW) 2 (v R VYR W Ay g

On morphisms, we define F(f) = 1y K f. Induction is a tensor superfunctor: there is an even isomorphism
¢ : F(1) = V (given by ry) and an even natural isomorphism f : F o X — Xy o (F x F), where fiw, w, is defined
as the composition

VEwW,

1 Xt
(VEW) R W, ———"2 (VR W) K (1K Ws)

V, Wy, Wy

A
VR (W, K Ws)

lvrw, ¥y &iw,) ) Ivgw, vRw, (
T,

(VEW) R (VR W, VEW) Ry (VEW,).

These isomorphisms are compatible with the unit and associativity isomorphisms of SC and Rep V' in the required
sense. Induction is left adjoint to the obvious forgetful functor from Rep V' to SC since if W is an object of SC, X
is an object of RepV and f : W — X is a morphism in SC, there is a unique morphism ¥(f) : F(W) — X such
that the diagram
FW)=VXW
Uv@lw)lwlT T(f)
f

w X

commutes. In fact, U(f) = px(1y X f).

2.2 Braided G-crossed supercategories of twisted modules
Fix a superalgebra V in a braided tensor category C with right exact tensor functors W X e and e X W for any

object W in C. We say that a subgroup G' C Autsc(V)? is an automorphism group if

gy = pyv (g X g)
and
gtv = tv
for every g € G. Fix an automorphism group G of V.

Definition 2.3. For g € G, an object (W, uw) in RepV is a g-twisted V -module if

pw (9 X® 1w ) Mvw = pw,
where My, w = Rw,yRv,w is the natural monodromy isomorphism in SC.

For g € G, let Rep? V' denote the full subcategory of g-twisted V-modules in Rep V. Then define RepG V to be
the full subcategory of Rep V' whose objects are isomorphic to finite biproducts of g-twisted V-modules for possibly
several different ¢ € G. The category RepG V is an F-additive monoidal supercategory. Indeed, the unit object
(V,uy) of RepV is in Rep! V by the supercommutativity of zy (we say that objects in Rep! V are untwisted), and
to show that Rep® V is closed under tensor products, we use the following result which is essentially part of [Kil,
Theorem 4.7 (4)] where, however, the proof used strong assumptions on C that we do not need here:

Proposition 2.4. If Wi is a g1 -twisted V -module, W5 is a go-twisted V -module, and I is a surjective intertwining
operator of type (WEV‘fV?), then W3 is a g1gs-twisted V-module.

Proof. We need to show that pw, (9192 X 1w, ) Mvy,w, = pw,. Since I is surjective and V K e is right exact, 1y X T
is surjective as well, and it is sufficient to prove that

pws (9192 W 1w, )Myw, (1y BT) = pw, (1y KT,
Using naturality of the monodromy isomorphisms, the left side of this equation equals the composition

1y XTI Hws

V&(W1|EW2)'———>V|Z|W3*‘—>W3

VvV, W1 Rwy 9192|X1W1®W2
%
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Using the hexagon axiom and the fact that I is an intertwining operator, this composition becomes

Av,wy wy Rv,w, Mlw, Wl V,Wo

V ® (W, EW,) (WL R V) KWy —222 Wy ) (V)W)

1w,y &nywz
—_—>

(VRW,) R W,

Aw, v, Wy Rw,,vXlw,

W1 K (VK Ws) (W1 RV) X Wy (VR W) KXW,
-A;,lwl,wg 919281y @,

VR (W, B Ws)

AV, Wi, Wo

VR (W) )W) (VR W) R W,

vy Mlw,

Wy & Wy & W
We apply the naturality of the associativity isomorphisms to g; g2 X1y, gy, to cancel the associativity isomorphism
and its inverse in the third line. Then since W7 is g;-twisted, we replace puw, (g1 X 1y, ) with quM;’l‘,Vl to get

Rv,w, glwz

Av,wy Wy W1 vV, Wy

V & (W RW,)

1w, g./\/lvyvv2
—_—>

(VR W) R W, W RV) R W,

Rwl_’vglwz

R (VEW,)

-AW1 WV, Wa

Wy R (VK Ws) WL RV) KW, (VRW,) KW,

—1
92Kl mw, My, B, v,y My,
— T, ML BTN

(VR W) K W, (VRW,) R W, Wy & Wy 5 Ws. (2.4)

In the presence of the intertwining operator I, uw, X 1y, can be replaced with

Rv,w; Mlw, wl V,Wo

(W1&V)|XW2—>W1 (V&WQ)

1w, Rpw,
—

(VR W) B W,y Wy K Wa.

Insert this into (2.4), apply naturality of the associativity and braiding isomorphisms to g2 X 1y, mw,, and cancel
to obtain

A R X1
VER(W, RW,) 22 (VR W) B Wy ——2 "2 (W, K V) K Ws Mﬂ%&(v&%)
XM X(g2X X
L BEM s R (VR ) R s (v R ) S v, L W,

Since Ws is go-twisted this reduces to 1 :U’E/QV)l,Wz’ which equals pyw, (1y K I) because I is an intertwining operator. [

Now for objects W; and W5 in Rep V, the intertwining operator Iw, w, of type (WI}E‘;VZVQ) is surjective because

it is a cokernel morphism. Thus the preceding proposition immediately implies:

Corollary 2.5. If Wy is a g1-twisted V -module and W5 is a go-twisted V -module, then W1 Ky Wy is a g1 go-twisted
V-module. In particular, RepG V is closed under tensor products.

Note that the subcategory Rep' V is a monoidal supercategory, and it is braided [Pa, KO, CKM] with braiding
isomorphisms characterized by the commutative diagram

Rwy, Wy

W1 &WQ W2 |EW1

ilwl Wo lIWQ Wy

W1 Wa

W1 &V W2 —>W2 |ZV Wl

The braiding isomorphisms in SC do not induce well-defined braiding isomorphisms on the entire category Rep® V,
but RepG V' does admit the structure of a braided G-crossed supercategory, with braiding isomorphisms twisted
by an action of G on Rep® V. We discuss this structure after presenting the definition of braided G-crossed
supercategory.
An F-additive supercategory S decomposes as a direct sum of (not necessarily finitely many) full subcategories
{Si}ier, denoted S = @, ; S;, if
1. Every object in S is isomorphic to a biproduct €
non-zero.

ier Wi with W; an object of S; and finitely many W;

2. If W; is an object of S; and W; is an object of W; for i # j, then Homs(W;, W;) = 0.



The second condition implies that the only object in both S; and S; for ¢ # j is the zero object. Also, if an object

W is isomorphic to both @,.; W; and @,; /V[vfl with W;, W, objects in S;, then W; = Wz for each 7.

For a (braided) monoidal supercategory S, let Autg v) (S) denote the group of equivalence classes of even
(braided) tensor autoequivalences of S. Such an autoequivalence consists of a triple (T, 7, ) where T : § — S is
an equivalence of categories inducing even linear maps on morphisms, 7: T oX — Ko (T x T) is an even natural
isomorphism, and ¢ : T'(1) — 1 is an even isomorphism. These isomorphisms must be suitably compatible with the
unit, associativity, and braiding isomorphisms (if any) of S. The composition of two autoequivalences (71, 71, ©1)

and (T3, 72, p2) is the functor Ty o Ty together with the isomorphism

Ty(T3(1)) 22 7y (1) £ 1
and natural isomorphims

Ty ((T2)wy ,wy )) (T1) 7 (W1), To (Wa)
%

Ty (To (W1 R Wa)) T (Ty(Wy) B To (W Ty (To(W1)) R Ty (To (W)

for objects W7 and W5 of S.
Now for G a (not necessarily finite) group, the following is a natural generalization of the notion of G-crossed
category from [Tu] (see also [Ki3, EGNO]) to the supercategory setting:

Definition 2.6. A braided G-crossed supercategory over F is an [F-additive monoidal supercategory S with the
following structures:

1. G-grading: As a category S decomposes as a direct sum
s=Ps,
geG

where each S, is a full subcategory, called the g-twisted sector. The G-grading is compatible with the monoidal
structure in the sense that:

(a) The unit object 1 is an object of Sy.
b) For objects W7 in S,, and W5 in S,,, W1 WK W5 is an object of S, ..
g1 92 9192

2. G-action: There is a group homomorphism ¢ : G — Autg(S), denoted g — (T, 74, ¢4), such that for g,h € G
and an object W in S, T;,(W) is an object of Spgp,-1.

3. Braiding isomorphisms: For every g € G, there is an even natural isomorphism R from the functor X on
Sy x S to the functor Ko (T, x 1s,) o o satisfying the following properties:

(a) Compatibility with the G-action: For g € G and W; in S,, the diagram

Thn(Rwy,wy)

Tn (W1 K Wa)

\LTh;Wl,Wg

Ty (W) B Ty, (Wa)

Th(Ty(Wa) K W)

\LT}L;Tg(W2);W1

Ry, (wh). Ty (W)

Thg(Wa) BT}, (Wh)

commutes for all h € G and all objects W5 in S.
(b) The hexagon/heptagon axioms: First, for g1,g2 € G, Wi in S,,, and W5 in S,,, the diagram

Aw, Wy, Wy

Wy B (W, K Ws)

(W ) W,y) & W
llwlngg,wg_ \LRW1®W2,W3
Wi (T, (W3) X W) Tyyg,(W3) X (W1 K W3)

lAwl?TQQ(W:S)YWQ lATgl,gg(Wii)»Wl’WQ

Rleng(Wa)lglws

(W1 R Ty, (Ws3)) X Wy (Tgyg,(W3) R W7) KW,

10



commutes for any object W3 in S; and second, for g € G and Wi in &, the diagram

Rwy,wyMlw,

(W1 )& W,) )& W (T, (W) B W) ) Wi

lAWll»WQ,Ws lATgl(Wz)vWLWs
Wy K (W © W) T, (Wy) B (W & Ws)

1 W XRw %
lRwlv%gWS \hm\li

T,(Wy ® Ws) & W, (Ty(W2) BT, (W3)) KW, — T,(Ws) B (T,(Ws) K W)

Tg: X1
9:W2, W3 =W Tg(Wy),Tg(Ws), Wy

commutes for all objects W5, W3 in S.

Remark 2.7. In the axioms for the braiding isomorphisms, we have implicitly assumed the homomorphism ¢ is
strict in the sense that ¢(g192) = ©(g1)¢(g2). More generally, one could require that ¢(g1)p(g2) and ¢(g1g2) be
naturally isomorphic via an isomorphism with suitable coherence properties, as in [Ki3]. One could also impose
stronger strictness conditions: in [Tu], for example, it is assumed that G acts by strict tensor functors, that is,
T,(Wh ] W) = Ty(Wh) R Ty(Wa), T,(1) = 1, and 74, ¢, are identity isomorphisms for all g € G. Here, we have
chosen the level of strictness that actually occurs in the examples that we will consider.

Remark 2.8. The only modification in the notion of braided G-crossed category needed for the supercategory
setting is the evenness requirement for R and each Tj;. The naturality of the braiding isomorphism R means that

for parity homogeneous morphisms f; : W7 — Wl and fo: Wy — Wg, where Wy, W, are objects of Sy,

R, 7, 8 £2) = (~ DT (£) 8 o) Ruw,

As T, induces even linear maps on morphisms, there is no question of whether | fs| or [T (f2)| should appear in the
sign factor here.

Remark 2.9. If a braided G-crossed supercategory S is rigid and W is an object of Sy, then its dual W* is an
object of Sy-1. Indeed, if W* = @, ., W, then the restriction of the evaluation ey : W* XKW — 1 to Wy X W
is zero unless h = ¢~'. Similarly, the image of the coevaluation iy : 1 — W K W* is contained in W X W;‘,l, and
we find that (W;_176W|W;71gw,iw) is already a (left) dual of W.

Under mild conditions, the category Rep® V of twisted modules for a superalgebra V' in a braided tensor
category C is a braided G-crossed supercategory. This result was stated in [Ki3, Theorem 4.2 (2)], although a
detailed proof was not given. As a full proof seems to be missing from the literature, we will give one in Appendix
A, here only discussing the definitions of the G-action and the G-crossed braiding.

Theorem 2.10. Let C be a braided tensor category with right exact tensoring functors, V a superalgebra in C,
and G an automorphism group of V. If Hompep v (W1, W) = 0 whenever Wy is gi-twisted, Wy is ga-twisted, and
g1 # ga2, then RepG V' is a braided G-crossed supercategory.

The condition on Hompep v (W1, W) guarantees that RepG V' decomposes as a direct sum
Rep®V = @ Rep? V.
geG
For g € G, the superfunctor T, : RepV — Rep V is defined as follows:
e For an object (W, puw) in Rep V., Ty(W, pw) = (W, pw (g~ B 1w)).
e For a morphism f: Wy — Wy in RepV, Ty(f) = f.

After showing that T, sends Rep? V' to Rep?™9 o V', we see that T, restricts to a superfunctor on Rep® V. The
isomorphism
g Ty(V) =V

is g itself. Then for objects Wy, W5 in Rep V, the even natural isomorphism

Tg;Wy,Wo - Tg(W1 @V Wg) — Tg(Wl) &V Tg(Wz),

11



which as a morphism in SC is an isomorphism from Wy Ky Ws to Ty(W1) My T,(Ws), is characterized by the
commutative diagram

Wi K Ws
l Ir, (W71),Tg(Wa)
Twy,wy
Wi Ry Wy Tt Ty(W1) By Ty(Wa)

Note that I7,w,)1,(w,) does not equal Iy, w, since it is the cokernel of a different SC-morphism into Wy & W,

defined using different actions of V on Wy ® Ws. Finally for Wi a g-twisted module and W5 any object of Rep® V,
the braiding isomorphism
Riv, w, : Wi By Wa — Ty (W) Ky W,

is characterized by the commutative diagram

R
WKW, — 2" W, )W,
lfwl,wz J/ITg(Wz),W1
Ry ws
Wi My Wo Ty(Wy) Ry Wy

2.3 (G-equivariantization

Given a braided G-crossed supercategory S with G-action g — (T, 74, ¢,) and braiding R, there is a braided
monoidal supercategory S¢ called the G-equivariantization of S with objects arising from G-invariant objects of S
(see for example Sections 2.7, 4.15 and 8.24 of [EGNO]). Formally,

e The F-additive supercategory S¢ has objects (W, {¢w (g)}sec) where W is an object of S and the pw(g) :
Ty(W) — W are even isomorphisms in S such that the diagram

Ty (W) = T, (T, (W) — 2 77wy

M ew(9)

w

commutes for g,h € G.

e Morphisms f : (W1, ow,) — (Wa, pw,) in S are morphisms f : Wy — Ws in S such that the diagram

Ty (f)
T,(Wh) Ty(W2)
itpwl (9) i@WQ (9)
Wi Wa

commutes for all g € G.

For objects (W1, pw, ) and (Wa, pw,) in S, their tensor product is (W7 X W, ow, mw, ) where

ow,rw, (9) = (ew, (9) B ow, (9))Tgw, W,

for g € G. Then the tensor product (in S) of two morphisms in S¢ is also a morphism in S due to the naturality
of 7,. The unit object of S is (1, {¢,}sec), and the unit and associativity isomorphisms of S are morphisms in
S¢ due to the compatibility of the g and 7, with the unit and associativity isomorphisms.

We can also define a braiding on S¢ as follows. For an object W in S, let my denote projection onto the
g-graded homogeneous summand W9 and let g, denote the inclusion of W9 into W. Then for objects (W71, pw,)

and (Wy, pw,) of 8¢, we define ﬁwhw2 to be the sum over g € G of the compositions

mg®lw, Wi, wy 9)Mg,
S

R
Wi R Wa WIRW, A2 7 () g we 225w

12



Showing that ﬁwhwz is a morphism in S requires the compatibility of R with the G-action on S, and the hexagon
axioms for R follow using the hexagon/heptagon axioms for R.

When our braided G-crossed supercategory is the category of twisted modules for a superalgebra V' in a braided
tensor category C, an object of the G-equivariantization is an object (W, uw ) of RepG V equipped with a represen-
tation @w : G — Autse(W) such that

ew (9w = pw (g X ow(g))

for all g € G. Morphisms f : Wi — W5 in the G-equivariantization are morphisms in Rep® V' that commute with
the representations of G on Wy and W5s.

For the rest of this section, we will assume that RepG V equals the full category Rep V; for conditions guar-
anteeing this occurs, see Assumption 3.1 in the next section. In this case, the induction functor F : SC — Rep V
is actually a functor into the G-equivariantization, which we will denote by S(Rep V)¢ because we will soon use
the notation (Rep V)¢ for a certain subcategory. Indeed, for an object W in SC, G acts on F(W) = VX W by
orw)(g9) = g W 1y This representation satisfies

orw) (@ prw) = brmw) (g X ormw)(g))

because ¢ is an automorphism of V. Moreover, if f : W7 — W5 is a morphism in SC, then F(f) = 1y X f is a
morphism in S(Rep V)¢ because

(R 1w,) (v B f) = (1v K f)(g K 1w,)

(since g is even, there is no sign factor).
The following theorem can be found in [Ki2, Mii2], but we include the proof to emphasize that it does not
require rigidity or semisimplicity:

Theorem 2.11. If Rep® V = Rep V, then induction F : SC — S(Rep V)% is a braided monoidal superfunctor.

Proof. We need to check that ry : F(1) — V and fw, w, : F(W1 B W3) — F(W;1) By F(W3) are morphisms
in S(Rep V)¥. These isomorphisms will be compatible with the unit and associativity isomorphisms in SC and
S(Rep V)% because the unit and associativity isomorphisms in S(Rep V)¢ are the same as those in Rep V.
The naturality of the right unit isomorphisms implies 7y is an S(Rep V)“-morphism. For fiy, w,, we need to
show
CrwnRy FW2) (9) fwy,we = fwi waprwimws) (9)

for g € G. The left side is the composition

Av.wy wy nglIZ(LVIXIWQ)ZV_Vl2

1
V R (W, RW,) (VEW,) KW,

ITrwy),7(wy)
2

(VR W) R (VR W)

Tg; F(W1),F(Wa)
_—

(VRW;) Ry (VX W)

erwy) (DRverwsy)(9)

T,(VRW;) Ry T,(V R Ws)
(VR W) By (VR W,). (2.5)

Using the definitions,

(prw) (9) By 0 rws) (9)) Torown). Fwa) Lrows) Fwa)
= (erwn)(9) By orws)(9)) Iz, (Fwi), 7, (F (W)
= Irw,),F(wa) (<PF(W1)(9) X @f(wz)(g))
= Irowy), 7w ((9 ¥ 1w,) K (g X 1yy,)).

Inserting this back into (2.5), using gty = ty, and applying naturality of associativity, we get

9N¥lyw ®w, Av,wy,wey

-1
Lymw, By @1w, )iy, Trwy), 7(ws)
‘_—.%

(VR W) K (VK W,) (VR W) Ky (VR W),

which is fw, w,0Fw,mw,) (9)-

13



We also need to verify that the natural isomorphism f is compatible with the braiding isomorphisms R in SC
and RV in S(Rep V)% in the sense that the diagram

F(Rwy,wy)

F(W, B Wa) F(Wo B W)

fwy,wy Fwy,wy
BV
F(W1),F(Wa)

f(Wl) &V .F(WQ) —_—> f(WQ) &V .F(Wl)
commutes. The lower left composition here is the sum over g € G of the compositions

Av,wy, wy vgwlg(bvglwﬂl;{}z

1
V&(W]_IXWQ)—>(V®W1)®WQ

ITrwy), 7wy
— 2

VEW) K (VR W,)

My lymw,

(VR W) Ky (VEWs) (VEWL) By (VR W,)

\%
R(Vﬁwl)g,vxw2 T LPJ:(W2)(Q)xV‘Ig
—>
g

(VR W,) Ry (VEW,) (VEW,) Ry (VEW).

By the definitions of the tensor product of morphisms in Rep V, the braiding RY, and ¢ F(W,)(g), this is the sum
over g € G of

-AV,WI,WQ V@Wlx(LVlzlwz)la/l2

1

”gglvgwg
_—

(VRW) R (VR W)

) R(v&wl)y,vgw2 (

(V X Wl)g X (V X Wo
(9¥1w,)Xq,
_)

VR W,) R (V R W,;)9I
I W), F(Wq
(VR W) R (VR W) 222200y )& W) By (VR W).

We apply naturality of the braiding to g and use gty = vy to eliminate g. We then apply naturality of the braiding
to gy and get deG ggmg = lymw,. Thus everything simplifies to

—1
Av,wy Wy vRw, By Blw, )y,

1

RyRw,,vRW,

(VEW) R (VE W)

) Trwy), 7(wy) (

(VR W)X (VK W, VR Wy) Ry (VR WL).
Now use the hexagon axiom and the unit property of V' to rewrite as

1ng1®(w®1w2)l;&z

A :
) V,W1, Wy (

VR (W, &KW, VEW) KW, (VEW) R (VR W)

—1

‘AV,WI,V|Z|W2 IVxRWI,V®W2 ) Av,v@wg,wl (
—_—> —_—

VR (W, K (VEW,)) VR((VEW,) R W, VR(VEW,))RW,
Ry, vEw, Xlw, ;%WQ,V,WI

(VRW,) R V)R W,

Lygw, By Blw, )

(VR W,) R (VR W)

lvngﬁ((lvgbv)&lwl)

(VEW,)R(VE1)EW)

) Trwy), 7wy (

VEW,) R (VRV)EW,)

lvrw, X(pvElw,)

(VEW,) X (VR W, VR W,) By (VR WY). (2.6)

Next use the triangle axiom and naturality of associativity to calculate

(v B 1y, ) (v By ) Ry, ) (ry ! B 1y, )
= (pv B1w,) (v Boy) B, ) Avaw, 1y BiG)
= (pv W 1w, ) Av,vw, (Iv B (v B 1y,)) (1y Big))
= prowy (Iv B (oy B 1w, )it ).
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We insert this back into (2.6) and use properties of natural isomorphisms to get

Ly B(Lw, Ry Blw, )ly) Ry, vaw,
_

VR (W, B W)

1y B(ly g, Mev Rlw, )l )

VR (WL R (VEW,)) VR ((VRW,) KW)

Av F(wy),F(Wy)

VE((VEW,)R(VEW, VE(VEW,)) RV EW)

Ry, 7wy Bl rwy) F(Wa),V,F(Wy)

(VRW,)B V)R (VEW,) (VEW,) R (VR (VEW))

Lrwa) Brrwy) Ir(wy),7(W1)
= —

(VEW,) B (VR W) (VR W,) By (VR W)).

Since I rw,),7(w,) is an intertwining operator, we can replace the fifth through seventh arrows above with 7 yw,) X
Lrw,)- Then applying naturality of braiding and associativity to (ty X 1W2)l;V12, we get

1y BRw, w, Ly B(Lyw, By Blw, )iyt )

VR (W, K Wa) VR (Wy W)

(1V®(LV|Z’1W2)1;V12 WXLy gw,

VR (W, R (VEW))

Av,wg,vﬁwl

(VR W) B (VEW,)

Av,v,w, Blyrw,

(VR(VRW,)) X (VW)

X1 X1
(VRV)RW,) R (V& ;) e B,

(VR W,) K (VR W)

ITrwy), 7wy
—— 1

(VR W,) Ky (VK WY).
Finally, we use naturality of associativity, the triangle axiom, and the right unit property of V' to conclude

(v B L, ) Av,vw, (Lv B (v B 1y, )) (v R lyp)
= (uy X 1W2)((1V X)X 1W2)AV,1,W2(1V X l;vi)
= (uv R 1w, ) ((1v Boy) B 1y, ) (' R 1w, ) = lygw,-

This together with naturality of associativity yields the composition

Av,woy,wy

XR
) R g (W R W) R (Y )W) )W

VR (W, B W,

Lyrw, By Blw, )iyt

) ITrwy), 7wy (

(VR W) R (VEW, VRW,) Ry (VE W),
which is fw, w, F(Rw, w,) as required. O

Since we mainly want to understand the original braided tensor category C rather than the auxiliary supercate-
gory SC, we would like induction to be a functor from C (embedded into SC via W — (W, 0)) into a suitable braided
tensor subcategory of S(Rep V). For this, we need G to include the parity automorphism Py = 1y0 ® (—1y1) of
V. In this case, define (Rep V)& to be the full subcategory of S(Rep V)¢ whose objects (W, uw, ow ) satisfy

ow (Pyv) = Pw.
The category (Rep V)¢ is not a supercategory in any meaningful sense because its morphisms f : Wi — W satisfy
Pw, | = fPw,

and hence are all even. Also, induction sends C to (Rep V)¢ because if W is an object of C, then F(W) =
(VIR W, VIR W) as an object of SC, and hence

Prowy = Pv R 1w = orw)(Pv).
Now we have:

Theorem 2.12. Assume G contains Py and RepG V =Rep V. Then (Rep V)% is a braided tensor category and
induction F : C — (Rep V)9 is a braided tensor functor.
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Proof. To show that (Rep V)¢ is a braided monoidal subcategory of S(Rep V)¢, we just need to show that it is
closed under tensor products. Thus we show that if pw, (Py) = Pw, and ow,(Py) = Pw, for objects Wy, W5 in
S(Rep V)Y, then pw,r,w,(Pv) = Pw,x,w, as well. Using definitions,

ewi 8y ws (Pv ) Iw, w, = (ew, (Pv) By ow, (Pv)) ey swy wo Iw, wy

= (Pw, Wv Pwy) L1y, (W), 7p, (W2)

= IWl,WQ (PW1 X PW2)

= Iw, w, Pw,rw,

= Pw,a, wyIw,,ws s
where the last step uses the evenness of Iy, w,. Since Iy, w, is surjective, ow, =, w, (Pv) = Pw,Ry, w,-

The proof that (Rep V)¢ is abelian, and thus a braided tensor category, is similar to the proof of [CKM,

Theorem 2.9], so we just indicate how to show (Rep V)¢ is closed under cokernels and why epimorphisms in
(Rep V)¢ are cokernels of their kernels. A morphism f : W; — W5 in (Rep V)¢ is in particular an even morphism

in Rep V, so [CKM, Proposition 2.32] shows f has a cokernel (C,puc) in Rep V' with even cokernel morphism
¢: Wy — C. Then for g € G, define pc(g) : C — C to be the unique SC-morphism such that the diagram

f Pw, (9)

Wy Wy Wy
|- |-
C pc(g) o

commutes; pc(g) exists because f is a morphism in (Rep V)<:

cow,(9)f = cfow,(g) = 0.

To show that ¢c(g) is compatible with pe and that pe is a representation of G, one uses the corresponding
properties of ¢y, and the surjectivity of ¢ and 1y X ec. Showing that (C, uc,pc) is a cokernel of f in (Rep V)¢
uses the cokernel property (C, uc) in Rep V, the definition of ¢, and the surjectivity of c.

Now suppose f : W; —» W, is an epimorphism in (Rep V)®. We claim that f is also an epimorphism in
Rep V. Indeed, for h : Wy — X a morphism in Rep V such that hf = 0 and (C, ¢) a cokernel of f in Rep V' with
¢ : Wy — C even, there is a unique h: C — X such that h = he. But we have seen that C' has a unique structure
of (Rep V)%-object for which ¢ is a morphism in (Rep V). So c¢f = 0 implies ¢ = 0 as f is an epimorphism in
(Rep V)C. Then h = he = 0 as well, showing f is an epimorphism in Rep V.

Now that f is an even epimorphism in Rep V, [CKM, Proposition 2.32] shows that f is the cokernel of its
kernel morphism k : (K, jurc) — (Wi, pw,) in Rep V. But k is also a morphism in (Rep V)¢, and then one shows
that (W, f) satisfies the universal property of the cokernel of k in (Rep V) by applying the cokernel property of
(W, f) in Rep V, the fact that f is a morphism in (Rep V)%, and the surjectivity of f in Rep V.

The assertion that induction is a braided tensor functor from C to (Rep V)¢ is immediate from the discussion
preceding the theorem and Theorem 2.11. O

Remark 2.13. From now on we will slightly abuse terminology and refer to (Rep V)¢ as the G-equivariantization
of Rep V.

3 The main categorical theorem

We continue to fix an (abelian) F-linear braided tensor category C, a superalgebra V in C, and an automorphism
group G of V. In the preceding section, we saw that if Rep V = RepG V', that is, all objects of Rep V are
direct sums of g-twisted V-modules for g € G, then Rep V' is a braided G-crossed supercategory and induction
is a braided tensor functor from C to the G-equivariantization (Rep V)¢. In [Kil, Ki2, Mii2], it was shown that
Rep V = RepG V under the assumptions that C is rigid and semisimple and that the G-invariants of V' equal 1.
Now, we prove the same result without semisimplicity and using rigidity only for V. Thus, our result will apply to
non-semisimple module categories for vertex operator algebras arising in logarithmic conformal field theory, many
of which are not known to be rigid. The following conditions will be in force for the rest of the section:

Assumption 3.1. The superalgebra (V, uy,ty) and automorphism group G satisfy:
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G is finite and includes the parity involution Py = 1y6 @ (—1y1), so that |G| € 2Z.

The order of G is invertible in I, so that in particular the characteristic of F is not 2.

V is haploid in the sense that Homge (1, V) = Fuy .

There is an even morphism ey : V — 1 in SC such that eyiy = 17 and tyey = |—é1,‘ deag.

There is an even morphism iy : 1 — V KV in SC such that (V,eyuy,iv) is a (left) dual of V in C, that is,

_1 = AL ;
Vi ary XEY (v rvyRY 29 v R (v R Y) RS p gy Iy

and
VIS yvR1 MY y g (vRY) 2 (R V)R Y SRy

both equal the identity on V.

1KV My

e The morphism 1 Wy VRV SV in Home(1,V) equals |G|y .
Remark 3.2. The fourth and sixth assumptions above imply that the dimension of V, defined by
dimV = eypyiy € Ende(1) =T,
is equal to |G|. Conversely, since V is haploid, the final condition above follows from dim V' = |G|.
We now state the theorem which is the main technical result of this paper:

Theorem 3.3. Under Assumption 3.1, every object W in RepV is a direct sum W = @gec Wy where Wy is a
(possibly zero) g-twisted V -module.

The idea of the proof is to find the projections from W to all of its g-twisted summands. That is, we need to
construct morphisms {my : W — W}4cq which satisfy:

1. Each 74 is a morphism in Rep V.
2. For each g € G, the image my(W) is a g-twisted V-module.
3. For all g,h € G, mgmy, = g 1714, and deG g = lw.

We shall verify these properties for the morphisms 7, = |G|*1Hg, where 11, : W — W is the composition

1 = A-L
WA mw MW Ry R W Y v (v R W) DM R (v kW)
WEGEW), g (v W) LI v A

We represent 7, pictorially using braid diagrams as follows:

e

Before proving the properties of 7, listed above, we note two corollaries:
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Corollary 3.4. Under Assumption 3.1, Rep V is a braided G-crossed supercategory.

Proof. This follows immediately from Theorems 2.10 and 3.3 once we verify that Homgep v (W1, W2) = 0 when W3
is gi-twisted, Wy is go-twisted, and g; # g». Observe first that for a g-twisted module W, 7, is the identity on
W by the definition of g-twisted module, associativity of py, the final condition in Assumption 3.1, and the unit
property of W. Second, the projections m, commute with morphisms f : Wi — W3 in Rep V' due to properties of
natural isomorphisms in SC and fuw, = pw,(ly X f). So if W; is g1-twisted and W is go-twisted,

= 7-‘-ngﬂ-gl = fﬂ-gzﬂ-gl = 691792f7rg1 = 591,92f7
and f =0 if g; # go. O

Corollary 3.5. Under Assumption 3.1, induction F : SC — S(Rep V)% is a braided monoidal superfunctor and
restricts to a braided tensor functor F : C — (Rep V)©.

Proof. This follows directly from Theorems 2.11, 2.12; and 3.3. O

The proof of Theorem 3.3 starts with some preliminary lemmas. In this section, we give proofs by braid diagram
for brevity and clarity; see Appendix B for full calculations, incorporating for example associativity isomorphisms.

Lemma 3.6. The composition 1 MYVRV LvBey, VX125V equals vy .

Proof. Consider the linear map ® : Home(V, 1) — Home (1, V) which sends f : V' — 1 to the composition

1% yvry M vy

In particular, the morphism indicated in the statement of the lemma is ®(ey ). Because (V,ZV, evpy) is a dual of
V in C, ® is an isomorphism with inverse sending g : 1 — V to the composition

—1
v yml M Ry S, g

In particular ®~1(sy/) = ey by the right unit property of V, so ®(ey) = (@~ 1(1y) = vy O
Lemma 3.7. The two morphisms V. — VRV in C given by the compositions

1 ~ -1
iy X1y V,V,V

ly A 1y Muyv
V21KV — (VRV)KV — S VR (VRV) —= VXV

and
—1

vV Y, VK1

Av,v,v

VR(VRV) Y vrVIRY 2By Ry

1y Kiy

are equal. Diagrammatically,

Proof. Since V is rigid with dual V' and evaluation ey puy, V RV is also rigid with dual VXV and evaluation
evgy : (VRVIK(VRV) > 1
given by the composition

-1
AV,V,V@V

VRV)R(VEV) LY vy ) (VR (VR V))

1yRAy v, v
b ELELEN

VRVEV)RV

B ), vy BB,y Ry S, g
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As VXV is rigid, the map Home(V,V K V) — Home((V R V)X V,1) given by F — eygy(lyxgy X F) is an
isomorphism, so letting F, and Fg denote the morphisms in the statement of the lemma, it is enough to show

evry (lygy X Fr) = eyry (lygy X Fg).

In fact, we will show that these two morphisms equal ey py (uy X 1y), or equivalently ey py (1y X NV)'A\_/}V,V
We analyze eygy (lyxy X Fr) as follows:

|4 |4 |4 v v |4

where we have used the rigidity of V' for the second step. On the other hand, eyxy (1yxy K Fr) becomes:

V v v

which by rigidity reduces to the right side of (3.1). O

Lemma 3.8. For g € G, the composition 1 iyry 2 yry Ay equals |G 1ty .

Proof. Since V is haploid, the morphism in the lemma is a multiple of ¢y, which we denote Tre g. By assumption,
Tre 1 = dime V' = |G|, so we just need to show Treg = 0 for g # 1. We calculate using the left and right unit
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properties of V', the automorphism property of g, the associativity of uy, and Lemma 3.7:

|4 V

Thus Tre g = 0 unless g is the identity. O

Now we begin checking that the C-morphisms 7, (or equivalently, the II,) satisfy the required properties:

1. Each I, is a morphism in Rep V. We need to show that pyw (1y XII,) = I uw. The proof goes as indicated

20



by the braid diagrams:

The third equality uses both the associativity and commutativity of uy, and the last step uses naturality of braiding
and unit isomorphisms to move the first uy .

2. For each g € G, the image II,(W) is a g-twisted V-module. Since II, is an even morphism in Rep V,
I1,(W) is an object of Rep V: it is the kernel of the (even) cokernel of II;. Then I, (W) will be g-twisted if

pw (g B 1y )My w (1y K1) = pw (1y K1),
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By naturality of the monodromy isomorphisms, the left side is pw (g ¥ 1II,) My, w, which we analyze as follows:

We simplify the braidings here with the Yang-Baxter relation, the commutativity of uy, the hexagon axioms, and
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the naturality of braiding;:

14 |4 w Vv Vv w Vv Vv w

w
9]
_ . (3.7)
\
Vv T 1%
%4 w

which is pw (1y K 1I,).

3. For all g.h € G, Il = |G|6ylls, and > ;mg = lw. Since we have just shown that II,(W) is an
h-twisted module for any h € G, for the first relation it is enough to prove that

Hg = |G|59,h1W
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when W is an h-twisted V-module. In fact, when W is h-twisted, 11, is given by

which is |G|dg4,n1w by Lemma 3.8 and the unit property of W.

Finally we compute ) ge Mg using bilinearity of composition and tensor products of morphisms in a tensor

category, the assumption ‘—él deg g = tvev, the triviality of My w, and the associativity of pyy:

which is the identity on W by Lemma 3.6 and the unit property of W. This completes the proof of the theorem.

Remark 3.9. When g =1, 7, projects W onto its maximal untwisted submodule. This projection is defined for
general rigid commutative algebra objects in braided tensor categories (see [KO, Lemma 4.3]).

4 Twisted modules for vertex operator superalgebras

Here we interpret the categorical results of the preceding sections as theorems for vertex operator (super)algebras.

4.1 Definitions

There are several slightly variant notions of vertex operator superalgebra (see for example [DL, Xu, Li, CKL]); we
will use the following definition:

Definition 4.1. A vertex operator superalgebra is a %Z—graded superspace V = Ganeéz V(n) equipped with an even
vertexr operator map

Y:VeV = V[zaz 1)
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u®v = Y(u,x)v= Z upva” "t
nez

and two distinguished vectors 1 € V()N VO called the vacuum and w € Vioy N VO called the conformal vector. The
data satisfy the following axioms:

1. Grading compatibility: For i € /27, V' = GanE%Z Viny N V™

2. The grading restriction conditions: For each n € %Z7 V(n) is finite dimensional, and for n € %Z sufficiently
negative, V(,) = 0.

3. Lower truncation: For any u,v € V, Y (u,z)v € V((x)), that is, u,v = 0 for n sufficiently negative.
4. The vacuum property: Y (1,z) = 1y.
5. The creation property: For any v € V, Y (v,x)1 € V[[z]] with constant term v.

6. The Jacobi identity: For any parity-homogeneous u,v € V,

—T9 + X1
Zo

) (””1 - 5”2) Y (u, 21)Y (v, ) — (—1)Il 515 (

o ) Y (v, 22)Y (u, 1)

=, (M> Y (Y (u, z0)v, x2).

T2

7. The Virasoro algebra properties: If Y (w,z) =Y. _, L(n)x~""2, then

ne”Z
3 _

[L(m), L(n)] = (m — n)L(m +n) +

m
T5m+n,001Va

where ¢ € C is the central charge of V. Moreover, for any n € %Z, V(n) is the eigenspace for L(0) with
eigenvalue n; for v € Vi), we say that n is the (conformal) weight of v.

8. The L(—1)-derivative property: For any v € V,

Remark 4.2. Some definitions of vertex operator superalgebra require Vi= D,c: 47 Vin) for i = 0,1, but this is
2
too restrictive. For example, vertex operator superalgebras based on affine Lie superalgebras are Z-graded.

Next we recall the definition of automorphism of a vertex operator superalgebra:

Definition 4.3. An automorphism of a vertex operator superalgebra (V,Y,1,w) is an even linear automorphism
gof Vsuchthat g-1=1, g -w =w, and for any v € V,

g-Y(v,x)=Y(g-v,x)g.

Remark 4.4. An automorphism g preserves all the vertex operator superalgebra structure of V', including both
gradings: the Z/27Z grading because g is even and the %Z—grading because

gY (w,z) =Y (g - w,x)g =Y (w,x)g
implies g commutes with L(0).

Remark 4.5. Since Y, 1, and w are all even in a vertex operator superalgebra V', the parity automorphism
Py =1ys & (—1y1) is an automorphism of the vertex operator superalgebra structure.

Let g be any even grading-preserving linear automorphism of a vertex operator superalgebra V. Then since
V(n) is finite dimensional for any n € %Z, g|V("> is the exponential of some even linear endomorphism of V). Thus
g = e*™ where 7 is a (non-unique) even grading-preserving linear endomorphism of V. For concreteness, we choose
a specific v, following [Ba, HY]: On each V), g decomposes uniquely as the product of commuting semisimple
and unipotent parts, and the unipotent part is the exponential of a nilpotent endomorphism. Putting these parts
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together, g = 0e?™™ where o is semisimple and N is locally nilpotent. On any generalized g-eigenspace of V, o

equals a constant e?™® for a unique a € C such that 0 < Rea < 1. We define v = o + A on such a generalized
eigenspace. As V is the direct sum of its generalized g-eigenspaces, this completely specifies .

For any grading-preserving linear endomorphism ~ of V', necessarily decomposable as a sum of commuting
grading-preserving semisimple and locally nilpotent parts g and 7y, we define the operator

27V — V]ogx]{z}
such that if v € V is a generalized eigenvector for v with generalized eigenvalue «,
27 v = x%ellogTN | v,
where the exponential sum truncates because -y is locally nilpotent. Now we can define twisted modules associated
to an automorphism of a vertex operator superalgebra:

Definition 4.6. Let g = 2™ be an automorphism of a vertex operator superalgebra V with v chosen as above.
A grading-restricted generalized g-twisted V-module is a C-graded superspace W = @, W) equipped with an
even vertex operator map

Yw : VW — Wllog z]{z}

v@w = Y (v, z)w = Z Z vppw " (log )"
heC keN

satisfying the following properties:
1. Grading compatibility: For i € Z/27, W' = Drec Wi N Wi,

2. The grading restriction conditions: For any h € C, Wy, is finite dimensional and W,4,; = 0 for r € R
sufficiently negative.

3. Lower truncation: For any v € V, w € W, and h € C, vjnw = 0 for n € N sufficiently large, independently
of k e N.

4. The g-equivariance property: For any v € V, Yy (g - v, e*™z) = Yy (v, 7).
5. The vacuum property: Y (1,x) = 1y .
6. The Jacobi identity: For any parity-homogeneous u,v € V,

“”””) Y (0, 2) Yiy (u, 1)
o

5
= xflé (362 —l—x0> Yw (Y ((W)) ~u,x0> v7m2> .
X1 Z1

7. If Yy (w,2) = Y, cp Lw(n)z=""2, then for any h € C, Wy, is the generalized eigenspace of Ly (0) with
generalized eigenvalue h.

xy o <x1x—0z2) Vv (u, 1) Yy (v, 22) — (=1)14Plg5ts (

8. The L(—1)-derivative property: For any v € V|

Yw(L(-1v,z) = %Yw(v, x).

Remark 4.7. We will sometimes refer to a grading-restricted generalized g-twisted V-module simply as a g-
twisted V-module, although note that in the literature this term sometimes refers to modules on which Ly, (0) acts
semisimply. The g = 1y case of Definition 4.6 is the definition of (grading-restricted generalized) V -module.

Remark 4.8. Although the logarithm of g is not unique, Definition 4.6 at least does not depend on the choice
of semisimple part of v. If 4/ is another choice of logarithm with locally nilpotent part N (that is, we lift the
restriction on the real part of the eigenvalues of 7'), then for any v € V|

’ .
7 v = E VT Ly,

for some integers n; and vectors v; such that v = > v;. Then in the Jacobi identity, the extra factors of (%ﬁ”")

absorb into the delta function. Our specific choice of semisimple part of 7 was chosen for simplicity and for
consistency with [Hu4, Ba, HY].
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Remark 4.9. When g has infinite order, it follows from [Ba, Theorem 5.2] and [HY, Theorem 2.7] that the Jacobi
identity in Definition 4.6 is equivalent to the duality property in Huang’s definition of twisted module [Hu4] (see
also [Hu6, Theorem 3.8]). In fact, the only difference between Definition 4.6 and the definition of twisted module
given in [HY] is that here we do not assume a linear automorphism gy of a g-twisted V-module W such that

gw - Yw(v,2)w = Yw (g - v, z)gw - w. (4.1)

Actually, we automatically have such a gy in some cases. When V' is Z-graded, we can take gw = e~ 2miLw(0) and
when V* = @ne%JrZ for i = 0,1, we can take gy = Pye 2w () To show that such gy satisfy (4.1), one uses

the evenness of Yy and the Ly (0)-conjugation formula
ePlw Oy (v, 2)e ™" Ew ©) = vy, (PO Ly ehy) (4.2)

for h € C, v € V (see for instance [HLZ2, Proposition 3.36(b)], which applies because Yy is an intertwining
operator among modules for the vertex operator subalgebra of even g-fixed points in V).

The following equivalent form of the g-equivariance property of a g-twisted V-module will be useful:

Lemma 4.10. The lower truncation and g-equivariance properties of Definition 4.6 are equivalent to the condition
that for any v € V and w € W,
Y (z7 - v, 2)w € W((x)).

Proof. If Yy satisfies lower truncation and g-equivariance, then for v € V, the g-equivariance property implies
Yw ((e2™z)Y - v, e®™z) = Y (g7 -v,e*™x) = Y (27 - v, z).

But any f(z) € (End W)[logz]{xz} that satisfies f(e*™'z) = f(z) must be a Laurent series. To show this, suppose
flz) = Zhec,keN fhok fEh(lOg fv)k, so that

fe*™ix) = Z ™ £, w2 (log @ + 2mi)F. (4.3)
heC,keN

If h € C satisfies f, 1 # 0 for some k € N, let K be maximal so that f, x # 0. We must show that h € Z and
K = 0. Since f(e?™z) = f(z), the coefficient of z"(log z)¥ in f(e?™'z) equals the coefficient of 2" (log z)¥ in f(x).
So (4.3) implies e*™" f, 1 = f1, ;c. Since fi, ;¢ # 0, this means e*™" =1, or h € Z.

Next, if K > 0, we compare coefficients of 2" (logz)X~! in f(e*™x) and f(x) and find

TN (fy 1 + 21K fr i) = [ 1.

We already know e2™" = 1, so 27miK f; x = 0. This is a contradiction since f), r # 0, so K = 0.
Now for w € W, lower truncation implies Yy (27 v, z)w is also lower-truncated, that is, Yy (27 -v, z)w € W ((z)).
Conversely, assume Yy satisfies Yy (27 - v, 2)w € W((x)) for v € V, w € W. To show lower truncation, assume
without loss of generality that v is a generalized eigenvector for v with generalized eigenvalue «. Then
Y; — Yo=Y _ (_1)1 —a i y i
w v, x)w =Yy (27 ~v,x)w—z T2 (logz)" Y (z¥ - N*v, x)w.
i>0

As the sum over i is finite, lower truncation follows because each Yy (27 - N, z)w € W ((z)). Moreover, since
Yw ((2™x)7 - N, e*™z) = Yiy (27 - N'v, x)
for each i, we get
Y (v,2) = Yy (27277 v, 2) = Y ((e*™2) 277 - v,e*™x) = Yig (e*™ 2727 -v,e*™x) = Yiy (g - v,e*™x),

which is the g-equivariance property. O
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4.2 General theorems

Let G be an automorphism group of a vertex operator superalgebra V' that includes Py,. Then the G-fixed points
Ve ={veV|g-v=uvforalgecG}

form a vertex operator subalgebra of V0. If C is a category of grading-restricted generalized V¢-modules that
includes V' and admits vertex tensor category structure as constructed in [HLZ1]-[HLZ8], then by [HKL, Theorem
3.2], [CKL, Theorem 3.13], V is a superalgebra in the braided tensor category C. Thus as in Section 2, we have
the monoidal supercategory Rep V of Z/2Z-graded V%-modules in C that admit even, unital, and associative V-
actions. In this setting, we need to verify that the definition of g-twisted V-module for ¢ € G from the previous
subsection agrees with the categorical definition of Section 2.2. To accomplish this, we first recall from [CKM] how
to characterize modules in Rep V in terms of intertwining operators:

Proposition 4.11. [CKM, Proposition 3.46] Let G be an automorphism group of a vertex operator superalgebra V
that includes Py and let C be a category of grading-restricted generalized V& -modules that includes V and admits
vertex tensor category structure. Then an object of Rep V is precisely a V-module W in C equipped with an even
V& _module intertwining operator Yy of type (vwr//v) satisfying the following two properties:

1. Unit: Yw(l,l‘) = 1w.

2. Associativity: For vi,va € V, w e W, and w' € W' =P, ¢ Wi,» the multivalued analytic functions

P(21,29) = (W', Y (v1, 21) Yy (ve, 22)w)
on the region |z1| > |z2| > 0 and
I(z1,22) = (W', Yiy (Y (v1, 21 — 22)v2, 22)w)
on the region |z2| > |21 — 22| > 0 have equal restrictions to their common domain. Specifically, the equality
(W', Y (v1, €™ ™) Yy (va, €™ ") w) = (w', Yy (Y (01,71 — 79)va, €72 )w)

of single-valued branches holds on the simply-connected region r1 > ro > 11 — 12 > 0 of (Ry)%, where the
notation means the real-valued branch In of logarithm on Ry is used to evaluate powers and logarithms.

Remark 4.12. The associativity property of a module in Rep V is stated somewhat differently in [CKM, Propo-
sition 3.46], using a simply-connected open region of (C*)? containing the region r; > ry > 71 — 75 > 0 in its
boundary. However, this difference is irrelevant in light of Proposition 3.18 and Remark 3.19 of [CKM].

Next, the relationship between the intertwining operator Yy and the morphism py : VW — W for a
module W in Rep V, given in the proof of [CKM, Proposition 3.46], together with [CKM, Equation 3.15] for the
monodromy isomorphism in C, imply:

Proposition 4.13. In the setting of Proposition 4.11, a module W in Rep V is a g-twisted V-module for g € G
in the sense of Definition 2.3, that is,

pw (g X 1w )My w = pw,
if and only if Yy satisfies the g-equivariance property of Definition 4.6.

Now we establish the equivalence of Definitions 2.3 and 4.6. The proof is technical but uses standard vertex
algebraic techniques and has similarities to the proofs of [LL, Theorems 3.6.3 and 4.4.5], [HY, Theorem 2.10],
[CKM, Theorem 3.53], and [DLXY, Lemma 3.2].

Theorem 4.14. In the setting of Proposition 4.11, a VE-module in C is a g-twisted V-module for some g € G in
the sense of Definition 2.3 if and only if it is g-twisted in the sense of Definition 4.6.

Proof. If W is a g-twisted V-module in the sense of Definition 2.3, then by Propositions 4.11 and 4.13, W satisfies
the g-equivariance and vacuum properties of Definition 4.6. Also, W satisfies all grading conditions in Definition
4.6 because it is a grading-restricted generalized V&-module, and Yy satisfies lower truncation and the L(—1)-
derivative property because it is an intertwining operator among V¢-modules. It remains to derive the Jacobi
identity from the associativity of Yy .
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By [CKM, Remark 3.47], Yy satisfies the following skew-associativity property in addition to associativity: for
w € W, w' € W, and parity-homogeneous vy,vy € V, the multivalued analytic functions I(z1, 22) on the region
|z2| > |21 — 22| > 0 and
Q(z1,22) = (—1)1P2l(w’ Vi (va, 20) Yiw (v1, 21)w)

on the region |z3| > |2z1]| > 0 have equal restrictions to their common domain. Specifically, the equality
(=D)lllv2l Vi (va, € 72) Yig (v1, €™ " )w) = (w', Yir (Y (v1, 71 — 72)v2, €™ 72 )

of single-valued branches holds on the simply-connected region ro > r; > ro —r; > 0 of (R )2 Then we use
[Hul, Lemma 4.1] to extend the multivalued analytic functions P(z1, 22), Q(21, 22), and I(z1, 22), which agree on
their common domains, to a multivalued analytic function F(vy; 21, 2z2) defined on (C*)?\ {(2,2) |z € C*}. (The
convergence, associativity, and commutativity properties for intertwining operators among ¥V “-modules required in
the proof of this lemma from [Hul] are subsumed under the assumption that these intertwining operators satisfy the
sufficient conditions of [HLZ1]-[HLZS8] for vertex tensor category structure on C.) For « a grading-preserving linear
endomorphism of V such that e*™ = g, we define a new multivalued analytic function f(z1,22) = F(2]v1; 21, 22).
We now define an (a priori multivalued) function of the single variable z;. Fix ro € R4 and choose m € R4
such that ro > ry > ry —ry > 0. Then for z; € C\ {0,r2}, define f,,(21) to take all values of f(z1,72) that can be
obtained by analytic continuation along continuous paths from 71 to z; in C\ {0, 72}, starting from the value

(=Dl lvzl Yy (vg, € 72) Vi (e )70 e Y w) = (w!, Yig (Y (eM ™01, 1y — 79) g, e 72)w)

B v
= <w’, Yw (Y (e(m”)'y (1 S 7“2) V1,71 — 7“2) va, eln”) w>
T2

of f(r1,m2). We claim that f,.,(z1) is actually single-valued, that is, the value of f,,(z1) obtained by analytic
continuation from 71 to z; is independent of the path. Equivalently, analytic continuation along any continuous
path from 71 to 7y in C\ {0,72} does not change the starting value of f(r1,72). To prove this, note that any
continuous path from r; to itself in C\ {0,72} is homotopic to a sequence of loops based at r; with each loop
encircling either ro or 0 and remaining within the region ro > |21 — 73| > 0 or 79 > |z1| > 0, respectively. But the
value of f(ry,rs) does not change going around ro because the series

1 zo)”
Y {e®m=2v 14+ 22 0,20 ) ve
T2

has no monodromy in zg, and the value of f(r1,72) does not change going around 0 because Yy (2] v, z1)w has no
monodromy in z7 by the g-equivariance property (recall Lemma 4.10).
The analytic function f,,(z1) has singularities at 0, 72, and co. Its Laurent series expansion around oo is

PTz (x1)|r1221 = <w/a YW(xiyvla xl)YW(UQa eln’r’g)w> ‘ml:zlﬂ
its Laurent series expansion around 0 is
Qrz (x1)|l1:Z1 = (_1)|v1||v2\ <w/7 YW(U27 elnm)YW(m’lyUl? Z‘1)’LU> |-’E1:Z1 )

and its is Laurent series expansion around rs is

Y
Irz (-rO)'Io:m—rz = <w17YW (Y (e(lnrg)’y (1 + xo) U17x0> ,U27elnr2> w> .
T2

All singularities are poles because W is grading restricted and because Yy, is lower truncated, so f,, is a rational
function:

Pry (Zl)
o (21) = r
f2( 1) Z{w(ZlfT'Q)N
where p,.,(21) is a polynomial and M, N € N. Then
Pra (xl) Dry (xl) Dry (T2 + IO)
PT“2 = M. . \N° 2 = "M/ .. | . \N° I 2 = )
(xl) (E{M(xl _ TQ)N QT‘ (1:1) .’E{w(—TQ +x1)N I8 (1'0) (TQ +1‘0)M$(])v

where the binomial terms are expanded in non-negative powers of the second variable.
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To get a Jacobi identity involving ro, we multiply both sides of the three-term delta-function identity

() () (222)
0 0 2

by pr,(z1)/2M 2l Delta-function substitution properties from [LL, Remark 2.3.25] then yield

1,615 (xl - 7'2) PT2(.T1) _ 1'615 <_T2—'_‘r1) Qr2 (xl) _ 7‘2715 ((I/‘l - CU(]) L«Q(xo).

Zo Zo T2

Since the w and w’ in the definition of P, @, and I were arbitrary, we get the Jacobi identity

—7“2+$1) Yiv (vs, eln ") Yy (2] vy, 71)
o

— ol
— 7"2_1(5 (1’1 1’0) YW <Y (e(lnrg)'y (1 + '/'EO) U1,330) U2,elnr2> ] (44)
T2 9

To replace the real number ro in the Jacobi identity by the formal variable x5, we use the method of [HLZ3,
Proposition 4.8]. First replace v in (4.4) with 277 (rezy 1)), and then make the substitutions zo xorgxgl and
1 — el ’"%gl. This yields the identity

20 (xlx_om)Yw(w?m,xl)Yw(w,eM) — (=n)lerlleelygs (

r;lxgxalé (mlsc_ m2) Yw((rgxgl)L(O)vlaxlelnrzxgl)YW(UQ,61nr2)
0

_ (*1)'”1“1)2'7"2_1%2%615 <_m2x+x1> YW(U%elnTz)YW((Tngl)L(o)vhxlelnmx;l)
0

_ i
. (m@mo) Yo (Y ((wgi%) (T2$2_1)L(0)01,$07“2$2_1> vQ’elnr2> .

By the L(0)-conjugation property of V%-module intertwining operators applied to Yy and Y, this is equivalent to

Tl — T2

Tglxgxalé ( ) €(lnr2)L(0)$;L(O)YW(U1,1‘1)Yw((7“2_1$2)L(0)1}2,$2)€_(1nr2)L(0)l‘§(0)

Zo
—T2 + 21
Zo

_ Y
Y <x1$2xo> (1 r2)L(0) ;=L Oy, <Y ((mz;rlxo) U1,1170> (T2—1x2)L(0)027x2> e~ (nr2)L(0), LO),

_ (—1)|U1HU2|7"513?2$515 ( ) e(lnrg)L(O)x;L(O)YW((rglxz)L(O)v27xz)YW(,Ubxl)e—(lnrg)L(O)xg(O)

To get the Jacobi identity of Definition 4.6 from this identity, just multiply both sides by rgxgle’(ln ”)L(O)mQL(O)
on the left and e(" ’"Q)L(O)x;L(O) on the right, then replace vy with (Tgl'g_l)L(O)’UQ. This completes the proof that a
g-twisted V-module in the sense of Definition 2.3 is a g-twisted V-module in the sense of Definition 4.6.
Conversely, suppose a grading-restricted generalized V&-module (W, Yy ) in C is a g-twisted V-module in the
sense of the Definition 4.6. We just need to show that Yy satisfies the associativity property of [CKM, Proposition

3.46], as the unit property Y (1,2) = 1y of Proposition 4.11 is already part of Definition 4.6 and

pw (9 X 1w )My,w = pw

follows from the g-equivariance property by Proposition 4.13.
We start by noting the following weak associativity for u,v € V. Replacing u in the Jacobi identity with =] - u
and extracting a sufficiently negative (integer) power of x1, we get

Yw ((xo + xQ)'H'M “u, T + x2) Y (v, x2)w = Y (Y ((z2 + xo)'H'M U, TV, T )W

as series in zg and x5 when M € N is sufficiently large (depending on u and w). If we further replace v by x3 -v and
pair with w’ € W', the grading-restriction conditions, lower truncation, and g-equivariance show that the series

(W', Y (o + 22) "M u, 20 + 22) Y (23 - v, 22)w)  and  (w', Vip (Y (22 + 20) ™™ -, 20)x] - v, 29)w)

equal a common Laurent polynomial in zg and xs.
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Now take v1,v2 € V, w € W, and w’ € W', assuming without loss of generality that v; and vs are generalized
eigenvectors for v with generalized eigenvalues a1 and as, respectively. Then

(W', Y (Y (v1, 20)v2, x2)w) = (w', Y (Y (22 + 20) ™™ (29 + 20) 7™M - vy, 20)23 257 - v2, 20)w)
r (—1)i+ . .
= 3 o a0) M % log(as +a0)) (log a2)
(', Y (Y (2 + 20) ™™ - Ny, 20) 2] - Ny, 20)w)
for any M € N. Since I and J are finite, we use weak associativity to choose M sufficiently large so that each
(W', Y (Y (29 + 20)"™ - Nvy, 20)2] - Nvg, 29)w)

is a Laurent polynomial p; j(zo,22). The same argument applied to (w’, Yy (v1, 20 + x2)Yw (v2, z2)ws) together
with weak associativity shows that

I

J . .
’ _ (—1)Z+J i j pz‘,j(fﬂo,xz)
(W', Y (v1, 20 + 22) Y (v2, 22)w2) = ;; Tj!(log(xo +@2)) (logz2)” (zo + m2) 1 T M52
and thus P
—1)tJ ; o pig(r —xe, T
(Yw (v1,21) Yiw (v2, z2)w) = Y (i,;,(logxl) (logwz)” - W
i=0 j=0 e 1

Now for any 71,72 € R such that r; > ry > r; —ry > 0, make the substitutions z; + €™, x5 — €72 and
2o — 11 — r2. Using log(1 + z) for a real number = to denote the power series expansion of In(1 + x) when |z| < 1,
we get

(w', Y (Y (v1,r1 — 7"2)112, emr2)a)

I 1)i+i

Z (lnrz + log (1 + n- r2)) (lnrg)j . Pi,jcshj\; T2,72)

+

i=0 j=0 T2 <1+T1T7—27"2> ! elon+az+M)Inry
I J HJ

j pi,j(rl - 7'2,7'2)

J.
ZZ@ 1117’1) (11’17’2) e(a1+M)lnr16a21nr2
=0 j=
= (u' YW(Ul,eln“)YW(U27€IM2)w>~

Thus the multivalued functions (w’, Yy (v1, 21)Yw (ve, 22)w) and (w’, Yiy (Y (v1, 21 — 22)v2, 22)w) have equal restric-
tions to their common domain, with equality of single-valued branches on a simply-connected domain as specified
in the associativity property of [CKM, Proposition 3.46]. This proves that W is a g-twisted V-module in the sense
of Definition 2.3. O

Now that we have unified the categorical and vertex algebraic definitions of twisted module, we apply the
categorical theorems of the previous sections to vertex operator superalgebras. In the next theorem, we verify the
conditions of Assumption 3.1 using results from [DLM] and [McR]:

Theorem 4.15. Let V be a simple vertex operator superalgebra, G a finite automorphism group of V' that includes
Py, and C an abelian category of grading-restricted generalized V& -modules that includes V and admits vertex
tensor category structure as in [HLZ1]-[HLZS]. Then:

1. Every indecomposable object of the monoidal supercategory Rep V is a g-twisted V-module for some g € G.
2. The monoidal supercategory Rep V' admits the structure of a braided G-crossed supercategory.

Proof. Because of the dictionary between twisted modules for vertex operator superalgebras and twisted modules
for superalgebra objects in braided tensor categories provided by [HKL, Theorem 3.2], [CKL, Theorem 3.13], and
Theorem 4.14, the conclusions follow from Theorem 2.10 (or Corollary 3.4) and Theorem 3.3 once we verify the
necessary conditions. The assumption in Theorem 2.10 that tensoring functors in C are right exact, needed for the
construction of the monoidal supercategory structure on Rep V, follows from [HLZ3, Proposition 4.26]. It remains
to verify the conditions of Assumption 3.1.
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The first two conditions on G in Assumption 3.1 hold by assumption and because F here is C. For the remaining
conditions, we use [DLM, Theorem 2.4] (see also [McR, Theorem 3.2] which covers the superalgebra generality)
which states that V is a semisimple G x V-module:

V= MV (4.5)
x€G

where the M, are irreducible G-modules with character x and the V}, are non-zero, simple, and distinct V&-modules.
Since V¢ is paired with the one-dimensional trivial character of G in this decomposition, Homyc(VE, V) = Cuy
where ¢y is the inclusion, and thus V is haploid. Next we define the V¢-module homomorphism ey : V — V¢ to
be projection onto V& with respect to the decomposition (4.5). Then ey .ty is the identity on V¢, while tyey is
projection onto the subspace of G-fixed points in V' and hence equals ﬁ > gec Y-
To verify the rigidity and dimension conditions of Assumption 3.1, we first note that C includes each irreducible
_module V. because C is abelian and includes V. Then the assumptions of [McR, Corollary 4.8] hold, so there
is a fully faithful braided tensor functor
P : Repy oy G —C

such that ®(M}) =V, for x € G. Here Repy, 97 G is the tensor category of finite-dimensional G-modules with the
usual symmetric braiding on M, ® M, for x,v € G modified by (—1)¥ when M, @V, C Vi and My @ Vy C Vi

(see [McR, Section 2.2]). This category is a ribbon tensor category with twist (—1)" on M, for x € G when
M, ®V, C Vi, Because @ is fully faithful, it is a braided tensor equivalence from Repy, 2z G to its image Cy C C,

so that Cy inherits the ribbon structure of Repy o, G via ®. (Note, however, that this ribbon structure does not
come from conformal weight gradings unless V? is the Z-graded part of V and V! is the (Z + ) graded part.)

Since V = @ 5 My ®P(My) is an object of Cy, it is a rigid V&-module. Then since V is snnple [KO, Lemma
1.20] shows that V is self- dual with evaluation eypuy : VRV — VG and some coevaluation zv VG S VRV.
Moreover, we may assume iy is even: given a parity decomposition 7y = ZV + ZV, rigidity implies

1\/ = 7"\/(1\/ X Evluv).A‘_/’lV’V(’;?/ X 1\/)1‘71 + Tv(lv X EVMV)-A;}V’V(ZE/ X 1v)l‘71
where, because ey py is even, the first and second terms on the right side are the even and odd parts of 1y,
respectively. Thus the first rigidity axiom holds with i}, replacing iy, and similarly for the second rigidity axiom.
This verifies the fifth condition of Assumption 3.1. B

Finally, we need to show ey puyiy = |G|lyce. It is enough to show that dy = ey py iy is the categorical dimension
of V in the ribbon category Cy since by Section 2.2 and Corollary 4.8 of [McR],

dime, V =Y " (dimg M) (dime, Vy) = Y _ (dimc M, )(dime, ®(M5))

x€G xe@

=Y (dime M) (dimgep, ,, ¢ M) = Y _ (dime M, )(dime M)
XE@ Xeé

= dimg End M, = dim¢ C[G] = |G-
x€G

Because ;V and py are even, we have dy = dy0 + dy,1 where dy5 is the composition
Ve I vy 2 iRyl LY 0 Sy, pe
for i = 0,1, with pz the canonical projection. We need to show that
dyi = dime,, V? (4.6)
for ¢+ = 0,1, with the categorical dimension defined as usual to be
Ve i, yigyi AN iyt T gy S0 pe

where ey7 and iy are an evaluation and coevaluation for V*, respectively. Because iy and ey py are even, we
i

can take ey: = eypy|yigy: and iy = pliy. Then (4.6) follows because the twists satisfy 6y = (—1)" and
supercommutativity of V' implies py Ry i = (=1)' v |yigyi- O
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Before relating C to the equivariantization of the braided G-crossed supercategory Rep V', we discuss why the
monoidal structure on Rep V is natural from a vertex algebraic point of view. For more details, see [CKM, Section
3.5]. Given three modules Wi, Ws, and W3 in Rep V, we say that an even or odd V¢-module intertwining operator
Y of type (W‘jvﬁvQ) is a V-intertwining operator if for any wy € Wa, wj € Wi, and parity-homogeneous v € V,
w1 € W1y, the multivalued analytic functions

(_1)‘yllv‘<w:/37YWz(U7zl)y(w1722)w2>v |Zl‘ > ‘22| > 07
(—)llell, Y(wy, 20) Vi, (v, 21)wa), 22| > |21 > 0,
(wg, Y(Yw, (v, 21 — 22)w1, 22)wa), |22] > |21 — 22| > 0 (4.7)

defined on the indicated regions have equal restrictions to their common domains, with specified equalities of certain
single-valued branches on certain simply-connected domains (detailed in the statement of [CKM, Theorem 3.44]).
Such intertwining operators correspond precisely to the categorical Rep V-intertwining operators of type (W‘IV;’VQ)
defined in Section 2.1. When W is g;-twisted, Wy is go-twisted, and W3 is g1 go-twisted (recall Proposition 2.4), it

is natural to call Y a twisted intertwining operator.

Remark 4.16. Note that definitions of twisted intertwining operator exist already in the literature: see [Xu] (for
commuting g; and g2) and [Hu5] (for general g; and g3). When g; and g2 commute, the definition here agrees
with that of [Xu] (see [DLXY, Theorem 3.6], whose proof uses a slight modification of [CKM, Theorem 3.53]). For
general g1 and go, the definition here is at least closely related to that of [Hu5], which is also based on equality of
the multivalued functions (4.7). However, the definition in [Hu5] additionally includes a restriction on the shape of
the multivalued functions (4.7) (essentially, they are required to be minor relaxations of rational functions) that it
is not clear V-intertwining operators among twisted modules will satisfy when g; and g do not commute. We plan
to address the question of whether or not twisted intertwining operators as defined here satisfy the extra condition
of [Hu5] in future work.

If there is in fact a discrepancy between the two definitions of twisted intertwining operator for non-commuting
g1 and go, then the definition given here is probably more natural, since it encompasses the full range of V¢-module
intertwining operators that are compatible with the V-actions on twisted modules (in the sense that the multivalued
functions (4.7) agree). In any case, and as we discuss below, the results of [CKM] show that our definition of V-
intertwining operator /twisted intertwining operator is the correct one if we want twisted intertwining operators
to characterize the tensor category structure on Rep V. In particular, a more restrictive definition of twisted
intertwining operator would define a different tensor product operation on Rep V. These different tensor product
modules would be proper quotients of the tensor product modules used in this paper, and they would not be related
by induction to tensor products of V-modules as in Theorem 4.17 below.

With the definition of twisted intertwining operator given here, Proposition 2.4 and [CKM, Proposition 3.50]
show that the tensor product in Rep V satisfies a natural vertex algebraic universal property. If Wj is a g1-twisted
V-module and W5 is a go-twisted V-module, then the tensor product W7 Ky W5 is a g;go-twisted V-module
equipped with a canonical even twisted intertwining operator Vw, w, of type (W‘}E;V‘;w) corresponding to the
categorical intertwining operator Iy, w, : Wi X Wy — W, Xy Wy, Then if W3 is any g; go-twisted V-module and

Y any twisted intertwining operator of type (W‘fvﬁvz), there is a unique V-homomorphism

f:ngva—)Wg

such that ) = f o Yw, .w,. This universal property is comparable to the one in [HLZ3, Definition 4.15] satisfied by
the P(z)-tensor product of (untwisted) V-modules.

We can also naturally describe the unit and associativity isomorphisms in Rep V using intertwining operators.
From [CKM, Section 3.5.4], the left and right unit isomorphisms

B VRy W =W, o WKy V W
associated to a module (W, Yy ) in Rep V are characterized by
Ly Vv (v, 2)w) = Yy (v, 2)w, iy (Vwv (w, x)v) = (—1)‘”|Iw‘ewL(*1)YW(v,e*”m)w

for parity-homogeneous v € V, w € W. Note that for the right unit isomorphisms, we need to specify the branch
of log(—1) used for the substitution « — —z since Yy may involve non-integral powers of z.
For three modules W7, W, and W3 in Rep V, [CKM, Proposition 3.62] shows that the associativity isomorphism

A‘V/{/l,Wz,W:s : Wl |X|V (W2 &V W3) — (Wl gV WQ) |X|V W3
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is characterized by the equality
In In
<w A, W s (Vwy wamyws (Wi, €™ 7)Yy w (wo, € Tz)w3)>
_ <’LU', yWﬂXsz,Ws (yW17W2 (U)la eln(m 77’2))71/2, eln rz)w3>

for wy € Wy, wg € Wo, wz € W3, and w’ in the contragredient module (W7 Ky Wa) Ky, W3)/. Here r; and 79 are
any positive real numbers that satisfy r1 > ro > ry — 19 > 0.

We also describe the braided G-crossed supercategory structure on Rep V' of Theorem 2.10 with intertwining
operators. For the G-action on Rep V,

Ty(W, Yw) = (W, Yw o (97" @ 1w))

for ¢ € G. Then as in [CKM, Section 3.5.5], for a g-twisted V-module W; and any W5 in Rep V, the braiding
isomorphism

Riy,w, : Wi By Wa — Ty (W) Ky Wy
and its inverse are characterized by

+7i

1)|w1||w2|61L(71 ’z)wl

(R, wo) ™ Vwwy (wr, 2)wa) = (— V1, (waywy (w2, €

for parity-homogeneous w; € Wy, wy € Wa.
Now we prove the final theorem of this section; for C rigid and semisimple, it has appeared as [Ki2, Theorem
1.5] and [Mii2, Theorem 3.12]. Here we assume only the existence of a suitable tensor category of V&-modules.

Theorem 4.17. Let V be a simple vertex operator superalgebra, G a finite automorphism group of V that includes
Py, and C an abelian category of grading-restricted generalized VC-modules that includes V and admits vertex
tensor category structure as in [HLZ1]-[HLZS]. Then the induction functor F : C — (Rep V)¢ is an equivalence of
braided tensor categories.

The proof requires a generalization of [DM, Lemma 3.1]:

Lemma 4.18. In the setting of Theorem /.17, in particular assuming V is simple, let W be a module in Rep V,
{vWY_, C V a set of linearly-independent L(0)-eigenvectors, and {wD}_, C W a set of parity-homogeneous
(non-zero) L(0)-eigenvectors. Then

I
Z Y (v, 2)w® #£ 0.

Proof. We will show that if Zle Y (v, 2)w™® = 0 when the v(?) are linearly independent L(0)-eigenvectors and
the w(?) are parity-homogeneous and contained in L(0)-eigenspaces of W, then the w* must all be zero.
If the sum is zero, then also

I
0= Z:yW(v(i)7 elnrz)w(i) ceW = H Wi
i=1

heC

for any fixed 75 € R.. We first show that the sum is still zero after replacing each v with wu,v® for any
u € V and n € Z. This uses the associativity of Yy from the proof of Theorem 4.14: for r;y € R such that
r1>r2>r1—r2>Oandw’€W’,

I I
Z Z(w',YW(unvm,eln”)w( N(ry —rg)” Z w', Yy (Y (u, 11 — 1)@, e 72)®)

nez i=1
I . .
<w YW lnrl) Z Yw(v(l), elnrg)w(z)> =0.

i=1

Thus the Laurent series Zf:1<w’,YW(unv(i) e 72)w@) 25" which converges absolutely in the region
0 < |z0| < 72, is identically zero on a non-empty open 1nterval of the real line, and hence is identically zero on its

entire domain. Then each coefficient
I

Z<U}/7 Y—I/V(un,v(z)7 elnrz)w(i)

i=1

34



of the Laurent series is zero.
We have not yet used the linear indepedence or conformal weight homogeneity of the v(¥), so we can iterate this
argument to show that, if A C End¢ V' is the subalgebra generated by the u,, for u € V and n € Z, then

I

Z(w', Yiv(a- 0@, enm2)w® =0

i=1
for any a € A. Letting Ay C A denote the subalgebra of conformal-weight-grading-preserving operators, each
conformal weight space V(,) is a (finite-dimensional) irreducible Ag-module because V' is simple. Moreover, they
are inequivalent Ag-modules because L(0) € Ay acts differently on each one. Thus the finitely many v(*) are
contained in a finite-dimensional completely-reducible Ap-module. Then the Jacobson Density Theorem (see for
example [Ja, Section 4.3]) implies that for any i € {1,...,I}, there is some a; € Ag such that a; - v = §; ;019 for
all j € {1,...1}. In particular,

Yir (v, 2@ =0

for each i. Now using the assumption that v and w(® are L(0)-eigenvectors, we also have

L(0) ) )
0 = (eln () ) YW(U(H’ eln Tz)w(l)

Loy L) .
Y ((x> U(w’x) (22) " w0
T9 etz

( T )wt v(i)+wt w®

el1r1 o

Yiv (0@, 2)w®,
so that Yy (v, z)w® = 0 for each i.
Now for each 4, the annihilator
Amny (w?) = {v € V| Yy (v, 2)w® = 0}

is non-zero, containing v(. But because each w(?) is parity-homogeneous, Anny (w®) is a (two-sided) ideal of V
by [CKM, Lemma 3.73]. Since V is simple, this means Anny (w(?) =V, forcing

w® =Y (1,2)w® =0
for all 4. O
Now we proceed with the proof of Theorem 4.17:

Proof. Since induction is a braided tensor functor by Theorems 2.11 and 2.12, we just need to show it is an
equivalence of categories. For this we use the G-invariants functor from (Rep V)¢ to C:

e For an object (W, Yy, ow) in (Rep V)€, we define
WC ={we W|ew(g)w=w forall g € G}.

Since pw (g) o Yir = Y o (¢ ® pw(g)) for g € G, each ¢w (g) is a VE-module endomorphism. Then W&, as
the image of ﬁ dec ew (g), is an object of C because C is abelian.

e For amorphism f : (W1, Yiw,, ow,) = (Wa, Yir,, ow,) in (Rep V)¢, we define f¢ = flwe. Since f intertwines
the G-actions on Wi and Wy, the image of f¢ is contained in W§'. Hence

e -we - wg
is a morphism in C.
Now to show that induction is an equivalence of categories, we will find natural isomorphisms F(W)% = W for W
in C and F(WY) = W for (W, Y, ow) in (Rep V)¢.
First if W is an object of C, then F(W) =V X W and prw)(g9) = g X 1y for g € G. Thus

lw(ev ®1w)|ruwye : FW) = W
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is a natural isomorphism, with inverse (¢y X 1W)l;[,1 because ey ty = 16 and

1 1
(wvev Blw)lrwye = 1G] Z gWlw|rw)e = Gl Z orw) (@ Frwye = Lrw)e-
geG g€G

Now if (W, puw, ow ) is an object of (Rep V)¢, let 1y : WY — W denote the inclusion. Note that pw (g)iw = 1w
for all g € G. We take the V%-module homomorphism

Uy :MW<1V|Z|LW) : V|Z|WG — W.
The associativity of uy implies ¥y is a morphism in Rep V, and Wy is a morphism in (Rep V)¢ because

ew (9)¥w = ow(g)pw (1v Kuw)
= pw (g Wow(g))(1v Huw)
=pw(ly Rew)(g R 1ye)
= Vworwe)(g)

for g € G. The homomorphisms Wy are natural because if f : Wi — Wy is a morphism in (Rep V)&, then

Uy, F(FF) = pw, (v Bow, ) (1v B flyyo)
= pw, (1v B f)(1y B ewr)
= fuw, (1v Xow,)
= fYw,.

We need to show that each Wy is actually an isomorphism.

As a V&-module, F(W%) = D, ca VK W¢, where VX = M, ® V, is the sum of all G-modules isomorphic to
M, in V. Also W is a semisimple G-module because it is a V“-module with finite-dimensional L(0)-generalized
cigenspaces and because L(0) commutes with each ow(g). So W = @ 5 WX where WX is the sum of all G-

submodules of W isomorphic to M,. As Uy, intertwines the G-actions on F(W¢) and W, it maps each VXKW
to WX. Moreover,
Uy |yegwe : VERWE - W

is an isomorphism, since it amounts to lyy¢ by the unit property of uy,. Consequently, the kernel and cokernel of
Uy are objects of (Rep V)¢ with no G-invariants.

To complete the proof, we show that any object W of (Rep V)¢ with W& = 0 is itself 0; equivalently, if W # 0,
then WY # 0 as well. As before, W = EBXEG WX where WX is the sum of all G-submodules of W that are
isomorphic to M,,. If W # 0, then WX # 0 for some x; let x* to denote the character of G dual to x. Now choose

a basis {vW}_, C V(’fl) for some copy of M,+ contained in a non-zero homogeneous subspace of V. Then choose

{w(i)}{:l C WE}‘L] to be a dual basis for some copy of M, contained in some non-zero homogeneous subspace of W.
Although L(0) might not act semisimply on W, the L(0)-eigenspace of WX with eigenvalue h will be non-zero, so
we may assume the w(® are L(0)-eigenvectors. Moreover, because oy (Py) = Py, the G-submodule WX is either
purely even or purely odd, so the w(? are parity-homogeneous. We now apply Lemma 4.18 to conclude that

I
Z Yir (v, 2)w® # 0.
i=1

But we have chosen the v and w(® so that Zi[:l v @ w® € (V ® W)%. Thus because each coefficient of Yy
provides a G-module homomorphism from V ® W to W, we have

I
Z Yir (09, 2)w® € WClog z]{z}
i=1

and W& #£ 0. O
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4.3 7/27Z-equivariantization for superalgebras

Here we discuss the implications of Theorems 4.15 and 4.17 in perhaps the simplest non-trivial case: V is a vertex
operator superalgebra and G = (Py) = Z/27 so that V& = V0. Let V be simple and C an abelian category
of grading-restricted generalized VY-modules that includes V' and admits vertex tensor category structure as in
[HLZ1]-[HLZ8]. By Theorem 4.17, C is braided tensor equivalent to the Z/2Z-equivariantization of Rep V', which
by Theorem 4.15 is the category of untwisted and parity-twisted V-modules (referred to in the physics literature
as the Neveu-Schwarz and Ramond sectors, respectively). Here we explicitly describe (Rep V)%/?%,

Objects. By Theorem 4.15, the objects of Rep V are (direct sums of) untwisted and parity-twisted V-modules.
Then objects of (Rep V)Z/ 2Z are such modules with the additional data of a Z/2Z-action; however, Py must act
as Py on a module W in (Rep V)Z/ ?Z 50 the additional data is simply the parity decomposition of W.

Morphisms. Morphisms in (Rep V)Z/ 22 are homomorphisms of (twisted) V-modules that also preserve parity
decompositions, that is, they must be even. This means that (Rep V)%/?%Z is the underlying category of the
supercategory Rep V.

Tensor product functor. The tensor product Wi Xy Wy of two (twisted) V-modules is characterized by a

universal property: There is an (even) twisted intertwining operator YV, w, of type (W‘}E‘I},‘;VZ) such that for any

(twisted) V-module W3 and (even) twisted intertwining operator ) of type (W‘Ivgvz), there is a unique homomorphism
f : W1 |ZV WQ — Wg

such that f o Yw, w, = V.
The tensor product of two homomorphisms f, : Wy — Wy and fy : Wy — Wy in (Rep V)Z/?Z is induced by the
intertwining operator Vg, i, © (f1 ® f2) of type (W‘}V?‘;VI;VQ) and the universal property of W, Ky Wh.

Unit isomorphisms. The unit object of (Rep V)%/?% is V and for any module (W, Yy ) in (Rep V)%/?Z, the
left and right unit isomorphisms are characterized respectively by

ZI‘//V(.)JMW(v,x)w) =Yw (v, z)w, ryv(ywy(w,x)v) = (71)‘”|lw‘emL(71)YW(v,eiﬂiz)w

for parity-homogeneous v € V, w € W.
Associativity isomorphisms. For three modules Wy, Wy, and W5 in (Rep V)%/?Z, the associativity isomor-
phism Ay, ., w, is characterized by the equality

<w/’ A¥V1,W2,W3 (yW17W2|Z|vW3 (wl’ e )ywz,Ws. (w27 e T2)w3)>
- <’LU,, le‘ZlVW%Wa (yWth (wlv eln(rl 7T2))w27 eln T2)w3>

for wy € Wy, we € Wh, wg € W3, and w’ € (W1 Ky Wy) Ky Wg)/, and r1,ry € Ry satisfy rqy > 1o > 11 — 79 > 0.
Braiding isomorphisms. If W; is untwisted and W5 is any module in (Rep V)Z/ 2Z the braiding isomorphism
Rl‘//Vl,Wz is given by

ﬁ%l,Wz (yW17W2 (w17 III)’LUQ) = (_1)|w1||w2|€mL(71)yW2,Wl (w27 eﬂi‘r)wl
for parity-homogeneous wy; € Wy, we € Wa. If W7 is parity-twisted, then
Rivy wa Vs wa (w1, 2)ws) = (P, By 1w,) (Riv, w, (Vs w, (w1, 2)w2))
= (Pw, Ky 1w,) ((—1)‘%““}2‘6%(_1)37%(Wz),Wl (wz,emx)wl)
= (71)‘101"wz‘emL(il)meWl (PW2 (w2)7 emx)wl

for parity-homogeneous wy € Wi, wy € Wa. Recall that Py (W3) is the superspace Wy with vertex operator
YWz(PV(')a Z‘)

This is a complete description of C as a braided tensor category, assuming one understands untwisted and
parity-twisted V-modules and the twisted intertwining operators among them, since C is braided tensor equivalent
to (Rep V)Z/ 2Z by Theorem 4.17. For example, the following is a simple consequence of Theorem 4.17 in this
setting:

Corollary 4.19. Let V' be a simple vertex operator superalgebra and C an abelian category of grading-restricted
generalized V° modules that includes V' and admits vertex tensor category structure as in [HLZ1]-[HLZS]. Then
every indecomposable VO-module in C is the even summand of an untwisted or parity-twisted V -module.
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Proof. From the proof of Theorem 4.17, any (indecomposable) VO-module W in C is isomorphic to the even part
of V XIW. Since W is indecomposable, this even part cannot be divided between non-zero untwisted and twisted
summands of VX W. So W is the even summand of either an untwisted or parity-twisted V-module in C. O

If V0 is Cy-cofinite and non-negatively graded, with V(%) = C1 (that is, V° has positive energy/is CFT-type),
then the full category of grading-restricted generalized VY-modules has vertex tensor category structure [Hu3].
Thus all our results apply when V is simple, G = (Py), and VY is Cy-cofinite and positive energy. Examples
of such V' with non-semisimple modules (that is, they are not rational) include the symplectic fermion vertex
operator superalgebras SF(d), d € Z., of d pairs of symplectic fermions [Ka, Ab, Ru]. In fact, a major motivation
for this paper was the problem of showing that the category of grading-restricted generalized SF(d)’-modules
is braided tensor equivalent to the braided tensor category constructed by Runkel in [Ru]. If this equivalence
holds, then [GR, FGR] would show that the category of SF(d)’-modules is braided equivalent to the category of
finite-dimensional representations of a quasi-Hopf algebra and is a (non-semisimple) modular tensor category.

The category in [Ru] seems to be the equivariantization of the braided Z/2Z-crossed supercategory of (twisted)
SF(d)-modules that we have discussed here, and thus by Theorem 4.17 it should indeed be equivalent to the category
of SF(d)’-modules. Especially, the objects of Runkel’s category are untwisted and parity-twisted SF(d)-modules,
and the tensor product is characterized by a universal property involving what are called vertex operators. Thus
showing that the tensor product of [Ru] agrees with that on (Rep SF(d))%/?# would require showing that Runkel’s
vertex operators extend to what we have called twisted intertwining operators here. The associativity isomorphisms
in [Ru] are defined with the help of partially-conjectural formulas for compositions of vertex operators in [Ru, Table
1]. Thus a proof of these formulas, using properties of twisted intertwining operators, will be necessary for showing
that the associativity isomorphisms of [Ru] agree with those on (Rep SF(d))%/?2. We plan to resolve these issues
and complete the identification of (Rep SF(d))%/? with the braided tensor category of [Ru] in future work.

4.4 Application to orbifold rationality
We say that a vertex operator algebra V is strongly rational if it satisfies the following conditions:
e V is simple and self-contragredient.

e Positive energy: V{,) = 0 for n < 0 and V(p) = C1. (Such V is also said to be CFT-type.)

Cy-cofiniteness: dim V/C5(V) < oo where Co(V') = span {u_qv |u,v € V'}.

Rationality: Every N-gradable weak V-module W = @, .y W (n) (where the W (n) could be infinite dimen-
sional) is a direct sum of simple grading-restricted V-modules.

The orbifold rationality problem asks whether strong rationality of V implies strong rationality of V¢ when G is
a finite automorphism group. The answer is yes for G solvable by [CM], but the problem has remained open for
general finite G. Here we show that Theorem 4.15 combined with [CM] reduces the orbifold rationality problem to
the question of Csy-cofiniteness for VE.

We first show that if V' is strongly rational and G is a finite automorphism group of V', then categories of
V&-modules that admit vertex tensor category structure are semisimple:

Theorem 4.20. Let V' be a strongly rational vertex operator algebra and G any finite group of automorphisms of
V. IfC is an abelian category of grading-restricted generalized V& -modules that includes V and admits vertez and
braided tensor category structure as in [HLZ1]-[HLZS], then C is semisimple.

For a category C of V%-modules as in the statement of the theorem, we will use Repe V' to denote the braided
G-crossed category of twisted V-modules in C because we will soon need to consider twisted V-modules in smaller
braided tensor categories. The following lemma reduces semisimplicity of C to semisimplicity of Rep, V:

Lemma 4.21. If Rep, V is semisimple, then C is also semisimple.

Proof. We need to show that if f : W7, — W5 is a surjection in C, then there exists ¢ : Wy — W; such that
fo = lw,. Since the functor V X e is right exact, 1y X f : VX W; — V K Wj is a surjection in Rep, V. Then
because Rep, V is semisimple, there is some s : VR Wy — V ®W; such that (1y X f)s = lygw,. We define
o : Wy — Wi in C to be the composition

l;vl Lv&lw Evglw lw
Wy, — VR, : ! !

VW, 3 VKW, VERW, —% W,
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Then

fo = flw, (ev B 1w, )s(ev B 1w, )il
= lw, (ev R lyy)(1y B f)s(ey B Ly, )l
= I, (ev B 1w, ) (ev B Ly, )y
= lw, iy,

= 1W2
as desired. 0

Remark 4.22. Here is a less elementary proof of the lemma: If Rep. V is semisimple, then so is (Rep. V)¢ by
Maschke’s Theorem. Then C is semisimple by Theorem 4.17.

Now we prove the theorem by showing that Rep, V is semisimple:

Proof. Since every object of Repe V' is a direct sum of twisted modules by Theorem 4.15, it is enough to show
that the category Rep? V of g-twisted V-modules is semisimple for any ¢ € G. Fix g € G and let D be the
category of grading-restricted generalized V(9-modules. By the main theorem of [CM], V{9 is strongly rational
so that D is a (semisimple) modular tensor category [Hu2]. Moreover, Theorem 4.15 shows that the subcategory
Repp V C Repe V consisting of untwisted V¢9)-modules is a braided (g)-crossed tensor category and

lg|—1

Repp V = @ Repgi V.

=0

Thus it is enough to show Repp V' is semisimple. This follows from Lemma 1.20 and Theorem 3.3 of [KO], since
D is semisimple and rigid, V is a simple algebra in D, and dimp V = |g| # 0 [McR, Proposition 4.15]. O

As a corollary, we get strong rationality of V¢ from strong rationality of V' and Cy-cofiniteness of V¢:

Corollary 4.23. Let V be a strongly rational vertex operator algebra and G any finite group of automorphisms of
V. If V& is Cy-cofinite, then V& is strongly rational.

Proof. Positive energy for V& follows immediately from positive energy for V. Since V is also simple, V¢ is
simple by the main theorem of [DLM]. The self-contragrediency and positive energy of ¥V mean that there is a

nondegenerate invariant bilinear form
(,):VxV—=>C

such that (1,1) # 0. This restricts to a non-zero invariant bilinear form on V¢, which must be nondegenerate since
V& is simple. Thus V¢ is also self-contragredient.

Since V¢ has positive energy and is Cy-cofinite, Lemma 3.6 and Proposition 3.7 of [CM] (see also [McR,
Proposition 4.16]) imply that V¢ will be rational if its full category of grading-restricted generalized modules is
semisimple. But this category admits vertex tensor category structure by Proposition 4.1 and Theorem 4.11 of
[Hu3], so Theorem 4.20 applies. O

Remark 4.24. The recent preprint [Mi2] has proposed an argument for proving Co-cofiniteness of V& for general
finite G and positive energy, self-contragredient, Cs-cofinite V', but unfortunately it seems to have a gap.

A  Proof of Theorem 2.10

We use the notation and setting of Section 2.2. We have already seen that RepG V is an F-additive supercategory
with a G-grading, and Corollary 2.5 shows that RepG V has a monoidal structure compatible with the grading. It
remains to show that the G-action and braiding isomorphisms on RepG V discussed in Section 2.2 are well defined
and satisfy the required properties.

First we show that T}, is a superfunctor on Rep® V. To show that (Ty(W), pr,(w)) is an object of Rep V', we
first verify associativity:

pr, owy (Lv B pg, wy) = pw (ly Rpw ) (g7 B (g7 K lw))
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= pw (py R lw)Avyw (g R (g7 W ly))
= pw (g™ B 1y)(pv B 1w)Avv.w
= pr,w) (kv ¥ 1v) Avv,r,w),
using g~y = py (g~ W g1). For the unit property,
por, o (v B Iw)IE ) = pw (97 B L) (v B L )y = o oy B 1w )l = 1w = 1, )
using g~ 'ty = vy. A morphism f: W; — W» in Rep V is still a morphism from T, (W;) to T, (W2) because

fur, oy = Frw, (97 B lw) = pw, (Ly B f)(g7 B lw) = pw, (97 R lw)(1y B f) = pr, ws) (1y B f).

1

Because g~ is even, we avoid a sign factor in the third equality here. Clearly 7, induces an even linear map on

morphisms, so Tj is a superfunctor on Rep V. Then T restricts to a superfunctor on Rep® V because if (W, pw)
is an h-twisted V-module for h € G, then (Tg(W), ur, (wy) is a ghg~'-twisted V-module. Indeed,

pr, wy (ghg ™" B Ly, aw) ) Muy,z, vy = pw (g~ B 1w)(ghg ™" B 1y ) My,w
= ,UW(h X 1w)MV’W(g_1 X 1W)
= pw (9~ R lw) = pr,w),

using the naturality of the monodromy isomorphisms in the second equality.

Next we construct the even natural isomorphism 7, : T, o ®y — Ky o (T, x Ty). For objects W1, W5 in Rep V,
recall that (W7 Ky Wa, Iy, .w,) is the cokernel of the morphism MS/)I,WQ — ,u%)hWQ and similarly for (7,(WW;) My
Ty(Wa), I, (wy),1,(Ws))- We claim that there are unique morphisms

Tg; Wy, Wa W1 gv W2 — Tg(Wl) |ZV Tg(Wg), 7A:g;v[/1’W2 : Tg(Wl) lXV Tg(Wg) — W1 &V W2

in SC such that the diagrams
Wi X Wy

Ly, (W), 19 (Wy)
IW1,W2
Tg;W1,Wa

Wi Ry Wy ————= T, (Wy) Ry Ty (Wa)

Tg;W1,Wa
commute. This follows from the universal properties of the cokernels and the equalities

1 2
ITq(Wl)qu(Wﬂ('uE/V)l,Wz - ME}V)l,Wz)
(1) (2)

= I, owy), 1, (wo) (), wy, — v w,) (97 B T s, ) (9 B T, s, )
_ (1) (2) _
- ITg(Wl)ng(W2)('uTg(Wl),Tg(Wg) - 'U‘Tg(Wl),Tg(Wz))(g X lw,mw,) =0

and
(1) (2) _ (1) (2) - _
T, w, (/’LTQ(Wl),Tg(Wg) - 'U’Tg(Wl),Tg(W2)) = Iw, w, (MWI,W2 - MW1,W2)(9 'K 1W1IXW2) = 0.

These equalities use the definitions of the ;(¥), the naturality of associativity and braiding isomorphisms in SC,
and the evenness of all morphisms involved. Now 7g.w, w, and Tg.w, w, are mutual inverses: because

Tgs W, Wa TgsWa Wa lwy Wy = Tgswy wo Ir, (wh) 1y (wa) = Iwi,w

and Iw, w, is surjective, To.w, w,Tg.wy Wy = lwiryw,, and similarly 7w, w,To.wy wy = 11, (wy)Ry 1, (W) Also,
Tg:Wy W, 18 even because Iw, w, and It (w,) 1, (w,) are even and surjective.

Now we show that 7,1, w, is a morphism in Rep V' from T,(W Xy Ws) to T,(W1) Ry Ty (W3). Then its inverse
Towi Wy & Tg(Wh) Ry Ty(Wa) — To(Wr Ky Wa) will also be a morphism in Rep V. This uses the commutative
diagrams

#wleZ (g_1IZ|1W1®W2)

V&(W1|ZW2) W1|X|W2

L1 (W), Tg(Wo)
Iw, ,wy

ilngwl‘WQ
Ty (W1 Ky Wa) alitek Ty(Wh) By Ty(Wa)

HTg (W1 By Wa)

VR T,(W, Ky W)
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fori=1or¢=2 and

VR (W) ® W)

Ly R, (wy), 7, (We)
ilvmwl,m 1y

Ly rgw, ,wy HTg(wy)Ry Tg(Wa)

VRT,(W: Ky Ws) VR (T,(W) Ry T,(W2)) T, (Wh) Ry Ty(Wa)

The top compositions in these two diagrams agree because It (w,) 1, (w,) is an intertwining operator and because
//[/%j{)l,w2 (7' X 1y, mw,) = ugfg)(wl)7Tg(W2) for i = 1,2. Thus

oW, Wa T, (Wi 8y W) (Lv B Ty wi) =l (w)®y 7y (W) (Lv B 7wy ws ) (Ly B T, w,)

as well. Since Iyy, w, is a surjective cokernel morphism and V X e is right exact, 1y X Iy, w, is surjective as well
and it follows that 74,1, w, is a morphism in Rep V.
Next we show that the 74w, w, define a natural isomorphism, that is, for morphisms f; : W; — f/[vfl and
fo: Wy — Wy in RepV,
Tg;Wl,WQTg(fl Ry f2) = (Ty(f1) By Ty(f2)) 7w ,we-

This follows from the commutative diagrams

[ — —~
W RW, — 2 W )W,

I IT (W1),Tg(Ws)
Twy . wy W1, Wy
f1lky f2 =

W1 ‘XV W2 —_—> Wl |Z|V Wg Tg(Wl) IZ'V Tg(Wg)

T __
9;W1,Wa

and

f1¥f2

W,y X Wy Wy R W, :

IW11W2
Trg(wy),mg(Wa) Ly (W1), T4 (Wa)

Tg; W1, Wo Ty (f1)WvTy(f2)
Ty

Wy Ry W, T,(Wy) Ry T, (W2) T, (Wh) Ry T, (Ws)

as well as the surjectivity of Iy, w,.
The even natural isomorphism 7, needs to be compatible with the associativity isomorphisms in the sense that
the diagram

Ty (ATp, Wy, ws)

Ty (Wi Ky (W2 Ky W3)) Ty (W1 Ry Wa) Ky W)
i‘l‘g;wlzwgngg. irg;wlxv%,%

T,(Wh) By T, (W Ky W) T, (W, By Wa) Ry T,(Ws)
i%(m)gvmw}% iTg;Wth@Vng(Wg)

AV
Tg(W1),Tg(W3),Tg(W3)

Ty (Wh) Ry (Ty(We) Ry Ty (W3)) (Ty(Wh) By Ty (Wa)) Ry Ty(Ws)

commutes for any objects Wi, Wy, and W3 in Rep V. For the proof, recall that T, (W) = W as objects of SC and
Ty(f) = f when (W, pw) is an object and f is a morphism in Rep V. Consider the composition

) 1w,y WIw,, wsy ) Ty womy, we
SLE AL NERLE LUALLT

Wy R (WoRWs Wi R (W Ky W Wy Ry (W, By Ws)

v
Ay Wy, wy ( Ta; w1 My Wa, W3
%

W1 Ry Wy) Ky W3

Tg;WLWZIZ’Vng(W;;)

Ty(Wy Ky Wo) Ky Ty (W)

(Ty(Wh) Ry Ty(W2)) By Ty(Ws).
By the definition of the associativity isomorphisms in Rep V/, this equals

) Awy Wy, Wy ( I, ,wy M1y,

W ) (WoEWs Wy K W) K Wy (W1 Ry Wa) KWy
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Twi®y wo,wy Tg; w1 My, Wo, W3
— v, VRS,

(W1 Xy Wy) Ky W3

TQ?WLWZIZIVng(Ws)

T,(Wh Ry Wa) Ry T,(Ws3)

(Ty(Wr) By Ty(W2)) By To(Ws).
Then the definition of 7., &, w,,w, implies that we get

Awy,wo, W IW17W2g1W3

WiRI(W, X W)

Iy (W1 By W), Tg (W3)

(W1 B W,) K Wy (W1 By Wa) B W

Tg;wy,wo BV 11 (wy)

T,(Wy By W) Ky T, (Ws)

(Ty(W1) By To(W2)) By To(Ws). (A1)
From the definition of the tensor product of morphisms in Rep V,

(Tgwn, wa By Ly (W), (Wi Ry Wa), Ty (Ws) = L, (W) Ry Ty (W) T, (W) (T, ws B Ly () ),
and then the definition of 74w, w, implies that (A.1) becomes

Awy,wa, Wy Tg(W1)ng(W2)|Z|1W3

I
W, X (WQ X W3) —>(W1 X WQ) X W5

Iy (W1)By Tg (Wa). Tg (W)

(TQ(Wl) Xy Tg(WZ)) X TQ(W3)

(Ty(Wh) Wy Ty(Wa)) By Ty(Ws).
Next, the definition of the associativity isomorphisms in Rep V' implies that this composition equals

1w, gITg(Wz)ng(Ws)

W1 ) (W R Ws)

Ty (W) W (T (Wa) By Ty (W3))

Irg(wy) mg (W2)Ry Ty (W)

Ty, (Wh) Ry (T,(W2) Ry T,(W3))

AV
Tg(W1),Tg(W2),Tg(W3)

(Tg (W) By Ty (W) Ry Ty (W)
We replace I, (w,),1,(ws) With 7g,w, wsIw, w; and use the definition of tensor product of morphisms in Rep V:

1w, Klw,, I, (wy), 1y (WoRy, wy)

Wy B (W Ky Ws)

1Tg(W1>®VTQ:W2»W3

Wy R (W, K Ws)

T,(Wy) By T,(Wa By W)

Tg(Wl) Xy (Tg(W2) Xy Tg(W3))

\%4
ATy (W), Ty (Wa), Ty (W3)

(Ty(W1) By Ty (W) By To(Ws).
Finally we use the definition of 74,1, w,x, w, to obtain

1wy RIw,, wy ) Twy womy ws
SRR A R

WiR(W, & W)

Tg;wy, Wally W3
—>

Wi K (W Ky W W1 Ry (Wa By Ws)

1Tg(W1)|Z’VTQ%W2:W3

Ty(Wh) By Ty(W2 Ky W3) Ty(Wh) Ry (Ty(W2) By Ty(W3))

A%
ATy (W), Tg (W), Tg (Ws)

(Ty(Wh) By Ty (Wa)) Ry Ty (W3),

and compatibility follows from the surjectivity of 1y, ™ Iw, w, and Iy, w,x, w,, and hence of their composition.
Now the even morphism ¢, = g : T4(V) — V needs to be an isomorphism in Rep V. In fact,

gur,ovy = guv(g T Rly) = py (1R g)

because ¢ is an automorphism of V. The isomorphism ¢, also needs to be compatible with 7, and the unit
isomorphisms in Rep V' in the sense that

l:‘r/g(W)(SDg Ry 1, ) Tvw = Ty(ly) : T,(V Ry W) = T, (W) (A.2)
and

T‘T/g(W)(ng(W) Xy @g)Tgw,v = Tg("?//l/) (Ty(W Ry V) = Ty(W) (A.3)
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for any object W in Rep V. Since Iy and Iy, are surjective, it is sufficient to show that the equalities in (A.2)
and (A.3) hold when both sides are precomposed with

Iv7in|ZW*>V|EVw:Tg(V|sz)

and
Iy - WRV - WKy V=T,(WKy W),

respectively.
For (A.2), we get the composition

. Xy 1 Iz,
VEW Y 1 (v Ry W) 2 T (V) Ry T,(W) 2 v Ry T, (W) —2 T, (W),

Using 7g,v,wIv,w = I, (v)1,(w) and the definition of the tensor product of morphisms in Rep V, this becomes

lV
Tg (W)

LM (W),

g1y Ty, rg(w)

VRW Yy W V ®y T,(W)

By the definition of the left unit isomorphism in Rep V, the last two arrows above can be replaced with ur, (w) =
puw (g~ R 1y ), so that in total the composition is simply uy. But this is

Ly Iviw = Ty(Ly) Iv,w,

as required. Now for (A.3), we have the composition

- 1 =
WRV 2% W Ry VY T (W) Ry T, (V) —22 2 1 () Ry Ve hy ) L T, (W).
Similar to before, this composition is
WwRY W gy Y e gy, v e, rhy ) By (W
By definition of 7”7‘{9 W) this equals
WR Y B gy B gy M0, LWy (W

Since pr, (w) = pw (97! X 1y ), naturality of the braiding isomorphisms in SC implies that we get

R-L
WRV LS VvRW 2N W= T,(W).

By definition, this is r¥, Iw,v = Ty(r})Iw,v, as desired. This completes the proof that (T,,7,,¢,) is a tensor
endofunctor of Rep V, restricting to a tensor endofunctor on RepG V.

To finish the construction of the G-action on RepG V', we need to prove that g — (T, 74, ¢,) is a group
homomorphism. Note first that (71, 71, 1) is the identity functor on Rep V' and RepG V', and we also need to show
that (Tyn, Tgh, @gn) is the composition of (T, 74, ¢4) and (T, T, ¢n) for g, h € G, that is:

o T, (Th(W, uw)) = Tyn(W, pw) for any object (W, uw) in RepV, and Ty (Tx(f)) = Tgn(f) for any morphism
in RepV.

o Tor, (W), Tn(Wa) Lo (Th:wy W) = Tgn;wy,w,, for all objects Wy and Ws in Rep V.
e pgTy(pn) = egn-
The first point is easy because
pr, (rowy) = vy (97 B lw) = pw (b Blw) (g B lw) = pw((gh) " B lw) = pr,, w)

and because Ty(Tx(f)) = f = Tyn(f). Also, pTy(¢n) = gh = @gn. Then because Tyn,w,,w, is the unique morphism
such that
Wi X Wy

L5 (W) Ty (Wa)
Ty, wy

Tgh;Wyp,Wa

Tyn(Wh By Wa) Ton(Wh) By Ton(Wa)
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commutes, the commutative diagram

Wi K Wy

Twy ,wy L1y (1), (W1)).Tg (77, (Wa))
ITh(Wl)vTh(WZ)

Ty (Th(Wh By W) ——————— T, (Tn(W1) By T3, (W2)) Ty(Ti(Wh)) By Ty (Th (W)

_—
Tg(Th;Wl»W'z) TgsTp (W1),Tp (W2)

shows that the second point holds as well.
Having constructed the G-action on RepG V', we now construct the braiding isomorphisms. For objects Wy, Wy
in Rep® V with W; a g-twisted V-module for some g € G, we will show that there are unique morphisms R%DWQ

and (Ryy, )" such that

—1

Rwy,wy Ry way

W1 X W2 Wg X W1 and WQ X W1 W1 X WQ
J/le«Wz lITg(W2)=W1 iITg(Wz)-,Wl iIWLWz
Riv, wy (R, wy) ™!
W1 Ky Wy Ty (Wo) Ry Wi To(Wa) Ry W1 Wi Ry Wy

commute. Such morphisms would be mutual inverses by the surjectivity of Iw, w, and Iz, (w,)w,, so it remains
to show their existence as morphisms in SC and that R%l,WQ is a morphism in Rep V.

The existence and uniqueness of the morphisms Ri‘//Vl,Wz and (7'\’,5[,17‘,[,2)’1 in SC will follow from the universal
properties of the cokernels (W Xy Wa, Iy, w,) and (T, (W2) Xy Wi, I, (w,),w, ) provided we can show:

1 2
ITQ(WQ),WlRWhWQME/V)l,WQ = ITQ(WQ),WlRWI,WQﬂE/V)l,WQ (A.4)
-1 (1) _ -1 (2)
IWI,W2RW1,W2MT9(W2),W1 - IWl,W2RW1,W2/‘Tg(W2),W1 (A.5)

To verify (A.4), we start with I, (wy),w, Rwy ws /“‘5/12/)1,Wz’ which is the composition

Av,wy, wy wy My,

Rv,w
VR(W, B Ws) 22 (VR W) R Wy — 2 (W, B V) K W,
A, X R Ly (wy@w,
MUYy )V R Wa) —C Y m W, e oy, Y ) )y W

By the naturality of the braiding isomorphisms and the hexagon axiom in SC, this equals

-1

A X A
VR (W) B W) MYy gy ) w, T e ) m s, MY g (W, )W)
& A R I ,
WL R (W )W) S (VR W) R, A2y )Wy, 2 T ) )y W

We replace puw, with pr, (wy) (9™ 1y, ) and then use the intertwining operator property of It, (w,),w, and naturality
of the associativity isomorphisms:

Av,wy wy My, w, Rlw, gX¥1w, ) X1y,
RAGLELLE i N — ™,

VR (W B W) 22 (VR W) R W, (VEWQ&WQ( (VR W) KW,
AGY X A
SR YR (W KWa) LV ERwy VR (W, ®Wy) 222 (v W) )W
X Ayt X I
Rv.w,®lw, (Wg&V)@WlMW@@(Vng) Lwva Hhwy Wy X W, Ty (W2) W1 Ty(Wo) Ry Wh.

Now we apply the hexagon axiom and naturality of the braiding in SC to reduce this composition to

A My, B Kl )X
VR (W1 B W) R (7 ® ) B, SR (v R ) m i, e,

MWllleVz 7?"/Vl,W2 ITg(WZ)»Wl
R TS

W1|Z|W2—)W2®W1

(VRW,) R W,
T,(Wa) By Wy

We replace pw, (9 8 1y, )My w, with pw, since Wi is a g-twisted V-module, and the resulting composition is

1 .
I, (W)W Ry ,WQ,M%/V)I W, as desired.
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Now to prove (A.5), we start with IW1,W2R17VII,W2M%)(W2) w,» Which is the composition

Av,wy,wy g~ 'Rl ) Rlw,
%

VR (We B Wh) 22Y2Y 7 @ 17, ) W, (VR W) KW,
X Rt
P B g R, e W, Y2 W ®y W

Using naturality of the braiding isomorphisms and the hexagon axiom in SC, this becomes

1y RRG A Ry X1
VR(Wy B W) —— 2720 3 (W ) W) 22 (1 /W) ] W, — 2 (W, B V) KW,
Ay R(g~K X I
MW g R (V RW,) B ) g ) DB g i, 2wy .

Since Iy, w, is an intertwining operator,
Ty w, (Twy, B pws,) = Tw, ws (pw, B 1w, ) (R, B L) Aw, vws;
this leads to the composition
1y R¥R;! A ML, K1
VR (Wo ®Wy) ——— %2 v R (W )W) 22, (v R W) B Wy — 2,

(g_lglwl)gIWQ
—>

(VR W) W,y

puw, My, Tw, ,wy
MRS

(V&Wl)&WQ W1|Z|W2~———>W1®\/W2.

Since W is a g-twisted V-module, we can eliminate (g~! X 1‘/1/1)./\/1‘7[,11 w, here and then add associativity and
braiding isomorphisms and their inverses to obtain:

1W1

Ry w, B
W RV)RW;, ——=2

Av,wy, Wy Rv,w,Xlw,

VR (W, R W) 292 7 ) 1,) ) T, (VRW,) B W,
A;,IWQ,Wl 1V|XRI7V11 Wo Av,wy, Wy

rw, My, Tw, ,wy
e,

Wi X Wy ——— W Xy Wa.

By the hexagon axiom and naturality of the braiding isomorphisms, this is

1
Rv,w, X Wa,V, W
%

1w, A
(Wg&V)@Wl —)Wg&(V@Wl)

Av,.wy, wy

V&(WQIXWl) EEE—— (V|X|W2)|X’W1
Tw, Mpuw, R;vll,wg Tvwy wy
—)W2|ZW1 —>W1|X|W2 —)Wl |Z|VW2,
which is the right side of (A.5). We have now proved that R%l,WQ exists and is an isomorphism in SC.
Now we prove that RXVL‘% is a morphism in Rep V' (and thus in RepG V). From the commutative diagrams

(4)

Hwy,wy Rwy,wo

W1 X W2 W2 X Wl
\LITQ(WQ%WI

T,(Wa) Ry W

VR (W, K Wa)

\L]-VIXIWI,WQ llwl,WQ

Hwi Ry, wo

VK (Wl Xy Wz) — W1 Ky W

\4
RWI,WZ

and

()
IvHRw, ,wy Py (wa),wy

VR(W, BW,) — 2 v R (W, B W) Wy KW,

llV&IWLWQ llv&ITg(Wz)vwl

\LITQ(WZ)«WI
WwRRY, w,

T,(Wa) By W,

HTg(Wa), Wy

VR (W, By Wa)

VX (T,(Ws) By W)
for i = 1 and ¢ = 2, together with the surjectivity of 1y X Iy, w,, it is sufficient to show

1 2
ITG(W2)7W1RW1’W2M$/V)1,W2 = ITQ(W2)7W1M§E)(W2),W1(1V X RWl’W2)'
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We start with the right side of this equation, which is the composition

1y BRw, w, Av,wy, wy Wy M1y,

Rv,w.
VR (W, B W) VR (W & W) (VEW,) BW; —22= Y (3, R V) KW,
A X I y
MWL s )V RW) 2 )y e ) Ry W

By the hexagon axioms in SC, this composition simplifies to

Av,wy Wy

vazlwl,wz
V@(Wl |X|W2) EEEE— (V&Wl)IXWQ —>W2|X(V|X|W1)

Ty, Mpw, Ty (Wy), Wy

I
Wy KW, T, (W) Ky Wy

Then we get I, (w,)w, RWlaWQME/%/)l,Wz from the naturality of the braiding isomorphisms.

Next we show that the RI‘//VI’WQ define an even natural isomorphism from X to Mo (T X 1reps v) © 0, that is,

for parity-homogeneous morphisms f; : W7 — Wl in Rep? V and fo: Wy — Wg in RepV,
R%hm(ﬁ Ry fo) = (=D)VIENT, (£2) Ry f1)Rwy e,

First, RI‘//VI"% is even because Rw, w,, Iw, w,, and I, w,),w, are even. Then from the commutativity of

1

= ~ —  Ry.w —
Wy RW, — 2 W R, MW W, )W,
llwlw2 if’fvl,% l%(%)ﬁq
(R . N ~ RY e N ~
Wy By Wy — 22 W ®y Wy — T (W) Ry W
and
Rw,, X —~ —~
W1|ZW2%W2®W1 e WQ&Wl s

llwleQ lITg(Wz)th \LITQ(V‘VQ)‘VVl
v

T, (f2)Ry f1 N N
Wi Ry Wa T,(Ws) By Wy P22 1 7 my W,

Wi, Wa

the surjectivity of Iw, w,, and the naturality of the braiding in SC, we get the naturality of RY.
To complete the proof, we need to check that the braiding R is compatible with the G-action and satisfies the
hexagon /heptagon axioms. First, for g,h € G, W; a g-twisted V-module, and W5 any object in Rep V', we need

1 v
Th;Tg(W2),W1Th(RW1,W2) = RTh(Wl),Th(Wz)Th;WLWz-
This follows from the commutative diagrams

Rwy,woy

W1 @WQ W2®W1

J{IWI,WQ
T (

Th(Wh Ry W)

IThg(W2)’Th(W1)
Iy (wa),wy

Ty (Ty(Wo) By W)

1
Rwl,WQ) Th;Tg(Wa), Wy

Thg(Wa) Ky T, (Wh)

and
RWl »Wa

W1 X W2 W2 X Wl

Iw, ,wy
Iy, (W), 1, (W) Iy, g (wa), 1y, (W)

Ty (W1 Ky W) Ty (Wh) Ry Ty, (Wa) — Thg(Wa2) Ky Ty (Wh)

Ty (W1), TR (W)

Th;Wy,Wo

as well as the surjectivity of Iy, w,. In the second diagram here, the image of R¥h,(W1) T (Wa) is indeed Tgh(Wg) Xy
Ty(W1): because Wy is g-twisted, T3, (W1) is hgh™*-twisted, and then T}, gp—1 (Th(W2)) = Thye(Wa).
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Now suppose g1,92 € G, Wi is a gi-twisted V-module, W5 is a go-twisted V-module, and W3 is any object of
Rep V. The first hexagon axiom follows from the commutative diagrams

Lw, Rlw, w. Tw,,
Wi K (Wo B W) —— 22" W ) (W Ky W) MWV W’y (W Ry Wa)

\4 v
1W1®RW2,W3 ilwl&RWZvWS 1W1®VRW21WS

1W1|Z|IT92(W3),W2 IW1,T92(W3)®VW2

Wy ) (W R W,y) ——2 2 Wy K (T, (Ws) Ky Wa) — 22 Wy Ry (T, (Ws) Ky W)

v
Awy,wa Wy AWl’TQQ(WS)’W2

(W1 Ry Ty, (W3)) Ky Wo

IWl«ng(Wa)IXllVVz Wi Ny Tgy (W3), Wa

I
(W) @ W) R W, (W1 Ry Ty, (W3)) KW

\4 |4
Rwhwzglwz iRwl,ng(Wg)glwz Rwl,ng(W3)®V1W2

ITg192<W3)vW1‘Z|1W2
(Wy ® W) & W (T, 00 (W3) By W1) B W,

ITgl_qQ(w;;)&le,WQ(
B

Ty g, (W3) Ky Wi) Ky Wy

and

1w, RIw,, ws Iy, woRy wy
Wi K (Wy X Ws) W1 B (Wy Ky Ws) Wy Ky (Wy Ky Ws)

Awy Wy, Wy AK’laWZfoi
Twy ,wy Blw, T &y wy, wy
(W1 K Wa) K W3 (W1 Ky Wa) X W5 (W Ry Wa) Xy Wy
R Rwsy,wsy J/RW1®VW2’W3 R¥V1®VW2,W3
1W3®IW1,W2 ITglgg(WS)rwl&VW2
Wy & (W B Wa) Wy & (W By Wa) T, 40 (W3) Ry (W1 Ry W)
4
Awsz, wy,wy J“Tglm(wg,),wl,vv2
Iy, g (W), wy Blw, Iry, g0 (W) Ry Wy W

(W3 B W) KW,

(Ty, g, (W3) Ry W) K Wo Ty, (W3) By W) Ky W

the surjectivity of I, w,x, ws (1w, 8 Iw, ws), and the hexagon axioms in SC. For the heptagon, take g € G, a
g-twisted V-module W7, and any objects W5, W3 in Rep V. Then the commutative diagrams

(W1 RW,) B Wy — 2B s 1) 5 T IEvWes o ®y W) Ry W
AWz wy (Al W) ™
Wi B (W B W) — 02 6 (1, 8y W) M Ry (W Ry W)
Ry, . wyRBWws inwl,wzngg R‘V’Vlngngs
(W B W) B Wy — 2B gy 0wy @y 2B s W) By W
Awlz.vva.,wl\wlwl irggwbwsmwl Toswy Wy By 1w,y
Wo B (W5 K W)) (T, (Wa) Ry T, (Wy)) R W 2080y @00 (W) Ry Wy
Wl (AT (W) 1y (W) wy)
W (T, (W3) Ry W) Ty (W2) By (Ty(W3) Ky Wh)

I, (wy), 1y (W3)Ry Wy
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and

Ty, wy M1, Ty &y, wo,ws

(W, K W) K W (W1 Ky Wa) R Wy (W1 Ry W) Ky W

)

RWLWQ‘XIW(S lR‘YVLWzngS R¥V1,W2|Z|V1W3

ITg(W2>aW1&1W3

(W2 X Wl) X W3 —_—> (Tg(W2) |X|V W1) X W3

I, (W) Ry, Wy, Wy

(T,(Wo) Ry W) Ky Ws
Ay Wy, W (AT (waywrwy)

W ) (W K Ws)

Iy (wy), Wi Ry, wy

Wy K (W7 Ky Ws) To(Wa) Ry (W By W3)

1W2®IW1,W3

Loy BRwy wy llwz gR%LWS 1W2®VR“//V1,W3

1W2®IT9(W3)1W1

W2 X (W3 X Wl) —— W2 X (Tg(Wg) |ZV Wl)

ITg(WQ),Tg(WBMVWT
-
g

(W2) Ry (T, (W3) Ky Wh)

the surjectivity of Iw, =, w,,ws(Iw,,w, 8 1w, ), and the hexagon axiom in SC complete the proof of the theorem.

B Details for Theorem 3.3

Here we provide detailed calculations for the proofs of Section 3, incorporating all unit and associativity isomor-
phisms and making heavy use of the triangle, pentagon, and hexagon axioms.

Equations (3.1) and (3.2). We consider eygy (lygy X FL), which is given by the composition

1ygy NGy R1y)
R

VRV )RV 2EEY L gy R 1R Y) (VRV)R(VEV)RV)

1 ALY
(VRV)R(VE(VRV)) 2B pmpy g (v R v) 228 g (VR (VR V)

lymv gA\_/,lv,v
_— >

WEAVVY R (VR V)R V) e ) e m vy WY gy vy, g

We move the second associativity isomorphism to the front using its naturality and we move the first py back using
naturality of the associativity and left unit isomorphisms:

AL R(1y &5 7
VRVIRV 2% v R (VR V) 20 ) w7 R (1R V) L EGELY)

LRy RAGY )
—>

VRVE(VREV)RV))

VX(V&(V@(VXV)))MV&((V&V)&(V&\/))

1vM(evpv®lyry)

VR(1R(VEV)) vBlvav, v g (VRV) By, Ry VAV, g

We rewrite using the triangle axiom and naturality of the associativity isomorphisms:

AL v R(ry,'® v v iy )Ry
VRVIRV 2% yr (R V) 220 B g (v Ry R v) MEOEVEY) g (v g (VRV)RT)
lng\;,lV&v,v

VRER(VEV) V) SEE YD, e s v m (v = V)

IvNRAy v yvrv
— ey,

V&((V&V)&(V&V))MV&(((V&V)&V)&V)

1y X((evpv X1y )R1y) 1y X(ly X1y ) VZ’(V@V) 1y By VRV YA, g

VR(IRV)RV)

Now we replace the associativity isomorphisms in the second and third lines with 1y X (Ay,v,y K 1y) using the
pentagon axiom, and then by rigidity of V', the whole composition collapses to

AL .
VRV)RV 29 v (v R V) VY, gy v, g (B.1)

as required.
On the other hand, ey gy (1yxy K Fgr) is the composition

Rrot i
(VRV)RV B gy R (VR 1) 2EEOVEV)L g gy ) (VR (VR V)
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A1
lygy®(pvXiyv) V,V,VRV
‘—_%

LB (VRV)R(VRV)R V) (VRV)R(VEV) ———— VE(VE(VEV))

1V®AV,V,V 1V®(5V,U'V®1V)
—_— —_5

VR(VRV)RV) VRARYV) M2 oy A, g

As before, we move A‘_,lv vy forward and the first uy back; we also apply the associativity of py:

_A—l

VRV)RV L VR(VRY)
lvg(lvgu‘lv,v’v)
—_—

1y R(1y Rr;t 1y R(1y B(1y Kiy))
_

L VR(VR(VREL)

VR(VE(VE(VEV))

VR(VR(VRV)RV)) vEAvvEVY, g (VR(VRV)KRV)

1y X(Av,v,vX1y) 1y R((py Ry )R1y)
%

VR(VRV)RV)RV)

VR(VRV)RV)

1y R(evpvXly) VR(1RKV) 1y Xy VRV SV, 1

Now we rewrite the associativity isomorphisms in the second and third rows as Aygy v,y Av,v,yxy using the
pentagon axiom, and then we apply the naturality of these isomorphisms:

1y K1y Rr ') 1vXRAy v,1
ey e Ty

ALY v
VRVKRYV 25 VR(VRV)

1V®(1V®V|X2V)
_—

VRV RV EL) VR(VRV)R1)

1y M(py Nly gy ) 1y XAy, v, v
VR((VRV)R(VRV)) e, gy v rv) XYYy g (VR V)R V)
BB ), i r vy DB iy Ve, g

Next we use the identity Ay, v.1(1y B T‘;l) = T‘;%V and the naturality of the right unit isomorphisms:

1 _
Avivv 1y Rryt

VRV)RV 229 yrv R v) B yry MYV e (v 22O g v R (v RV))

WEAVVY R (VR V)R V) DEE B ) e m vy B gy vy, g

Finally, this composition collapses to (B.1) by the rigidity of V.

Equation (3.3). By the left unit property of V, (Tr¢ g)1y is the composition

_1 ~
iy X1y

vAis iy MEY, (v ry)ry DR

VRV)RV 22 Ry Ay,
Because g is an automorphism of V', this agrees with

—1 ~
iy X1y

-1 -1
v iy VB, (yryyry W EVR

X1
VvRV)RV 2L yvyry 2 v Ly
We then use associativity of puy and naturality of associativity and unit isomorphisms to rewrite as

-1 1=t 5 AL -1
VIisy iy MY vryv)RY YN v R(VEY) M vy C B pry Ay Ly,

Next we use Lemma 3.7 and the automorphism property of g to obtain

_1 pol i
vEiLyv I yr1 Y yrvry) Y vrV)RY 2B yry VB gy Ay

Naturality of the associativity isomorphisms and one more application of the associativity of uy then yields

1y iy

1 ol
vEiLv I yr: MEY yr vy EOVE),

VRVERY) M gy Ay,
which is (Trc g)g~! by the right unit property of V.
Equation (3.4). We start with puw (1y X 1II,), which is the composition

1y RizE 1V®A\7,1v,w

VRW YW, yg 1R W) R,

VR(VRV)RW) VR(VEWVRW)
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1y (v X[(g¥1w ) My, w]) VR(VE(VEW)) 1y R(1vRuw) VR(VERW) 1y Ruw VRW YW

We replace the first arrow using the triangle axiom and the triviality of Ry, and rewrite the last two arrows using
associativity of py and pyy:

A—l
VEHRW LS VR (IR W)

1vH(1y N[(gW¥1w )My, w])

R, vy 1v Ry K1)
-y D

.
vew X2 arv)RW

1V®A\7,1v,w

VR((VEV)RW)

1vXAv v, w
Sl CLALAN

VR (VK (VXRW))
1y R(py Ry )
%

VR(VE(VEW) VR(VEV)RW)

X
VEVEW) Y v kWS
Now we write l‘_,1 Xly = Al,V,Wl;%W and apply naturality of associativity and braiding isomorphisms to ?V;

meanwhile we rewrite the last three arrows using associativity again and naturality of the associativity isomor-
phisms:

[ 7 A
VEW B 1) ((VRW) VR gy R (VR W) Y (VRVIRV)RW
X AL 1y ALY
Rvavv B, (VR V)R W B YR (VR V)R W) W
lvg(lv&[(g®lw)./\/lv,w]) 1V®AV.V,W
—

VR (VR EW)

A
VR((VER(VEW)) VR(VRV)RW) 25 (VR(VR V)R W
DB By m vy R W A YRy A

Next we apply the hexagon and pentagon axioms to the arrows in the second line above; we also apply the
associativity py and the pentagon axiom towards the end of the composition:

s 3 A
VRW Y2 11y Rw) CENE gy RV RW) B (VRV)R V)R W

A;,lv,vxlw 1y XRv, v )Xy
RELELEL G R il 6

VR(VRV)RW - Avv,vEllw,

VRVEV)RW (VRV)RV)RW

—1 —1
(Rv,vX1y)Mly Avav,v,w Avvvaw
%

(VRV)RV)RW 222 (Y RV)R (VR W) —25Y v R (VR (VR W)

A A
1y R(1vR[(gR1w )My, w]) VR(VE (V@W)) V,V,VEW (VRV)R(VEW) VRV,V,W ((V&V) RV)RW

MﬁV@V)&WﬂV@W”—W)VV.

We use naturality of the associativity isomorphisms to cancel Ay v ygw and its inverse here. With this done, we
move the second Ry, using naturality of the associativity isomorphisms, in order to cancel it against the first
using commutativity of py. Then we begin rewriting the fifth line using associativity again:

-1 7 Avrv,v,w
VEW 22 RV RW) MENEY Ry R (VR W) Y (VRV)R V)R W

ALy v Bl (IvRRv,v)M¥1w Av v,y Riw
Rkl AL el TR,

VRVEV)EW VRVRERV)RW (VRV)RV)RW

1
Avrvv,w (gX¥1w )My, w]

VRV)R (VR W) e (VRV)R (VR W) 25N, (v RVYR V)R W

ALl v Bl 1y By )Rl
~VERTW,

VR(VREV)EW - VEV)EW 22y 4w,

We now rewrite the last five arrows using associativity of py -, naturality of the associativity isomorphisms, and
the pentagon axiom. Then we use commutativity to insert an Ry y in front of py:

-1 7 A
VRW B 1R (VR W) SV (g V)R (VR ) DS (VRV)RV)RW

A;,lv,vglw (Iv Ry, v)R1w Av,v,vRlw
7 RO el N

VR(VEV)RW (VR(VRV)REW (VRV)RV)RW
;év,v,w lyry M[(9X¥1w ) My, w] A;}V,WX’W

VRV)R(VEW) 225 R (VR (VEW))
) 1y Ry Blw)

(V XV)X (VK W)
1vRAy v, w v R(Rv,vR1w)
L, kA L

VR(VRV)EW) VR(VRV)RW VE(VRW)
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DBiw g By

Next we use naturality of the associativity isomorphisms to move A‘_/lv vmw> the pentagon axiom in the second
and third rows, the associativity of py, and naturality of the associativity and braiding isomorphisms to move g:

—1 ’Z A
VRW 2B, @ (v R W) MEVEY, Ry R (VR W) AEY, (YRR V)R W

Avvvx (1y®Ry,v )Xy VVIZIVW
vy W, Rkl AL el

VRVRERV)RW VRVEV)RW 2 y R (VRV)RW)

1VIX‘A\_/,V,W v XAy v,w
— Y, ekt

VR(VER (VR W) VEEMyw),

1\/@(72\/,\/&1“/)
_

VR(VER(VEW)) VR(VRV)RW)

VgA;,lv,W 1y X(1y Muw)
LA At

VR(VRV)RW) ~ VR (VR (VEW)) VR(VEW)

WEGEW), o (v s W) LBy A

Now we use naturality of the associativity isomorphisms to move the first Ry -, and then we use the pentagon axiom
to rewrite the first three associativity isomorphisms and the hexagon axiom to rewrite all braiding isomorphisms:

VVV&W

It v
VEW B 1)V RW) VR gy R (VR W) S YR (VR (VR W)

v KAy v,w IvB/Ry vew
L,

VRVEVEW) —Y5 R (VRW)RV)

1V®A\_/,1V,W

VR(VREV)RW)

1
Ly RAL Wy 1v®{Ryvrw,v

VR (VR (W R V)) Ay,

VR(VEW)RV) VRV RV REW)

v V,V,W 1 g'A;lVW \%4 v w
WRAVVW, s (VRV) RW) —— Y v (VR (VR W) 2B (v )W)
LR, v (v s W) LBy gy S g

We cancel all pairs of associativity isomorphisms and their inverses and then apply naturality of the associativity,
braiding, and unit isomorphisms to the first py to finally obtain

_1 1
iy X1y V,V,W

VRW Y g W g vy R S R (VR W)

lvav,W lvg gxlw)
T R

VR (VEW) VRV RW) 2,y Ay,
which is II,uyy .
Equations (3.5) through (3.7). The morphism gy (g X II,) My w is the composition
Myv,w w
VRW —— V&W—>V®(1®W)
gX(1y W[(g¥1w ) My, w])

1y Ry Riw) Ly BAGY, 4
BRI, g (VRV)R W) Y v R (VR (VRW))

1y R(1y Ruw)
/v,

VR (VE(VEW)) VR(VEW) Y yrw B W (B.2)

We begin by rewriting the second, third, and fourth arrows:
1y BAY ) (1y R (iy R 1w))Ayh (' R 1)
= (ly BAVY w) AV vy (v Biv) R 1w) (Ray B 1w) (1" B 1)
= (ly BAVY ) AV vy (Rvavy B 1w) (v B 1v) B 1w) Az yvwly gy
AVVVIXWAVIZIVVW((RV’V Kily)Xlw)(Avvy Blw)(ly R Ryy) K1y )o
o (Ay vy Biw) Avay,vw (iv R lygw)ly g (B.3)

where the last equality uses both the hexagon and pentagon axioms. We also rewrite the last three arrows of (B.2)
using the associativity and commutativity of uw and py as well as the pentagon axiom:

pw (Ly B pw )1y B (1y B pw)) = pw (1y B pw) (1y B (py K 1w))(1y K Ayvvw)
= pw (v X 1w ) Avvw (ly X (py X1w))(1y X (Ry,y X 1w))(1y K Ay,v,w)

o1



= pw(py X1lw)((1y Bpy) X1w) (v X Ry,v) X 1lw) Ay vrvw (v X Avyvw)

= pw (py X lw)(py B1y) Klw)(Avvy Blw)(ly KRy,y) K 1W)(~A\7/,1V’V X lw)Avev,v,wAv,v,vaw -
(B.4)

We insert (B.3) and (B.4) into (B.2), canceling Ay v yxw with its inverse:

vRW 2,y (v R w) S (v gy E (v W) 2SS (VR V)R V) B W
Ay B g (v vy R w LEREY, g gy @ A B (g vy R V)R W
R BB (@ yy vy R S, (g vy (v R ) SEEEEM, gy ()
AvBrvw, (v RVIRV)R W Ay Hw, vryrV)rw IR gy gy Rw
Avvv B, (g vy R V)R W LS gy g gy 2B g gy 2 gy

Next we apply naturality of the left unit isomorphisms to the first two arrows and naturality of the associativity
and braiding isomorphisms to g. Then we use the automorphism property of g and finally apply naturality of
associativity to the second Ry y:

1oL 7
VRW YEY ) v Rw) MEVEY gy R (v R W) MY R vy R (V)W)

Avrv,v,w (IvRRy,v)Xlw
T

(VRV)RV)EW 2™ g vy R W (VR(VRV)&EW

—1

((V&V)&V)&WM(V&V)&(V&W)

(Rv,vR1y)R1yw
L

Av,v,v 1w lygy®My,w
RALCLEL St N B LAt LN

(VRV)R(VEW)

AVEV,V.W
e

(VRV)RV)RW ((V&V)&V)&W%(V&(V@V))&W

(1vRRv,v)R1w (V X (V X V)) =W Av v, v Riy ((V % V) X V) =W (pv X1y )Ry (V X V) X W
(gX1y ) K1y (VRV)RW py Ry VRW AW (B.5)

Now we use the hexagon axiom and commutativity of uy to simplify the penultimate seven arrows:

pv (9 R 1y) (py B 1y)Avvy (lv B Ry, v) Ay y (Ruy B ly) = pyv (g B 1v) (py B 1v)Ryvev Ay yy
= pv Ry (lv B g)(ly B puy)Ayyy = pyv(ly R g)(1y B py ) Ay, -
We also rewrite associativity isomorphisms in the second and third lines of (B.5) using the pentagon axiom:

[t i
VRW YEY ) v RW) MEVEY gy R (VR W) MY R vy R (VR
—1
A
VVVEW, o (VR (VR W) A R (VRV)R W) VB (VR (VR V)) R W

—1

(QvXRv,v)X1w Av,v@v,w 1V|Z|-A;,lv,w
WERvBW, (R (VRV)RW 22 R (VRV)EW) —— Y v R (VR (VR W)

A V, vV AV

AVVEY (R VYR (VR W) EEMY g vy R (VR W) S (VR V)R V)R W

’Aalvvgl \% \%4 w \%4 w "
;W)(Vg(vgv))gw'%(ng)gwﬂ)(vgv)gwﬂ}x/xwﬂ_w)w

Again using naturality of associativity and the pentagon axiom, we get:

1oL 3 ALY
VRW B, 1) (v RW) VR gy R (VR W) By (VR (VR W)

lvx(lngV’W) lvaV,V,W 1V|z vaxlw)
_— —_— _

VRE(VE(VRW)) VR(VRV)RW) VR(VRV)RW)

1V®‘A‘7,1V,W

VR(VE(VEW))

(1vgp.v)|zllw
ST

1y X1y XMy w) 1vXRAy v, w

VX (V X(VXW))
(1vXg)K1w
0,

VR(VRV)RW)

AV,VIXIV‘W
—_—>

(VR(VEV))RW (VRV)RW 22y Ay,

(B.6)

(VRV)RW
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We now analyze the isomorphism VX (VW) — (VX V)XW in the fourth through ninth arrows. We apply
the Yang-Baxter relation once to get

X X
VREVEW) 2R gy mv) A v R R Y 2 R V)RV S, R (VR V)
1WIZ|RV,V AWVV
-

WR(VRV) 2 gy gy w ZverEy,

VRVEW) Y (vRV)RW

and a second time to obtain

VWV

VEW)RV 22 vy g (W R V)
1V®RWYV
—

VvREVEW) MR g wrv) A yrwyry 2 wrvyry 2y mwy R v
2wy g vy R v g ) A v g vy R w R sk vy m g
By the hexagon axiom, this equals
VR(VEW) 2 VRV)RW S R (VR V) A (WR V)RV
iI'V’—SW&(VW/) Bwvav, ygvymw 2B (v Ry R W

We cancel associativity isomorphisms and insert this composition into (B.6)

i AL
VRW Vv, g (VRW) VeV Ry R (VR W) B

AvvvEw, g (v R (V8 W)
1v XAy v, w V@((V@V)&W) v BMygy,w VX((V&V)&W)ng((ng)XW
V,VRV,W (V X (V X V)) W M} (1vRg)Kiw

(VRV)RW (VEV)RW 22y 29y,

By the naturality of associativity and monodromy, the commutativity of uy, and properties of the left unit iso-
morphism, we now get

Iy Ry

i AL
vEW Y aryvyrw ORIy ryvy R vy R VB (Y RV R (VKW
TVVVEY, g (VR (V RW)) A g (v R V)R W) RO s g
1V|XMV,W
T

VRVEW) 2 (v r vy w SOy AW gy Ay

By the pentagon axiom, the third through fifth arrows equal A‘_/lvng(/l;lvv X 1y ). We also use naturality of
the associativity isomorphisms and associativity of gy to end up with

15 Ry Gy R1y)Rly AV
vEw X ary)yrw VR gyyr vy Rw Y (VR(VRV)RW
(1lyXpy ) K1y
4>

VVW

VRVIRW 22 v g (v g w) L) Myw]

VR(VEW) Y g Ay
At this point, we use Lemma 3.7 to replace the morphism V' — V KV in the first four arrows with

(v B 1) Av vy (ly Biy)ry,t

Inserting this into the above composition and using the triangle axiom, we get

vEw 2EWL w1 Ry A (xR LER
Av v,y Rilw
MO Ae Y

(VR (VRV)RW
(VRV)RV)RWw LB,
lvg[(gglw)/\/{v,w]

VVW

VRV)EW 2 VR (VRW)

VRW 25 W
Using naturality of the associativity and the pentagon, we obtain

VR(VRW) VEw,

— 5 1y ALY
vRW My g rw) MECE) g (VRV)R W) Y v R (VR (VR W)
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Ay v,.vrw (V X V) X (V X W) lyxy X[(gX¥1w )My, w]

(VRV)R(VRW)
lyryMuw (VRV)RW v Xy VRW 2w
Finally, by naturality of the associativity isomorphisms and the associativity of uy and pyw, this equals

1y R 1y By Rlw) Ly RAGY,
VREW Ly R AR W) SV g (VR V)R W) Y R (VR (VR )

1vX(1vR[(gM¥1w ) My, w]) 1y X1y Xpuw)
e e sEN

VR(VER(VEW)) VR(VERW) Yy A gy

which is pw (1y K II,).
Equations (3.8) and (3.9). When W is h-twisted, II, is the composition

Ty Ry

w A;1VW v -t w
W rw B,y Ry R W DY, v (v R W) R e,

VRWREW) Y R A gy,

Naturality of the associativity isomorphisms and associativity of py imply this is

-1 ~ —1
W R w M gy Ry D 9w,

(VRV)RW 22y 2wy,

which is the right side of (3.8). Finally, > __, 7, is the composition

geG

1 = AL
W rw B, Ry R W Y v R (VRW)

L B( g 5y eq 981v)

VEMVWL R (VR W)

VERWVEW) Y R Ay
Using ﬁ > yeq 9 = tvey and the unit property of W, we get

—1

I 7 A
WS iRw Y p RV RW Y VR (VR W)
1vx(evglw)
A i S L4

EMVW L R (VR W)

VROARW) L v R A,

Then we simplify using naturality of the monodromy and associativity isomorphisms together with My y = 11 w:

AL
WRDEW 22 v R AR W) 22 v rw 29w,

1 ~
iy Mlw

w1 mw B, gy L)y,

Now (1y X lW)Ax_/,lLW = ry X 1y by the triangle axiom and we get

-1

A A e S 1 LI N BN

This is the right side of (3.9) by the unit property of W.
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