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Abstract. Let V ⊆ A be a conformal inclusion of vertex operator algebras and let C be
a category of grading-restricted generalized V -modules that admits the vertex algebraic
braided tensor category structure of Huang-Lepowsky-Zhang. We give conditions under
which C inherits semisimplicity from the category of grading-restricted generalized A-
modules in C, and vice versa. The most important condition is that A be a rigid V -
module in C with non-zero categorical dimension, that is, we assume the index of V as a
subalgebra of A is finite and non-zero. As a consequence, we show that if A is strongly
rational, then V is also strongly rational under the following conditions: A contains V as
a V -module direct summand, V is C2-cofinite with a rigid tensor category of modules, and
A has non-zero categorical dimension as a V -module. These results are vertex operator
algebra interpretations of theorems proved for general commutative algebras in braided
tensor categories. We also generalize these results to the case that A is a vertex operator
superalgebra.
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1. Introduction

Vertex operator algebras, which are an approach to the rigorous mathematical construc-
tion of two-dimensional conformal quantum field theories, are rather complicated algebraic
structures and can be difficult to construct from scratch. As a result, some of the best
sources of new vertex operator algebras are vertex operator subalgebras of old ones, and
extensions, where a new vertex operator algebra is constructed on a sum of modules for
an old one. For example, the celebrated moonshine module vertex operator algebra [FLM]
was first constructed as an extension of a subalgebra of the Leech lattice vertex operator
algebra. However, while subalgebras and extensions are rich sources of new vertex operator
algebras, it is not always clear how “nice” the new algebra is, compared to the old one.
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In this paper, we consider whether the representation category of a vertex operator subal-
gebra or extension inherits semisimplicity from that of the original algebra. In the presence
of the technical C2-cofiniteness condition, semisimplicity of the full (grading-restricted gen-
eralized) module category is equivalent to the condition of rationality originally introduced
by Zhu [Zh], which may be viewed as a mathematical characterization of the vertex opera-
tor algebras appearing in rational conformal field theory. More recently, the term “strongly
rational” (or “strongly regular”) has been applied to vertex operator algebras which are
simple, self-contragredient, positive energy (also known as CFT-type), C2-cofinite, and ra-
tional. The full module category of such a vertex operator algebra is a (semisimple) modular
tensor category [Hu1].

A long-standing question asks when subalgebras of strongly rational vertex operator
algebras are strongly rational. For example, the “orbifold rationality problem” asks if the
fixed-point subalgebra of a finite group of automorphisms of a strongly rational vertex
operator algebra is strongly rational; this problem has recently been solved for solvable
automorphism groups [CM] but remains open for general finite groups. Similarly, the “coset
rationality problem” asks whether a tensor product subalgebra U ⊗V of a strongly rational
vertex operator algebra is strongly rational, provided U and V are mutual commutants
and one of them is strongly rational. Such rationality problems are a major motivation for
this paper, and as an application of our semisimplicity results, we present some sufficient
conditions for a subalgebra of a strongly rational vertex operator algebra to be strongly
rational (see Theorem 1.2 below).

Our main theorem in this work is based on the deep result, most recently developed
by Huang, Lepowsky, and Zhang [HLZ1]-[HLZ8], that suitable module categories for vertex
operator algebras are braided tensor categories, meaning that we can apply tools from tensor
category theory to study vertex operator subalgebras and extensions. Suppose we have an
inclusion V ⊆ A of vertex operator algebras (with the same conformal vector). If C is a
category of (grading-restricted generalized) V -modules that includes A and has the braided
tensor category structure described in [HLZ8], then [HKL, Theorem 3.2] shows that A is
a commutative algebra (defined in Section 3 below) in the braided tensor category C. In
particular, there is a multiplication homomorphism µA : A�A→ A induced by the vertex
operator on A and a unit homomorphism ιA : V → A (which is simply the inclusion). By
[HKL, Theorem 3.4], the category C0

A of “local” or “dyslectic” modules for the commutative
algebra A in C agrees with the category of (grading-restricted generalized) A-modules which,
viewed as V -modules, are objects of C. Now here is our main theorem; see Theorem 5.2
below for the generalization to the case that A is a vertex operator superalgebra:

Theorem 1.1. Suppose V ⊆ A is a conformal inclusion of vertex operator algebras and
C is a category of grading-restricted generalized V -modules that includes A and admits the
braided tensor category structure of [HLZ8]. Assume that moreover:

• There is a V -homomorphism εA : A→ V such that εA ◦ ιA = IdV .
• The vertex operator algebra A is a rigid and self-dual object of C with evaluation
εA ◦ µA : A�A→ V and some coevaluation iA : V → A�A.
• For some non-zero index [A : V ] ∈ C, µA ◦ iA = [A : V ]ιA .

Then:

(1) If C is semisimple, then C0
A is also semisimple.

(2) If C is rigid and C0
A is semisimple, then C is also semisimple.
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Only the second assertion of this theorem assumes rigidity for the full tensor category C
of V -modules. In this sense, semisimplicity for a subalgebra is more difficult than for an
extension. However, both semisimplicity results require non-vanishing of the index [A : V ],
which turns out to be the categorical dimension of A as a V -module assuming A is a Z-
graded vertex operator algebra. (The assumption that A is rigid in a tensor category of
V -modules means that this index is finite, that is, A is “finite-dimensional as a V -module,”
equivalently, V is a “finite-index subalgebra of A.”) So to prove, for example, that A
inherits strong rationality from V , we must first check that [A : V ] 6= 0. As we will show
in Section 2, Theorem 1.1(1) is a vertex operator algebra version of Maschke’s Theorem
for finite groups, and the non-vanishing index requirement corresponds to the (essential!)
requirement in Maschke’s Theorem that the order of the group be non-zero in the field.

Both assertions of the main theorem are vertex operator algebra interpretations (via
[HKL]) of theorems for (commutative) algebras in (braided) tensor categories. Indeed,
Theorem 1.1(1) is not original to this paper since it is an almost immediate consequence of
[KO, Theorem 3.3]. We have included the result here to compare with the converse result
Theorem 1.1(2), to emphasize the importance of the non-vanishing index condition, and
to present a proof that directly generalizes standard proofs of Maschke’s Theorem (unlike
the proof in [KO]). Thus in our proof, the non-vanishing index condition plays the same
role as the corresponding condition in Maschke’s Theorem: it is needed for “averaging” a
V -module homomorphism into an A-module homomorphism.

The proof of Theorem 1.1(2) generalizes part of the argument used in [CM] to prove
strong rationality for orbifold subalgebras associated to finite cyclic automorphism groups.
The basic idea is to relate the representation theory of V to the semisimple representation
theory of A using the induction functor of [KO, CKM1]. But usually, V -modules induce
to “non-local” A-modules which are not objects of the semisimple braided tensor category
C0
A. Thus after inducing a V -module, we have to project the resulting possibly non-local
A-module to C0

A using a functor from [KO, FFRS, McR3]; the construction of this projection
functor is where we use the assumption [A : V ] 6= 0. Induction and projection applied to V
itself yields a non-zero object in C0

A, namely A, allowing us to use the semisimplicity of C0
A

to prove V is projective in C. Since V is the unit object of C and we assume C is rigid, this
is enough to conclude C is semisimple (see for example [EGNO, Corollary 4.2.13]).

In Theorem 1.1(2), we would not need to assume that C is rigid and that [A : V ] 6= 0 if
we assumed instead that the full category of non-local A-modules in C is semisimple. But
non-local modules for vertex operator algebras are not well understood in general, so there
does not seem to be any general practical way to show they are semisimple. For orbifold
extensions, that is, V is the fixed-point subalgebra of an automorphism group of A, non-
local A-modules include twisted A-modules associated to automorphisms of A. But even
in this particular setting, semisimplicity for twisted modules is not clear even if we assume
untwisted A-modules are semisimple. Thus the point of Theorem 1.1(2) is to provide criteria
for C to be semisimple that do not require any knowledge about non-local A-modules.

As an application of Theorem 1.1, we prove the following rationality theorem; see Theo-
rem 5.4 for the generalization to the case that A is a vertex operator superalgebra:

Theorem 1.2. Let V ⊆ A be a conformal inclusion of vertex operator algebras.

(1) Assume V is strongly rational. Then A is also strongly rational if and only if:
• A is simple and positive energy.
• The dimension of A in the modular tensor category of V -modules is non-zero.
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(2) Assume A is strongly rational. Then V is also strongly rational if and only if:
• There is a V -module homomorphism εA : A→ V such that εA|V = IdV .
• V is C2-cofinite.
• The tensor category C of grading-restricted generalized V -modules is rigid.
• The categorical dimension dimC A is non-zero.

If V is positive energy and C2-cofinite, then its full module category C is already a braided
tensor category [Hu2], so the third condition in Theorem 1.2(2) is simply that C is rigid.
Rigidity of C for positive-energy self-contragredient C2-cofinite V is widely believed to be
automatic (see for example [Hu3, Conjecture 4.2]), but so far this is known only in a few
examples. We will discuss whether other conditions in Theorem 1.2 may be automatic
or vacuous in Section 4. Perhaps the most interesting question is whether there exists a
simple positive-energy vertex operator algebra which is an extension of a strongly rational
subalgebra and has categorical dimension 0. More generally, does there exist a commutative
algebra with dimension 0 and trivial twist in a C-linear semisimple modular tensor category?
Although it seems likely that such algebras exist, the author does not know any examples.

Now to what specific examples of vertex operator subalgebras and extensions does Theo-
rem 1.2 apply? Non-vanishing of the index has been verified for extensions of orbifold type
[McR2] and of coset type [CKM2]. In Example 4.2 below, we will discuss the implications
of the theorem for orbifold subalgebras and extensions, although we do not get anything
new for vertex operator algebras since similar (in fact, stronger) results have been obtained
in [McR2, McR3]. But we do obtain the superalgebra generalization of [McR2, Theorem
4.13] in Corollary 5.5. For a coset-type extension U ⊗ V ⊆ A where U and V are mutual
commutants in A and both U and A are strongly rational, one can use Theorem 1.2 to show
that V is strongly rational provided it is C2-cofinite and its tensor category of modules is
rigid. The detailed proof is deferred to [McR4], where with more effort we use the strong
rationality of A and U , combined with C2-cofiniteness for V , to show that the category of
V -modules is rigid. That is, in [McR4] we use Theorem 1.2 to reduce the coset rationality
problem to the problem of C2-cofiniteness for the coset subalgebra.

The remaining contents of this paper are as follows. Sections 2 and 3 deal with algebra
objects in abstract tensor categories. In Section 2, we prove a semisimplicity result for
algebras in semisimple tensor categories corresponding to Theorem 1.1(1); it is the same
result as [KO, Theorem 3.3], but we provide a different proof. In Section 3, we prove the
categorical generalization of Theorem 1.1(2), showing that a rigid braided tensor category
C is semisimple given the existence of a suitable commutative algebra in C with semisimple
local module category. In Section 4, we explain how the abstract results for algebras in
tensor categories apply to vertex operator algebras, and in particular we prove Theorems
1.1 and 1.2. We also discuss what Theorem 1.2 says about orbifold-type subalgebras and
extensions, and whether some of the conditions in Theorem 1.2 may be vacuous or redun-
dant. In Section 5, we generalize Theorems 1.1 and 1.2 to the case that A is a vertex
operator superalgebra and discuss what these results say about orbifold-type subalgebras
and extensions.

Acknowledgements. An early version of this work was presented at the Oberwolfach
Workshop Subfactors and Applications organized by Dietmar Bisch, Terry Gannon, Vaughan
Jones, and Yasuyuki Kawahigashi; see [McR1] for the accompanying extended abstract. I
would also like to thank Shashank Kanade and Ling Chen for further opportunities to
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2. Algebras in semisimple tensor categories

Before proving that certain categories are semisimple, we should clarify what we mean
by a semisimple category. As usual in a category C, a morphism f : W1 →W2 is surjective
if for any pair of morphisms g, h : W2 → W3, g ◦ f = h ◦ f implies g = h. Then we
say that C is semisimple if any surjection f : W1 → W2 in C splits, that is, there is
a section σ : W2 → W1 such that f ◦ σ = IdW2 . When C is abelian, this means that the
canonical morphism Ker f⊕Imσ →W1 will be an isomorphism, and this in turn means that
any subobject of any object W1 of C has a complement. (Specifically, given a subobject

i : W̃1 ↪→ W1, take W2 = Coker i and f : W1 → W2 the cokernel morphism, so that

Im i = Ker f , and thus W1
∼= W̃1 ⊕W2.) This definition of semisimplicity does not imply

that every object of C is a coproduct of finitely many simple objects, unless we assume in
addition that all objects of C have finite length.

Remark 2.1. The definition of semisimple category that we are using also applies to
categories that are not necessarily abelian. For example, the Axiom of Choice amounts to
the assertion that the category of sets is semisimple.

Let C be an F-linear tensor category, not necessarily symmetric or braided, where F is
a field. This means that C is an F-linear abelian monoidal category such that the tensor
product bifunctor induces F-bilinear maps on morphisms. We use � to denote the tensor
product bifunctor on C, 1 to denote the unit object, l and r to denote the left and right
unit isomorphisms, and A to denote the associativity isomorphisms. For convenience, we
will also assume F = EndC(1).

Definition 2.2. A (unital, associative) algebra in C is an object A equipped with a mul-
tiplication morphism µA : A � A → A and a unit morphism ιA : 1 → A satisfying the
following properties:

(1) Unit: µA ◦ (ιA � IdA) = lA and µA ◦ (IdA � ιA) = rA.
(2) Associativity: µA ◦ (IdA � µA) = µA ◦ (µA � IdA) ◦ AA,A,A.

Definition 2.3. Suppose (A,µA, ιA) is an algebra in C. A (left) A-module is an object X
of C equipped with a multiplication µX : A�X → X satisfying the following properties:

(1) Left unit: µX ◦ (ιA � IdX) = lX and
(2) Associativity: µX ◦ (IdA � µX) = µX ◦ (µA � IdX) ◦ AA,A,X .

A morphism f : X1 → X2 of left A-modules is a morphism in C such that

f ◦ µX1 = µX2 ◦ (IdA � f).

Remark 2.4. Categories of right A-modules and A-bimodules can be defined similarly.

Example 2.5. If (A,µA, ιA) is an algebra in C, then (A,µA) is an A-module.

We denote the category of A-modules by CA. The goal of this section is to present an
alternate proof of [KO, Theorem 3.3], which asserts that CA is semisimple if C is semisimple
and A satisfies a non-vanishing dimension condition.

Example 2.6. Suppose C is the (semisimple) category of vector spaces over a field F
of characteristic p and A = F[G] is the group algebra of a finite group G. Then CA is
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the category of G-modules over F, and Maschke’s Theorem asserts that this category is
semisimple provided p - |G|, that is, dimF F[G] 6= 0. In other words, CA is semisimple if the
index of the trivial group in G is non-zero in F.

The main theorem of this section is a direct categorical generalization of Maschke’s The-
orem for finite groups, and the proof we will present directly generalizes standard proofs of
Maschke’s Theorem. But first we need a categorical version of the dimension of A as an
object of C, or of the index of 1 as a subalgebra of A. For this, we will assume that A is a
rigid and self-dual object of C, though we do not need the entire category C to be rigid. Ob-
serve, for example, that Maschke’s Theorem applies to infinite-dimensional representations
of a finite group, even though the category of all vector spaces is not rigid.

Assumption 2.7. The algebra (A,µA, ιA) in C satisfies the following conditions:

(1) There is a morphism εA : A→ 1 such that εA ◦ ιA = Id1.
(2) As an object of C, A is rigid and self-dual with evaluation εA ◦ µA : A�A→ 1 and

coevaluation iA : 1→ A�A. That is, the rigidity compositions

A
l−1
A−−→ 1 �A

iA�IdA−−−−−→ (A�A) �A
A−1

A,A,A−−−−→ A� (A�A)
IdA�(εA◦µA)−−−−−−−−→ A� 1

rA−→ A

and

A
r−1
A−−→ A� 1

IdA�iA−−−−−→ A� (A�A)
AA,A,A−−−−→ (A�A) �A

(εA◦µA)�IdA−−−−−−−−→ 1 �A
lA−→ A

both equal IdA.
(3) µA ◦ iA = [A : 1]ιA for some index [A : 1] ∈ F.

We could also call the index [A : 1] the dimension of A in C, but we caution that if A
is a ribbon tensor category, then [A : 1] is not the categorical dimension dimC A unless the
ribbon structure δA : A → A∗∗ is the identity on A = A∗∗. We can now state the main
theorem of this section:

Theorem 2.8. Under Assumption 2.7, if C is semisimple and [A : 1] 6= 0, then CA is
semisimple.

We will use standard graphical calculus in the proof for simplicity and clarity. We will
need the following lemma; see [McR3, Lemma 3.7] for a proof:

Lemma 2.9. The two morphisms A→ A�A in C given by the compositions

A
l−1
A−−→ 1 �A

iA�1A−−−−→ (A�A) �A
A−1

A,A,A−−−−→ A� (A�A)
1A�µA−−−−→ A�A

and

A
r−1
A−−→ A� 1

1A�iA−−−−→ A� (A�A)
AA,A,A−−−−→ (A�A) �A

µA�1A−−−−→ A�A

are equal. Diagrammatically,

µA

A

AA

A A
=

µA

A

A A

A A
.
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Remark 2.10. The proof of Lemma 2.9, as given in [McR3], is the only place where we
use Assumption 2.7(1) and the assumption on the evaluation in Assumption 2.7(2). The
rest of the proof of Theorem 2.8 only requires the existence of iA and Assumption 2.7(3),
as well as right exactness of the tensoring functor A�• (which follows from the assumption
that A is a rigid object in C).

Now we proceed with the proof of the theorem:

Proof. To prove CA is semisimple, we need to show that any surjection f : X1 → X2 in CA
splits. We first need to verify that f is still surjective in C: let C be a cokernel of f in C
with cokernel morphism c : X2 → C. The proof of [CKM1, Theorem 2.9] shows that if the
tensoring functor A � • is right exact, then there is a C-morphism µC : A � C → C such
that (C, µC) is an object of CA and c is a morphism in CA. In fact, A � • is right exact
because we assume A is rigid, so because f is surjective in CA and c ◦ f = 0, we get c = 0.
This shows that the cokernel of f in C is 0, and thus f is surjective in C as well.

Now because C is semisimple and f is surjective in C, there is a C-morphism σ : X2 → X1

such that f ◦ σ = IdX2 , but we need to “average σ over A” to turn it into a morphism of
A-modules. Moreover, “averaging over A” must involve creating two copies of A with the
coevaluation iA, since the desired CA-morphism should somehow involve the A-actions on
both X1 and X2. Indeed, take S : X2 → X1 to be the composition

X2

l−1
X2−−→ 1 �X2

iA�IdX2−−−−−→ (A�A) �X2

A−1
A,A,X2−−−−−→A� (A�X2)

IdA�µX2−−−−−−→ A�X2
IdA�σ−−−−→ A�X1

µX1−−→ X1.
(2.1)

Diagrammatically,

S = µX2

X2

σ

µX1

A A

X1

(2.2)

We first show that S is a morphism in CA, that is,

µX1 ◦ (IdA � S) = S ◦ µX2 .
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Beginning with µX1 ◦ (IdA � S), we use the associativity of µX1 , Lemma 2.9, and the
associativity of µX2 to calculate:

µX2

X2

σ

µX1

A A

µX1

A

X1

=

µX2

X2

σ

µA

A A

µX1

A

X1

=

µA

µX2

σ

µX1

A

A A

X2

X1

=
µX2

X2A

σ

µX1

A A

X1

µX2

,

(2.3)

which is indeed S ◦ µX2 . Next, we calculate f ◦ S using the fact that f is a CA-morphism,
the identity f ◦ σ = IdX2 , the associativity of µX2 , and Assumption 2.7(3):

µX2

X2

σ

µX1

f

A A

X2

=

µX2

X2

σ

µX2

f

A A

X2

= µX2

X2

µX2

A A

X2

= µA

X2

µX2

A A

X2

= [A : 1] ιA

X2

µX2

X2

,

(2.4)

which is [A : 1]IdX2 by the unit property of µX2 . This shows that s = 1
[A:1]S is a CA-

morphism that satisfies f ◦ s = IdX2 , completing the proof of the theorem. �

Remark 2.11. Similar arguments show that if Assumption 2.7 holds and [A : 1] 6= 0, then
the right A-module and A-bimodule categories also inherit semisimplicity from C.

Example 2.12. Let us examine the proof of the theorem in the case that C is the category
of F-vector spaces and A = F[G] is the group algebra of a finite group. In this case, the
coevaluation is given by

iA : 1 7→
∑
g∈G

g ⊗ g−1

and [A : 1] = |G|. Thus if f : X1 → X2 is a G-module surjection and σ : X2 → X1 is a
linear map such that f ◦ σ = IdX2 , then the G-module homomorphism S : X2 → X1 of



FINITE-INDEX VERTEX OPERATOR SUBALGEBRAS 9

(2.1) is given by

x2 7→ 1⊗ x2 7→
∑
g∈G

(g ⊗ g−1)⊗ x2 7→
∑
g∈G

g ⊗ (g−1 ⊗ x2)

7→
∑
g∈G

g ⊗ σ(g−1 · x2) 7→
∑
g∈G

g · σ(g−1 · x2).

That is, given a G-module surjection f , the G-module section s : X2 → X1 is obtained by
averaging all conjugates g ◦ σ ◦ g−1 for g ∈ G:

s(x2) =
1

|G|
∑
g∈G

g · σ(g−1 · x2)

for x2 ∈ X2. This averaging over G is familiar from standard proofs of Maschke’s Theorem.

Remark 2.13. See for example [McR3, Lemma 4.21] for one converse to Theorem 2.8: if
CA is semisimple, then so is C provided that the tensoring functor A�• preserves surjections
and Assumption 2.7(1) holds. No assumption on the index [A : 1] is necessary. .

Remark 2.14. See [KZ, Section 6] for conditions under which a different converse to
Theorem 2.8 holds: if C and CA are both semisimple, then [A : 1] 6= 0.

3. Semisimple algebras in braided tensor categories

In this section, we assume that the F-linear tensor category (C,�,1, l, r,A) of the previous
section is braided, with natural braiding isomorphisms R.

Definition 3.1. An algebra (A,µA, ιA) in C is commutative if µA ◦ RA,A = µA.

If the tensoring functor A�• is right exact, then CA is a tensor category (see for example
[KO, Section 1] or [CKM1, Section 2]). But we only get a braiding on the full subcategory
C0
A of “local” A-modules, which are objects (X,µX) that satisfy

µX ◦ RX,A ◦ RA,X = µX .

So although Remark 2.13 says that semisimplicity of CA implies semisimplicity of C under
mild conditions, a more interesting question for commutative algebras in braided tensor
categories is whether semisimplicity of C0

A implies semisimplicity of C. The main result of
this section is that the answer is yes if C is rigid and the index [A : 1] is non-zero:

Theorem 3.2. Suppose C is a rigid braided tensor category and A is a commutative algebra
in C that satisfies Assumption 2.7. If C0

A is semisimple and [A : 1] 6= 0, then C is semisimple.

To prove the theorem, we will use a projection functor Π : CA → C0
A that was used in

[KO, McR3]; it is also a special case of the local induction functor introduced in [FFRS]
for not-necessarily-commutative symmetric special Frobenius algebras in ribbon categories.
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For an object (X,µX) in CA, define πX ∈ EndC(X) by the diagrammatic formula

πX =
1

[A : 1]

X

µX

µX

X

A A

Note that πX is defined somewhat differently in [KO], but the definitions are equivalent
using the commutativity of µA. By [KO, Lemma 4.3] or the g = 1 case of [McR3, Theorem
3.3], πX is a morphism in CA and the image πX(X) is an object of C0

A.

Lemma 3.3. If (X,µX) is an object of C0
A, then πX = IdX .

Proof. We calculate

X

µX

µX

X

A A

=

X

µX

µX

X

A A

=

X

µA

µX

X

A A

= [A : 1] ιA

X

µX

X

= [A : 1]IdX

using the definition of C0
A, the associativity of µX , Assumption 2.7(3), and the left unit

property of µX . �

Lemma 3.4. If f : X1 → X2 is a morphism in CA, then f ◦ πX1 = πX2 ◦ f .
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Proof. This follows from the definition of morphisms in CA and the naturality of the braiding,
associativity, and left unit isomorphisms in C:

X1

µX1

µX1

f

X2

A A

=

X1

µX1

µX2

f

X2

A A

=

X1

µX2

µX2

f

X2

A A

=

X1

µX2

µX2

f

X2

A A

.

�

We now define the projection functor Π : CA → C0
A on objects by Π(X) = πX(X). We

can factorize πX as

πX : X
π′X−−→ Π(X)

uX−−→ X

with π′X surjective and uX the inclusion of the image into X. Then Lemma 3.4 shows
that if f : X1 → X2 is a morphism in CA, then restricting f to Π(X) defines a morphism
Π(f) : Π(X1)→ Π(X2) such that both squares of the diagram

X1

π′X1 //

f

��

Π(X1)

Π(f)

��

uX1 // X1

f

��
X2

π′X2

// Π(X2) uX2

// X2

commute. So Π is a functor.
We will also need the induction functor F : C → CA (see for example [KO, Theorem

1.6] or [CKM1, Section 2.7]). If W is an object of C, then F(W ) = (A �W,µA�W ) is an
A-module where

µA�W = (µA � IdW ) ◦ AA,A,W .
On morphisms, induction is defined by F(f) = IdA � f , and naturality of the right unit
isomorphisms implies that rA : F(1)→ (A,µA) is an isomorphism in CA.

The projection and induction functors are used in the following lemma, which does not
yet require the entire category C to be rigid:

Lemma 3.5. Let C be a braided tensor category and A a commutative algebra in C that
satisfies Assumption 2.7. If C0

A is semisimple and [A : 1] 6= 0, then 1 is projective in C.

Proof. We need to show that if f : W1 → W2 is a surjection in C and g : 1 → W2 is a
morphism, then there is some σ : 1→W1 such that f ◦ σ = g.
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We start by applying the functor Π ◦ F : C → C0
A to f . We claim that (Π ◦ F)(f), that

is, Π(IdA� f), is a surjection in CA, and thus also in C0
A. In fact, IdA� f is surjective in CA

because the rigidity of A from Assumption 2.7(2) means that F is an exact functor. Then
since π′A�W2

is also surjective, the commutative diagram

A�W1

π′
A�W1

��

IdA�f // A�W2

π′
A�W2
��

Π(A�W1)
Π(IdA�f)

// Π(A�W2)

implies that Π(IdA � f) ◦ π′A�W1
is surjective. But then Π(IdA � f) is surjective as well.

Next, F(1) ∼= (A,µA) is an object of C0
A by the commutativity of µA. Since C0

A is
semisimple, A� 1 is projective in C0

A and we have a morphism

s′ : A� 1→ Π(A�W1)

in C0
A such that the diagram

A� 1
IdA�g //

s′

��

A�W2

π′
A�W2
��

Π(A�W1)
Π(IdA�f)

// Π(A�W2)

commutes. If we define s = uA�W1 ◦ s′, then the definitions say

(IdA � f) ◦ s = uA�W2 ◦Π(IdA � f) ◦ s′

= uA�W2 ◦ π′A�W2
◦ (IdA � g)

= πA�W2 ◦ (IdA � g).

But because A� 1 is an object of C0
A, Lemmas 3.3 and 3.4 imply that

πA�W2 ◦ (IdA � g) = (IdA � g) ◦ πA�1 = IdA � g,

so actually (IdA � f) ◦ s = IdA � g.
Finally, we can define σ : 1→W1 in C to be the composition

1
l−1
1−−→ 1 � 1

ιA�Id1−−−−→ A� 1
s−→ A�W1

εA�IdW1−−−−−−→ 1 �W1

lW1−−→W1.

We calculate f ◦ σ using the commutative diagram

1
l−1
1 //

g
$$

1 � 1
ιA�Id1 //

Id1�g &&

A� 1
s //

IdA�g ''

A�W1

εA�IdW1 //

IdA�f
��

1 �W1

lW1 //

Id1�f
��

W1

f
��

W2
l−1
W2

// 1 �W2
ιA�IdW2

// A�W2
εA�IdW2

// 1 �W2
lW2

// W2

Because εA ◦ ιA = Id1, we get f ◦ σ = g, completing the proof that 1 is projective in C. �

We will also use the following lemma which is essentially [EGNO, Corollary 4.2.13], where,
however, the assumptions are a bit stronger; see also the proof of [CM, Theorem 5.24]:
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Lemma 3.6. Suppose C is a tensor category with projective unit object 1. If W2 is a rigid
object of C with rigid dual W ∗2 , then any surjection f : W1 →W2 splits.

Proof. Given a surjection f : W1 → W2 in C, we wish to show that there is a section
σ : W2 →W1 such that f ◦ σ = IdW2 .

Because W ∗2 is rigid, the tensoring functor •�W ∗2 is exact and thus preserves surjections.
So f � IdW ∗2 is still a surjection, and then because 1 is projective, there is a morphism

σ̃ : 1→W1 �W ∗2

such that the diagram

W1 �W ∗2

f�IdW∗2
��

1

σ̃

;;

iW2

// W2 �W ∗2

commutes. We set σ equal to the composition

W2

l−1
W2−−→ 1 �W2

σ̃�IdW2−−−−−→(W1 �W ∗2 ) �W2

A−1
W1,W

∗
2 ,W2−−−−−−−→W1 � (W ∗2 �W2)

IdW1
�eW2−−−−−−−→W1 � 1

rW1−−→W1

and calculate

f ◦ σ = f ◦ rW1 ◦ (IdW1 � eW2) ◦ A−1
W1,W ∗2 ,W2

◦ (σ̃ � IdW2) ◦ l−1
W2

= rW2 ◦ (f � Id1) ◦ (IdW1 � eW2) ◦ A−1
W1,W ∗2 ,W2

◦ (σ̃ � IdW2) ◦ l−1
W2

= rW2 ◦ (IdW2 � eW2) ◦ A−1
W2,W ∗2 ,W2

◦ ((f � IdW ∗2 ) � IdW2) ◦ (σ̃ � IdW2) ◦ l−1
W2

= rW2 ◦ (IdW2 � eW2) ◦ A−1
W2,W ∗2 ,W2

◦ (iW2 � IdW2) ◦ l−1
W2

= IdW2

using naturality of the associativity and unit isomorphisms in C and the rigidity of W2. �

Now to finish the proof of Theorem 3.2, we just combine Lemmas 3.5 and 3.6:

Proof. In the setting of the theorem, the unit object 1 of C is projective by Lemma 3.5. Then
because every object of C is rigid by assumption, Lemma 3.6 implies that every surjection
in C splits. Thus C is semisimple. �

4. Applications to vertex operator algebras

We use the definition of vertex operator algebra from [FLM, LL] and the definition of
grading-restricted generalized module for a vertex operator algebra from, for example, [Hu2],
although we sometimes will simply use the term module to refer to grading-restricted gen-
eralized modules. The theory of vertex and braided tensor categories of (grading-restricted
generalized) modules for a vertex operator algebra is developed in [HLZ1]-[HLZ8]; see es-
pecially [HLZ8] for a description of the braided tensor category structure, and see also the
expositions [HL] and [CKM1, Section 3.3]. However, we will not need the details of the
vertex tensor category construction here, except to note that the unit object of such a cat-
egory is the vertex operator algebra V itself and that tensor products are determined by
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(logarithmic) intertwining operators among V -modules. Instead, we will need the dictio-
nary due to Huang, Kirillov, and Lepowsky relating conformal inclusions of vertex operator
algebras to commutative algebras in braided tensor categories:

Theorem 4.1. [HKL, Theorems 3.2 and 3.4] Let V ⊆ A be a conformal inclusion of vertex
operator algebras and C a category of grading-restricted generalized V -modules that includes
A and admits the braided tensor category structure of [HLZ8]. Then:

(1) The vertex operator algebra A is a commutative algebra in C.
(2) The category C0

A of local A-modules is the full subcategory of grading-restricted gen-
eralized A-modules which are objects of C when viewed as V -modules.

The commutative algebra structure on the vertex operator algebra A arises as follows:
The unit ιA : V → A is the inclusion, and the multiplication µA : A�A→ A is the unique
map induced by the vertex operator YA : A⊗A→ A((x)), which is an intertwining operator
among V -modules when A is viewed as a V -module. Similarly, if X is an A-module in the
category C, the vertex operator YX : A ⊗ X → X((x)) induces the multiplication action
µX : A�X → X. The module X is in particular a local module for the commutative algebra
A because the vertex operator YX involves only integral powers of the formal variable x.

Theorem 4.1 means that we can use Theorems 2.8 and 3.2 to prove Theorem 1.1 from
the Introduction:

Proof. The assumptions of Theorem 1.1 are simply Assumption 2.7, so by Theorem 2.8,
the category CA of not-necessarily-local A-modules in C is semisimple if C is. Then the
subcategory C0

A is also semisimple, provided that surjections in C0
A are still surjective in CA.

Thus suppose f : X1 → X2 is a surjection in C0
A and g : X2 → X3 is a morphism in CA such

that g ◦ f = 0; we need to show g = 0. One way is to factorize g as

X2
g′−→ Im g ↪→ X3

and note that g′ is a morphism in C0
A because C0

A is abelian (see for example [CKM1, Remark
2.57]). Thus g′ and hence g also is zero. For an alternative argument, see [KO, Theorem
3.2(2)]. This proves the first assertion of Theorem 1.1.

For the second assertion, the assumptions are identical to those of Theorem 3.2, so we
can immediately conclude C is semisimple if C is rigid and C0

A is semisimple. �

Before proving Theorem 1.2, we recall in more detail what it means for a vertex operator
algebra V to be strongly rational. This means:

• V is positive energy, or CFT-type, that is, V is N-graded by conformal weights,
V =

⊕∞
n=0 V(n), with V(0) equal to the linear span of the vacuum vector.

• V is simple.
• V is self-contragredient, that is, the contragredient module V ′ =

⊕∞
n=0 V

∗
(n) is iso-

morphic to V as a V -module. Equivalently, there is a nondegenerate invariant
bilinear form (·, ·) : V × V → C.
• V is C2-cofinite, that is, dimV/C2(V ) <∞ where C2(V ) = span{u−2v |u, v ∈ V }.
• V is rational, that is, every N-gradable weak V -module W =

⊕∞
n=0W (n), where

the W (n) could be infinite dimensional, is the direct sum of irreducible (grading-
restricted) V -modules.
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The full category of grading-restricted modules for a strongly rational vertex operator al-
gebra V is a semisimple modular tensor category [Hu1], while positive energy and C2-
cofiniteness are sufficient for braided tensor category structure on the full category of
grading-restricted generalized modules [Hu2].

Now we can prove Theorem 1.2 from the Introduction:

Proof. For the first assertion, we first assume A is a simple, positive-energy vertex operator
algebra in the modular tensor category C of V -modules, and that dimC A 6= 0. Since C is

semisimple and A has positive energy, A = V ⊕ Ã as a V -module, where Ã ⊆
⊕

n≥1A(n).

Then [Li1, Corollary 3.2] implies A is self-contragredient because A is simple and

L(1)A(1) = L(1)V(1) ⊕ L(1)Ã(1) = L(1)V(1) = 0,

where L(1)V(1) = 0 because V is positive energy and self-contragredient. Also, A is C2-
cofinite since by [ABD, Proposition 5.2], A is C2-cofinite even as a V -module.

It remains to show that A is rational. Since A is positive energy and C2-cofinite, it is
enough to show that the category of grading-restricted generalized A-modules is semisimple
(see Lemma 3.6 and Proposition 3.7 of [CM] or [McR2, Proposition 4.16]). Since every
grading-restricted generalized A-module is also a V -module, we need to show that C0

A is
semisimple. So we just need to verify the assumptions needed for the first assertion of
Theorem 2.8. The V -homomorphism εA exists because A is a semisimple V -module, and
because A is simple, [KO, Lemma 1.20] shows that A is self-dual with evaluation εA ◦ µA.

We also need to show that the non-zero categorical dimension dimC A agrees with the
index [A : V ]. By definition,

dimC A = εA ◦ µA ◦ RA,A ◦ (θA � IdA) ◦ iA,

where RA,A is the braiding and θA is the twist e2πiL(0) (see [Hu1]). But θA = IdA because A
is Z-graded by conformal weights, and µA ◦RA,A = µA because A is a commutative algebra
in C. Thus

dimC A = εA ◦ µA ◦ iA.
Now, µA ◦ iA is a V -module homomorphism from V to A, which means it is determined by
the image of the vacuum. Because A is positive energy, such a homomorphism must be a
multiple of the inclusion: µA ◦ iA = [A : V ]ιA for some [A : V ] ∈ C. Composing both sides
of this equation on the left by εA then shows that [A : V ] = dimC A 6= 0. This completes
the proof that A is strongly rational.

Conversely, if A is strongly rational, then A is simple and positive energy by definition,
and Theorems 6.10 and 6.3 of [KZ] imply that the index [A : V ] (equivalently, dimC A) is
non-zero. So the conditions of the first assertion of the theorem are necessary.

For the second assertion of the theorem, we first prove that V is strongly rational assuming
A is strongly rational, εA exists, V is C2-cofinite, the tensor category C of grading-restricted
generalized V -modules is rigid, and dimC A 6= 0. First we show that V is simple: suppose
I ⊆ V is a non-zero ideal, equivalently a non-zero (left) V -submodule. Since A = V ⊕Ker εA
as a V -module, [LL, Proposition 4.5.6] implies that the A-submodule (equivalently, ideal)
of A generated by any ṽ ∈ I is

〈ṽ〉 = span{anṽ | a ∈ V ∪Ker εA, n ∈ Z}.

If a ∈ V , then anṽ ∈ I, and if a ∈ Ker εA, then

YA(a, x)ṽ = exL(−1)YA(ṽ,−x)a ∈ (Ker εA)((x))
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by skew-symmetry for the vertex operator YA. Thus

〈ṽ〉 ⊆ I ⊕Ker εA

for all ṽ ∈ I; but if ṽ 6= 0, then 〈ṽ〉 = A since A is simple. So in fact I = V and V is simple.
Positive energy for V is immediate since A has positive energy. To show that V is

self-contragredient, note that a nondegenerate invariant bilinear form (·, ·) : A × A → C
restricts to an invariant bilinear form on V which is non-zero because it is nondegenerate
on V(0) = A(0) = C1. But a non-zero invariant bilinear form on V is nondegenerate because
V is simple, so V is self-contragredient.

It remains to show that V is rational. As before, we need to show that the category C of
grading-restricted generalized V -modules is semisimple. Since we are assuming C is a rigid
braided tensor category, we just need to verify the assumptions for the second assertion of
Theorem 1.1. In fact, εA exists by assumption, and we can show that A is self-dual with
evaluation εA ◦ µA and that [A : V ] 6= 0 exactly as in the proof of the first assertion of the
theorem. So V is strongly rational.

Conversely, if V is strongly rational, then εA exists because A is a semisimple V -module,
V is C2-cofinite by assumption, and the braided tensor category C of V -modules is rigid
[Hu1]. Also, dimC A 6= 0 by Theorems 6.10 and 6.3 of [KZ] as before, so all the conditions
in the second assertion of Theorem 1.2 are necessary. �

We apply Theorem 1.2 to the coset rationality problem in [McR4]. For now, we discuss
what the theorem says about the orbifold rationality problem:

Example 4.2. Let A be a strongly rational vertex operator algebra and G a finite auto-
morphism group, so that the fixed-point subalgebra V = AG is a conformal vertex operator
subalgebra. By the main theorem of [DLM], A is a semisimple V -module, so there is a
V -module homomorphism εA : A → V such that εA ◦ ιA = IdV . Moreover, if C is a
braided tensor category of V -modules that includes A, then A is a rigid object in C with
dimC A = |G| 6= 0 by [McR2, Proposition 4.15]. Thus if we could show in addition:

• V is C2-cofinite, and
• The braided tensor category of grading-restricted generalized V -modules is rigid,

then we could use Theorem 1.2(2) to conclude that V = AG is strongly rational. But
actually, we can do better than this: [McR3, Corollary 4.23] shows that C2-cofiniteness
alone is enough to guarantee AG is strongly rational. In effect, the strong rationality of AG

proved in [CM] for G cyclic, and in particular the rigidity of the category of AG-modules
in this special case, can be combined with [McR3, Main Theorem 1] to yield the stronger
result.

If conversely we assume that V = AG is strongly rational, and that A is simple and posi-
tive energy, then we can use Theorem 1.2(1) to conclude that A is strongly rational, because
dimC A = |G| by [McR2, Proposition 4.15]. This was already observed in [McR2, Theorem
4.14]; in fact, the proof of Theorem 1.2(1) here is just the straightforward adaptation of the
proof for the special case AG ⊆ A in [McR2].

We conclude this section with a discussion of whether some of the conditions in Theorem
1.2 are vacuous or redundant. In Theorem 1.2(1), the condition that A be simple and
positive energy is not vacuous because there exist vertex operator algebras which are neither
simple nor positive energy but have non-zero dimension in the modular tensor category of
a strongly rational subalgebra. Indeed, [Li1, Proposition 2.10] shows that if V is any vertex
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operator algebra (whether strongly rational or not) and W is a Z-graded V -module, then
V ⊕W has a vertex operator algebra structure given by

YV⊕W ((v1, w1), x)(v2, w2) =
(
YV (v1, x)v2, YW (v1, x)w2 + exL(−1)YW (v2,−x)w1

)
.

Taking W = V , we thus get a vertex operator algebra extension A = V ⊕ V for which the
second copy of V is a non-zero proper ideal; if V is strongly rational, the dimension of A
as a V -module will of course be 2.

As indicated in the Introduction, a more interesting question is whether the condition that
dimC A be non-zero is vacuous. More generally, does there exist a commutative algebra A
with trivial twist in a C-linear semisimple modular tensor category C such that dimC A = 0?
It seems likely that such algebras exist, but note that they will never occur in unitary
modular tensor categories, where dimensions of non-zero objects are strictly positive. Note
also the relevance of the C-linearity assumption: over fields of positive characteristic, the
group algebra of a finite abelian group can have dimension zero in the modular tensor
category of finite-dimensional vector spaces.

Regarding the conditions of Theorem 1.2(2), it is widely believed (see for example [Hu3])
that the tensor category of modules for a simple positive-energy self-contragredient C2-
cofinite vertex operator algebra should be rigid. So conjecturally the third condition in
Theorem 1.2(2) is redundant, but so far this is not proved. As for the remaining conditions,
the following example shows that a rational vertex operator algebra A can have a non-
rational C2-cofinite subalgebra with rigid module category C when εA fails to exist and/or
dimC A = 0:

Example 4.3. Consider the extension W(p) ⊆ V√2pZ, p ∈ Z≥2, where W(p) is the triplet
W -algebra and V√2pZ is a lattice vertex operator algebra with modified conformal vector.

The new Virasoro module structure on V√2pZ is not semisimple: W(p) is the maximal

semisimple Virasoro submodule. Although V√2pZ is rational, W(p) is C2-cofinite [AM1],

and the tensor category of grading-restricted generalizedW(p)-modules is rigid [TW],W(p)
has a non-semisimple representation category and thus is not rational. Theorems 1.1 and
1.2 fail because the inclusion W(p) ↪→ V√2pZ has no left inverse.

Actually, V√2pZ is not quite strongly rational because it is not self-contragredient with
respect to the modified conformal structure, so strictly speaking, we are in the setting of
Theorem 1.1 rather than Theorem 1.2. Since V√2pZ is not self-dual in the rigid tensor

category of W(p)-modules, we cannot define the index of the inclusion W(p) ⊆ V√2pZ as
in Theorem 1.1. However, the categorical dimension of V√2pZ in the ribbon category of

W(p)-modules still makes sense; we will show that this categorical dimension is 0.
To determine dimW(p) V√2pZ, we use the (non-split) short exact W(p)-module sequence

0 −→W(p) −→ V√2pZ −→ X−p−1 −→ 0,

where X−p−1 is a simple W(p)-module (using the notation of [TW]). Its projective cover

P−p−1, which was constructed explicitly in [AM2] and shown to be projective in [NT], has

length 4 with two composition factors isomorphic to X−p−1 and two isomorphic to W(p).
Thus because categorical dimension is a well-defined function on the Grothendieck group
of a ribbon category, we get

dimW(p) V√2pZ = dimW(p)W(p) + dimW(p)X
−
p−1 =

1

2
dimW(p) P

−
p−1 = 0.
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The last step uses the fact that the dimension of a projective object in a non-semisimple
finite ribbon category is 0, which is explained for example in [GR, Remark 4.6(1)].

5. Generalization to vertex operator superalgebras

In this final section, we explain how Theorems 1.1 and 1.2 generalize to the setting V ⊆ A
where A is a vertex operator superalgebra and V is a (Z-graded) vertex operator algebra
contained in the even part of A.

There are slightly variant definitions of vertex operator superalgebra in the literature; see
[Li2, Section 2.2] for a definition consistent with our usage of the term. In particular, a vertex
operator superalgebra A has two gradings, a 1

2Z-conformal weight grading A =
⊕

n∈ 1
2
ZA(n)

and a Z/2Z-parity grading A = A0̄ ⊕ A1̄. While we do require these two gradings to be
compatible in the sense that

A(n) = (A(n) ∩A0̄)⊕ (A(n) ∩A1̄)

for each n ∈ 1
2Z, we do not require that Aī =

⊕
n∈ i

2
+ZA(n) for i = 0, 1. In particular, this

notion of vertex operator superalgebra incorporates the following four possibilities for A,
using terminology from [CKL]:

(1) Vertex operator algebra of correct statistics: A is Z-graded by conformal weights

and A1̄ = 0,
(2) Vertex operator algebra of incorrect statistics: A is 1

2Z-graded by conformal weights

and A1̄ = 0.
(3) Vertex operator superalgebra of correct statistics: Aī =

⊕
n∈ i

2
+ZA(n) for i = 0, 1.

(4) Vertex operator superalgebra of incorrect statistics: A is Z-graded by conformal

weights and Aī 6= 0.

Theorems 1.1 and 1.2 cover case (1). Theorem 1.1 remains valid in case (2) as well, but
Theorem 1.2 requires modification since the index [A : V ] of Theorem 1.1 is no longer the
categorical dimension of A as a V -module when A is 1

2Z-graded.
For a general vertex operator superalgebra A, we use the notation Ai =

⊕
n∈ i

2
+ZA(n) for

i = 0, 1, so that A0 ∩A0̄ is a Z-graded vertex operator algebra conformally embedded in A.
We have two vertex operator (super)algebra automorphisms of A: the parity involution

PA = IdA0̄ ⊕ (−IdA1̄)

and the twist

θA = IdA0 ⊕ (−IdA1).

Because the 1
2Z- and Z/2Z-gradings of A are compatible, 〈PA, θA〉 is an abelian subgroup

of Aut(A) of order at most 4.
Let A be a vertex operator superalgebra, V a Z-graded vertex operator algebra confor-

mally embedded into A0∩A(0), and C a category of grading-restricted generalized V -modules
that includes A and admits the braided tensor category structure of [HLZ1]-[HLZ8]. The
analogue of Theorem 4.1 for this setting was proved in [CKL] and discussed further in
[CKM1]. To begin, [CKM1, Section 2] constructs an auxiliary supercategory SC whose
objects are V -modules in C equipped with parity decompositions, and whose morphisms
include both even and odd V -module homomorphisms. The underlying category SC has the
same objects of SC but only the even morphisms, which preserve the parity decompositions
of objects; SC is a braided tensor category with braiding isomorphisms modified by a sign
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factor to account for parity. Then the following theorem comes from [CKL, Theorems 3.13
and 3.14] and [CKM1, Remark 2.27]:

Theorem 5.1. Let A be a vertex operator superalgebra, V ⊆ A0∩A0̄ a conformal inclusion
of vertex operator algebras, and C a category of grading-restricted generalized V -modules
that includes A and admits the braided tensor category structure of [HLZ8]. Then:

(1) The vertex operator superalgebra A is a commutative algebra in SC.
(2) The category SC0

A of local A-modules is the full subcategory of grading-restricted
generalized A-modules which are objects of C when viewed as V -modules.

See for example [CKM1, Definition 3.1] for the definition of grading-restricted generalized
module for a vertex operator superalgebra. We emphasize that morphisms in the braided
tensor category SC0

A are even, that is, they preserve parity decompositions of grading-
restricted generalized A-modules. Thus SC0

A is semisimple in the sense of Section 2 if and
only if every Z/2Z-graded submodule of any object in SC0

A has a Z/2Z-graded complement;
in particular, an object X of SC0

A is simple if its only Z/2Z-graded submodules are 0 and
X. Note that a simple A-module in this sense may have non-trivial A-invariant subspaces
that are not parity-graded; see [CKM1, Section 4.2.1] for a discussion of this issue.

Now the following is the superalgebra generalization of Theorem 1.1:

Theorem 5.2. Let A be a vertex operator superalgebra, V ⊆ A0∩A0̄ a conformal inclusion
of vertex operator algebras, and C a category of grading-restricted generalized V -modules
that includes A and admits the braided tensor category structure of [HLZ8]. Assume that
moreover:

• There is a V -homomorphism εA : A→ V such that εA ◦ ιA = IdV .
• The vertex operator superalgebra A is a rigid and self-dual object of C with evaluation
εA ◦ µA : A�A→ V and some coevaluation iA : V → A�A.
• For some non-zero index [A : V ] ∈ C, µA ◦ iA = [A : V ]ιA.

Then:

(1) If C is semisimple, then SCA is also semisimple.
(2) If C is rigid and SC0

A is semisimple, then C is also semisimple.

Proof. First note that C is semisimple if and only if SC is semisimple: In one direction,
surjections in SC have the form

f 0̄ ⊕ f 1̄ : W 0̄
1 ⊕W 1̄

1 →W 0̄
2 ⊕W 1̄

2

where f ī : W ī
1 → W ī

2 for i = 0, 1 are surjections in C. Thus surjections in SC split if they
do in C. Conversely, any surjection f : W1 →W2 in C yields a surjection

f ⊕ 0 : W1 ⊕ 0→W2 ⊕ 0

in SC, so f splits if SC is semisimple.
Next, we claim that we may assume εA is even, that is, εA|A1̄ = 0, and thus εA defines

a morphism in SC. Indeed, if we let p0̄ : A → A0̄ denote the V -module projection with

respect to the direct sum decomposition A = A0̄ ⊕A1̄, then

εA ◦ p0̄ ◦ ιA = εA ◦ ιA = IdV

since V ⊆ A0̄. So we may replace εA with εA ◦ p0̄ if necessary.
Now because εA and µA are both morphisms in SC, so is the evaluation εA ◦ µA. Then

we may assume that the coevaluation iA : V → A�A is even and thus defines a morphism
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in SC, as explained for example in the proof of [McR3, Theorem 4.15]. Thus A is rigid and
self-dual in SC as well as in C. Moreover, if C is a rigid tensor category, then so is SC (see
[CKM1, Lemma 2.72]).

Replacing iA with its even part if necessary will not change the index [A : V ]. Thus the
two conclusions of the theorem follow immediately from Theorems 2.8 and 3.2, since A is
a commutative algebra in SC by Theorem 5.1. Note that in the first assertion we are using
the full category SCA of non-local A-modules in SC. �

In the superalgebra setting, non-local A-modules associated to the group 〈PA, θA〉 ⊆
Aut(A) are also of interest. For g ∈ 〈PA, θA〉, we say that an object (X,µX) in SCA is a
g-twisted A-module if

µX ◦ RX,A ◦ RA,X ◦ (g � IdX) = µX ;

in particular, a local module in SC0
A is the same as an untwisted A-module in SC. When A

is a vertex operator (super)algebra of (in)correct statistics, the untwisted module category
SC0

A is called the “Neveu-Schwarz sector” in the physics literature; the category of g-twisted
A-modules (where g = PA if A is a superalgebra and g = θA if A is an algebra of incorrect
statistics) is called the “Ramond sector.”

Corollary 5.3. In the setting and under the assumptions of Theorem 5.2, suppose that
C is semisimple. Then for each g ∈ 〈PA, θA〉, the category SCgA of g-twisted A-modules is

semisimple. In particular, SC0
A is semisimple.

Proof. As in the proof of Theorem 1.1 in Section 4, we just need to verify that any surjection
f : X1 → X2 in SCgA is still a surjection in SCA. Thus suppose h : X2 → X3 is a morphism
in SCA such that h ◦ f = 0; we need to show that h = 0.

It was shown in [McR3, Section 3] that every object X of SCA has an SCA-endomorphism
πgX , generalizing πX of Section 3, such that πgX(X) is a g-twisted A-module, πgX = IdX if
X is g-twisted, and πgX commutes with morphisms in SCA. In particular,

h = h ◦ πgX2
= πgX3

◦ h

because X2 is g-twisted, so h actually defines a morphism h : X2 → πgX3
(X3) in SCgA. Thus

h = 0 because f is surjective in SCgA. �

Now we generalize Theorem 1.2 to the superalgebra setting. Note that rationality for
1
2Z-graded vertex operator (super)algebras is defined in terms of complete reducibility for
1
2N-gradable weak modules.

Theorem 5.4. Let A be a vertex operator superalgebra and V ⊆ A0 ∩ A0̄ a conformal
inclusion of vertex operator algebras.

(1) If V is strongly rational, then A is also strongly rational provided:
• A is simple and positive energy.
• The dimension of A0∩A0̄ in the modular tensor category of V -modules is non-

zero.
(2) If A is strongly rational, then V is also strongly rational provided:

• There is a V -module homomorphism εA : A0 ∩A0̄ → V such that εA|V = IdV .
• V is C2-cofinite.
• The tensor category C of grading-restricted generalized V -modules is rigid.
• The categorical dimension dimC A0 ∩A0̄ is non-zero.
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Proof. For the first assertion, A is simple and positive energy by assumption, and this implies
that A is also self-contragredient as in the proof of Theorem 1.2(1) (see also [CKM1, Remark
4.11]). Also, A is C2-cofinite as in the proof of Theorem 1.2(1). It remains to show that A
is rational.

Since A is simple and positive energy, the same holds for A0 ∩ A0̄ (simplicity follows
from the main theorem of [DLM], or from [McR2, Theorem 3.2] which explicitly covers

the superalgebra generality). Thus A0 ∩ A0̄ is strongly rational by Theorem 1.2(1), and

we may consider the orbifold-type extension A0 ∩ A0̄ = A〈PA,θA〉 ⊆ A. The assumptions
of Theorem 5.2 for such extensions were verified in the proof of [McR3, Theorem 4.15], so
Theorem 5.2(1) and Corollary 5.3 show that every grading-restricted generalized A-module
is semisimple.

Now to show that A is rational, let X =
⊕

n∈ 1
2
NX(n) be a 1

2N-gradable weak A-module.

Then X restricts to an N-gradable weak V -module, so because V is rational, X ∼=
⊕

i∈IWi

for irreducible V -modules Wi; we may assume that either Wi ⊆ X 0̄ or Wi ⊆ X 1̄ for each i
because X 0̄ and X 1̄ are N-gradable V -submodules of X. Let Xi denote the Z/2Z-graded
A-submodule of X generated by Wi; by [LL, Proposition 4.5.6], or [CKM1, Lemma 3.74], it

is the image of the V -module intertwining operator YX |A⊗Wi of type
(
X

AWi

)
. Then because

A and Wi are C2-cofinite V -modules, Xi is also C2-cofinite as a V -module by the Main
Theorem of [Mi]. In particular, Xi is a grading-restricted generalized A-submodule of X
and hence is semisimple.

We have now shown that X =
∑

i∈I Xi where the Xi are semisimple grading-restricted
generalized A-submodules. That is, X is a sum, and hence also a direct sum, of irreducible
grading-restricted A-modules. This shows that A is rational, completing the proof of the
first assertion of the theorem.

For the second assertion, the assumptions on V and its module category are enough for
strong rationality of A0 ∩ A0̄ to imply strongly rationality of V via Theorem 1.2. To show
that A0∩A0̄ is in fact strongly rational, note that it is simple by the main theorem of [DLM],

or by [McR2, Theorem 3.2], because A0 ∩ A0̄ = A〈PA,θA〉. Then A0 ∩ A0̄ is positive energy
and self-contragredient because A is, just as in the proof of Theorem 1.2(2). Moreover,

A0 ∩A0̄ is C2-cofinite because it is a module for the C2-cofinite vertex operator algebra V .
To show A0∩A0̄ is rational and thus prove second assertion of the theorem, it is enough to

show that the category of grading-restricted generalized A0∩A0̄-modules is semisimple; this
is nothing but the category C0

A0∩A0̄ of local modules for the commutative algebra A0 ∩ A0̄

in the rigid braided tensor category C of V -modules. To prove that C0
A0∩A0̄ is semisimple,

we want to apply Theorem 5.2(2) with V replaced by A0 ∩ A0̄ and with C replaced by
C0
A0∩A0̄ . As mentioned above, the three basic assumptions of Theorem 5.2 were verified for

orbifold-type extensions in the proof of [McR3, Theorem 4.15], but we also need to show

that C0
A0∩A0̄ is rigid. In fact, since A0 ∩ A0̄ is a commutative algebra in C, the rigidity

of C0
A0∩A0̄ will follow from [KO, Theorem 1.15] provided that the index [A : A0 ∩ A0̄] is

non-zero. But just as in the proof of Theorem 1.2, this is the same as dimC A0 ∩A0̄, which
is non-zero by assumption. �

Theorem 5.4 has the following specializations to orbifold-type extensions. The first gen-
eralizes [McR2, Theorem 4.13] and is also similar to [DH, Theorem 4.1], which was proved
for finite solvable automorphism groups of vertex operator superalgebras:
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Corollary 5.5. Suppose A is a simple positive-energy vertex operator superalgebra and G
is a finite group of automorphisms of A that includes PA and θA. If AG is strongly rational,
then A is also strongly rational.

Proof. Since G contains PA and θA, the fixed-point subalgebra AG is a vertex operator
subalgebra of A0 ∩ A0̄. Thus to apply Theorem 5.4(1), we just need to verify that the

dimension of A0 ∩ A0̄ in the modular tensor category of AG-modules is non-zero. In fact,
since AG = (A0∩A0̄)G/K , where K is the kernel of the restriction homomorphism from G to

Aut(A0 ∩A0̄), the dimension of A0 ∩A0̄ as an AG-module is |G/K| by [McR2, Proposition
4.15]. �

Example 5.6. Similar to Example 4.2, let A be a strongly rational vertex operator super-
algebra and let G be a finite group of automorphisms of A that includes PA and θA. If A is
strongly rational, then Theorem 5.4(2) shows that V = AG is also strongly rational provided
that V is C2-cofinite and the tensor category C of grading-restricted generalized V -modules
is rigid. However, [McR3, Corollary 4.23] shows that we can replace the assumptions that A

is strongly rational and that C is rigid with the assumption that A0∩A0̄ is strongly rational
(still retaining C2-cofiniteness of V as an assumption).

Appendix A. Detailed calculations for Equation (2.3)

Here we provide more details for the calculation (2.3) in the proof of Theorem 2.8, so that
the interested reader may see the role of the pentagon and triangle axioms. These properties
of a tensor category are not used in the other diagrammatic calculations of Sections 2 and
3.

We start with µX1 ◦ (IdA � S), which is the composition

A�X2

IdA�l−1
X2−−−−−→ A� (1 �X2)

IdA�(iA�IdX2
)

−−−−−−−−−−→ A� ((A�A) �X2)

IdA�A−1
A,A,X2−−−−−−−−−→ A� (A� (A�X2))

IdA�(IdA�µX2
)

−−−−−−−−−−→ A� (A�X2)

IdA�(IdA�σ)−−−−−−−−→ A� (A�X1)
IdA�µX1−−−−−−→ A�X1

µX1−−→ X1.

Using the triangle axiom, the associativity of µX1 , and the naturality of the associativity
isomorphisms, this becomes

A�X2

r−1
A �IdX2−−−−−−→ (A� 1) �X2

(IdA�iA)�IdX2−−−−−−−−−−→ (A� (A�A)) �X2

A−1
A,A�A,X2−−−−−−−→ A� ((A�A) �X2)

IdA�A−1
A,A,X2−−−−−−−−−→ A� (A� (A�X2))

AA,A,A�X2−−−−−−−→ (A�A) � (A�X2)
IdA�A�µX2−−−−−−−→ (A�A) �X2

IdA�A�σ−−−−−−→ (A�A) �X1

µA�IdX1−−−−−−→ A�X1

µX1−−→ X1.



FINITE-INDEX VERTEX OPERATOR SUBALGEBRAS 23

We rewrite the composition of associativity isomorphisms here as A−1
A�A,A,X2

◦ (AA,A,A �
IdX2) using the pentagon axiom, and then move µA forward by the naturality of the asso-
ciativity isomorphisms:

A�X2

r−1
A �IdX2−−−−−−→ (A� 1) �X2

(IdA�iA)�IdX2−−−−−−−−−−→ (A� (A�A)) �X2

AA,A,A�IdX2−−−−−−−−−→ ((A�A) �A) �X2

(µA�IdA)�IdX2−−−−−−−−−−→ (A�A) �X2

A−1
A,A,X2−−−−−→ A� (A�X2)

IdA�µX2−−−−−−→ A�X2
IdA�σ−−−−→ A�X1

µX1−−→ X1.

Now we apply Lemma 2.9 to the first four arrows:

A�X2

l−1
A �IdX2−−−−−−→ (1 �A) �X2

(iA�IdA)�IdX2−−−−−−−−−−→ ((A�A) �A) �X2

A−1
A,A,A�IdX2−−−−−−−−−→ (A� (A�A)) �X2

(IdA�µA)�IdX2−−−−−−−−−−→ (A�A) �X2

A−1
A,A,X2−−−−−→ A� (A�X2)

IdA�µX2−−−−−−→ A�X2
IdA�σ−−−−→ A�X1

µX1−−→ X1.

We rewrite the first two arrows using properties of the unit and naturality of the asso-
ciativity isomorphisms; we also apply naturality of the associativity isomorphisms and the
associativity of µX2 to get

A�X2

l−1
A�X2−−−−→ 1 � (A�X2)

iA�IdA�X2−−−−−−−→ (A�A) � (A�X2)

AA�A,A,X2−−−−−−−→ ((A�A) �A) �X2

A−1
A,A,A�IdX2−−−−−−−−−→ (A� (A�A)) �X2

A−1
A,A�A,X2−−−−−−−→ A� ((A�A) �X2)

IdA�A−1
A,A,X2−−−−−−−−−→ A� (A� (A�X2))

IdA�(IdA�µX2
)

−−−−−−−−−−→ A� (A�X2)
IdA�µX2−−−−−−→ A�X2

IdA�σ−−−−→ A�X1

µX1−−→ X1.

By the pentagon axiom, the four associativity isomorphisms here simplify to A−1
A,A,A�X2

,
and then we move the first µX2 forward in the composition using the naturality of the
associativity and left unit isomorphisms to get

A�X2

µX2−−→ X2

l−1
X2−−→1 �X2

iA�IdX2−−−−−→ (A�A) �X2

A−1
A,A,X2−−−−−→ A� (A�X2)

IdA�µX2−−−−−−→ A�X2
IdA�σ−−−−→ A�X1

µX1−−→ X1.

This is S ◦ µX2 , as required.
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