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ABSTRACT. We show that direct limit completions of vertex tensor categories inherit vertex
and braided tensor category structures, under conditions that hold for example for all known
Virasoro and affine Lie algebra tensor categories. A consequence is that the theory of
vertex operator (super)algebra extensions also applies to infinite-order extensions. As an
application, we relate rigid and non-degenerate vertex tensor categories of certain modules
for both the affine vertex superalgebra of 0sp(1|2) and the N = 1 super Virasoro algebra to
categories of Virasoro algebra modules via certain cosets.

CONTENTS
1. Introduction 1
2. Vertex tensor categories 4
3. Direct limits of weak modules 12
4. Direct limit completion in the weak module category 15
5. The direct limit completion as a braided tensor category 20
6. The direct limit completion as a vertex tensor category 36
7. Examples and applications 42
References 49

1. INTRODUCTION

A central problem in the representation theory of vertex operator algebras is existence
of vertex tensor category structure [HL1] on module categories; this in particular implies
existence of braided tensor category structure. Unfortunately, the assumptions on the module
category that are needed to apply the (logarithmic) vertex tensor category theory of Huang-
Lepowsky-Zhang [HLZ1]-[HLZ8] are rather extensive and can be difficult to verify in practice.
For example, only recently has vertex tensor category structure been established on the
category of C-cofinite modules for the universal Virasoro vertex operator algebra at arbitrary
central charge [CJORY].

One way to avoid direct verification of the vertex tensor category theory assumptions is
to use extension theory. Suppose a vertex operator algebra A is an object in a category
C of modules for a subalgebra V' that is already known to have vertex tensor category
structure. Then A is a commutative algebra in the braided tensor category C [HKL] and
tensor-categorical methods can be used in showing that the category of A-modules which
are objects of C (when viewed as V-modules) also has vertex and braided tensor category
structures [CKM1]. This method works well when A is a finite-order extension of a nice
vertex operator subalgebra V.
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However, it often occurs that A is not actually an object of C but is rather, for example, an
infinite direct sum of modules in C. For example, the singlet WW-algebras [Adl] are infinite
direct sums of irreducible C}-cofinite modules for their Virasoro subalgebras. The usual
tensor-categorical method for handling such examples is to realize A as an object in the
ind-completion of C (see for example [EGNO, Remark 7.8.2]); if C is semisimple, this agrees
with the direct sum completion Cg of [AR]. The ind-completion Ind(C), as constructed in
references such as [KS], is the full subcategory of direct limits in the category of contravariant
functors from C to sets, into which C embeds by the Yoneda Lemma. Or, when C is a C-
linear abelian category, we can use the category of contravariant functors from C to C-vector
spaces. But unfortunately, this ind-completion is not suitable for studying vertex operator
algebra extensions. The problem is that if we want the category of A-modules in Ind(C)
to have the correct vertex algebraic tensor category structure, then the underlying tensor
category structure on Ind(C) must also be vertex algebraically natural. In particular, objects
of Ind(C) must be genuine V-modules of a sort, and the tensor product on Ind(C) must satisfy
the intertwining operator universal property of [HL.Z3, Definition 4.15].

In this paper, we construct an alternative direct limit completion (which we also denote
Ind(C)) of a vertex tensor category C that is suitable for studying representations of an
extension algebra A. Especially, we show that under suitable conditions, Ind(C) has vertex
and braided tensor category structures as described in the tensor category theory of [HLZ1]-
[HLZ8]. Instead of realizing Ind(C) within the category of contravariant functors from C to
vector spaces, we use the ambient category of weak V-modules: we define Ind(C) to be the
full subcategory of weak modules whose objects are isomorphic to direct limits of inductive
systems into C. Equivalently, Ind(C) is the category of generalized V-modules (in the sense
of [HLZ1, Definition 2.12]) which are the unions of submodules that are objects of C. Now
here is our main theorem:

Theorem 1.1. Let V' be a vertex operator algebra, C a category of grading-restricted gener-
alized V -modules, and Ind(C) the category of generalized V -modules that are the unions of
their C-submodules. Assume also that:

(1) The vertex operator algebra V' is an object of C.

(2) The category C is closed under submodules, quotients, and finite direct sums.

(3) Every module in C is finitely generated.

(4) The category C admits P(z)-vertex and braided tensor category structures as described
in Section 2.

(5) For any intertwining operator Y of type (W1XW2) where Wi, Wy are modules in C and
X is a generalized V -module in Ind(C), the submodule TmY C X is an object of C.

Then Ind(C) also admits P(z)-vertex and braided tensor category structures, as described in
Section 2, that extend those on C.

Much of the construction of the tensor category Ind(C) in the proof of this theorem goes
quite naturally. For example, we realize the tensor product Xngg of two direct limits in
Ind(C) as a direct limit of tensor products Wi X Wy, where W7 C X; and Wy C X, are
C-submodules. The most difficult part of the construction is the associativity isomorphisms:
since X1 (XX X3) and (X;XX,5)X X5 are two different iterated direct limits, we need a kind
of “Fubini’s Theorem” (Proposition 5.4 below) that shows both are isomorphic to a suitable
multiple direct limit.
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Although the conditions of Theorem 1.1 may appear extensive, they hold in many exam-
ples. In particular, recent results in [CJORY, CY] show that if the category of Ci-cofinite
modules is closed under contragredient modules, then it has the vertex and braided tensor
category structures of [HLZ1]-[HLZ8]. We verify the remaining conditions of Theorem 1.1
in Theorem 7.1 below to conclude:

Theorem 1.2. Suppose the category Ci, of Cy-cofinite grading-restricted generalized modules
for a vertex operator algebra V' is closed under contragredient modules. Then C{. satisfies
the conditions of Theorem 1.1, so that Ind(C},) admits vertex and braided tensor category
structures extending those on Cj,.

Once Theorems 1.1 and 1.2 are established, we have applications to infinite-order exten-
sions of V' in Ind(C). These are vertex operator algebras A which contain V' as a vertex
operator subalgebra, that is, V' conformally embeds into A since they share the same con-
formal vector. Although the extension results in [HKL, CKMI1] are stated for categories of
generalized modules with grading restrictions that modules in Ind(C) almost never satisfy,
these grading-restriction conditions are not used in essential ways. Thus we get the following
two results almost immediately (see Theorems 7.5 and 7.7 below):

Theorem 1.3. Let (V,Y,1,w) be a vertex operator algebra and C a category of grading-
restricted generalized V-modules that satisfies the conditions of Theorem 1.1. Then the fol-
lowing two categories are isomorphic:

(1) Vertex operator algebras (A,Y,14,wa) such that:
e Ais a V-module in Ind(C) with vertex operator Y :V @ A — A((x)),
o Yy(v,2) =Y (v_11a,2) forveV, and
OwA:L(—Q)lA (:w_l].A).
(2) Commutative associative algebras (A, pia,ta) in the braided tensor category Ind(C)
such that A is Z-graded by L(0)-eigenvalues and satisfies the grading restriction con-
ditions.

Theorem 1.4. Let V' be a vertex operator algebra, C a category of grading-restricted general-
ized V -modules that satisfies the conditions of Theorem 1.1, A a vertex operator algebra that
satisfies the conditions of Theorem 1.3(1), and Rep® A the category of generalized A-modules
X which are objects of Ind(C) as V-modules with respect to the vertex operator Yx (va(+), ).
Then Rep® A has vertex and braided tensor category structures as described in Section 2.

We aim to apply these results to two classes of vertex operator algebras whose representa-
tion categories are neither finite nor semisimple. The first class is affine vertex algebras and
W-algebras at specific levels. Already the simple affine vertex algebra of sl, at non-integral
admissible level admits uncountably many inequivalent simple modules, most of which fail
to satisfy grading restrictions such as finite-dimensional conformal weight spaces and lower
bounds on conformal weight. Such properties have prevented the construction of vertex ten-
sor categories for these vertex operator algebras so far, except for the 5v-ghost vertex algebra
[AW] and the well-behaved subcategory of grading-restricted modules for many affine vertex
algebras [CHY, Cr, CY]. The second class of vertex operator algebras is those that still have
uncountably many inequivalent simple modules, but these modules have finite-dimensional
weight spaces and lower-bounded conformal weights. Prototypical examples are the singlet
algebras [Ad1] and cosets of affine vertex algebras and W-algebras, such as the Heisenberg
coset of the simple affine vertex algebra of sl at admissible level [ACR].
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We can now use the direct limit completion to study these non-finite, non-semisimple
module categories. Concretely, the singlet algebra M(p) for p > 2 is an infinite direct sum
of C-cofinite modules for the Virasoro algebra at central charge 1 — 6(p — 1)?/p, and the
same is true for the triplet algebra WW(p) which at the same time is also an infinite direct
sum of irreducible M (p)-modules. It turns out that all triplet modules lie in the direct limit
completion of the category of C}-cofinite Virasoro modules. Moreover, certain subregular
W-algebras of type A, called B, algebras, are infinite-order extensions of the tensor product
of M(p) with a rank-one Heisenberg algebra. Our main results allow us to study categories
of B,- and M (p)-modules that lie in the direct limit completion of Cj-cofinite Virasoro
modules (times Fock modules for the Heisenberg algebra in the B, case). In the singlet case,
we will characterize this category thoroughly, that is, we will compute its fusion ring and
prove rigidity, in [CMY].

In this paper, we present one detailed application in Example 7.11. Using coset construc-
tions from [CGL], we show that certain categories of modules for the N = 1 super Virasoro
algebra at generic central charge and for the affine vertex superalgebra of osp(1|2) at generic
level are equivalent to certain categories of Cj-cofinite modules for Virasoro vertex algebras.

The remainder of this paper is organized as follows. In Section 2, we recall the definitions
of various classes of module for a vertex operator algebra, the description of braided tensor
categories of modules for a vertex operator algebra from [HLZ1]-[HLZ8], and properties of
the category of C-cofinite modules for a vertex operator algebra. In Section 3, we recall the
definition of direct limit in a category and discuss the existence and properties of direct limits
in the category of weak modules for a vertex operator algebra. In Section 4, we present the
definition of direct limit completion Ind(C) of a category of modules C for a vertex operator
algebra, and we show that Ind(C) is a C-linear abelian category if C is. In Section 5, we show
that if C is a braided tensor category, then under suitable conditions, Ind(C) is also a braided
tensor category with twist that contains C as a braided tensor subcategory. In Section 6,
we show that if C is a vertex tensor category, then under suitable conditions, Ind(C) is also
a vertex tensor category, with structure isomorphisms described as in Section 2. Finally,
in Section 7, we demonstrate sufficient conditions for the category of Cj-cofinite modules
for a vertex operator algebra to satisfy the conditions of Theorem 1.1, and we apply these
sufficient conditions to Virasoro and affine vertex operator algebras. We also explain the
application of Theorem 1.1 to vertex operator (super)algebra extensions and present several
examples of extensions that can be studied using direct limit completions.

2. VERTEX TENSOR CATEGORIES

We use the definition of vertex operator algebra from [FLM, LL]. We will work with the
following categories of modules for a vertex operator algebra:

Definition 2.1. Let V' be a vertex operator algebra.
o A weak V-module is a vector space W equipped with a vertex operator
Y : V — (End W)[[z, 27"
v Y (v, x) = ZU" x "t

nez

satisfying the following properties:
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(1) Lower truncation: for all v € V and w € W, v,w = 0 for n € N sufficiently
large.

(2) The vacuum property: Yy (1,z) = Idy.

(3) The Jacobi identity: For vi,vs € V,

r1 — &
17515 ( lj: 2) Yw(vl7$1)YW(U2,JZ2) — mglé (
0

To — T

) Yw (ve, z2)Yw (v1, 21)

= 1‘2_15 (%’1 _ lCo) Yw(Y("Ul,[Eo)UQ, 1’2).

X2

(4) The L(—1)-derivative property: For v € V,
d
Yw(L(=1)v,z) = %Yw(v,x).

e A weak V-module W is N-gradable if there is an N-grading

W= wWi(n)

neN

such that for homogeneous v € V', with conformal weight wt v,
(2.1) v, W(n) CW(wtv+n—m—1)

for m € Z.
e A generalized V-module is a weak V-module that is graded by generalized L(0)-
eigenvalues: W = @, . Wy where

Wi ={w e W | (L(0) — h)Y -w =0 for N € N sufficiently large}.

e A generalized V-module W = @, . Wy is grading restricted if:
(1) For any h € C, Wy, is finite dimensional.
(2) For any h € C, W4 = 0 for n € Z sufficiently negative.

Remark 2.2. The N-grading on an N-gradable weak VV-module need not be unique, and we
do not treat such a grading as part of the data of a weak module. That is, V-homomorphisms
between N-gradable weak V-modules need not preserve N-gradings.

Remark 2.3. We will sometimes use the term “V-module” as an abbreviation for “grading-
restricted generalized V-module.”

Remark 2.4. Any V-module is N-gradable. To see why, note that the second restriction
on generalized L(0)-eigenspaces for a V-module W implies that for any coset p € C/Z such
that Wy, # 0 for some h € p, there is some h, € p with minimal real part such that
Win,) # 0. For a coset p such that Wy, = 0 for all o € u, we can pick h, € p arbitrarily.
Then W = @, .y W(n) where

W(n) = @ Wik, 4n)
neC/Z
for n € N.

We will consider categories of generalized V-modules that admit braided tensor category
structure induced from vertex tensor category structure as in [HLZ1]-[HLZ8]. The tensor
product bifunctor of such a braided tensor category is defined in terms of (logarithmic)
intertwining operators among V-modules, whose definition we now recall:
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Definition 2.5. Let Wy, W5, and W3 be a triple of (weak) modules for a vertex operator
algebra V. An intertwining operator of type ( Ws

Wy Wa
YV W @ Wy — Willogzl{x}
wy ® we — Y(wy, x)wy = Z Z(wl)mkwg a:_h_l(log x)k

heC keN

) is a linear map

that satisfies the following properties:
(1) Lower truncation: for any h € C, wy € Wy, and we € W,
(W1)hnpwe =0

for n € N sufficiently large, independent of k.
(2) The Jacobi identity: for v € V and wy € Wi,

xalé (xl — x2> YWg(”?'xl)y(wth) - Ial(s (

To — T

Zo —Zo

) Y(wi, x2)Yw, (v, 21)

=510 (xl — xo) Y(Yw, (v, zo)wr, T2).

T2

(3) The L(—1)-derivative property: For v € V,
d
V(L(-1)0,2) = L Y(o,2)

For (weak) V-modules Wy, W, and W3, we use V%,WQ to denote the vector space of
W3

W, WQ). We say that an intertwining operator ) of type

intertwining operators of type (
(WVK‘:’%) is surjective if
W3 = span{(wl)h,kwg ’ wy € Wl,wz c WQ, h € C, ke N}

We will use Im)Y to denote the above span of the (w;)iwe, so that Y is surjective if
W3 =Im y .

We now discuss the braided tensor category structure on a category of generalized V-
modules induced from vertex tensor category structure as in [HLZ8]; see also the expositions
in [HL2] and [CKM1] for more details. The data of a vertex tensor category, as defined in
[HL.1], includes a family of tensor product bifunctors parametrized by elements of the moduli
space of Riemann spheres with two positively-oriented punctures, one negatively-oriented
puncture, and local coordinates at the punctures. However, to describe the induced braided
tensor category structure, we only need to use the P(z)-tensor products, where P(z) is the
sphere with positively-oriented punctures at 0 and z € C*, negatively-oriented puncture
at oo, and standard coordinates at each puncture. For any z1,zo € C*, the P(z;)- and
P(z9)-tensor products are isomorphic via natural parallel transport isomorphisms associated
to homotopy classes of continuous paths in C* from z; to z5. For this reason, it is possible to
choose, say, a P(1)-tensor product bifunctor X and then use it to realize all other P(z)-tensor
products. We shall implicitly do so here to simplify the discussion.

Suppose C is a category of (not-necessarily-grading-restricted) generalized modules for a
vertex operator algebra V' that admits the braided tensor category structure of [HLZS].

e If W, and W5 are objects of C, the tensor product module W; X W5 is an object of
C characterized by a universal property: There is an intertwining operator Yy, w, of
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type (VXI}FJ{ZQ) such that if ) is any intertwining operator of type (WKVS%) where W3

is an object of C, then there is a unique V-module homomorphism
f WKWy — W
such that V = f o Yw, w,. In other words, the linear map
Homy (W1 & Wy, W) — Vii® .
f=fodwiw,

is an isomorphism. It is not hard to see from the universal property of (W; K
Wa, Yw,.w,) that the intertwining operator Vi, w, must be surjective (see for in-
stance [HLZ3, Proposition 4.23]).

e For morphisms f; : W, — Wy and fo : Wy — Wg, the tensor product morphism
AR W R Wy — Wy KWy

is the unique V-module homomorphism guaranteed by the universal property of (W;X
Wa, Yw,.w,) such that

Vi, i, © ([1® f2) = (/i ® f2) o Yy ws-

e The unit object of the braided tensor category C is V', and for a generalized module
W in C, the left and right unit isomorphisms [y : VXW — W and ry : WKV — W
satisfy

lw (Vvw (v, 2)w) = Yy (v, 2)w
and
rw (Vwy (w, z)v) = exL(_l)YW(v, —z)w
forv eV, w e W. Because YVyw and Yy y are surjective, Iy and ry are completely
determined by these relations.

e For generalized modules W, and W5 in C, the braiding isomorphism Ry, w, : Wi X
Wy — Wy X W is characterized by

72W1,Wz (yW1,W2 (wlv .Z‘)U)Q) = 6IL(_1)yW2,W1 (w27 emw)wl
for wy € Wl, Wy € WQ.
e There is also a twist 6 on C, a natural automorphism of the identity functor, given
by Oy = e*™L0) The twist satisfies 6y, = Idy and the balancing equation

9W1|X’W2 = RWz,Wl © RWl,Wz © <6W1 X 6W2>
for modules W7, W5 in C.

The description of the associativity isomorphisms in C requires some preparation. First
of all, the existence of associativity isomorphisms depends on, among other conditions, the
convergence of products and iterates of intertwining operators among generalized modules
in C. To explain what this means, we first define for any generalized V-module W the graded
dual W' = @), ¢ W, and the algebraic completion W = [1,cc Win)- Note that there is an

obvious embedding W C (W’)* (and this embedding is ‘a linear isomorphism if and only if
each W, is finite dimensional). For any h € C, let 7, : W — W, denote the projection.

Remark 2.6. If a generalized module W satisfies the grading restriction condition that for
any h € C, Wiy, = 0 for n € Z sufficiently negative, then the graded dual W’ has the
structure of a generalized V-module, called the contragredient of W (see [FHL, Section 5]).
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Now take intertwining operators ) of type (W?V&l) and Y, of type (W];JVIVS) where Wy, Ws,
W3, Wy, and M, are generalized modules in C. We say that the product of ), and ) is
convergent if for w; € Wi, we € Wy, wy € W3, and 21, z9 € C* such that |z;| > |2z3] > 0, the

series of linear functionals

Z <', Wi (wl, 21)7Th (y2(w2, 22)w3)>

heC
on W} converges absolutely to an element of W (via the embedding of W into (W})*). The
substitution of non-zero complex numbers for formal variables in intertwining operators is

accomplished using (any) choice of branches of logarithm. If the product of intertwining
operators converges, we denote the limit of the series by

Vi(wy, z1)Va(wa, 22)ws € Wi;
if we wish to emphasize that we are using the choices ¢;(21) and ¢5(29) of branch of logarithm,
we denote the product by

Vi(wy, €)Y (ws, €26 ).

Similarly, the iterate of intertwining operators V! of type ( MI;V{;Vg) and Y? of type (W]ﬁvg)
converges if for wy € Wy, wy € Wy, w3 € W3, and zg, 20 € C* such that |z3| > |z9| > 0, the
series of linear functionals

Z (- YV (V2 (w1, 20)ws) , z2)ws)

heC

on W) converges absolutely to an element of Wj.

The convergence of products and iterates of intertwining operators is essential for the ex-
istence of suitable associativity isomorphisms in C. In fact, when associativity isomorphisms
exist, they are described as follows:

e For generalized modules Wy, W5, and W3 in C, the associativity isomorphism
Aw, waws - Wi R (W K W) — (W K W,) KWV
is characterized by the equality
(W', A, waws (Y wasmws (w1, €™ ™) Yy wy (w2, €72 )ws ) )
= (', Ywmwo.wy (Y (w1, €017 Yy ), €72) ws)

for any wy; € Wi, wy € Wa, w3y € Wi, w' € (W1 R Wy) K W3), and 1,75 € R such
that 7 > ry > r; — 1y > 0. Here, Aw, w, w, is the obvious extension of Aw, w, w, to
algebraic completions, and Inr for » € R, is the real-valued branch of logarithm.

Remark 2.7. As explained in [CKM1, Proposition 3.32], the above relation for the associa-
tivity isomorphism Aw, w, w;, holds for every r1, 7, € R which satisfy r1 > 7o > r; — 179 > 0.
Indeed, this relation shows that the multivalued analytic functions on |z1| > |22| > 0 and
|z2] > |21 — 22| > 0 determined, respectively, by the product of Aw, wy wy 0 Vw, wamws s Yiws.ws
and by the iterate of Vw,wmw, ws, Yw,.w, have equal restrictions to their common domain.

Remark 2.8. For the full vertex tensor category structure on C, one can take the P(z)-
tensor product Wi Xp(,) Ws for each z € C* to be the module W, I W;, which satisfies a
universal property with respect to the P(z)-intertwining map

yWhWQ('aZ)' . Wl X W2 — W1 IE Wg.
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As before, the substitution x — z is accomplished using a choice of branch for log z.

The question of whether a category C of modules for a vertex operator admits braided
tensor category structure as described above is usually rather difficult: the most difficult part
is showing the existence of associativity isomorphisms. Perhaps the most natural category
of grading-restricted generalized V-modules to consider for vertex tensor category structure
is the category of C-cofinite modules:

Definition 2.9. Let V' be a vertex operator algebra and W an N-gradable weak V-module.
Define the vector subspace

Ci (W) = span{v_lw

v E P Vi, w e W}.

n>1
Then we say that W is C-cofinite if dim W/C1(W) < co. We use C{; to denote the category
of C'-cofinite grading-restricted generalized V-modules.

The category Ci has good vertex algebraic properties: Huang showed in [Hu] that com-
positions of intertwining operators among C'-cofinite modules satisfy regular-singular-point
differential equations and hence are convergent, and in [Mil], Miyamoto showed (also using
differential equations) that Ci-cofinite modules are closed under tensor products. However,
it is not clear in general that CJ, has good algebraic properties: especially, it is not clear in
general that Ci, is closed under submodules and contragredients. Nevertheless, recent results
in [CJORY, Section 4] (see especially the proof of Theorem 4.2.5) and [CY, Section 3] (see
especially the proof of Theorem 3.3.4) show that if C{; is in fact closed under contragredients,
then it admits braided tensor category structure as described in this section:

Theorem 2.10. Let V be a vertex operator algebra and assume that the category Ci, of C-
cofinite grading-restricted generalized V-modules is closed under contragredients. Then Cy-
admits the vertex and braided tensor category structures of [HLZ1]-[HLZS].

We end this section with some basic results on Cf-cofinite modules that we will use later:
Proposition 2.11. Any C)-cofinite N-gradable weak V-module is finitely generated.

Proof. Suppose W = @, .y W (n) is a Ci-cofinite N-gradable weak V-module and let T" be a
finite-dimensional subspace of W such W =T + C;(W). We may assume that 7" is graded,
and moreover since W(0) is finite dimensional by [Mil, Lemma 6], we may assume that T’
contains W (0). We will show that W is generated by T, that is, W = (T’).

We prove that W(n) C (T) by induction on n with the base case n = 0 handled by the
assumption W(0) C T. So take n > 0 and assume W(m) C (T') for m < n. For any
w € W(n), we have

(2.2) w=uw+ Z 0w

forw' € T, v® € V, and w® € W. Since w is homogeneous and T is graded, we may assume
that w’ € T N W (n) and also that each v is homogeneous (of positive weight). Then by
(2.1), the w® are homogeneous in the N-grading of W with degree

degw® =n — (wto® — (=1) = 1) < n,
so each w® € (T) by induction. Then (2.2) shows w € (T') as well. O
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Proposition 2.12. The category of Cy-cofinite N-gradable weak V-modules equals Ci.

Proof. Remark 2.4 shows that every module in CJ, is N-gradable. Conversely, if W =
B, cn W(n) is a Cj-cofinite N-gradable weak V-module, [Mil, Lemma 6] shows that ev-
ery W(n) is finite dimensional. Since W (n) is also L(0)-invariant, each W (n) decomposes
as the direct sum of L(0)-generalized eigenspaces, so W = @, - W) where Wi, is the
L(0)-generalized eigenspace with generalized eigenvalue h.

Now Proposition 2.11 shows that W is generated by the finite-dimensional subspace T' =
@Y., W(n) for some sufficiently large N. Let {h;}._, be the finitely many generalized
eigenvalues for L(0) acting on 7. Since T generates W, W (n) for n > N is spanned by
vectors of the form v,w’ for v € V and w’ € T (see [LL, Proposition 4.5.6]). We may
assume that v is L(0)-homogeneous and that w' is both L(0)-homogeneous (with generalized
L(0)-eigenvalue h;) and homogeneous in the N-gradation of W (with degree degw’). Such a
vector v, w’ has generalized L(0)-eigenvalue

(2.3) wtvpw' = h; + wtv —m — 1
and N-degree

degv,w’ =n =degw +wtv —m — 1,
so that in particular wtv —m — 1 = n — degw’. Thus

O<wtv—m—1<n,

and combined with (2.3), this shows that the generalized eigenvalues of L(0) acting on W (n)
for n > N have the form h; + k for 0 < k£ < n. In particular, all generalized L(0)-eigenvalues
on W are contained in Ufil{hi + N}, and moreover, any Wi, is contained in the finite-

dimensional subspace @gjom W (n). This proves the grading-restriction conditions showing
that W is a grading-restricted generalized V-module. 0

Finally, the following results are key for applying our main results on direct limit comple-
tions to Ci:

Lemma 2.13. Suppose W1 is a V-module in C,, Wy is a finitely-generated grading-restricted
generalized V -module, X is a generalized V-module, and Y s an intertwining operator of

type (WIXWQ). Then Im Y is N-gradable.

Proof. Since Wi and Wy are finitely generated, their conformal weights lie in finitely many
cosets of C/Z. Thus they are both N-gradable as in Remark 2.4 with finite-dimensional
homogeneous subspaces. Let 77 be a finite-dimensional graded (with respect to the N-
grading) subspace of Wj such that Wy = T} + C1(W;); then W;(0) C T;. We first consider
the case that W, is generated by W5(0).

From the finite-dimensionality of 77 and W5(0), the lower truncation of the intertwining
operator ), and the L(0)-conjugation formula

y OV (ur, x)us = Y(y" O, wy)y"Ou,
for uy € Ty, ug € W5(0) (see [HLZ2, Proposition 3.36(b)]), we find that

Im Y|rew,0) € @ @X[hu—kn]

neC/Z neN

for suitable h, € pu. Denoting this graded subspace of X by X , the argument of Remark 2.4
implies that it is enough to show that Im)Y C X.
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We first show that Im Y ‘Wl(n)@)Wg(O) - X by induction on n. The base case holds because
W1(0) C T;. Then for wy; € Wi(n) with n > 0, we may assume either w; € T} or wy = v_juy
for homogeneous v € V' of weight wtv > 0 and homogeneous u; € W; of degree degu; such
that

wtv + degu; = n.
In the first case, there is nothing to prove, and in the second weak associativity for inter-
twining operators (which follows from the Jacobi identity) implies

(20 + 22)"" Y (v, T 4+ 2) Y (U1, T2)uz = (xo + 2)" "V (Y, (v, 20 )u1, 22 )us
for uy € W5(0). Extracting the constant term in x, leads to
wt v wt v
V(v_juy, x2)us = vatv—l—i xh VY (ur, xo)us — Z ( ; )$2_Zy(v—1+iula Ta)Us.
>0 =1
Since vyiy_1-; is an operator of degree ¢ for all 7 > 0 and since
degv_1,,u; = wtv+deguy —i < n

for 1 < i < wtw, the induction hypothesis implies that the coefficients of V(v_ju, z5) lie in

X. This completes the proof that Im Y|w,gw,0) € X.

Now under the assumption that W5(0) generates Wy, Wy is the linear span of vectors
vy for ug € Ws(0), homogeneous v € V, and n € Z such that wtv —n —1 > 0 (see [LL,
Proposition 4.5.6]). The commutator formula for intertwining operators then implies

n . ~
V(wy, x)vaug = v, Y (w1, T)ug — Z (i)x"_’y(viwl, T)ug € X[logz|{z}
>0
since v,, is an operator with non-negative degree. This proves that Im ) is a generalized
submodule of X with lower-bounded conformal weights, and is thus N-gradable, when 1/ (0)

generates Wj.
Now for general finitely-generated W5, there is a finite filtration

0=w" cwyh .oy =W

of N-graded submodules such that the successive quotients WQ(i) / WQ(i_l) are N-gradable V-
modules generated by their finite-dimensional degree-0 subspaces. Thus we can prove the
lemma by induction on the length n of the filtration, having already handled the case n = 1.

For finitely-generated W, with N-grading, let W, denote the submodule generated by
W5(0). We have shown that Im y\Wl o7, 18 a generalized submodule X C X with lower-
bounded conformal weights. Also, ) induces an intertwining operator

VW@ (Wa/Wa) = (X/X)[log z]{z}.

By induction, Im) is a generalized submodule of X /5( with lower-bounded conformal
weights. Then because we have an exact sequence

0—>)?—>Imy—>1m37—>0,

we see that Im ) has lower-bounded conformal weights and is thus N-gradable by the argu-
ment of Remark 2.4. 0

Now we conclude the following variant of the Key Theorem of [Mil]:
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Corollary 2.14. Suppose Wy, Wy are V-modules in Ci,, X is a generalized V-module, and
Y is an intertwining operator of type (WlXI/Vz)' Then Im Y is a module in Cy;.
Proof. By Proposition 2.11, W; and W5 satisfy the hypotheses of the preceding lemma,
so Im) is N-gradable. Then Im) is also Cj-cofinite by [Mil, Key Theorem]. Finally,

Proposition 2.12 shows Im Y is a grading-restricted generalized module in C.. O

3. DIRECT LIMITS OF WEAK MODULES

In this section, we recall the definition of direct limit (in any category) and discuss the
basic properties of direct limits in the category of weak modules for a vertex operator algebra.

Definition 3.1. A directed set is a non-empty set [ with a reflexive and transitive binary
relation < such that for any i, j € I, there exists k € I such that « < k and j < k.

Remark 3.2. To any directed set (I, <), we can associate a small category with object set
I and Hom(%, ) non-empty (and a singleton) if and only if 7 < j.

Remark 3.3. If (I, <) is a directed set, then for any finite subset {i,}»_, C I, there exists
k€ I such that 7, <k forall1 <n <N.

Now we define direct limits in any category C:

Definition 3.4. Let C be a category.
e A direct (or inductive) system is a functor o : I — C, where [ is the category
associated to a directed set (I, <) as in Remark 3.2. If 4, j € I such that i < j, then
we use f! : a(i) — a(j) to denote the morphism a(i — 5) in C. Thus

fi = 1dag
for any ¢ € [ and
ffofl=1f
ifi<j<kinl.
e A target of a direct system « : I — C is an object X in C together with morphisms
Y; » ai) — X such that
Vi =1jo f
for any ¢ < jin [.
e A direct (or inductive) limit of a direct system a : I — C is a target (lim o, {¢; }icr)
satisfying the following universal property: for any target (X, {v;}icr), there is a
unique morphism F': ligla — X such that the diagram

a(i)

o e

%ﬂa - X

commutes for all 7 € I.

We now fix a vertex operator algebra V and let W denote the full category of weak
V-modules. Note that W is a C-linear abelian category; recall that this means:
(1) Morphism sets are C-vector spaces such that composition is bilinear.
(2) There is a zero object 0.
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(3) Any finite set of objects {WV,,} has a biproduct. Recall that this is an object @ W,
together with projection morphisms p, : @ W, — W, and inclusion morphisms
¢n - Wy, = @ W, such that p,, 0 ¢, = 6 pldw, and Y g, op, = Idgw,. A biproduct
is both a product and a coproduct of the W,,.

(4) Every morphism has a kernel and cokernel.

(5) Every monomorphism is a kernel and every epimorphism is a cokernel.

In addition, W is closed under arbitrary coproducts since any direct sum of weak V-modules
is a weak V-module in the obvious way. As above, for any direct sum @,.; W (i) in W, we
will use ¢; to denote the inclusion of W (i) into the direct sum and p; to denote the projection
from the direct sum to W (i).

Proposition 3.5. The category W of weak V-modules contains a direct limit of any direct
system o : [ — W.

Proof. We can use the construction of direct limits in the category of vector spaces. For a
direct system o : I — W, we set a(i) = W(i) for i € I and define

lima = EPW(i) / K,
el
where '
Ko = 373 span{awn) — a;(f(wn)) [ws € W(0)}.
i€l j>i
We define ¢; : W(i) — liga for i € I to be ¢; followed by projection onto the quotient.
Then it is immediate from the definition of K, that ¢; o fij = ¢; for any i < j in [.

Since the W (i) are weak V-modules, the direct sum &, ; W (i) has the structure of a
weak V-module such that the ¢; are V-homomorphisms. Also, K, is a weak V-submodule,
because if ¢;(w;) — ¢;(f/ (w;)) is a spanning vector of K,, then

Yoo, w0, 2) (qi(wi) — q;(f] (wi))) = @ Yoy (v, 2)wi) — g5 (Ff Yoy (v, 2)w;))
for v € V', so that the coefficients of powers of x are still spanning vectors of K,. Thus the
quotient lim « is a weak V-module and ¢; for each i € [ is a V-homomorphism.

Now we show that (hﬂ a, {¢;}ier) is actually a direct limit of ov. Thus suppose (X, {); }icr)
is a target of o and define

F = Zq/}iopi : @W(z) — X.
el el
If g;(w;) — q;(f! (w;)) is a spanning vector for K,, then
F (qi(ws) = q;(f] (wy))) = wawi) = (] (wi)) = 0,
so F' descends to a well-defined homomorphism F : hgl a — X such that
Fogi=Fogq =1

for € I. That F is the unique homomorphism such that F o ¢; = 9, follows because @a is
spanned by the images of the ¢;. 0

In the realization of (hﬂ a, {¢;}ier) given in the preceding proof, liénoz is the sum of the
images of the ¢;. In fact, from the universal property, any realization of the direct limit will
be the sum of the images of the ¢;. From properties of directed sets, we can say more:
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Proposition 3.6. For any direct limit (hgl a,{¢;}ier) of a direct system o : [ — W,
ligrla = U Im ¢;.
iel
Proof. We have seen that any vector b € limar can be written ¢;, (wy) + ...+ ¢iy(wy) for

finitely many 4;,...,iy € I and w, € W(i,) for 1 <n < N. By Remark 3.3, there is some
k € I such that ¢,, < k for each n. Then

N N
b= bi(wa) =D dulfi(wn)) € Im oy
n=1 n=1

This shows that lim o C U,c; Im ¢;, and the reverse inclusion is obvious. U

iel
Later, we will need a characterization of the kernels of the ¢; associated to a direct limit:
Lemma 3.7. For any direct limit (hﬂ a,{¢:}icr) of a direct system o : I — W,
Ker ¢; = UKer ff,
Jj=i
recalling that the f-j are the morphisms a(i — j) in W.

Proof. 1f © < j for some j € I, then Ker fJ C Ker ¢; because ¢; o f = ¢;. Conversely, we
need to show that if w; € Ker ¢;, then w; € Ker f¥ for some k > i in I. We may use the
realization of the direct limit liga from the proof of Proposition 3.5, so that w; € Ker ¢; if
and only if ¢;(w;) € K,, that is, if and only if

Z QZn wn QJn( in (wn)))

for certain iy, j, € I such that i, < j, and w, € W (iy,).
By using the notation wyin = —f7" (wy), ingn = jn for n € {1,..., N}, we may rewrite

(3.1) qi(w;) = Z%‘n(wn)-

Moreover, by Remark 3.3, there is some k € [ such that i < k and j, < k for 1 <n < N.
Then we get

(3:2) D w) = (fh (wa) = [ (1 (wa))) = 0.

By applying the projection p; to (3.1) for j € I, we see that
> wn=diu
in=j

Thus using (3.2), we conclude
2N
0=>> fEwa) =D fiwn) =Y (6 w:) = fF(w).
n—1 <k in—j i<k

That is, w; € Ker fF. O
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4. DIRECT LIMIT COMPLETION IN THE WEAK MODULE CATEGORY

In this section, we will define the direct limit completion Ind(C) of a category C of grading-
restricted generalized modules for a vertex operator algebra in the category W of weak
modules. The work here is motivated by the ind-completion constructions of, for example
[KS, Chapter 6], but it is important to note that here we are using the ambient category
W of weak modules rather than the Yoneda category C" of contravariant functors from C
to vector spaces. By [KS, Proposition 2.7.1], there will be an essentially surjective functor
from the ind-completion of [KS, Chapter 6] to the category Ind(C) defined here, but it is not
clear whether this functor will be fully faithful.

We now fix a category of V-modules that satisfies the following conditions:

Assumption 4.1. Assume that C is a full (sub)category of grading-restricted generalized
V-modules such that:

(1) The zero module 0 is an object of C.
(2) The category C is closed under submodules, quotients, and finite direct sums.
(3) Every module in C is finitely generated.

The first two assumptions on C guarantee that C is an abelian category, while the third is
used in the following two lemmas that we will need in the next section:

Lemma 4.2. Suppose (hﬂ a, {p;}icr) is the direct limit in W of a direct system o : I — C.
If W C ligla 1s any V-submodule that is an object of C, then W C Im ¢; for some i € I.

Proof. Since @a = ;e Im ¢; by Proposition 3.6, the finitely many generators of W are
contained in Zf:[:l Im ¢, for finitely may j, € I. Thus

N
W C) Img;, CImg
n=1

where ¢ € [ is such that 7, <7 for each n. 0

Lemma 4.3. If (hgl a, {¢i}ier) is the direct limit in W of a direct system o : I — C, then
for each i €1,

Ker ¢; = Ker fz-j
for some j € I.

Proof. By Lemma 3.7, Ker¢; = [, Ker f. Since Ker¢; C W(i) is a submodule of a
module in C, it is itself a module in C and is finitely generated. Thus there are finitely many

J1,---,Jn € I such that
N
Ker ¢; C ZKer £/ C Ker f,
n=1
where j € I is such that j, < j for each n. Since obviously Ker ff C Ker¢;, we get
Ker ¢; = Ker f7. O
We now introduce the direct limit completion of C in W:

Definition 4.4. The direct limit completion of C in W is the full subcategory Ind(C) of
objects in W which are isomorphic to direct limits of direct systems « : [ — C.
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We would like to realize objects of Ind(C) as direct limits in a canonical way. For any weak
V-module X, let Iy denote the set of VV-submodules which are objects of C; Ix is non-empty
because by assumption 0 is an object of C. Then (Iy, C) is a directed set because if W7, W,
are two C-submodules of X, then so is W; + Ws: it is a quotient of Wy @& Wy, and C is
closed under finite direct sums and quotients by assumption. Thus for any weak V-module
X, we can define an inductive system ax : Ix — C such that ax (W) = W for C-submodules
W C X, and such that f}/ : W — W is the inclusion map for C-submodules W C W C X.

We would like to show that if X is an object of Ind(C), then X is isomorphic to lim ay.
Indeed, defining iy : W — X for any W € Ix to be the inclusion, (X, {iw}wer,}) is a
target of ax. Thus by the universal property of m ax, we have a unique V-homomorphism
Qx : 1i_n>qozX — X such that

|44

I

hgaxa)‘X
commutes for W € Ix.

Proposition 4.5. The V-homomorphism Qx is injective for every weak V-module X and
is surjective if and only if X is an object of Ind(C).

Proof. We use Proposition 3.6. For b € Ker Qx, we have b = ¢y (w) for some C-submodule
W e Ix and w € W, so that

0=0Qx(b) = Qx(dw(w)) = iw(w).

Since iy is injective, w = 0 and b = ¢y (w) = 0 as well. Thus Ker Qx = 0.

Now if X is not an object of Ind(C), then Qx is not surjective because (Qx cannot be
an isomorphism. On the other hand, if X is an object of Ind(C), then Proposition 3.6
implies that X is the union of submodules which are objects of C (because C is closed under
quotients). In other words, for any b € X, b = iy (w) for some C-submodule W € Ix and
w € W. Thus

b=iw(w) = Qx(pw(w))

and we conclude ImQ x = X. [l

The second paragraph of the above proof shows that QQx is surjective (and therefore an
isomorphism) precisely when X is the union of submodules which are objects of C. Every
vector in such a weak module X is an element of a (grading-restricted) generalized submod-
ule, and hence is the sum of generalized L(0)-eigenvectors. So X is actually a generalized
module (see [HLZ1, Remark 2.13]). We can rephrase these observations as an alternative
characterization of Ind(C):

Proposition 4.6. The category Ind(C) is the full subcategory of generalized V -modules that
are unions of submodules which are objects of C.

This proposition shows in particular that C itself is a subcategory of Ind(C) (as it should
be). In fact, when W is an object of C, it is easy to show that the inverse of Qy is
ow - W — limay. We can also use the characterization of Ind(C) in the proposition to
show that Ind(C) is an abelian category:
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Proposition 4.7. The direct limit completion Ind(C) is a C-linear abelian category and is
closed under arbitrary coproducts.

Proof. Using Proposition 4.6, any direct sum of generalized modules in Ind(C) is still a union
of C-submodules and hence is still an object of Ind(C). Then to show that Ind(C) is abelian,
in particular closed under kernels and cokernels, we just need to show that Ind(C) is closed
under submodules and quotients.

Suppose X is any submodule of a generalized module X in Ind(C). By Proposition 4.6,
any b € X is contained in a C-submodule W C X. Since C is closed under submodules,
W N X is a C-submodule of X that contains b. It follows that X is a union of submodules
from C and thus is an object of Ind(C).

Now consider the quotient X/X where X is a generalized module in 1 Ind(C). For any
b+X € X/X there is a C-submodule W C X such that b € W, so that b+X € (W-+X)/X =
W/Wn X. Since C is closed under quotients, b + X is contained in a C-submodule of X / X
and we conclude that X /)~( is the union of its C-submodules. Consequently, X /)~( is an
object of Ind(C), so that Ind(C) is closed under quotients. O

We have now seen that abelian category structure on C extends to abelian category struc-
ture on Ind(C). In the next section, we will show how to extend braided tensor category
structure on C to Ind(C). In preparation for this, we conclude this section by describing how
to extend any functor of the form

F:C"—=C,
for n € Z,, to a functor W* — Ind(C); for example, in the next section we will take
n = 2 and F a tensor product bifunctor on C. For such a functor F and for weak modules
Xq,...,X,, we define the direct system

AFx,.. X, Ix, X o x Ix, = C
on objects by
arx,..x, Wi, ..., W,)=FWy,....,W,)
for Wy, € Ix,, k =1,...,n. For C-submodules W), C Wk, k=1,...,n,in Iy, we define the
morphism le """ y "= arx,.x, (W, W) — (Wi,...,W,)) to be

--------

(4.1) fv?; ””” — F( T,

~~~~~ n

We also need to define .7/-:(F1, ..., F,) for morphisms Fj, : X}, — X, in W, k=1,...,n. For
this, observe that Fj,(Wj) = Im(F) o iy, ) is a quotient of W, and hence a C-submodule of

Xk Thus if we use Flek Wi — F(Wy) to denote the C-morphism induced by Fj o iw,,
we can attempt to define F (Fy,..., F,) to be the unique homomorphism such that

]:(Fllwl 7777 FTLIWn)

FWi, ..., Wy)

.....
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commutes for (Wy,...,W,,) € Ix, X -+ x Ix,. From the universal property of the direct
limit li lg Qar.x,.. x,, the morphism F (Fy,..., F,) will indeed exist provided that

.....

.....

~~~~~~

P
o Ealip, ) o S w

-----

Dry (1), (W) © F (P17, -

= QR (W) Fa (W) © F (F1lwns -+, Fulw,)

whenever W, C W, are C-submodules in [ x, for k=1,...,n. Using (4.1), this follows from

Dy (W), Fn(Wn)O]:(F1|W1>---aFn|Wn)Of(fwl,---, Wf)
= R, (1), Fo (W) O'F(Fl‘W © V;l"' ,Fulyw, Ofwn)
= Oy © F ((FRG) © Filwis - FE G © Falw, )
o F (FRGS. s Frni)) o F (Filw,s - Falw,)
= O (Wy),..., ann)of( Uws s Falw,) s

so F(F,..., F,) is well defined.
To verify that F is actually a functor, we first observe that F(Idy,,...,Idx,) satisfies

F(ldx,, ..., 1dx,) 0 dwy,w, = dwr,wn © F(Idwy, ., Idw,) = dw,,_w,

for all (Wy,...,W,) € Ix, X --- x Ix, and thus is the identity on liga;;xl
two composable morphisms (Fy,..., F,) and (Gy,...,G,) in W", we have

77777

F(FL,....F) o F(Gr,...,Gp) o b
— F(F,. . Fa) 0 by © F(Galwns -, Gulws,)
= PR (G W), Fn (G (W) © F (FilGiown)s - -+ Falanwn)) © F(Gilw, - - Grlw,)
= O(F10G1) (W), (FuoGn)(Wa) © F (F1 0 G1)lwr, - -, (B 0 Gr)|w,)
= F(FioGy,...,F,0G,)oéw,

for all (Wy,...,W,) € Ix, X -+ x Ix,, and thus we must have
F(F,...,F) o F(Gy,...,G,) = F(Fi0Gy,...,F,0G,).

This proves that FWwn — Ind(C) indeed satisfies the properties of a functor.

We have now shown that a functor F : C" — C can be extended to a functor F : W™ —
Ind(C). We can also extend any natural transformation ¥ : F — G between two functors
F,G :C" — C to a natural transformation V. F -G Indeed, for objects Xi,..., X, in W,
we define

Uy, .x, F(X1,.... X)) = G(X1,..., X,)
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to be the unique morphism such that the diagram

Yy, o, Wn,
FWy, ..., W,) — GWy,...,W,)
owWy,..., an lwwl ,,,,, W,
limarx, .. x, —= lim ag.x, .. x,
g 3 L yeeey Xy xn ﬂ' IR TS
commutes for all (W5,..., W,) € Ix, X --+ X Ix,. The existence and uniqueness of ‘T’Xl,...,Xn

follows from the universal property of the direct limit liga;; Xi,...X, together with the cal-
culation

W W
¢W17~-~1Wn ° W’Wl,...,wn © F(fwl VAR 7f n)
W —
- wa”an © g(fW117 Tt fW:) © ‘Ilea-nyWn
= le:m:Wn © \Ilwl,...,Wna

where W, C Wk are C-submodules in Iy, for each k. To show that T is actually a natural

transformation, let Fj : X, — X, k = 1,...,n, be morphisms in VW and consider the
commutative diagrams

YW, ,....Wn G(F1lwys--Fnlw,)
F(Wy,...,W,) - GWy,...,W,) - G (WY),..., Fy(Wy))
dwy,..., Wnt quwl ..... Wn ijl(Wl) ..... Fn(Wn)
lim arx,,..x, F— lim ag:x; .. x, TR limag s .
and
F(Filwy - Fnlwy,) U r (W1),es F (Wn)
.F(Wl,. ,Wn> ! .F(Fl(Wl),..., n(Wn));‘g<F1(W1),,Fn(Wn>>
dwy,..., an Sr (W), Fn(Wn)l/ YE (W), Fn(Wn)l
hﬂa}';Xl,...,Xn F(Fio Fo) hﬂo‘f;il,...,)?n @551 ..... . hgag%)?l"-vin
for any (Wy,...,W,,) € Ix, x---Xx Ix,. The top rows of both diagrams are identical because

¥ is a natural transformation, so we get

~ ~

G(F,....F) oWy, x,0dbwm, w, = Vg x,0 F(Fr, ..., F) o dw,w,
for all (Wy,...,W,,) € Ix, x -+ X Ix,, and thus also

~

G(Fy,....,F) oWy, x,=Vg ¢ oF(F,....F,)

.....

since the direct limit liga;; Xi1,..x,, 1s spanned by the images of the ¢y, . w,. This proves

that U is a natural transformation.
The first example of a functor F : C" — C that we would like to consider is the identity
functor Ide : C — C. In this case, Ide : W — Ind(C) is defined on objects by

Ide(X) = lima,
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while for a morphism F : X — X in W, Id¢(F) is characterized by the commutativity of

Flw

W F(W)

¢Wl jd)F(W)
! . -
X Idc(F) - X
for all W € Ix. The morphisms Qx : ligozx — X in Proposition 4.5 for weak modules

X determine a natural transformation () : Id¢ — Idyy: to show this, we use commutative
diagrams

w—"" Ry and W
¢W‘ ¢F(W)L Lo ¢Wl X\

- mos — > X li X X
i ox T x4 = r

for any morphism F : X — X and for W € Ix. Then Qg o ﬂic(F) = F o (Qx as required
since

ZF(W) o F’W =F Oiw.
for all W € Ix. By Proposition 4.5, @) is a natural isomorphism when restricted to Ind(C).

5. THE DIRECT LIMIT COMPLETION AS A BRAIDED TENSOR CATEGORY
We continue to work under Assumption 4.1 and now additionally impose:

Assumption 5.1. The category C of grading-restricted generalized V-modules satisfies:

(1) The vertex operator algebra V' is an object of C.

(2) The category C is a braided tensor category with unit object V. We will use X to
denote the tensor product bifunctor on C, [ and r for the left and right unit isomor-
phisms, A for the associativity isomorphisms, and R for the braiding isomorphisms.

(3) The braided tensor category C has a twist natural isomorphism 6 : Ide — Id¢ such
that 6y = Idy and the balancing equation

Ow,mw, = Rwy,wy © Rwvyws © (Ow, X Oys,)

holds for modules Wy, W5 in C.
(4) For any module W in C, the functors W X e and e X W are right exact.

Remark 5.2. For this section, we do not assume that the braided tensor category structure
on C is necessarily the vertex algebraic one of [HLZS8] described in Section 2. In fact, the
results of this section hold for more general abelian categories C and W satisfying suitable
assumptions. If the braided tensor category structure on C is indeed the vertex algebraic
one, the right exactness of W X e and e X W are automatic [HLZ3, Proposition 4.26].

Our goal in this section is to extend the braided tensor category structure on C to Ind(C)
in a natural way. To obtain a tensor product bifunctor on Ind(C), and indeed on W, we
notice that X : C x C — C induces

X:W x W — Ind(C),



DIRECT LIMIT COMPLETIONS 21

as described at the end of the preceding section. For objects X7, X5 in W, we use the notation
ax, M ay, for the direct system ag.x, x, of the preceding section, so that by definition,

X,5X, = limax, Kax,.

Then the tensor product of morphisms F; : X; — X rand Fy : X9 — )22 in W is characterized
by the commutative diagrams

Fy|lw, ¥F2 |y,

Wi X Wy

Fi (W) K Fy(Ws)

DWWy, Wy l¢F1(W1),F2(W2)

hﬂaxlﬁa& m hgoz)zl Xag,
for C-submodules W; C X; and Wy C X,.

We proceed to construct unit, associativity, braiding, and twist isomorphisms on Ind(C).
We will see that the braiding on Ind(C) can be obtained simply as the natural isomorphism
R induced from the braiding isomorphisms in C, as described in the previous section. The
unit and associativity isomorphisms on Ind(C) cannot quite be obtained in this way, so we
will need additional notation: we will denote them using fraktur fonts to distinguish them
from the structure isomorphisms of the original braided tensor category C. Actually, we
will construct unit, associativity, and braiding homomorphisms on the entire weak module
category W, but the left and right unit homomorphisms [x and tx will not be isomorphisms
unless X is an object of Ind(C). For example, the definition of X shows that VKX = 0 if X
is a weak V-module whose only C-submodule is 0, so in this case [x would be 0.

The unit object of Ind(C) will be V| just as in C. For a weak module X, we would like to
define left and right unit morphisms [y : VKX — X and ty X XV — X to be the unique
morphisms such that the diagrams

iy RIdy Idy Riy

UXW VXW and W XU WXV
oUW liWOlW ¢W,Ul iworw
ligavﬁax N X l'gaXIXav - X

commute for all objects (U, W) € Iy x Ix. The universal property of hg ay Xax guarantees
that [x will exist provided

(X, {iw o lw o (iv R Idw) }wwer <1y )
is a target of the direct system ay X ax. This follows from the calculation
i o li o (i K 1dy) o (f B fif) = i o I o (ip B f)
:iwofvvgolwo(i(]&ldw)
= ZW o lW o (ZU X Idw)

for any U C U in Iy gnd W C Win I x, and tx is similarly well defined.
To show that [ : VXle — Id,y is a natural transformation, we need to show that

(5.1) [ o (IdyRF) = Foly
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for any morphism F : X — X in W. Using the commutative diagram

iyXId
URW —W g ) Ly ) E(W)
duw du,F(W) liﬂW)OlF(W)
ligav&ax aar ligozv&a)} = X

for (UW) € Iy x Ix, we get
[z o (Idy®IF) 0 pyw = irw) © Lew) © (iv B Flw)
= ipw) o Flw olw o (iy M1dw)
= Foiwoly o (iy X1dy)
=Folxoopuw
for all (U, W) € Iy x Ix, WhiCE proves (5.1) since lim ay M ax is spanned by the images of
the ¢y w. The proof that v : eX1 — Idyy is a natural transformation is similar.

Although [x and tx cannot be isomorphisms when X is not in Ind(C), we do have:

Proposition 5.3. For any weak V-module X, [x and tx are injective. If X is an object of
Ind(C), then Ix and tx are also surjective.

Proof. We give the proofs for [y, since the proofs for tx are essentially the same. To show

that [y is injective, suppose [x(b) = 0 for b € VRX. We may assume that b = ¢y w(w) for
UCVinly, WC X in Ix,and w € UXW. Then

0= Lx(b) = Lx(Svw (@) = (iw © by o (i B 1dw))(@) = (iw o bw) ((F B fiy))(®))
Since iy o ly is injective, this means (f X fiV)(w) = 0, and then
b= duw(w) = (va,w © (fl‘]/ X fII/I/‘//)) (w) =0
as well. Thus Kerlx = 0.
To show that [x is surjective when X is in Ind(C), suppose b € X. Since X is a union of

C-submodules by Proposition 4.6, we have b = iy (w) for some W € Iy and w € W. Then
because lyy is surjective, w = ly (w) for some w € VX W, so

b=iw(lw(w)) = x(pvw(w)) € ImIy.
Thus Im [y = X. O

The next task is to construct natural associativity isomorphisms in Ind(C) (and indeed
in W). The triple tensoring functors Ko (Ide x K), Ko (X x Id¢) : C x C x C — C induce
functors W x W x W — Ind(C); we denote them by

(Xl,XQ,Xg) — %HOCXI X (OéX2 X OéXS), (X17X27X3) — hgl(OZXl X C¥X2) X 5'N
on objects. Moreover, as in the previous section, there is a natural isomorphism A between

these two functors induced by the natural associativity isomorphism A : Ko (Ide x X) —
X o (X x Ide). However, these two functors from W x W x W to Ind(C) are not equal to

(X17X27X3) — Xlg(XQQXg,), (Xl,XQ,Xg) —> (Xngz)ngg

To get associativity isomorphisms on W, we need an analogue of Fubini’s Theorem showing
that the two iterated tensor products are isomorphic to the two multiple tensor products.
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We first need to construct natural transformations
TX1,(X27X3) 11;11304)(1 g(OZ)Q &O&X?’) —>X1®(X2®X3) ( :1;11304)(1 ganng )
T(X17X2),X3 hgl (&Xl X aXQ) X Qxz = (Xl@XQ)gX?) ( = hénOéXlﬂXg X QX )

Actually, for proving the pentagon axiom later, we need more general homomorphisms. For
weak modules X7, X5 and a direct system « : I — C, we define the direct systems

al¥(ax, Ray,) : I xIx, xIx, - C
(1, W1, Wa) — W (i) X (W1 X W)
Fliviiv: = $19 A5 @A
and

a@aX@XZ I x [X1®X2 —C
(i, WLQ) — W(Z) X WLQ

J}ng _pj Wi
fi7W1,2 - fl X fW1,2’

Recall that W, 5 and WLQ here are C-submodules of X1@X2; we cannot necessarily assume
they factor as tensor products of C-submodules in X; and X5. We define (ax, M ay,) X a,
Oy gx, X o similarly. Also for W € Iy, and Wy € Iy,, we write the morphism ¢w, w, :

W, KWy — X1®X2 as a composition ¢w, w, = tw, w, © ¢{,V17W2, where
Doy wy - Wi Wy — Im ow, ws,
is the surjection induced by ¢w, w, and
i, < I dw, wy — XXX,
is the inclusion of the image into X XX,. Now we can attempt to define

To (x1,x2) * lim o M (orx, Woay,) = limaWay gy,
Tix, Xa)a lig(axl Xay,) Xa— may gy, Ma
to be the unique homomorphisms such that the diagrams

Tdw ()Rl w,

W (i) B (W )W)

W (i) ) Im v, w,

¢1,W1,W2L l¢i’lm¢W1,W2

%ﬂa@(axlﬁaXQ) limaMaoy gy,

Ta,(x1.X9)

and

Py wy, Xdw (i)

(W, K W) B W (4)

Im (le,Wz D W(Z)

¢W1,W2,7;L j¢1m¢W1,W2’i

liﬂ(ozx1 Xay,) Xa limay gy, Ka

T(xq,Xg).
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commute for (7, Wy, Ws) € I x Ix, x Ix,. To verify that T, x, x,) exists, suppose ¢ < j in [
and Wy, € Wy in Ix, for k =1,2. Then

' Wi W
Gj.im oy, i, © Tdw() Ko 5) 0 (ff X (fu, & fw2)>
. Imop= =
= ¢j71m¢‘7vlﬁ2 © (fzj X flm¢vv[fll,’vv:/;2> © (IdW(i) X ¢§/V1,W2)
= Gi.tm o, w, © (Idwy Xy, w,),
where the first equality follows from
i, % © O, w0 (fw B fw?) = b, m, © (fiw X fiv)
Im(ﬁwlyw2

_ _ / o /
- ¢W1,W2 = wy,W, © ¢W1,W2 - Z1/[/17[/1/2 © Im ¢w, ,w, © ¢W1,W2

together with the injectivity of 43 3, Now the universal property of the direct limit hg al
(ax, Max,) shows that T, (x, x,) exists, and T{x, x,),o is well defined by a similar argument.

Proposition 5.4. The homomorphisms T, (x, x,) and T(x, x,)« are isomorphisms.

Proof. We give the prove for T, x, x,), and the proof for Tix, x,) is essentially the same.
To show that T, (x, x,) is injective, suppose Ty, (x, x,)(b) = 0 for some

b= diwiw,(w) € lima M (ax, Kax,),

where i € I, Wy € Ix,, Wy € Ix,, and w € W (i) X (W; X W;). Thus
¢z‘,1m¢wl,w2 ((IdW(i) X ¢§/V1,W2)(w)> =0.
Then by Lemma 3.7, there exist j > 7 in [ and W; 3 2 Im ¢y, w, in IX1@X2 such that

(5 B s © Girara)) () = 0.

Since Lemma 4.2 implies that Wi C Im ¢W1 o for some Wl € Ix,, Wg € Ix,, and since

fIm¢vT/1,vT/2 _ Jmow W, o W2
Imow, wy — I Wi Im ¢y wy ?
we get

5.2 J X o, w, / -0
( . ) fz (f1m¢W1,W2 O¢W1,W2> (w) -

Now, by Lemma 4.3, Ker ¢35 7, = Ker( %1 X f%) for some Uy € Ix,, Uy € Ix,. Then
) 1 W2

because Ix, ang Ix, are directed sets, we have U; € Iy, and (72 € Ix, such that Wy, U; C (71
and WQ, Ug g UQ.
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We now have the following commutative diagram:

fIm TR Im ¢W1,W2 &
Im ¢W1,W2 P Wl,WQ
W1, Wo
Wy, W S Wy, Wy T 1
Im ¢W1,W2 Xngg W1 & W2
buy,Uy U U,
/ f~ o~ ’ 1 2
W1,W2T / ZUI;N fW1 gfﬁ/z
Wq,Wo
Wi R W, Im ¢, 5, U KU
!
k %1’63%52
fvvlgfw'2 ~ ~ 1 2
U, XU,

At this point, the key observation is that, because Ker i, i, = Ker( f%l X f%“’ ), we have a
’ 1 2
homomorphism F': Im ¢W1 W, U; X U, such that
/ . U1 U2

Fo ¢W1,W2 o fW1 X Wa'
We claim that
(53) 2."/[717w2 = ¢U1,U2 oF.
Indeed,

. U U
Z’[/{V/LWQ o ¢LW1,W2 = ¢W1,W2 = ¢U1,U2 © (f’wv/ll X fWZ) - ¢U1,U2 oFo Qb;’/i“/l,wz»

so that (5.3) holds by the surjectivity of ¢’V~V 7
1,VV2
The commutative diagram and (5.3) together imply that

~ ~ ~ ~ Im¢p~ —
U U U U. :
0,0, © wh BI) = 5, 1, © (fu! R i) 0 F o fragl i © S ws
Since if7, 77, 18 Injective, we can replace ¢L71,L72 with ¢,l71,52 in this relation. Then Lemma 4.3
again implies that Ker ¢5 7 = Ker( [‘7/1 X ng) for some Vj € Ix, and V5 € Ix,. This means
’ 2
we have G : Im ¢, 7 — V1 B V3 such that
/ W Va

GO¢(717[72 B fﬁl X Uy’

and we conclude that

Im ¢W1 »WQ

b R, = (for Bf32) 0 F o frman o © Sy wy-
But then using (5.2),

(78 (3 R A2)) (w) =0,
so that 4
b= iwwa(w) = (G115 © (f] B (fh B f2))) (w) = 0.
Thus Ker T, (x,,x,) = 0.
Now to show that T, (x, x,) is surjective, take b € lima X Uy Rx, We may assume
b = ¢iw,,(w) for some i € I, Wy, € Iy zx, and w € W(i) ¥ W;5. By Lemma 4.2,
Wia C Im éw, w, for some Wy € Ix,, Wy € Ix,. Now since W (i) X e is right exact,

Idw(l) X QZ%,VI’WZ . W(l) X (Wl X Wg) — W(Z) X Im nghWZ
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is surjective, and there exists w € W (i) X (W; X W3) such that
(1dw o) B Gy, w, ) (@) = (o B fiyy 3" (w).
Thus
b= b, () = (D1mony vy © (o B firn o)) (w)
= (¢i,1m¢W1,W2 © (IdW(i) X ¢%/I/1,W2)) (@) = Ta,(Xl,Xg) (@,Wl,WQ (@)) )
and we conclude Im T, (x, x,) = 1i_n>1a Nay zx,- O

Now for weak modules X;, X,, and X3, we can define Ty, (x, x;) = TQXP(X%XS) and
Tix, X0),x3 = T(Xl,Xz),ocx3~ To show that T, 44 is a natural transformation, consider the

following commutative diagrams for morphisms Fj, : X; — X ke, k=1,2,3, in W:

Sy, wa, .
Wi K (W K Ws) REHCLE lim ax, X (o, B aix,)
IdW1|Z|¢{/V2,W31 lTle(XQvXB)
dWy Im by, W )
W1 K Im dw, w, —— limg oy, Maygy,
Fi|w, R(F28Fs)|1m Sy, W l LFlﬁ(FgliFg)
Fi(W1) B (FRF3) (Im G, ) limog Mag gz,

Py (W1), (FRF3)(1m bWy, W3)

and

Py, Wa, Wy

Wy X (W, X Ws)
Fllwlﬁ(F2|w2@F3|W3)l

Fi(Wh) K (Fa(Wa) K F3(Ws))

@&Xl D (aXZ X OéXs)

lFﬂZﬁ’z\&Fg)

PRy (W), Fa(Wa), F3(W3) ..
limog W(ag, Mag,)

IdFl(W1)|X¢/F‘2(W2),F3(W3)l nglv()}Z)}?))

F1(W1) Im ¢F2(W2)7F3(W3)

. s
5 li ag, Mag sz,
FLW1)Im & py (W), Py (W3)

where (W, Wy, W3) € Ix, X Ix, X Ix,. Since by definition
(F2|Z|F3)’Im¢W2,W3 © Q%/VQ,W;; = (FZ&F%) © ¢W2,W3 = ¢F2(W2)7F3(W3) © (F2’W2 X F3|W3)>

the commutative diagrams show that

—

T, %ok © F1 B (F2 B F3) © dw, wywy = (FIB(FaRFS)) © Ty, (x5, © Sw v
for all C-submodules Wy, C X, k = 1,2, 3, and thus
TX—L(X%X-?’) (©] Fl & (F2 & F3) == (FlIX(FQIXFE})) e} TX1,(X2,X3)

as required. The proof that T{, ). is a natural transformation is essentially the same.

We can now define a natural associativity isomorphism for the tensor product @, which we
denote by 2, using the natural isomorphisms T (4.4) and T(, ). combined with the natural

isomorphism A induced from the associativity isomorphisms in C:

_ 1 -1
Q'[Xl,XQ,X3 - T(X1,X2)7X3 ° AX17X27X3 © TX1,(X2,X3)
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for any weak modules X7, X», and X3. Note that Ay, x, x, is defined and is an isomorphism
even if X, Xy, and X3 are not objects of Ind(C), although in this case both triple tensor
products could well be 0.

Finally, we consider the braiding and twist. The natural braiding isomorphism R : X —
@ oo, where ¢ is the permutation functor, induces a natural braiding isomorphism R:K—
X o o such that

Rwl ,Wo

W1 X WQ W2 X Wl
¢W1’W2L jd)WQ,Wl
@axlﬁaXQ Roxr s hgl’lOéXZIXOéxl

commutes for objects (W, Ws) € Ix, X Ix,. Note that 7€X1,X2 is an isomorphism even if
X, and X, are not objects of Ind(C). Similarly, the twist # induces a natural isomorphism

0 : ﬂic — Ide such that
W W

¢Wl l¢w
li — i
g 0y —— lim s

for W € Ix. Restricting to Ind(C), we get a natural isomorphism © : Idmacc) — Idmace)

defined by ©x = Qx o §X o Qy' for generalized modules X in Ind(C). For any generalized
module X in Ind(C) and W € Ix, we claim that © x|y = Oy, that is, the diagram

(5.4) w2

ol

X o X
commutes. To prove this, we calculate
G)XOiW:QXOé\XOQ;(loiW :QXOé\XOQ;(loQXOCbW
= Qx 00x 0 ¢w = Qx © dw o i = iw 0 Oy,
using the definitions.

We can now prove that Ind(C) is a braided tensor category with twist:

Theorem 5.5. The structure (Ind(C), @, Ve, A, ﬁ, ©) is a C-linear braided tenor category
with twist.

Proof. We have already observed in Proposition 4.7 that Ind(C) is a C-linear abelian category,
but we still need to show that the tensor product of morphisms is bilinear. It is sufficient to
show that for homomorphisms Fi,G : X7 — X4, Fy: Xo = Xsin W and h € C,

(5.5) (hFy + G)XF, = h(FIXF,) + GRF.

The proof for FiX(hFs + G) will be essentially the same, or alternatively, use the natural
braiding isomorphism R (plus bilinearity of composition).
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To prove (5.5), it is enough to show that
(hFy + G)REy) 0 dw, w, = h(FiRF) © dw, w, + (GRF) © dw, s
for all Wy € Iy, Ws € Iy,. Take W, € Ig, such that Fy(W)), G(W), (hF) + G) (W) € W,
(for example, take Wy = Fy(W;) + G(W;)). Then we find
(hFy + G)RFy)odw, w, = b saywn),mws) © (MFy + G)lw, B Flw,)
= ¢W1,F2(W2) © (f(hll?1+G)(W1) X Idp,wy)) © ((AF1 + G)lw, B Falw,)
= h¢W1 Fa(Wa) © (f]‘«:llllwl X IdF2(W2 ) © (Fl‘Wl X FQ‘WQ)

+¢W1 Fo(W2) (fG w1) &Isz Wa) )O(G|W1 XIF2’Wz)
= hopm ) mws) © (Filwy B Falwy) + dawn),mwy) © (Glw, X Falws,)
= h(FllgFQ) (o] (le,WQ (GIEFQ) o ¢W1,W27
where we have used the bilinearity of X for the third equality.

Now we prove the triangle axiom. We need to show that for modules X;, X, in Ind(C),
the diagram

~ ~ A ~ ~
XIR(VRX,) 22 (X, RV)RX,
\ ltxl @Id)(2
Idx, Rix, Y
XX Xo
commutes, or equivalently,
(5.6) (Idx, Mlx,) o T, (vixy) = (tx, Kldx,) 0 Tix, v.x, © Ax, vixs.

Using the definitions, the left side here is characterized by the commutative diagram

Tdvy, Bl s, Ty, BUx, |t g7 gy,

W1 X (U X Wy) ’ W1 R Im ¢y,

W1 & [X2 (Im ¢U,W2)

¢W1,U,W2l Wy Im by, lQSWL[xQ(Im U, W)

lim oy, X (ay Raxs,) lim orx, Wayg, lim ay, Max,

Tx1,(v,X9) Idx, Ry,

for Wy € Ix,, U € Iy, and W5 € Ix,. The definition of [y, implies
[, [t guraw, © Buw, = bxy © Buw, = i, © b, © (i M Idyy, ).
In particular, Ix,(Im ¢y w,) C Wa, so

¢W17[X2(Im¢U,W2)O(IdW1 D ([X2|Im¢UW2 © ¢,UW2))
= dwiwy © (Idwy B 1% 1 60,0 0) © 1wy B (L, ltm o, © Prws,))
(57) = (le,Wz O (IdWl X’ lW2) (IdWl & (’lU & IdWQ))
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On the other hand, the right side of (5.6) is characterized by the diagram

W, ,U,W- .
Wl&(U&WQ) : 2 hglaxlﬁ(oq/@a;@)
Awy U,y -’EX1»V»X2
PW U, W .
(W, RU) X W, ———— lim(ax, May) Max,
Py, uXldwy Tix1,v), %2
<ZSIm ¢W1 7U,WQ X
Im (le,U X W, m O x,Rv X o,
tx1 [m Swy,U XIdw, tx, @Idx2
Tx, (Im ¢W1,U) X W, @axl X QX

¢tX1(Im¢W1,U)7W2
As with the left unit isomorphisms, we calculate

¢tx1 (Im ¢, ,v),Wa © ((tx, |Im¢W1,U © ¢/W1,U) X Idw,) o Aw, u.ws
= dwiw, © (ft‘j: (tm oy ) X 1dws) © (0 [mw, o © Sw, v) Bldws,) o Aw, v,
= dw,.w, © (Ttw, X 1dwy,) o ((Idw, Riy) K 1dw,) o Aw, vw,
(5.8) = dwy.w, © (rwy, X 1dw,) o Aw, v, o (Idw, X (iy X Idw,)).

Now the triangle axiom for Ind(C) follows from (5.7), (5.8), and the triangle axiom in C.

To prove the pentagon axiom, we first observe that the various quadruple tensoring func-
tors C* — C induce functors W* — Ind(C), as in Section 4, which are all pairwise naturally
isomorphic via suitable associativity isomorphisms. For example, we use

(Xl,XQ,Xg,X4) — hﬂaxl X (OéX2 X (OéX3 X OéX4))
to denote the functor induced by
(Wl, WQ, W3, W4) — W1 X (Wg X (W3 X W4))

Now we claim that the following diagram commutes for modules X, X5, X3, X4 in Ind(C):
(5.9)

. T1(2(34 Ty, (Xq,X3Rx ~
li oy, ® (ax, ® (o, May,)) = lim oy, ® (ax, X Oy, N R(XGR(XRX))
= Axl X, X3|Z|X4l QlX1,X2,X3®X4
Taxl Max, (X3, X4) (Xl Xo),X3KX =~

@(Oéxl Xay,) X (ayx, Ray,) — g ax, Max,) May gy, X RX)R(X XX

~ A, =
- T X1KX9,X3,Xy
(X1,X2), C“X3®O‘X4 X1|ZX2 (X3 X4)

lg((axl X CYXQ) X OZX3 & ax, lﬂaXle & & 04X4 Xl&Xg &Xg)&X;l

X1|XX2 X3,X
T((12)3)4 Tixy8x5,x5). %4

lg(aXﬂgXQ IX aXJ) IX Oé)(zl

Here we can define the homomorphisms T (34)) and T{(12)3)4 to be such that the correspond-
ing squares commute; they are isomorphisms because Taxlﬁaxz,( X3,x,) and Ty, Xs),0x5Kax,
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are isomorphisms by Proposition 5.4. Thus to prove that (5.9) commutes, we just need to
check the square in the middle. Indeed, for W), € Ix,, k = 1,2, 3,4, we have

Ty &y, (X3, x0) O L (X1, X2) ax5Bax, © OW1,We,Wa, W4
= TX1®X2,(X3,X4) ° ¢Im¢>wlyw2,W3,W4 © <¢/V[/1,W2 X IdW3®W4)
= ¢Im¢>wl,w2,1m¢w3,w4 o (IdImo;WLW2 X <Z5{4/3,W4) © (¢{4f1,w2 X Idwysw, )
= Pmbw, wy Imdwy w, © (O wy X dim gy, w,) © Tdwmw, X dyy, 1w,)
= T(X1,X2)7X3®X4 O Oy, Wa,Im pws,wy © (Idw,zw, X </5/W3,W4)

= Tix, x3) . Xs8s © Lo, Mo, (Xs,X4) © OW1,Wa, Wy, Wi

We can also alternatively characterize T'(a(34)) as follows:

_ 11
Tiaaayodwiwswsws = AL o vz, © Lo, o, (X5, X0) © P, W, Wi Wi © A W, wamw,
_ -1

/
- "4)(17)(27)(3@)(4 © ¢W1aw27lm¢W3,W4 © (IdW17&W2 IX ¢W3,W4) © AW17W27W’3&W4

-1
= ¢W1,W2,Im¢w3,w4 © Wi, Wa,Im ¢y, w, © (IdWL@Wz X ¢%V3,W4) ° AW17W27W3®W4
= ¢W1,W271m¢W3,W4 © (Idwl X (IdVVz D ¢/Wg,W4))

for all W), € Ix,, k = 1,2,3,4. Similarly, T{(12)3)4 is characterized by

T((12)3)4 © ¢W1,W2,W3,W4 - ¢Im¢W1,W2,W3,W4 o <<¢{/V1,W2 X IdW3) X IdW4)

for all W), € Ix,.
We also claim the following diagram commutes:
(5.10)

ling cex, B9 (o, M (ox, B e, ) —= lim ax, B9 (ox, Moay,my,) — X159 XH (X5 X))

T (2(34)) X1,(X2,X38Xy)

Idx, B2, x4,x,

lim oy, ® ((ax, B ax,) B ay,) — limax, B (ag,gy, B ox,) — X58((XKX5)5X,)

Ti((23)4) l X1,(XoRX3,X4)

A

=] A

X1,XoRXg,Xy X1,XoMX3,Xy

lim(ax, M (ax, Mox,)) Mox, — lm(ax, Moy gy ) KMox, — (X1 B(X,5X5))BX,

T(1(23))4 (X1,X28X3),X4

o)

Ax,,xq, x5 Kdx,

lim((ax, ®Bax,) Bax,) Bax, —lim(ay gy, Bax,) Bax, — ((X5X)8X5)KX,

T((12)3)a (x18X5,X3),X,

Again, we define the isomorphisms 7' ((23)4) and T{;(23))4 such that the corresponding hexagons
in the diagram commute. It remains to prove that the square in the center left of the diagram
commutes.
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We need an alternate description of Tj((23)4), so for Wy, € Ix,, k = 1,2,3, 4, we calculate:
T, (xa80x5,x4) © T1((23)8) © P, W, W, w4
= (Idxlgﬂxg,xg,)@l) o Ty, (xa.xs8x) © T1(2(30)) © Gy, wa,wa,wy © (Idw, Aﬁ}zw&m)
= (Idx, gmx2,xg,x4) 0T, (x5, Xs8X1) © PW1,We,Im by w, ©
o (Idw, ® (Idw, B dly w,)) © (Idw, B A, v, w,)
= (Idy, gﬂxg,xg,&) ° ¢W1,Im¢>w2,1m¢W37W4 o (Idw, M ¢y, 1 ¢W3,W4)O
o (Idw, X (Idw, ® ¢y, w,)) © Idw, KARL 4y
= ¢W1,ﬂx2,xs,x4(lm¢w2,1m¢W3‘W4) © (IdW1 X QlXZ,XS,X4|Im¢W2,Im¢W3’W4)0
o (Idwy B G, 1im oy, ) © (I B (T, B Gy, ) 0 (T BAG s )
Now,
Ry 5. |1 0wty 100 oy, 1, © Ot gy, © (L B By vy, )
= T(x,,x3),x4 © -ZXQ,X&XAL o T)?Ql,(X3,X4) O Oy tm by v, © (Idw, B By )
= T(X3,X3),X4 © A\X27X3,X4 O Py, Wy, Wi
= T(X2,X3),X1 © Pwy, Wy, Wy © Ay ws,ws
= Ol gy g Wi © (P, B 1dwr,) © Aws wwr -
So this means
Ty, (xaxs,x0)°T1((23)8) © Pwr W, W, W4
= OWi,1m b1 oy 1y, w3 © (Idwy B3 Gy gy, ) © (I B3 (i, 17, B iy, ))
= TX1,(X2®X3,X4) © ¢W1,Im¢w2,w3,W4 o (Idw, X (%Vz,wg X Idyy, )).
That is, T7((23)4) is the unique homomorphism such that
Ti((23)4) © PWr,Wa, W, Wi = OW I dywsy vy W © Ty X (D, s X Idwyr, )
for all Wy, € Ix,, k = 1,2,3,4. Similarly, we can prove that
T(1(23))4 O QW Wo,Ws, Wy = ¢W1,Im¢w27W3,W4 © ((Idm X ¢%/V2,W3) X Idm)

for W), € IXk'
Now we can prove that the center left square in (5.10) commutes:

~

AXl,X2®X3,X4OT1((23)4) O Oy W, W3, Wi
= "Z{XI,XQ@X;;,X4 o ¢W1,Im¢w2,w3,w4 o (Idw, X (Qb{/vg,wg X Idw,))
= Wi Im dwy 1wy Wi © AWy m by, wy v © (I X (D, vy, B 1dyys,))
= QW Im by wy W © (1w B Gy, ) B Idw,) © Awy womws w,
= Tl1(23))4 © Owy wo,wa, Wi © Awy worws w,

for all Wy, Wy, W3, Wy, as required. Now the pentagon axiom for 2l follows from the commu-
tative diagrams (5.9) and (5.10), the fact that Ti(334)) and Ty, (x, x,zyx,) are isomorphisms,
and the pentagon axiom for A.
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Next, the hexagon axioms for Ind(C) follow from the hexagon axioms in C, the fact that
T'x, (X2,X4) 18 an isomorphism, and the following diagrams for modules Xy, X5, X3 in Ind(C),

provided they commute:

Wi ) (W, K W)
-AW1,W2,W3
(W, & Wa) K Wy
b1

W & (W, & Ws)
AW3,W1,W2

(W & W) & W,

and
Wi X (W, K W)
Idy, IR*?
Wy K (W3 X Ws)
Awywy wy
(W1 X W3) X W,

RERIdyy,

PWy, Wy, Wy

—>th£)(1 X (OéX2 X CEX3)

ijl,Xz,Xﬁi
PWy,Wo, Wy

lig(ole & CYXZ) IE axq

Pws, Wy, Wy

@O‘Xs X (aXl X aXQ)

lAX3,X1,X2

hg(aXB X OéXl) IEOéXQ

PWs, Wy, Wy

¢W1,W2,W3

h&axl & (aX2 IEOéX3)

dwy, W3, Wo

@@Xl X (05)(3 X aXQ)

LAXI,X:),,XQ

dWy, W3, Wy

lig(axl X OZX3) X ax,

Txy,(X9,X3)

T(Xl,Xz),X:‘s

T(X3vX1)7X2

TX1,(X27X3)

T ,(X3,X2)

T(X1,X3)7X2

hg O{AXI IX an@Xg

Ax,,Xq,X3

]ﬂ O{X1§|X2 g aX3

]ﬂ aXl @ aX2®X3
Idx, BR*!
hﬂ aXl & &X3®X2
2Ax,,X3,Xq
hg OéXﬂg’Xg IE O{X2

R*¥1RIdx,

(W3 B W) B W,y

%ﬂ(ax3 X aXl) X QX MEO‘X;;@Xl X X,

W3, Wyp,Wa (X3,X1),X2

for Wi, € Ix,. We just need to consider the cycles in the diagrams that involve braiding
isomorphisms. Indeed, we have

RE 0 Tixy x0) x5 © Dunwawy = RE 0 Prm v,y W3 © (Do, X 1)
= OWitmdwy wy © R0 (D, s, X Idur,
= O tmow, aw, © (Idws By, 1p,) 0 RF
= TX3,(X1,X2) S N R*!
and
(Idx, IR *1) 0 Tx, (xy xa)00ws waws = (Idx, BR*) 0 Sy 1, v, © (I, B Sy, )
= Guv b gy ) © ([ R [t gury ) © Ly B Gy, 107
= Own tm dwry v, © (L B iy, 1) © (Idyy IR
= Tx, (X3.%) © P s © (Idyy, K RED).
Similarly,

(RE'RIdx,) 0 Tix, x.%5 © Swiwsws = T(x,.x1).%5 © dwywnws © (RF R Iduy,),



DIRECT LIMIT COMPLETIONS 33

so the hexagon axioms hold for R.
Finally, we need to show that © is a twist on Ind(C), that is, Oy = Idy and the balancing
equation

@X1®X2 = 7-\)’X27X1 © RXth © (®X1&®X2)

holds for modules X;, X, in Ind(C). Because 6y = Idy, the definition shows that é\v =
Idl-g ay- D0 Op =Qy o Q‘jl = Idy. For the balancing equation, we need to show that

(5'11) @X1®X2 © ¢W1,W2 = ﬁX%Xl ° 7/2\’X17X2 ° <@X1®@X2) © ¢W17W2

for (W1, Ws) € Ix, x Ix,. On the one hand, the definitions, (5.4), and the balancing equation
for 6 show

7QXQ,XI © 7ixl,XQ o (Ox, ®@X2) © Oy, W,
= Rxy x1 © Rxy x5 © Pox, (W1).0x,Wa) © (Ox:[wy B Ox,|ws)
= ﬁxz,xl o ﬁxl,xg © Pwy, W, © (Ow, X Ow,)
= Owywe © Rwn,wy © Ry w, © (9W1 D 9W2)
= dwy,w, © Oy, -

On the other hand, since Im ¢, w, is a C-submodule of X1@X2, we can use (5.4) and the
naturality of # to conclude

O x,8x, © Pwiws = Ox gx, © tmow, w, © ‘b{/vl,wg
= UIm dwywy © O dwywy © ¢§4/1’W2
= lIm Pwywy © ¢§/V1,W2 © 0W1®W2
= ¢W1,W2 o 0W1®W27

recalling that ¢y, yy, denotes the surjection Wy X Wy — Im ¢y, w, induced by ¢w, w,. This
proves (5.11). O

Since C is a subcategory of Ind(C), we should check that the braided tensor category
structure on Ind(C) is actually an extension of the braided tensor category structure on C:

Theorem 5.6. The embedding of C into Ind(C) is a braided tensor functor. In particular,

the restriction of the braided tensor category structure with twist (Ind(C), @, V.1, Ql,ﬁ, ©)
to C is equivalent to (C,X, V. l,r, A, R,0).

Proof. First observe from (5.4) that Oy = y for modules W in C.
Now to show that the embedding of C into Ind(C) is a braided tensor functor, we need a

natural isomorphism () : ®|Cxc — X such that the diagrams

Qv,w Qw,v

(5.12) VRW 2 VW  and WRV S WRV

)
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commute for any module W in C, the diagram

vy Wy, w3

(5.13) Wi RK(WoXWs) (WKW, KW,
Idw, BQwy,wsy l lQWl,% Ridyy,
WKW, B W) (W R W) XWs
le,wml leWQ,WS

Wy K (W, B W)

(W1 K Wy) X W3)

W1, W, W3

commutes for any modules Wy, Wy, and W3 in C, and the diagram

Ry, wy

(5.14) WKW, WoXW,
QWl,W2l/ lQWQ,Wl
Wi X Wy Wy X W,
Ry, wy

commutes for modules W; and W5 in C.
For modules W, and W; in C, we define Qw, w, to be the unique morphism such that

Uy ¥ U,

iv, Riyr,
¢U1,U2 l \

lim oy, D ey, — W, X W,

W1,Wa

commutes for all Uy € Iy, and U, € Iyy,. It is clear from the universal property of lim ayy, X
ayy, that Quw, w, exists, and it is an isomorphism with inverse ¢w, w,. Indeed, the definition
of Qw, w, shows that

QW17W2 © ¢W17W2 = IdW1 X Isz = IdVIﬁ&Wg-

On the other hand, the diagram

U, KU,
lim oy, X o Wi X W. lim oy, X«
g Wi Wa - 1 2 - g 1% Wa

for U, € Iw, and U, € Iy, shows that
¢W1,W2 o QWLWQ = IdW1§|W2'

(The triangle on the right side here commutes because iy, = f[?l/ tand iy, = fz‘g 2.) We also
need to show that () is a natural isomorphism, that is,

(5.15) o (MKXF) = (A R E) o Qu,w,

Qw,.w,
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for homomorphisms F; : W; — Wl and Fy : Wy — Wg in C. From the commutative diagram

Fi|y, ®F2|y,

U, K U, Fy(U) B Fy(Us)

Ury (U) MRy (Ug)
dUL,Uy Dy (U1),Fa(Us)

hﬂ aw, X (077728 — hﬂ OZWl X O./WQ /Wv1 X WZ

i XF>

Qw1
for Uy € Iy, and U, € Iy, we get
Qw, ., © (FXF) 0 ¢u, 0, = (im @) Birws) © (Fily, B Falu,)
= (Fl @ FQ) (o] (iUl X’ iUz)
= (Fl X F2) o QWI,WQ o ¢U1,U2-

This proves (5.15).
Now the diagrams in (5.12) commute as a consequence of the definitions of Iy and vy
together with the diagrams

ivKIdg

~ I~
VXU —Z

UXU U

¢U,17L W\? lldvgiﬁ Liﬁ

VRW VERW 1474
V,W w

and

~ Id~Xq ~ r~ ~

URU L L 0RYV — =0

WXV WKV W
W,V rw

for U € Iy, Ue Iy, which commute by the naturality of the unit isomorphisms in C.

For the diagram (5.13), we need to show that

Ay wawy © Qv wasiws © (1w, MQuws, 1) © Tony (v,
= Quwyswaivs © (Quaw,BIdws, ) © Towywa)ws © Aws v ws

as morphisms in W from lim ay, & (aw, R ayys,) to (W1 K W) B W5, This follows from the
calculations
Awy wa,ws © Qwy womws; © (Idw, gQW27W3) © Tw, (W, W) © QUL U, Us

= Awy.wa. w5 © Qurwamws © (Idw, BQuws, ws) © bvy 1m by 1, © Tder, B, 1)

= Awy wa,ws © Qi wamws © QUL Qury iy (Im bury 1) © (1o B Quw i [tm sy, 1, ) © (1o, B By, 1)

= Aw, wo. w5 © Qi womws © Oy iy, Bir,) © (Idey, B (i, Xiy;,)')

= Aw, waws © (i, X (i, Mg, ))

= ((ir, Mig,) Rig,) o Ay .0,
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and
Qs s © (Qu,w,XIdws, ) © Tiw ey wy © Awswaws © b 05,04
= Quwysawaws © (Quw,w,XIdws, ) © Thw way ws © Gun, 0,03 © Avn 0
= Qwyawy,ws © (Qwy w, Xldy, ) o Prm b, 1y.Us © (P17, B 1duy) 0 Avy 0, 0
= Qwimws,w; © ¢QW1,W2 (Im ¢v, ,v,),Us © (QW1,W2|Im¢U1,U2 X Idy,) o (leUl,Ug X Ide,) o Avy v,
= Qwy W, W5 © Pln(iy, Bin,).Us © ((iv, Miv,) R dy,) o Av, .05
= ((iUl X iU2) X iUg) o -AUl,Ug,Ug
for objects U; € Iy, j = 1,2,3. Here (iy, Miy,)" : Uy WUy — Im(iy, Miy,) is the surjection
induced by iy, K iy,, and (i, K iy,)’ is similar.
Finally, (5.14) commutes as a result of the calculation
Qw,,w, © 734/1/1,1/1/2 ° by, v, = Qwyw, © Gusu, © Ruyv,
= (iy, Xiy,) o Ry, v,
= Rw,w, 0 (i, Kig,)
= Rwy,w, © Qur,w, © Uy s
for objects Uy € Iw, and U, € Iy,. O

6. THE DIRECT LIMIT COMPLETION AS A VERTEX TENSOR CATEGORY

Although the last section shows that braided tensor category structure on C extends to
braided tensor category structure on Ind(C), we have not yet shown that this braided tensor
category structure on Ind(C) is the correct vertex algebraic structure. Especially, we have not
yet related this braided tensor category structure to intertwining operators. In this section,
we complete the proof of Theorem 1.1; the remaining conditions for this theorem that we
need to impose now are the following:

Assumption 6.1. The category C of grading-restricted generalized V-modules satisfies:

(1) The braided tensor category structure on C is induced from vertex tensor category
structure as described in Section 2.

(2) For any intertwining operator ) of type (W1XW2) where Wy, W5 are modules in C and
X is a generalized module in Ind(C), the image ImY C X is a module in C.

Using these conditions, as well as the assumptions of the previous sections, we first prove:
Theorem 6.2. Let Xy and Xy be modules in Ind(C).

(1) There is an intertwining operator Vx, x, of type ();11&;(22) such that if Wy C Xy and
Wy C X5 are any C-submodules, then
yXl,X2 © (iW1 ® iW2> - ¢W1,W2 © le,Ww
where iy, : Wi — Xy, tw, : Wo — Xy are the inclusions and Yw, w, 15 the tensor

product intertwining operator of type (VVV[}FVYZ 2) in C.

(2) For any weak module X3 in Ind(C), the linear map
Homy (X,8Xs, X3) — V°
F— Fo yXl,X2
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1S an tsomorphism.

Proof. To construct Yy, x,, we first need to show that (X; @ X, {in, ® iWQ}(WhWQ)GIXl XIX2)
is a direct limit (in the category of vector spaces) of the inductive system

ax, ®ay, : Ix, X Ix, = Vec
defined by
(ax, ® ax,) (Wi, Wy) = W1 @ W,
for W, € IXU Wy € IXQ) and by
Wi, W W W
fwiwe = Fwi ® fwg
In fact, since (X1 ® Xo, {iw, ®@iw, }(wi,wa)ely, x1x,) 18 a target of ax, ® ax,, there is a unique
linear map
Fx, x, : 1;1136!)(1 ® ax, — X1 ® Xy

such that Fx, x, o dw, w, = tw, @ iw, for Wy € Ix,, W5 € Ix,. The map F¥, x, is surjective
because X; and X, are both the unions of their C-submodules. To show that Fx, x, is also
injective, we use the injectivity of iy, ® iy,, which follows from the exactness of the tensor
product on Vec: If Fy, x,(iw, w,(w)) = 0 for some w € W; ® Ws, then (iw, ® iw,)(w) =0
as well, so that w = 0. Thus Fy, x, is an isomorphism that identifies (X; ® X, {iw, ®
iWZ}(W17W2)€IX1 ><IX2> with the direct limit of ax, X ax,.

Now by the universal property of direct limits in Vec, there is a unique linear map

Vx, x, (4 2) 1 X1 @ Xy — (X1KXy) [log 2] {x}
such that the diagram

yW1,W2

W1 &® W2 (Wl X Wg)[log l‘]{l‘}
iy, @i, l l(ﬁwl,WQ
X, ® X, (XX X,)[log z]{z}

X1,X2

commutes for all W; € Iy, and W, € Ix,. Indeed, Vx, x, is well defined because

W i W i
¢W17W2 © yWhWQ © (lel ® fW;) = ¢W17W2 (f ' 22) © yW1,W2 = (le,WZ o yW1,W27

by definition of the tensor product of morphisms in C. Then Yx, x, is an intertwining
operator because each Yy, w, is an intertwining operator and because X; for j = 1,2 is
the union of its C-submodules. For example, Vy, x, satisfies the L(—1)-derivative property
because

d d
%thXz (iwy (w1), )i, (W) = dw,.w, (%yWth (wl,@”)w2>
= ¢W1,W2 (yWth (LW1 <_1)w17 x)w2>
= Vx;.x, (twy (L, (=1)w1), ) iw, (wa)
)

= yXl,Xz(LX1< )ZW1 (U)1 7'T)iW2 (wQ)
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for Wy € Ix,, Wy € Ix,, wy € Wi, and wy € W,. Similarly, the Jacobi identity follows from
the relations
YXlﬁng ('U7 xl)yXl,Xg (ZW1 (wl)a x?)iWQ (w2)
- YX1®X2 (U7 xl)ngl,Wz (yW1,W2 (wlu 1'2)/(1)2)

= ¢W1,W2 (lexwz (Ua $1)yW1,W2 (wh 332)11}2) )

Yy, (iwr (W), 22) Y, (v, 21 )i, (w2)
= yXl,XQ (iW1 (w1)7 xQ)iwz (YW2 (U7 I1>w2)

= ¢W1,W2 (yW1,W2 (wl, 932)YW2 ("U,Zfl)wz) )

V. x, (Y, (v, 20)iw, (w1), 22)iw, (wo)
= Vx5, (lw, (Y, (v, 2o)wr), 22)iw, (w2)
= Owywe (Ywi,we (Y, v, 2o)wy, z2)ws)
and the fact that Y, w, satisfies the Jacobi identity. This proves part (1) of the theorem
For part (2), we need to show that if ) is an intertwining operator of type ( ) then

there is a unique weak V-module homomorphism F': X 1&X2 — X3 such that Fo))Xl’ x, =V
For each Wy € Ix, and Wy € Ix,, Vo(iw, ®iw,) is an intertwining operator of type (Wi(i}/z), SO
by Assumption 6.1(2), Im Yo (iw, ®iw,) is an object of C. Then by the universal property of
the tensor product in C, there is a unique V-module homomorphism Fyy, w, : W1 XKW, — X3
such that

Yo (iw, ®iw,) = Fwywy © Yy,
By the universal property of the direct limit X; XX, = lg ax, May,, there is then a unique
weak V-module homomorphism F': X 1@){2 — X3 such that F o ¢w, w, = Fw, w,, provided

(6'1) W1 W, © (le X f 22) :FW1,W2
for all W, C Wl in Iy, and Wy C W2 in Iy,. To show this, we calculate
W1 W (le X f ) yW1,W2 = FWJ@ oy'Wl,WQ (fwl ® f )
=Yo <iW~/1 ® iWQ) © (lel @ fW;)
= y o (ZW1 @ ZWQ)
= Fw,w, © Yy ws-
Then (6.1) follows from the surjectivity of Vw, w,. This shows that F' exists. Then for
W1 € [XU W2 € IXQ? we have
Fo yX17X2 © (iwl & iW2) =Fo ¢W1,W2 o le,Wz
= FW1,W2 o yW1,W2
= Yo (in, ® i)
Since X; ® X5 is the union of the images of such iy, ® iy,, we get F' o Vx, x, = Y. Finally,
the uniqueness of F' follows from surjectivity of the intertwining operator Vx, x,. This
surjectivity is a consequence of the definition of Vx, x,, since X;XX, is spanned by the
images of ¢y, w, for W, € Ix, and W, € Ix,, and since each Yy, w, is surjective. O
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We will use the intertwining operators Yy, x, of the preceding theorem to describe the
tensor category structure on Ind(C). For describing the associativity isomorphisms, we will
use the fact that every weak module X in Ind(C) is a generalized V-module, so that the
contragredient X’ = P, .c X[}, exists, though not necessarily as a module in Ind(C). Note

that the full vector space dual (X’)* contains the algebraic completion X = [Tcc X, but
these two vector spaces are not equal unless all the X, are finite dimensional. A grading-
preserving linear map f : W — X between two generalized V-modules extends to a linear
map f : W — X in the obvious way. It also induces a grading-preserving linear map

X —=w
that satisfies
(f*(t)), @) =V, f(w))
for ' € X' and w € W.

Theorem 6.3. Under Assumptions 4.1, 5.1, and 6.1, the braided tensor category with twist
structure on Ind(C) is given as follows:

(1) The tensor product of objects Xy and X in Ind(C) is X1®X, and the tensor product
of morphisms Fy : X1 — Xy and Fy : Xo — X5 is characterized by
(FIBF) (Vx, x, (b1, 2)bs) = Vg, 5, (Fi(br), ) Fa(bo)

fOT’ b, € X1, by € X5.
(2) The unit object of Ind(C) is V', and for a module X in Ind(C) the unit isomorphisms
are given by

[x Vvx(v,2)b) =Yx(v,2)b and tx (Vxy(bx)v)= ea’L(_l)YX(v, —x)b

forveV, be X.
(3) For modules X1, Xo, and X3 in Ind(C), for vectors by € X1, by € Xo, and by € X3,
and for ri,ro € R such that r{ > r9 > r1 —ry > 0, the series

(62) Z thXg@Xg (b17 eln " )7Th (yXQ:XS (627 eln T2)b3)

heC
of vectors in Xlg(Xng) converges absolutely to a vector
Vi xamix (01, €7 )V, x5 (by, €7 72)bs € X1 B(XRX;) C (XIR(X:MX5))),

and the series

(63) > Vigvaxs (M (Vxxa (b, €™772))by) € 72) by

heC
of vectors in (X1®X2)®X3 converges absolutely to a vector
Vi igisxs (Vxaxa (b1, € 7)by, 72) by € (X1 MXR)HX; C (((X1KX2)KX5))"
Moreover,
m <yX1,X2®X3 (b1, elml)yXQ,Xg (ba, elnm)b3)
(6.4) _ yX1®X2,X3 (thXQ(bh eln(m—rz))b27 elnrg) bs.
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(4) For modules X, and Xs in Ind(C), the braiding isomorphism ﬁxl,)@ satisfies

ﬁXl»Xz (Vx1,x2 (b1, 2)b2) = emL(_l)yX2,X1(b2, e™'x)b
for by € X1, by € Xs.
(5) For a module X in Ind(C), ©x = e?™£0),
In particular, Ind(C) is a braided tensor category with twist as described in Section 2.
Proof. For morphisms F; : X; — )21 and Fy 1 Xy — )?2 in Ind(C), we may assume b; =

iw, (wy) for some Wy € Iy, wy € Wy and by = iy, (we) for some Wy € Iy, wy € W, Then
by the definitions,

(FiBIF,) (Vx, x, (br, )b2) = (FIRE,) (Vx, x, (iw, (w1), 2)iw, (w2))

( (FIRF) o dw, W2> (Vwrw, (W, z)wa)

= (¢ w).ma(wa) © (Filwy, B Falwy)) (Vs (w1, 2)ws)

= Or ), B (W) (V) B wa) (F1 (i, (w1)), ) Fa (iws, (w2)))
= V5, 5, (F1(b1), ©) F>(b2)

as required.
For the unit isomorphisms [y and tx, we may assume that b € X is given by b = iy (w)
for some W € Ix and w € W. Then

Lx (Vvx (v, 2)b) = Ix (Vvx (iv (v), ©)iw (w))
= (Ix o pvw) (Vvw (v, z)w)
= (iw o lw) Vvw (v, ¥)w)
=iw (Yw (v, z)w)
= Yx (v, z)iw(w) = Yx(v,z)b

and

tx (Vx,v (b 2)v) = vx (Vxv (iw(w), 2)iv(v))
= (tx o dwyv) Vwv(w,z)v)
= (iw orw) YVwv (w, z)v)
=i (e LDYy (v, —2)w w)
= "L EVY Y (v, — )i (w) = e*FCVYx (v, —2)b
by the definition of the unit isomorphisms in C.

For the associativity isomorphism Ay, x, x,, take by € X, by € Xy, and by € X5. For
J = 1,2,3, we may assume that b; = iy, (w;) for some W; € Ix, and w; € W;. Then for
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b e (X1X(X,XKX3)) and h € C, we use the definitions to get

<b/7 V1 xa8x5 (015 " )1 (Vs x, (b2, €777)b3) >

= <b', Ve, xoings (i (wi), € ) (Vi x, (i, (w3), €lnr2)lwd(w3))>

V', Yy, xgis wa (w1), € ™) (T4 0 Gy ) (Vs ws (w2, elm)ws)>

<
< yxl ngxg ZW1( ) elml)(ﬁbWz,Ws © Wh) (ng,wg (w2,€1m2)w3)>
(

<bl, Wy Im Wy W (ywl,lm bWy, W (U}h 61“”)(%1/2,% © 7Th) (yWQ,WS (U)2, €1m2)w3))>
O, dwi 1m dwy wy, © (Idwy X @y, 1) (Vwr, wamw, (w1, ey, (Vwa,ws (wo, € )>
<(¢W1,Im¢w2 Wy (Idwl X (ng Wg))*(b/)7 yW17W2|EW3 (wlv el )ﬂ-h (yW2,W3 (w27 el >w3)>

Now the convergence of products of intertwining operators in C implies that the sum over
h € C converges absolutely to some

Vi, xafins (01, € ™) Vy x4 (b, €723 € (X1 R(XoKX35)))".

Moreover,

yXl,X2®X3 <b17 elnrl)yX27XS(b27 elnr2>b3

= <(¢W1,Im¢w2,w3 © (IdW1 X ¢%/VQ,W3))*(')’ yW1,W2®W3 (wlv elnm):))VV2,VV3 (wQ’ 6lnm)wi’)>

= ¢W1,Im OWoy, W o (Idwl X ¢§/V2 W3) (ywl,W2®W3 ('LUl, elnrl)yWQ,Wg (w27 elnT2>w3)
2,3 )

€ Im ¢W1,Im¢W2,W3 © (IdW1 X ¢§/V2,W3) C Xlg(X2®X3)-

Similarly, the series in (6.3) converges absolutely to

yXl&'X%X:% (yXI:XQ (bla eln(r1—r2))b2’ €lnr2) b3
= ¢Im¢w Wy, W3 © ((blVVl Wa X IdWs) (yWﬂXle,Ws (yW1,W2 (wh 6111(7“1—7’2))1027 elnrg) w3)
1,Wa ,

€ (X1XX,)KX;.

Then since

, —
RUx,,X, X5 © OWytm ey sy © (Idwy B Oy, ) = Ay x0,x © Ty (X5, X5) © P, W

= T(Xl,X2)7X3 o -AXl,Xz,Xs © Py W, W
= T(XI,X2)7X3 © ¢W1,W27W3 © AW17W2,W3

= ¢Im¢W1,W27W3 © ((b%/Vl,Wg X Idy,) o Avwy W

(6.4) now follows from the definition of the associativity isomorphisms in C.
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For the braiding isomorphism ﬁXl,Xza take b, € Xy, by € X5 such that for j = 1,2,
bj = iw, (w;) for some W; € Iy, and w; € W;. Then

Ry xs (Vi %0 (01, 2)b2) = Ry s (Ve xs (i (wr), )i (w2)
= (ﬁxl,xz © ¢W1,W2) (ywl,% (w1, $)w2)
= (dwa,wy © Rwyws) (Y, ws (wr, 7)ws)
= Owyw, (exL(_l)yWQ,Wl(wm ez )w)
= " LDV < (i (w3), €72 )iy, (w1) = L0V Yy, x, (ba, €™ )by

by the definition of the braiding isomorphisms in C.
Finally, for an object X in Ind(C) and b = iy (w) € X,

@X(b) = @X<Zw(w)) = Zw(gw(w)) = iw(627riL(O)QU) = GQWiL(O)iw(U)) = 62mL(0)b
by (5.4) and the fact that iy is a homomorphism of generalized V-modules. UJ

The previous theorem completes the proof of Theorem 1.1, except for the assertion in
Theorem 1.1 that Ind(C) has the P(z)-vertex tensor category structure of [HLZ1]-[HLZS]
extending that on C. The existence of P(z)-vertex tensor category structure on Ind(C) can
be proved exactly as in [CKMI1, Section 3.5]. In particular, for generalized modules X,
X, in Ind(C) and z € C*, we can take the P(z)-tensor product Xlgp(Z)Xz to be X1®X2
equipped with the P(z)-intertwining map YVx, x, (-, €/°7)- for some choice of branch log z of
logarithm. Although the module category considered in [CKM1] is different (it is the local
module category Rep” A of a vertex operator superalgebra extension of a vertex operator
subalgebra V'), the tensor product and all structure isomorphisms in the category of [CIKM1]
are characterized by intertwining operators exactly as in Theorem 6.3. So the construction of
P(z)-tensor products and parallel transport, unit, associativity, and braiding isomorphisms
of the P(z)-vertex tensor category structure works the same for Ind(C) as it does for Rep® A.

Finally, the assertion that the P(z)-vertex tensor category structure on Ind(C) extends
that on C amounts to the assertion that the embedding C — Ind(C) is a “vertex tensor
functor” in the sense of [CKMI, Section 3.6]. This is proved in exactly the same way as
[CKM1, Theorem 3.68] (where the functor under consideration is the induction functor into
the local module category Rep® A of a vertex operator (super)algebra extension); see also
[McR1, Remark 2.7].

7. EXAMPLES AND APPLICATIONS

In this section, we give examples of vertex operator algebra module categories that satisfy
the conditions of Theorem 1.1: the basic examples are Cf-cofinite module categories for
Virasoro and affine vertex operator algebras. We then apply extension theory [CKMI] to
demonstrate the existence of braided tensor categories of generalized modules for certain
infinite-order extensions of Virasoro and affine vertex operator algebras, such as singlet
vertex operator algebras.

For a vertex operator algebra V', the category Ci. of C-cofinite grading-restricted general-
ized V-modules will satisfy the conditions of Theorem 1.1, provided it satisfies the hypothesis
of Theorem 2.10:

Theorem 7.1. Suppose the category Ci, of Cy-cofinite grading-restricted generalized modules
for a wvertex operator algebra V' is closed under contragredient modules. Then C{. satisfies
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the conditions of Theorem 1.1, so that Ind(Cl,) admits vertex and braided tensor category
structures extending those on Ci,.

Proof. We verify the conditions of Theorem 1.1 one by one:

(1) V is an object of Cj,: Since v_11 = v for any v € V, C1(V) contains €, ~; V). Then
the grading-restriction conditions on V imply that dim V/C; (V) < co.

(2) CJ; is closed under submodules, quotients, and finite direct sums: It is easy to see
that quotients and finite direct sums of C;-cofinite modules are Ci-cofinite. For
submodules, we use the fact that a submodule of a V-module W is the contragredient
of a quotient of W’ together with the assumption that contragredients of C;-cofinite
modules are C-cofinite.

(3) Every module in C is finitely generated by Proposition 2.11.

(4) The category Ci, admits P(z)-vertex and braided tensor category structures as de-
scribed in Section 2 by Theorem 2.10.

(5) The intertwining operator condition of Theorem 1.1 follows from Corollary 2.14.

O

Perhaps the first candidates for vertex operator algebras which satisfy the conditions of
Theorem 7.1 are simple Virasoro and affine vertex operator algebras:

Example 7.2. For any central charge ¢ € C, it is shown in [CJORY] that the category
C! of Cj-cofinite modules for the simple Virasoro vertex operator algebra L(c,0) is equal
to the category of finite-length L(c,0)-modules that have Cj-cofinite composition factors.
In particular, C! is closed under contragredients, so Theorem 7.1 implies that Ind(C!) has
vertex and braided tensor category structures extending those on C!.

Example 7.3. Now consider the simple vertex operator (super)algebra Vj(g) associated to
a finite-dimensional Lie (super)algebra g at non-critical level k. The category of Cj-cofinite
grading-restricted generalized modules is called the Kazhdan-Lusztig category K Ly (g); it is
not hard to show that it is also the category of finitely-generated grading-restricted gener-
alized Vj(g)-modules. (Proposition 2.11 shows that Cj-cofinite modules are finitely gener-
ated. On the other hand, the grading restriction conditions imply that a finitely-generated
grading-restricted generalized module is also finitely generated as a U(g_)-module, which
implies C-cofiniteness.) For g a simple Lie algebra, it is known that K Ly (g) is closed under
contragredients when k£ € C\ Q (in which case K Li(g) is semisimple), when k + hY € Qg
[KL.2], when k is admissible [Ar], and for certain non-admissible & such that k + hY € Qg
[CY]. For h an abelian Lie algebra, Vi (h) for k£ # 0 is a Heisenberg vertex operator algebra;
modules in K Li(h) are finite-length extensions of irreducible Fock modules and thus K L (h)
is closed under contragredients. In all these cases, Theorem 7.1 shows that Ind(K L(g)) has
vertex and braided tensor category structures extending those on K Ly(g).

Now the reason we want vertex and braided tensor category structures on categories such
as Ind(C!) and Ind(K Li(g)) is that we want to apply the extension theory of [CKMI] to
infinite-order extensions of vertex operator algebras. An extension of a vertex operator
algebra V' is a vertex operator algebra A that contains V' as a vertex operator subalgebra. In
particular, V' and A have the same conformal vector, so that V' conformally embeds into A.
For example, any vertex operator algebra V' of central charge ¢ contains a Virasoro vertex
operator subalgebra. Although V' will not usually be Cj-cofinite as a Virasoro module, V
might be an object of Ind(C}). In this case, we would like to view V as a commutative algebra
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in the braided tensor category Ind(C!) (as in [HKL]) and then apply [CKM1] to obtain vertex
and braided tensor category structures on the category of generalized V-modules in Ind(C}).
We recall the definition of commutative algebra in a braided tensor category:

Definition 7.4. Let (C,X,1,1,r, A, R) be a braided tensor category. A commutative algebra
in C is an object A equipped with a multiplication morphism py4 : AK A — A and a unit
morphism ¢4 : 1 — A that satisfy the following properties:

(1) Unit: pao (ta®Idy) =14

(2) Associativity: pa o (Ida X pa) = pao (ua®Ida) o Asan

(3) Commutativity: p1a = pta 0 Raa.

The following result is a version of Theorem 3.2 (and Remark 3.3) of [HKL] that is relevant
for our setting, although the statement differs somewhat from [HKL, Theorem 3.2] since here
we choose to avoid the implicit assumption in [HKL] that the unit ¢4 is injective. In the
statement, Y represents the vertex operators for the vertex operator algebras V and A, while
Ya:V®A— A((z)) is the vertex operator for A as a V-module.

Theorem 7.5. Let (V,Y,1,w) be a vertex operator algebra and C a category of grading-
restricted generalized V -modules that satisfies the conditions of Theorem 1.1. Then the fol-
lowing two categories are isomorphic:

(1) Vertex operator algebras (A,Y,14,wa) such that:
o Ais a V-module in Ind(C),
o Yy (v,2) =Y (v_11a,2) forveV, and
.WA:L<_2)1A (:w_llA).
(2) Commutative algebras (A, pia,ta) in the braided tensor category Ind(C) such that A
is Z-graded by L(0)-eigenvalues and satisfies the grading restriction conditions.

Proof. The proof is essentially the same as that of [HKL, Theorem 3.2], so we will just briefly
indicate how the isomorphism of categories goes. Given a vertex operator algebra A as in
the statement of the theorem, the grading of A by L(0)-eigenvalues as a V-module must
agree with the Z-grading of A as a vertex operator algebra since

Va(w,z) = Y(L(=2)1a,2) = Y (wa, 2).
In particular, A is Z-graded by L(0)-eigenvalues and satisfies the grading restriction con-

ditions. The algebra unit ¢4 : V' — A is defined by t4(v) = v_114. This is a V-module
homomorphism by [LL, Proposition 4.7.7], since 14 is a vacuum-like vector for V:

Ya(v,2)14a =Y (v_114,2)14 € A|[x]]
for v € V. (In fact, ¢4 is also a homomorphism of vertex operator algebras.) The algebra
multiplication 4 : AXA — A is the unique V-module homomorphism, guaranteed by
Theorem 6.2(2), such that ps o Va4 = Y; note that Y is indeed a V-module intertwining
operator of type (AAA) since Y4 = Y o (1y ® Id4) and L(—1) agrees with Ls(—1) = (wa)_1
on A. Using Theorem 6.3, p4 is commutative and associative exactly as in [HKL, Theorem
3.2}, and the unit axiom follows from

(14 0 (14XIdy)) (Wva(v,z)a) =Y (v_1la,2)a = Ya(v,z)a = 14 (Vva(v,x)a)

forveV,ac A
On the other hand, if (A, ua,ta) is a commutative associative algebra in Ind(C) with a
restricted Z-grading by L(0)-eigenvalues, then A is a vertex operator algebra with vertex
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operator Y = pg 0 Y4 4, vacuum 14 = 14(1), and conformal vector wq = 14(w), just as in
[HKL, Theorem 3.2], . O

Remark 7.6. The notion of commutative algebra generalizes to superalgebra, that is, an ob-
ject graded by parity for which the multiplication is supercommutative (see [CKL, Definition
2.14]). Commutative superalgebras correspond precisely to vertex superalgebra extensions
[CKL, Theorem 3.13], and similar to the above theorem, the argument also works in the
direct limit completion.

Theorem 7.5 means that we can use the methods of braided tensor categories to study
suitable (possibly infinite-order) extensions of a vertex operator algebra V. In fact, we
can apply the extension theory developed in [CKMI] with the braided tensor category C
replaced by Ind(C): although it was assumed in [CKMI1] that the generalized V-modules
under consideration were grading-restricted, this assumption was not used in any of the
proofs. So [CKMI, Theorem 3.65] applies to our setting:

Theorem 7.7. Let V' be a vertex operator algebra, C a category of grading-restricted general-
1zed V -modules that satisfies the conditions of Theorem 1.1, A a vertex operator algebra that
satisfies the conditions of Theorem 7.5(1), and Rep® A the category of generalized A-modules
X which are objects of Ind(C) as V-modules with respect to the vertex operator Yx(ta(-), ).
Then Rep® A has vertex and braided tensor category structures as described in Section 2.

We conclude by applying Theorem 7.7 to several vertex operator algebras A:

Example 7.8. The lattice vertex operator algebra V, with L = v/2Z and its irreducible
module V% .1, are objects in the Virasoro direct limit completion Ind(C}) at central charge
2

1. Since V7, is a strongly rational vertex operator algebra, Theorem 7.7 does not give any new
information about V. However, Theorem 7.7 does imply that any intermediate subalgebra
L(1,0) € A C V,, has a braided tensor category of generalized modules that includes at least
those A-modules occurring in the decomposition of V1 , as an A-module.

For example, consider the fixed-point subalgebras o% automorphism groups of V. Since
Aut(Vy) contains SO(3), all finite subgroups of SO(3), especially the alternating group As,
act on V. It is expected that the fixed-point subalgebra VLA5 should be strongly rational,
but since As is non-abelian simple, the results of [Mi2, CM] do not apply. In any case,
Theorem 7.7 now implies that at least VLA ® has a braided tensor category of modules that
includes the irreducible VLA 5-modules occurring in the decomposition of V;. By [McR1,
Corollary 4.8, these irreducible VLA5-modules generate a tensor subcategory that is braided
tensor equivalent to Rep As; in particular, this braided tensor subcategory is rigid. It would
be interesting to see whether this rigid symmetric tensor category of VLAs—modules might be
useful for proving that fol5 is Cy-cofinite; by [McR2, Main Theorem 2|, this would be enough
for showing that VLA5 is strongly rational.

Example 7.9. For an integer p > 2, let M(p) denote the singlet vertex operator algebra:
this is a subalgebra of the rank-one Heisenberg vertex operator algebra with a modified
conformal vector. It was shown in [Adl] that M(p) is an infinite direct sum of irreducible
C)-cofinite modules for its Virasoro subalgebra L(c,,0), where ¢, = 13 — 6p — 6p~'. Thus
M(p) is an algebra in the braided tensor category Ind(C(}p) and we can use Theorem 7.7 to

conclude that Rep” M(p) has vertex and braided tensor category structures.
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The braided tensor category Rep® M(p) is too large since it includes generalized modules
with infinite-dimensional conformal weight spaces. However, it contains interesting sub-
categories that are closed under the tensor product. For example, Corollary 2.14 implies
that C/l\/l(p) N Rep” M(p) is a braided monoidal subcategory of Rep” M(p) (it will also be an
abelian category if it is closed under submodules). The tensor structure of modules in this
subcategory will be studied in detail in [CMY]. The existence of braided monoidal category
structure on C} ) NRep” M(p) partially resolves a conjecture from [CMR]; however, we have
not shown here that the full category C/lvz(p) has braided tensor category structure. This is
because the so-called “typical” irreducible M(p)-modules are Ci-cofinite as M (p)-modules
by [CMR, Theorem 16], but they do not decompose as sums of C}-cofinite L(c,, 0)-modules
and thus are not objects of Ind(C; ).

Example 7.10. The B, algebras introduced in [CRW] are extensions of the tensor product of
M(p) with a rank-one Heisenberg vertex operator algebra. They are subregular W -algebras
of type A (when p > 2) at certain boundary admissible level, and they are also chiral
algebras of Argyres-Douglas theories in physics [ACGY]. The first two examples are the S
vertex algebra (p = 2) and the affine vertex algebra V_,/3(sly) (p = 3) [Ad2]. Aside from
work of Allen and Wood on the v vertex algebra [AW], establishing rigid vertex tensor
category structure beyond ordinary modules is completely open for affine vertex algebras
and W-algebras. But now, using the previous example, we can show that there is a full rigid
braided tensor category of By,-modules that contains relaxed highest-weight modules. Most
of the braided tensor category structure on relaxed highest-weight modules for B, algebras
has been conjectured [ACKR], based on expected relationships between the representation
theories of singlet algebras and of unrolled unrestricted quantum groups of sly [CGP]. Now
with the existence of rigid braided tensor categories for B, algebras, one can partially prove
these conjectures.

Example 7.11. For a simple Lie algebra g, the category K Lj(g) of finitely-generated
grading-restricted generalized modules for the universal affine vertex operator algebra V*(g)
at level k has vertex tensor category structure if k+h" ¢ Qsq [KL1]-[KL5]. Let V¥()) denote
the generalized Verma module of level k& whose lowest conformal weight space is the irre-
ducible highest-weight g-module with highest weight A\. There are many interesting vertex
operator (super)algebra extensions.

Take as simplest example g = sly and set & = %, g =13 -6t —6t71 s =2k + 3 (so
that 2t —1=s""), ¢, =2 —3s— 3571, A, = (r — 1)w with w the fundamental weight of sly.
Also take the simple Virasoro vertex operator algebra L(c;, 0) at central charge ¢;, which has
C-cofinite irreducible modules L(c, h,s) for r, s € Z, with lowest conformal weights

We use the same notation for the simple Virasoro vertex operator algebra at central charge
Cryo =13 —6(k+2) —6(k+2)""
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Corollary 2.6 together with Theorem 2.10 of [CGL] say that for generic k (that is, as
vertex algebras over a localization of the polynomial ring in k),

V*(osp, ) = @V’“ ) ® L(cs, hay)
(7.1)
S(cs,0) ® F = @ L(crya, hiy) @ L(c, hay)

r=1

with Vk(oﬁpl‘z) the universal vertex operator superalgebra of osp,, at level k, S(cs,0) the
N = 1 super Virasoro algebra at central charge c;, and F' the free fermion vertex superal-
gebra at central charge % Thus for generic k, these are commutative superalgebras in the
completions Ind(K Ly(sly) X C} ), Ind(C;, , ®C.,) of the Deligne products of the underlying
categories. Assuming k ¢ Q, both K Ly (sly) and the Virasoro categories are semisimple, so
the Deligne product categories are semisimple and Theorems 5.2 and 5.5 of [CKM?2] imply
that they have vertex tensor category structure. Moreover, the direct limit completions are
semisimple; this means that their Deligne product subcategories are the same as their sub-
categories of C-cofinite modules, and then it follows from Corollary 2.14 that condition (5)
of Theorem 1.1 is also satisfied.
We now study S(cs, 0)-modules using the induction functor
F Cclk+2 X Cclt — Rep S(cs,0) @ F

from [CKM1]. By [CKMI, Proposition 2.65], an L(cg+2,0) ® L(c,0)-module induces to a
local module, in Rep® S(c,, 0) ® F, if and only if its monodromy with S(c,,0) ® F is trivial.
To calculate monodromies, we use the fusion rules

L(c, hyt) B L(c, huy) = L(c, hyy)

from [CJORY, Theorem 5.2.4], valid for any ¢ ¢ Q, and the balancing equation with twist
g = e27riL(0):

Rei(ehi ) Lehrn) © Riehen)Liehns) = Oniehns © Opieny B 00n )

_ 627T,L‘(h/r’s_hr’1_hl,S)IdL(C7h7-’5) —e i(H_s_Ts_l)IdL(c,h,.,s)-
From this together with (7.1), we see that L(cyio,hn1) ® L(ct, hm,1) induces to a local
S(cs,0) ® F-module if and only if m +n is even. As an L(cg12,0) ® L(ct, 0)-module, we have

F(L(crs2y hnt) @ L(ct, hun)) = @D Llckia, hna) © Lc, ham).

r=1

n+m

5 and

The minimum conformal weight of this module occurs in the summand with r =
takes the value
2 2
n‘—1 m-—1 mn — 1
An,m = s+ 571 -

8 8 4
Define S(cs, Ay, 1) by S(cs, Apm) @ F = F(L(Cri2, hna) @ L(ct, himi))-
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Since induction is a monoidal functor, the fusion rules for the modules S(cg, A, .,) are
obtained from those of the Virasoro algebra computed in [FZ]:

n+n’—1 m+m’—1

S(co, M) B S(co, Awar) = 6P B Sl Apn).
n''=ln—n'|+1 m"”"=|m—m/|+1
n+n’4+n"" odd m+m’+m/" odd
The modules S(cs, A, ) are simple by [CKMI, Proposition 4.4], whose proof is valid for
superalgebras in a direct limit completion. They are also non-isomorphic since by Frobenius
reciprocity [KO, CKM1] we have

5n,n’5m7m’(c = HOIIlcl o2 &Cét (L(Ck+27 hn,l) X L(Ct7 hm,l)a L(Ck+27 hn’,l) X L(Cta hm’,l))
= Hompacey | mey) (L(Cr2, hna) @ Licy, hi), L(Chy2, hnri) @ L(ce, s 1))

Ck+2

= HomInd(CngrQ&Cgt) <L(Ck+27 hn,l) & L(Cta hm 1 @ ck+27 hn r) 02y L(Cta hm’,r))

r=1

= Homgep 5(c.,000F (F (L(Criz;, hna) @ L(ct, hiy, 1)) F(L(cks2, hnra) @ L(ct, by 1))
= HomRepS(cS,0)®F (S(Cs> An m) ® F 5(057 ) )
= HomRep S(cs,0) (S(Csa An,m); S(Csa An’,m’)) .

Let C% denote the full tensor subcategory of C! whose simple objects are the L(c, h,, 1) for
n € Zsy, and let (CL" K CF)o be the subcategory of 1" K CL* whose simple objects are
the L(cri2, hni) @ L(c, hmJ) with n+m even. Then because the S(cs, Ay ) are simple and
distinct,

Fi(C ®Ch" )y — Rep” S(cs, 0) @ F

Ck+2
is fully faithful and so its image is braided tensor equivalent to (Ci}iQ ® Cot)o (see [CKMI,
Theorem 2.67]). In particular, the image is rigid by [CJORY, Theorem 5.5.3].
Next we verify that our braided tensor category of S(cs,0)-modules is non-degenerate,
that is, has trivial Muger center. If S, ,,, = S(¢s, Ap.) is transparent, then in particular it
centralizes S(cs, Ag2). The fusion product is

52,2 X Sn,m = n—1,m—1 ¥ Sn—l,m—H b Sn—i—l,m—l S¥ Sn+l,m+l

with the convention Sp,, = 0 = S, 0. As monodromy is determined by conformal weight
due to balancing, the monodromy restricted to the summand St m+e acts by the scalar
e? Bnsemie —Anm—A22)  Quppose that

~1

1
Apvemte — Dy — Dgg = Z(ne -1+ ST(me’ —1)— Z(nEI +me — 3 + e€)

is an integer N for some (n,m) # (1,1) and ¢, €’ € {£1}, assuming without loss of generality
n # 1. Then
s 1
Anfe,m+e’ - An,m - A2,2 =N — 5”6 + 5(
is clearly not an integer, so S, ,, is not transparent and we have verified non-degeneracy.
In conclusion, we have shown that the S(cs, 0)-modules S(cs, A, ) are the simple objects
of a semisimple non-degenerate rigid braided tensor category that is braided tensor equivalent
to (CLF KCLL),. Note that €™ does not quite define a twist on this category since S(cs, 0)

Ck+2

is 1Z-graded. Instead, we get a twist by setting 0x = Pxe*™“() where Py is the parity

me + e€’)
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involution on an S(c,, 0)-module X. With this twist, JF restricted to (C};", ®C}")o becomes
an equivalence of braided ribbon categories.

We turn to V*(osp,,) next. The idea of studying affine 0sp(1|2) via coset extensions was
used at admissible level in [CFK, CKLR]; our results here are the generic-level analogue of
those in [CFK]. Using G to denote the induction functor for V*(osp,j,), we define

M*¥(n) = G(V¥(sly) ® L(ct, hna) @vk ) @ L(ct, hny).

This is a local module, in Rep” V¥(0spy)), if and only if n is odd. The summands for r = nEl

n—l

have lowest conformal weight, equal to ; the highest sl,-weight in these top spaces is
2=Lw. The M*(n) are simple by [CKMI, Proposmon 4.4], and since induction is monoidal

the fusion rules are
n+n’—1

MR MA@ M),
n''=|n—n'|+1
n+n'+n"" odd

The subcategory (C5*)o C CL* with simple objects L(c;, hpn1), n odd, embeds as a braided
tensor subcategory of K Ly (sl;)XCY, via L(cy, hn1) — VF(sl)®L(¢y, hn,1). Then by Frobenius
reciprocity as in the N = 1 super Virasoro case, the restriction of G to (Cclt’L)o is fully faithful,
so its image is braided tensor equivalent to (Cclt’L )o and is in particular rigid. Non-degeneracy

is easily verified as before, and in this case €™ does define a twist on our category of
V¥(0sp,j5)-modules. We conclude that the V*(osp,,)-modules M*(n) for n odd are the

simple objects of a semisimple non-degenerate braided ribbon category equivalent to (Cclt’L)O
as a braided ribbon category.
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