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CATEGORIES OF THE SINGLET VERTEX ALGEBRAS

THOMAS CREUTZIG, ROBERT MCRAE AND JINWEI YANG

ABSTRACT. We show that the category of finite-length generalized modules for the sin-
glet vertex algebra M(p), p € Zx1, is equal to the category Oy of Ci-cofinite M(p)-
modules, and that this category admits the vertex algebraic braided tensor category struc-
ture of Huang-Lepowsky-Zhang. Since Oaq(p) includes the uncountably many typical
M(p)-modules, which are simple M (p)-module structures on Heisenberg Fock modules,
our results substantially extend our previous work on tensor categories of atypical M(p)-
modules. We also introduce a tensor subcategory Of,l(m, graded by an algebraic torus
T, which has enough projectives and is conjecturally tensor equivalent to the category of
finite-dimensional weight modules for the unrolled restricted quantum group of sl at a
2pth root of unity. We compute all tensor products involving simple and projective M(p)-
modules, and we prove that both tensor categories Oy (p) and OTM(p) are rigid and thus
also ribbon. As an application, we use vertex operator algebra extension theory to show
that the representation categories of all finite cyclic orbifolds of the triplet vertex alge-
bras W(p) are non-semisimple modular tensor categories, and we confirm a conjecture of
Adamovié¢-Lin-Milas on the classification of simple modules for these finite cyclic orbifolds.
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1. INTRODUCTION

Besides being a rich subject in its own right, the representation theory of vertex (operator)
algebras has applications to a variety of branches of mathematics and physics. Here we
study the singlet vertex algebras M(p), p € Z~1, using and substantially extending our
previous partial results in [CMY2]. These algebras were among the first examples of chiral
algebras of logarithmic conformal field theory, and their representation theory is currently
used to obtain new invariants of three-manifolds and three-dimensional topological and even
quantum field theories. The applications to low-dimensional topology require ribbon tensor
categories, so we start by sketching the state of the art of such categories associated to
vertex operator algebras. We will describe the applications of our results in more detail at
the end of the introduction.

1.1. Rigid vertex tensor categories. Representation categories of general classes of ver-
tex operator algebras are expected to admit natural braided ribbon (and in particular rigid)
tensor category structure. This is a celebrated theorem of Huang for the class of rational C-
cofinite vertex operator algebras, in which case the representation categories are semisimple
modular tensor categories [Hu2]. However, vertex operator algebras are rarely rational or
(C>-cofinite, and their representation categories are rarely semisimple or finite.

The first non-rational examples appeared three decades ago in physics in the context of
low-dimensional topology and logarithmic conformal field theory, namely the WZW the-
ory of the Lie superalgebra gly; [RS] and the singlet algebras M(p) [Ka]. By now, it is
understood that affine vertex algebras (and their W-algebras) at almost all levels admit
uncountably many inequivalent simple modules [KR] and should also admit logarithmic
modules (which are indecomposable but reducible modules on which the Virasoro zero-
mode L(0) acts non-semisimply). Even the construction of logarithmic modules is a difficult
task: for affine vertex operator (super)algebras, this is achieved only for those associated
to sly, 08py)9, 53, and gly; [Ad3, ACG, CMY3]. Among these, the complete ribbon (su-
per)category of modules is currently understood only in the case of gl [CMY3], and
the only additional completely-understood example of a non-finite, non-semisimple tensor
category of representations for a vertex operator algebra is the v-system [AW].

By ‘understanding’ a tensor category, we mean finding both its abelian and monoidal
structures. Understanding the abelian structure especially includes classifying simple and
projective modules and determining the structure of all projective modules, for example
their Loewy diagrams. Understanding the monoidal structure means first establishing its
existence (for representation categories of vertex operator algebras, this is the vertex tensor
category structure of [HLZ1]-[HLZ8]). Then we want to compute fusion rules, or more
precisely, prove formulas for the tensor products of at least the simple and projective objects.
The final goal is to prove rigidity; once this is done for a vertex algebraic tensor category,
we immediately get ribbon category structure since we always have a natural ribbon twist.
The main result of the present work is an understanding in this sense of the category of
C4-cofinite grading-restricted generalized M (p)-modules.
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1.2. Ribbon categories of atypical singlet modules. The singlet algebra M(p), p €
Z~1, is a subalgebra of the rank-one Heisenberg vertex algebra H, with a modified conformal
vector giving it central charge 1 — 6@. Irreducible (N-gradable) M(p)-modules were
classified by Adamovié¢ [Ad1]: every Fock H-module F), where A € C is the eigenvalue of
the Heisenberg zero-mode h(0), restricts to an M(p)-module, and simple Mp)-modules
are in one-to-one correspondence with Fock modules. Generically, F) remains irreducible
as an M (p)-module, with countably many exceptions. More precisely, for r € Z and
s €{1,2,...p}, introduce

1—r 1-—s
ar7S:TOK++ 50 oy = +/2p, a_ = —/2/p,

as well as the lattice L = Za, whose dual is L° = Z%. So L° consists of all a,. s for r € Z
and 1 < s < p. Then the Fock module F) is simple as an M (p)-module for A € C\ L°,
while the simple M (p)-module corresponding to F, , is its socle, which we denote M. .
For s = p, M, is still equal to F,, ,, but for 1 < s < p—1, M, , is characterized by the
non-split exact sequence

00— Mps — Fa,, — Mrp1p-s — 0.
A simple M(p)-module is called typical if it is a Fock module, and atypical otherwise.

In [CMY?2], we used the existence of tensor structure on the category of C1-cofinite mod-
ules for the Virasoro algebra at central charge 1— 6@ (proved in [CJORY]) to construct
a vertex algebraic tensor category Cyy(,) of M (p)-modules containing all atypical modules.
More precisely, Cpy(p) consists of all finite-length M (p)-modules whose composition factors
come from the modules M, ; for r € Z, 1 < s < p; this category does not include the typical
Fock modules F) for A € C\ L°, since these are not sums of Cy-cofinite Virasoro modules.

No non-zero M(p)-module is projective in C,4(p), but there is a tensor subcategory CRA(p)
that does have enough projectives. This subcategory is most practically defined to consist
of objects M having trivial monodromy with M3 1, that is, the double braiding

R-%\/lii,l,M : M371 XM -— MKX M3,1 — M371 X M

is the identity. In [CMY?2], we showed that the typical modules M., = Fq, , are projective
in C?\/l (p)? while for 1 < s < p—1, M, , has a length-four projective cover P, 5 in C.(/)Vl(p) with

AN

Prs: MT—I,p—s Mr—l—l,p—s .

NS

We also showed that both tensor categories Cpq(,) and C.(/)\/((p) are rigid, and we computed
all tensor products involving the modules M, s and P, ; for r € Z and 1 < s < p.
Recently in [GN], Gannon and Negron used our results in [CMY?2] to show that C_?\/l(p) is

Loewy diagram

ribbon tensor equivalent to a certain category of weight modules (with a suitable braiding
and ribbon structure) for the unrolled restricted quantum group of sly at ¢ = e™/?. However,
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it is conjectured [CGP2, CMR] that the entire category of finite-dimensional weight modules
for the quantum group is ribbon tensor equivalent to a suitable category of M (p)-modules.
Our results in the present paper, described next, achieve for the first time the braided ribbon
tensor structure on the correct category of M(p)-modules for this conjectural equivalence;
C,(/)\/l(p) is then a tensor subcategory of this larger category of M (p)-modules.

1.3. Results. Our first main result, proved in Sections 3.1 and 3.2 is the existence of vertex
tensor category structure on the category of Cq-cofinite M (p)-modules:

Theorem 1.1. (Theorem 3.7) The category O ) of C1-cofinite grading-restricted gener-
alized M(p)-modules equals the category of finite-length grading-restricted generalized M(p)-
modules and admits the vertex algebraic braided tensor category structure of [HLZ1]-[HLZS8].

To prove this, we verify the sufficient conditions for tensor category structure from [CY].
First, every irreducible M(p)-module is Ci-cofinite by [CMR, Theorem 13], so O (,) con-
tains the category of all finite-length generalized M (p)-modules. If these two categories
coincide, then [CY, Theorem 3.3.4] shows that O ,,(,) satisfies the assumptions for apply-
ing the logarithmic tensor category theory of [HLZ1]-[HLZS], and thus Oy, is indeed a
braided tensor category. Then by [CY, Theorem 3.3.5], this equality of categories holds if
the generalized Verma M (p)-module (using terminology from [Li]) induced from any finite-
dimensional irreducible module for the Zhu algebra of M(p) has finite length. This we
prove in Section 3.1 by determining all generalized Verma M (p)-modules explicitly.

In Theorem 3.1, we show that the typical irreducible M(p)-module Fy, A € C\ L°, is its
own generalized Verma M (p)-module cover, by a Virasoro intertwining operator argument
similar to the proof of [AMI, Theorem 4.4]. Finding the generalized Verma M (p)-module
covers of the atypical M (p)-modules is much more difficult: besides properties of Virasoro
intertwining operators, we heavily use our results on the category CRA(p) from [CMY?2],
especially the existence and projectivity of the modules P, 5. In Theorem 3.6, we show
that the generalized Verma M (p)-module cover of M, ; is P,.s/M where M is the smallest
submodule such that P, /M has the same lowest conformal weight space as M, . This
quotient has length at most three, so all generalized Verma M (p)-modules have finite length.

Our second main result, in Sections 3.2 and 3.3, is the classification of projective M (p)-
modules. Since Heisenberg Fock modules admit indecomposable self-extensions of arbitary
length, which remain indecomposable as M (p)-modules, Opq,) does not have any non-
zero projective objects. As in [CMY2], we resolve this problem by introducing a tensor
subcategory that does have enough projectives. Specifically, we define (’)f/l(p) to be the
subcategory of O () whose objects have semisimple monodromy with Mz 1 (see Definitions
3.9 and 3.12). Here T is the algebraic torus 7' = C/2L°: the category OJT\/t(p) is T-graded
with homogeneous subcategories (’)jw(p) - O/:Ct(p) for t = g+ 2L° € T consisting of all
M(p)-modules M in Oy, such that

2 —27i
RM2,1,M =e€ mjazlﬁlsz,l@M.

In Theorem 3.13 we show that (’)f/l(p) is a full tensor subcategory of Oy, that is closed
under submodules and quotients, and in Proposition 3.16 we show that O};A ) contains all
simple M (p)-modules. We then describe its abelian structure:

Theorem 1.2. A complete list of indecomposable projective objects in OTM(p) is:
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(1) (Proposition 3.18) Forr € Z and 1 < s < p — 1, the indecomposable M (p)-module
Pr.s is a projective cover of M, .

(2) (Theorem 3.19) For A € (C\ L°) U {a,,|r € Z}, the irreducible M(p)-module Fy
18 its own projective cover.

Our third main result is the computation of tensor products involving irreducible and
projective M (p)-modules; all fusion rules (dimensions of spaces of intertwining operators)
follow as corollaries. As the atypical category Cpy(y from [CMY2] is a tensor subcategory
of Opy(p), all tensor products involving the modules M, s and P, s are already computed
in [CMY2, Theorem 5.2.1]. In Section 4, we use these fusion rules from [CMY2] as well as
results on Virasoro intertwining operators and projectivity in O/T\’/l(p) of the modules P

and Fy, A € C\ L°, to find the remaining tensor products involving typical modules:

Theorem 1.3. The following tensor product formulas hold in Oxqp):
(1) (Theorem 4.2) Forr € Z, 1 <s<p, and A€ C\ L°,
s—1

Mr,s X FA = @F)\—ﬁ-ar,s—‘réa,-
£=0

(2) (Theorem 4.3) Forr € Z,1<s<p-—1,and A€ C\ L°,

p—1

Pr,s X Fy\ = @ (f)\-i—aT,S—i—foz_ D f/\—&-oar_l,p_s—i—fa_) .
=0

(3) (Theorem 4.4) For \,u € C\ L° such that A+ p = oy + a— + a, s € L° for some
reZ,1<s<p,

P P
AR @B Pvo @ P
s'=s s'=p4+2—s
s'=s (mod 2) s'=p—s (mod 2)
(4) (Theorem 4.7) For \,u € C\ L° such that A+ u ¢ L°,
p—1
FARFu = P Farutta -
=0

The image of these fusion rules in the Grothendieck ring was predicted earlier in [CM]
using a conjectural Verlinde formula, and our results confirm that conjecture. Moreover,
Theorems 1.2 and 1.3 show that OTM(p) is equivalent as an abelian category to the category
of finite-dimensional weight modules for the unrolled restricted quantum group of sly at
g = €™/P and that under this equivalence, tensor product decompositions agree. See
[CGP2] for the detailed structure of the unrolled quantum group category.

Our last result on O pq(y), proved in Section 5, is rigidity:

Theorem 1.4. (Theorems 5.5 and 5.6) The tensor categories Oy, and O%(p) are rigid
and ribbon.

To prove this, we use [CMY2, Theorem 4.4.1] to reduce rigidity for the entire category
of finite-length M(p)-modules to rigidity for all simple modules. Since we already proved
in [CMY2] that the atypical category C M(p) 18 rigid, it is then enough to prove that the
typical modules Fy, A € C\ L° are rigid (as M(p)-modules). Our rigidity proof for Fy
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is new and completely different from the explicit calculational proofs of rigidity for typical
modules of the By-vertex algebra [AW] and of affine gly; [CMY3]. The idea is to choose
evaluations ey : F3 ¥ Fy — M(p) and coevaluations iy : M(p) — Fy X F} (where F is
the M(p)-module contragredient of F), also a typical Fock module) in such a way that the
rigidity composition

=~ iAXId y =~ y IdRe, =~

Frn— M(p) X Fy —>(.7:)\ &f;\) KF,— AKX (]:)\ @.7:)\) — F &M(p) — F
depends analytically on the Heisenberg weight A. Then F), is either rigid for a dense open
set of A\ or non-rigid for all \. The latter is impossible because we already know from
[CMY?2] that the modules F,, ,, 7 € Z, are rigid, so rigidity for F) holds for generic .
Then we use the fusion rules of Theorem 1.3(4) to prove rigidity for all A € C\ L°.

To show that the rigidity composition indeed depends analytically on A, we revisit
Huang’s derivation [Hul] of regular-singular-point differential equations for conformal-field-
theoretic four-point functions coming from intertwining operators among C'i-cofinite mod-
ules for a vertex operator algebra. Using generic Fock modules, on which the Heisenberg
zero-mode acts by a polynomial variable, we show that such differential equations asso-
ciated to intertwining operators among typical M (p)-modules can be chosen to depend
analytically on A\. Then because matrix coefficients of the rigidity composition appear as
coefficients of suitable four-point functions, the theory of ordinary differential equations
combined with some additional complex analysis shows that the rigidity composition also
depends analytically on A, as desired.

1.4. Applications. A major application of our results is that we can now construct ribbon
tensor (super)categories of modules for interesting vertex operator (super)algebras that
contain M(p) as a subalgebra. We give one example in this paper: the finite cyclic orbifolds
of the triplet vertex operator algebra W(p), studied previously in [ALM1, ALM2], are also
simple current extensions of M(p). Thus we can use the vertex operator algebra extension
theory of [CKMI1, CMY1] to show that the module category of any cyclic orbifold of W(p)
is a rigid non-degenerate braided tensor category. This gives new examples of Ca-cofinite
vertex operator algebras whose representation categories are non-semisimple modular tensor
categories. We also confirm the conjectural classification from [ALMI] of simple modules
for these algebras, and we describe all projective modules.

It is also possible to obtain ribbon tensor (super)categories which are both non-finite
and non-semisimple, and which contain modules with infinite-dimensional conformal weight
spaces, and even modules without lower bounds on their conformal weights. The first
vertex operator algebras with such module categories that we can study are the B),-algebras,
p € Z>1, of [CRW]. The Bs-algebra is the fv-vertex algebra (already analyzed in [AW]),
while the Bs-algebra is the simple affine vertex algebra of sl at the admissible level —%,
first studied by Adamovi¢ [Ad2]. For larger p, the By-algebra is isomorphic to the simple
subregular W-algebra of sl,,_; at level —(p—1)+ % [ACGY, ACKR]. The singlet algebra
M(p) is a coset of B, by a rank-one Heisenberg vertex operator algebra, which means that
B, is an extension of the tensor product of these two commuting subalgebras.

Subregular W-algebras of type A enjoy a duality with certain principal W-superalgebras,
first conjectured by Feigin and Semikhatov [F'S] and hence called Feigin-Semikhatov duality.
This duality was proved in [CGN, CL], and its representation-theoretic consequences are
explored in [CGNS]. Let us denote the Feigin-Semikhatov dual of B, by Sp; for p > 2 it is

P

the simple principal W-superalgebra of s[,_;|; at level —(p—2)+ = The case p = 2 is
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special; we set Sz to be the affine vertex superalgebra of gl;;. Then S, is also an extension
of M(p) times a Heisenberg algebra. In forthcoming work, we will use vertex operator
superalgebra extension theory to study the representation categories of B, and Sp, p > 1.

The Bj-algebras are interesting in physics because they are the chiral algebras of cer-
tain four-dimensional superconformal field theories called Argyres-Douglas theories of type
(A1, Agp—3) [Cr, ACGY]. The singlet algebra itself has recently found prominence in physics
and low-dimensional topology. First, new invariants of 3-manifolds called Z-invariants have
been introduced in [CCFGH]. These are formal power series associated to a 3-manifold
together with a connected component of the moduli space of flat G-connections for some
complex Lie group G. For G = SL(2), the power series for certain 3-manifolds coinicide
with characters of certain M(p)-modules, and it is proposed that the modules itself are
associated to the flat connections. Second, Costantino, Geer and Patureau-Mirand have in-
troduced axiomatic TQFTs associated to non-finite and non-semisimple categories [CGP1].
In [CDGG], non-semisimple topological field theories in the physics sense are introduced.
These theories support vertex operator algebras at certain two-dimensional corners of the
theory. These vertex operator algebras are closely related to M(p), and in particular a
TQFT (in the sense of [CGP1]) associated to Oy, should appear (see [CDGG, Conjec-
ture 1]). Actually, in that conjecture, the unrolled restricted quantum group appears; this
leads to the third interesting application of the singlet algebra.

The logarithmic Kazhdan-Lusztig correspondence refers to equivalences of non-semisimple
braided tensor categories associated to quantum groups and vertex operator algebras.
The best-known example is the correspondence between a quasi-Hopf modification of the
restricted quantum group of sly at a 2pth root of unity and the triplet algebra W(p)
[FGST1, FGST2, FHST, NT, CGR, CLR, GN]. But there is also a conjectural corre-
spondence between our OTM(p) and the category of finite-dimensional weight modules for
the unrolled restricted quantum group of sly at a 2pth root of unity [CGP2, CMR], so far
proved only for the atypical subcategories [GN]. We believe that the techniques of [CLR]
can be adapted to prove the full conjecture; if so, then the tensor category structure on
O/TM ) derived here will surely be needed in the proof.

2. PRELIMINARIES

In this section, we briefly recall notation for vertex operator algebras, their modules, and
intertwining operators, and then we discuss in more detail the representation theories of
the Virasoro and singlet vertex operator algebras at central charge ¢, 1 = 13 — 6p — 6p1.

2.1. Vertex operator algebras and intertwining operators. We use the definition of
vertex operator algebra from [FLM, LL]. In particular, a vertex operator algebra V has a
conformal weight grading V' = €D, c; V(») given by eigenvalues of the Virasoro zero-mode
L(0), a vertex operator map Y : V®@V — V((x)), a vacuum vector 1 € V{g, and a confor-
mal vector w € V(y). Given a vertex operator algebra V', we use the definition of generalized
V-module from [HLZ1]. In particular, a generalized V-module W = @, . W is a graded
vector space such that each Wy, is the generalized L(0)-eigenspace with generalized eigen-
value h. A generalized V-module is grading restricted if each Wy, is finite dimensional and
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for any h € C, W,_,,; = 0 for all sufficiently positive n € Z. We use the notation
Yiw : VoW — W((x))

v@w— Y (v, r)w = Z vpwax !
nez
for the vertex operator action of V' on a (grading-restricted) generalized V-module W. We
will sometimes call grading-restricted generalized V-modules simply V'-modules for short.
A weak V-module is a module for V' considered as a vertex algebra, that is, no grading

is assumed. Then an N-gradable weak V-module is a weak V-module W that admits an
N-grading W = @,,cy W (n) such that

degv,w = wtv +degw —n — 1 (2.1)

for any n € Z and homogeneous v € V, w € W (here we are using the notation degw = m
for w € W(m) to distinguish the N-grading of W from the conformal weight grading of a
generalized V-module). It is easy to see that any grading-restricted generalized V-module
is N-gradable (see for example [CMY1, Remark 2.4]).

For W an N-gradable weak V-module, we define its top level to be

T(W) ={w € W |v,w = 0 if v is homogeneous and wtv —n — 1 < 0}.

Clearly W(0) C T(W), though the reverse inclusion might not hold if W is not simple. In
[Zh], Y. Zhu showed that T'(W) is a module for the Zhu algebra A(V). We will not need
the precise definition of A(V') here; we just recall that A(V') is a unital associative algebra
structure on V/O(V) for a certain subspace O(V) C V. For v € V, we use the notation
[v] =v+ O(V) € A(V); the action of [v] on the top level of an N-gradable weak V-module
W is given by [v] - w = o(v)w for v € V, w € T(W), where

o(v) = Res, 2 Yy (O, z)

is the degree-preserving component of Yy . If v is homogeneous, then o(v) = vyt y—1.

The forgetful functor 7' from N-gradable weak V-modules to A(V)-modules has a left
adjoint: As in [Li, Definition 2.7], the generalized Verma V-module G(M) induced from
an A(V)-module M is an N-gradable weak V-module equipped with a homomorphism
M — T(G(M)) such that for any A(V')-module homomorphism f : M — T(W), where W is
an N-gradable weak V-module, there is a unique V-module homomorphism F' : G(M) — W
making the diagram

G(M)

e
M
f
commute. In particular, if W is a simple V-module, with conformal weight grading neces-
sarily of the form P, cy Wipqn) for some h € C, then T(W) = Wy, and W is the unique
irreducible quotient of G(Wp)).

More generally, for W = @, .y W(n) an N-gradable weak V-module and any N € N,
each subspace W (n) for 0 < n < N is a module for the higher-level Zhu algebra Ay (V) =
V/On (V) constructed in [DLM]. For v € V, the action of [v] = v+ On(V) € An(V)
on each W(n) is again given by o(v). Moreover, [DLM, Theorem 4.1] shows that for any
An(V)-module M, there is an N-gradable generalized Verma V-module Gy (M) such that
[GN(M)](N) = M as Ax(V)-modules and such that G (M) is generated by this subspace.

w
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(The assertion in [DLM, Theorem 4.1] that [Gn(M)](0) # 0 only applies if M does not
factor through an Ax_;(V)-module).

If M is a finite-dimensional simple Ay (V)-module for some N € N, then L(0) = o(w)
(where w is the conformal vector of V') acts by a scalar on M, since [w] is central in Ay (V') by
[DLM, Theorem 2.3(iii)]. Then (2.1) and the fact that M generates Gn(M) as a V-module
imply that G (M) has a conformal weight grading which is just a shift of its N-grading.
In particular, every V-submodule of Gy (M) is N-graded. This means that Gy (M) has
a maximal proper V-submodule, which is the sum of all (N-graded) submodules which
intersect the generating subspace [Gn(M)](N) = M trivially. Thus G (M) has a unique
simple (weak) V-module quotient when M is a finite-dimensional simple Ay (V)-module.

We now recall some elements of the (logarithmic) vertex algebraic tensor category theory
developed in [HLZ1]-[HLZ8]. We use the definition of (logarithmic) intertwining operator
from [HLZ2]. In particular, if Wiy, Wy, and W3 are three modules for a vertex operator

algebra V', an intertwining operator of type (WZVSVQ) is a linear map

V: W@ Wy — Wg[logx]{x}
wi @ wy = Y(wr, w)wg = ¥ (wi)pgwz " (log )

heC keN

which satisfies lower truncation, the L(—1)-derivative property, and the Jacobi identity. We
will need the following two consequences of the Jacobi identity: the commutator formula

Y (wr,5) = Ywnyon + 3 ()" (oo (2.2)

k>0
forve V, neZ, and w; € Wi; and the iterate formula

Vlowwn,z) = 3 (~1) (Z) (onosatVwn,2) = ()" *Y o) (23)

k>0

forveV,neZ, and wy € Wi. Given V-modules W7, Wy, and W3, we use IV(W Wz) to

denote the vector space of intertwining operators of type ( ng ) An intertwining operator

Y e IV( Ws ) is called surjective if W3 is spanned by vectors of the form (wq)p.pwo for
w16W1,’LU2€W2,hE(C,aHdk‘EN. o
For z € C*, a P(z)-intertwining map is a linear map W1 ® Wa — W3 := [[,cc(Ws)

obtained by substituting x + 2z in an intertwining operator ) of type (W?/%/Q), using any

choice of branch of log z. Given a branch £(z) of logarithm, J(wy, e/(*)) denotes the inter-
twining map specified by this branch. In [HLZ3], tensor products of V-modules are defined
using intertwining maps, but one can equivalently use intertwining operators:

Definition 2.1. Let C be a category of generalized V-modules, and let W7, W5 be objects

of C. A tensor product of Wi and W in C is a pair (W1 X Ws, Vx), where W1 X Wy is an

(ngWQ) that satisfies the following

universal property: For any object W3 of C and intertwining operator ) of type (WZV%Z),
there is a unique V-module homomorphism fy : Wi X Wy — W3 such that fyo)Vg = ).

object of C and Vg is an intertwining operator of type

If a tensor product (Wi X Wy, Vi) of Wi and Wy in C exists, then it is unique up to
unique isomorphism, and the tensor product intertwining operator Vg is surjective (see
[HLZ3, Proposition 4.23]). Under suitable conditions on C specified in [HLZ1]-[HLZ8] (such
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as closure under tensor products), vertex algebraic tensor products give C braided tensor
category structure. For a detailed description of the left and right unit isomorphisms [ and
r, the associativity isomorphisms A, and the braiding isomorphisms R in a braided tensor
category of grading-restricted generalized modules for a vertex operator algebra, see [HLZS|
or the exposition in [CKMI, Section 3.3].

Although the conditions imposed on C in [HLZ1]-[HLZ8] are extensive, most of them are
satisfied by the category of Cj-cofinite V-modules (especially convergence of compositions
of intertwining operators [Hul] and closure under tensor products [Miy]). A V-module W
is C1-cofinite if dim W/C1 (W) < oo, where C1(W) is the span of vectors v_jw for w € W
and v € V homogeneous such that wtv > 0. In [CJORY, CY], it is essentially shown that
the category of C}-cofinite grading-restricted V-modules indeed satisfies all conditions in
[HLZ1]-[HLZ8] (and thus is a vertex algebraic braided tensor category) if it is closed under
contragredient modules. Recall from [FHL] that the contragredient of a V-module W is
a V-module structure on the graded dual W' = @, ¢ W[}kl]. The category of C4-cofinite
grading-restricted generalized V-modules is indeed closed under contragredients if it equals
the category of finite-length grading-restricted generalized V-modules, and this in turn holds
if for all finite-dimensional irreducible A(V)-modules M, the generalized Verma V-module
G(M) has finite length (see [CY, Theorems 3.3.4 and 3.3.5]). In Section 3, we will use this
criterion to show that the category of Ci-cofinite modules for the singlet vertex operator
algebra M(p), p > 1, is a vertex algebraic braided tensor category.

2.2. The Virasoro algebra at central charge c, ;. As usual, the Virasoro algebra Vir
is the Lie algebra with basis {L(n)|n € Z} U {c} with ¢ central and commutators
m3 —m
12
for m,n € Z. Let Vir>g = span{L(n),c|n > 0} and Vir_ = span{L(n)|n < 0}.
A Vir-module W has central charge ¢ € C if ¢ acts on W as scalar multiplication by c.
In this work, we only consider Vir-modules of central charge

(p—1)?
p
for p € Z~1. At this central charge, the Verma module V}, for h € C is the induced module

[L(m), L(n)] = (m —n)L(m+n)+ Im+n,0C

cp1:=13—6p—6p 1 =1-6

Vi = U(Vir) ®uvirso) Con,

where Cuy, is the one-dimensional Vir>p-module on which ¢ acts by the central charge ¢, 1,
L(0) acts by the conformal weight h, and L(n) for n > 0 acts by 0. By the Feigin-Fuchs
criterion for the existence of singular vectors in Verma modules [FF], V, is reducible if and
only if h = h, ¢ for some r,s € Z, where
2 2 2 2
r41p_7‘521+541p1:(p7’ 5)4 (p 1)' (2.4)
D
Due to the conformal weight symmetries hy,41 s4p = hy s and h, s = h_, _s, we may assume
1<s<p Forr>1and 1 <s < p, we use the notation V, s = th, and the notation
vy,s for a generating vector of conformal weight h, s in V, 5. Non-zero (necessarily injective)
homomorphisms between reducible Verma modules V., are completely described by the
following embedding diagrams (see for example [IK, Section 5.3]):

hr,s =
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e Forr>1and 1 <s <p-—1, we have the diagram
Vrs ¢ Vrgip—s ¢ Vrgos < Vrggps < - (2.5)
e For r > 1 and s = p, we have the diagram
Vip $— Vigap ¢ Vrgap < Vigop < -+ (2.6)

For each r > 1 and 1 < s < p, every non-zero submodule of V, ; is generated by its singular
vectors, that is, its L(0)-eigenvectors which are annihilated by L(n) for n > 0 (see [IK,
Theorem 6.5]). Since a singular vector of conformal weight h in V), s induces a non-zero
Vir-module homomorphism V;, — V; s, we can thus make the following observations based
on the above embedding diagrams:

Proposition 2.2. Forr>1 and1 < s <p,

(1) Each non-zero submodule W in V. s or one of its quotients is generated by a unique
(up to scale) singular vector of minimal conformal weight in W.
(2) The unique irreducible quotient of Vy s is

L. = { VT,S/VT—i-l,p—S if 1<s<p-—1
" Vep/Vrtop if s=p

Taking (7, s) = (1,1), the maximal proper submodule of V; ; is generated by the singular
vector L(—1)vy 1, and the irreducible quotient £; ; is a vertex operator algebra with vacuum
1 = v+ (L(—1)v1,1) and conformal vector w = L(—2)1 [FZ1]. We use L(p) to denote
L1 considered as a vertex operator algebra. Irreducible £(p)-modules are precisely the
irreducible quotients of Verma modules, that is, the £,  for r,s € Zy and the V), for
h € C\{hys|r,s € Z;}. It was shown in [CJORY] that the category of C;-cofinite grading-
restricted generalized £(p)-modules equals the category of finite-length central-charge-c, 1
Vir-modules whose composition factors come from the £, , for » > 1, 1 < s < p. Further,
O, admits the vertex algebraic braided tensor category structure of [HLZ1]-[HLZS8]; the
detailed structure of this tensor category was determined in [MY], where it was shown in
particular that O, is rigid.

The Zhu algebra A(L(p)) is isomorphic to C[z], with the isomorphism given by [w] — x

[FZ1]. Intertwining operators among L(p)-modules W can be studied using the A(L(p))-
bimodules A(W); see [FZ1] for their precise definition. For our purposes here, we will
only need a special case of [MY, Proposition 2.5]; to prepare for its statement, note that a
conformal weight space of an £(p)-module with minimal conformal weight is an A(L(p))-
module on which [w] acts by L(0):
Proposition 2.3. Let Y be a surjective intertwining operator of type (W‘;VI?/)VQ)’ where W7,
Wo, and W5 are generalized L(p)-modules such that Wy is a quotient of a Verma module
Viys ho € C, and the conformal weight grading of W3 has the form W3 = @,,cn(W3)(h34n]
for some hy € C. Then there is a surjective A(L(p))-module homomorphism

m(Y) : AW1) @a(c(p)) Cony = (W3)ppg)-
In particular, if A(W1) ®a(z(p)) Con, is finite dimensional and (W3),) is non-zero, then hg
is an eigenvalue for the action of [w] on A(W1) ® s(£(p)) Cn,-

Remark 2.4. In [MY, Proposition 2.5], it was assumed that W3 is finitely generated, but
this assumption was only used to ensure that the conformal weights of W3 are contained in
finitely many cosets of C/Z.
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We will need to use Proposition 2.3 in the special cases W1 = L1 2, L3 1. In these cases,
the A(L(p))-bimodule A(W7) was determined in [FZ2] (under the unnecessary assumption
p ¢ Q); see [FZ2, Example 2.12] or the calculations in [MY, Sections 3.1 and 5.1]. The
A(L(p)) = Clz]-bimodule A(L; 2) is given by

A(L12) = Cla,yl/(f12(z,9))
where
figlzy)=(z—y— (ha+1- p_l)) (x—y—hi2)—p ly

and the left and right actions of [w] are multiplication by = and y, respectively. Similarly,

A(L3n) = Cla,yl/(f31(2,y))
where
faa(z,y) =(x—y) (@ —y—hs1)(x—y—1) —4py).
Thus for any h € C,

A(L12) ®a(cpy) Con = Clz]/(f12(, h)),
A(L31) ®a(cp)) Con = Clz]/(f31(z, h))

After finding the roots of fi2(z,h) and f31(z, h), we use Proposition 2.3 to conclude:

Corollary 2.5. Let Wy and W3 be grading-restricted generalized L(p)-modules such that
Wy is a quotient of a Verma module V4, for some hy € C, and the conformal weight grading
of W3 has the form W3 = @,,cn(W3)(hy4n) for some hz € C with (W3),,) # 0.

(1) If there is a surjective intertwining operator of type ( £1VZ?/V2)’ then

-1

pt p!
h3€{h2+ 1 :|:2\/4ph2+(p—1)2}.

(2) If there is a surjective intertwining operator of type (CK%/VQ)’ then

hs € {hz,hz +p=* \/4Ph2+(17—1)2}~

We will also use a special case of [Li, Proposition 2.10], which says that under certain
conditions, the map 7 ()) in the statement of Proposition 2.3 vanishes if and only if ) does:

Proposition 2.6. In the setting of Proposition 2.3, if Wi, Wa, and W3 are irreducible
L(p)-modules, then

. W3 .
dim Iz p) <W1 W2> < dim Hom gy (AW1) ®a(2(p)) Coas (W3)ng)) -

Remark 2.7. If Wy, Wy = UVir) - vp,, and W3 are irreducible £(p)-modules, then
dim(W3)p,) = 1 and A(W1) ® 4(z,) Cvp, will be some quotient of C[z] as an A(L(p)) = Clx]-
module. Thus the above proposition is simply the well-known fact that fusion rules for
irreducible Vir-modules are never greater than 1 (see in particular [FZ2, Lemma 2.20]).
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2.3. The singlet vertex operator algebras. In this subsection, we discuss definitions
and known results in the representation theory of the singlet vertex operator algebras,
mainly using notation from [CRW, CMY2]; see also [Adl] for the first systematic mathe-
matical study of the singlet algebras. Fix an integer p > 1 and set

oy = \/2>7 o= _\/%-

We define L = Za; this is a rank-1 even lattice because

(ag, aq) = 2p.
The dual lattice of L is L° = Z%-.

Viewing C as an abelian Lie algebra with symmetric bilinear form (-,-), we have the
associated rank-1 Heisenberg vertex algebra 7. We use the symbol A to denote the basis
vector 1 of C, that is, (h,h) = 1. Then H is generated by the degree-one vector h(—1)1,
and the standard conformal vector of H is wgg = %h(—l)Ql. However, we shall consider H
as a vertex operator algebra with respect to the modified conformal vector

1 p—1 Qg

= —h(=1)?14+ ——h(-2)1 = —h(-2)1

w 9 ( ) + \/% ( ) Wstd + 2 ( ) )

where ap = ay + a—. With respect to this conformal vector, the Virasoro central charge of

H is cp1 = 13 — 6p — 6p~L, so the vertex operator subalgebra of H generated by w is £(p).

The irreducible H-modules consist of the Heisenberg Fock modules F) for A € C, where
the unique (up to scale) lowest conformal weight vector vy that generates F) satisfies

h(n)vy = 0ppAvy

for n > 0. The lowest conformal weight of F (with respect to w, not wgq) is
1
h)\ = 5/\()\ - 040), (2.7)

rather than the usual %AQ. The modification to w also affects the H-module structure of
the contragredient F3: we have

Fy = Fog-n (2.8)

rather than the usual F_,.
We will need to focus particularly on the Heisenberg weights in L°, that is, A € Zaf.
Any such \ can be expressed as
1—r 1-s

2a++ 20[,

for certain r,s € Z. Thanks to the periodicity o, 11,s4+p = a5, any A € L° is equal to a
unique o, with 1 < s < p. In particular, the Heisenberg weights A € L = Za have the
form ao, 41,1 for n € Z. The minimal conformal weight (2.7) of the Fock module F,, , is

ar,s =

r?—1 rs—1 s2—1

VI
For r > 1 and 1 < s < p, this is exactly the Virasoro conformal weight h, s defined in (2.4).
For r < 0, symmetries of the Virasoro conformal weights show that hq, , = h1—yp—s. Also,
(2.8) specializes to

har,s =

if 1<s<p-1
Qs F if s=p

Qa2—rp

Pl P = { Jre
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forreZand 1 <s <p.

The Heisenberg vertex operator algebra H is not semisimple as a Vir-module. In fact,
by [Adl, Theorem 3.1], one way to define the singlet vertex operator algebra M(p) for any
integer p > 1 is that M(p) is the Virasoro socle of H. See [Ad1] also for another definition

of M(p) as the kernel of a certain screening operator @ : H — F,_. As a Vir-module,

M(p) = P Lont11, (2.9)
n=0

while as a vertex algebra, M(p) is generated by w together with a Virasoro singular vector
H of conformal weight h3; = 2p—1 (see [Adl, Theorem 3.2]). That is, H generates the Vir-
submodule £37 € M(p). We will use two notations for the modes of the vertex operator
Y (H, z) acting on any M (p)-module M:

Yu(H,z) = Z Hyz "= Z H(n)z 2P+
neL nez

That is, H(n) = Hy,y2p—2 is the mode of Y/ (H, x) that lowers conformal weight by n.

Irreducible M (p)-modules were first classified in [Ad1]; see also [CRW, Section 2]. There
is a one-to-one correspondence between irreducible M (p)-modules and Heisenberg Fock
modules: For A € C\ L°, F) remains irreducible as an M(p)-module, while for r € Z,
1 <5 < p, we define M, s = Soc(Fy,,). The M(p)-module M, ; is irreducible and:

e For s =p, M., = F

Oprp*
e For 1 < s <p—1, there is a non-split exact sequence

O — M’I‘,S — fa,-,S — M’r—}—Lp—s — 0 (210)

The irreducible M(p)-modules which are Fock modules are the typical irreducible M (p)-
modules, while the M(p)-modules M, s for r € Z, 1 < s < p — 1 are atypical.

For A € C, (2.8) shows that F,,_» is the M(p)-module contragredient of Fy. In par-
ticular, 7, =~ = Fa, ., for 7 € Z. Forr € Z and 1 < s < p — 1, dualizing (2.10)
shows that M,

(r,s) — (1 —7r,p—s)in (2.10) shows that
M = Mo (2.11)

is the unique irreducible quotient of F,, = F,,_ ..

Then substituting

isvalid forallr € Z and 1 < s < p.
The M(p)-modules M, ; are semisimple as Vir-modules:

[o.¢]
Mr,s = @ £r+2n,3 = M2fr,s (212)

n=0
for r > 1, 1 < s < p. The isomorphism of M, ¢ and Ma_, s as Vir-modules is expected
because these are a contragredient pair, and because semisimple L(p)-modules are self-
contragredient; but M, s and Ma_, ¢ are not isomorphic as M (p)-modules unless r = 1.
From (2.12), we see that the minimal conformal weight of M, 5 is hy. s if 7 > 1 and hg_;  if
r <1, and that M(p) itself is identified with the atypical simple (and self-contragredient)
module My ;. From now on, we will typically use the notation M ; when we are considering

M(p) as a module for itself.

In [CMY2], we found two categories of grading-restricted generalized M (p)-modules that
admit the vertex algebraic braided tensor category structure of [HLZ1]-[HLZ8]. We also
showed that these categories are rigid, so they are in particular braided ribbon tensor
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categories. The first category, denoted Cyq(p), is the category of all finite-length grading-
restricted generalized M (p)-modules whose composition factors come from the M, s for
r € Z, 1 < s < p. This category is rather wild; for example, the irreducible modules M, 4
do not have projective covers in C ().

To define the second braided tensor category of M(p)-modules, we need to recall the
direct limit completion Ind(O,), constructed in [CMY1], of the category O, of Cj-cofinite
grading-restricted generalized £(p)-modules, and we also need to recall the triplet vertex
operator algebra W(p). First, Ind(O)) is the category of generalized £(p)-modules which
are the unions, equivalently the sums, of their C-cofinite £(p)-submodules; it has the vertex
algebraic braided tensor category structure of [HLZ1]-[HLZ8] by [CMY1, Theorem 7.1]. The
decomposition (2.9) shows that M(p), as an £(p)-module, is an object of Ind(0)), and thus
M(p) is a commutative algebra in the braided tensor category Ind(O,) by [HKL, Theorem
3.2], or more precisely [CMY1, Theorem 7.5]. Consequently, as in [KKO, CKM1], we have a
tensor category Rep M(p) of not-necessarily-local M(p)-modules which, as £(p)-modules,
are objects of Ind(0,). The subcategory Rep® M(p) of (local) generalized M (p)-modules
which, as £(p)-modules, are objects of Ind(O,) is a vertex algebraic braided tensor category
by [CKMI1, Theorem 3.65], or more precisely [CMY1, Theorem 7.7].

The tensor categories O, and Rep M(p) are related by the induction functor

fM(p) : Op — Rep/\/l(p)
Wi M(p) XKW

where X denotes the tensor product bifunctor on Ind(O,). Induction is a monoidal functor
by [KO, Theorem 1.6(3)] or [CKMI1, Theorem 2.59]. Induction is also exact because O,
is a rigid tensor category (see the proof of [CMY2, Proposition 3.2.4]). Further, induction
satisfies Frobenius reciprocity, that is, there is a natural isomorphism

Homﬁ(p) (W, M) i) HomM(p) (F/\/I(p) (W), M)

for grading-restricted generalized modules £(p)-modules W in O, and generalized M (p)-
modules M in Rep M(p).

Now the triplet vertex operator algebra W(p) is a Ca-cofinite but non-rational simple
current extension of M(p). Triplet vertex operator algebras have been studied extensively
(see for example [FHST, FGST1, FGST2, CF, GR, AM1, AM2, NT, TW, MY], but we will
not need too much from the representation theory of W(p) here. By [AM1, Theorem 1.1],

Wp) =@ @n+1)- Lont1a (2.13)
n>0
as an L(p)-module, while
Wi(p) = @D Mani1. (2.14)
neZ

as an M (p)-module (see for example [CMY?2, Section 3.2]).
By (2.13), W(p) as an L(p)-module is an object of Ind(0,), and thus W(p) as an M(p)-
module is an object of Rep® M(p). Thus W(p) is a commutative algebra in Rep® M(p),
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there is a tensor category Rep W(p) of not-necessarily-local W (p)-modules which, as M(p)-
modules, are objects of Rep” M(p), and we have the exact monoidal induction functor

Fw(p) : Rep? M(p) — Rep W(p)
M — W(p) XM
f— IdW X f

where X now denotes the tensor product bifunctor on Rep? M(p). In [CMY2], we showed
that every grading-restricted generalized W (p)-module is an object of Rep W(p).
Now we define, as in [CMY2], the category C3 () Of M (p)-modules to be the full subcat-

egory of Rep? M(p) whose objects induce to grading-restricted generalized WW(p)-modules.
By [CMY?2, Theorem 3.3.1], C?Vl(p) is a tensor subcategory of Cp(,); in particular, CRA(p)
is closed under submodules, quotients, and tensor products, and every object of CRA(p) is
a finite-length grading-restricted generalized M (p)-module. The irreducible M (p)-modules
M, s forr € Z, 1 < s < p are objects of CM( ) (see [CMY2, Proposition 3.2.5]), and each
M, s has a projective cover P, 5 in CM(p) although not in Cpy(, (see [CMY2, Section 5.1]):

e For s = p, P, = M, for all r € Z (recall that this is also the Fock module Fy, ).
e For 1 < s <p-—1, P is a length-4 indecomposable M (p)-module with Loewy

diagram

Pr,s: r—1,p—s T+1,p s . (2.15)

N,

The rows of the Loewy diagram indicate the socle series of P, so in particular
Soc(Pr,s) = M, s and Soc(Pr s/ My s) = My p—s & My p—s. An arrow between
two nodes of the diagram indicates that the corresponding length-2 subquotient of
Pr.s is indecomposable, with the arrow pointing towards the quotient of the length-2
subquotient.

Remark 2.8. From the projectivity of P, in C_(/)Vl(p)’ the Loewy diagram (2.15), and the

surjection Fy

r1ps = My sin C?vt ()’ it is easy to see that there is a non-split exact sequence

0 — Fa,. — Prs — F — 0

Qr—1,p—s

of M(p)-modules.

In the next section, we will need the M(p)-module inductions of simple £(p)-modules in
Op; a couple cases of the following proposition were also obtained in [GN, Lemma 11.4]:

Proposition 2.9. Forr>1 and 1 < s <p,

FM(p @MQIC 78"
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Proof. From (2.12), there is a non-zero (and one-dimensional) space of £(p)-module homo-
morphisms £, — M, ¢ if and only if s = s and for some n € N,

,fr—2n if ”>1
"TY2—r+om if <1

Thus by Frobenius reciprocity, there is a non-zero (necessarily surjective) M(p)-module
homomorphism fy : Faqp)(Lrs) — Mok s for each k € {1,...,7}. We combine these
maps into a homomorphism

F= ZQk o fi: -F_/\/l(p)([:r,s> — @MZkfr,sy

k=1 k=1

where g, is the inclusion of Moy;_, ¢ into the direct sum. Because the Moy, s are non-
isomorphic simple M (p)-modules and each fj is surjective, F' is surjective as well.

To show that F' is also injective and thus an isomorphism, it is enough to show that
Fmep)(Lrs) and D}._; Mak_rs are isomorphic as Vir-modules, since this will show they
are isomorphic as graded vector spaces with finite-dimensional homogeneous subspaces. In
fact, (2.9) and the Virasoro fusion rules in [MY, Theorem 4.3] show that as £(p)-modules,

r+2n

Fmp) (£ @LGmmm_@ D Lis

n=0 k=|2n+1—7r|+1
k=r mod 2

We need to determine the multiplicity of L9, s in this sum for m > —%: Lytom,s
appears once for each n > 0 such that
2n+1—r|+1<7r+2m<r+2n.
Rearranging these inequalities, we see that £, 9, s occurs once for each n > 0 such that
Im| <n<m-+r—1.

From this, we can see that as £(p)-modules,

]:./\/l(p) ('Cr,s) = @ (T - 2’m‘) : £T+2m,s 7 @ r- £T+2m,s

—T51§m<0 m=0
r—2
g{ D202 Do Lrm 2k+2m,s if r=0mod2
@m 0‘c2m+18®®k 02 @m 0 L, 2k+2m,s if r=1mod?2

r
= @ M2k7r,sy
k=1

where the last isomorphism follows from (2.12). This proves the proposition. U

We will also need a criterion for determining when generalized M (p)-modules are objects

of C_(/)\/[(p)' Note that [CKMI, Proposition 2.65] shows that an object M of Rep® M(p) is
an object of C_(/)Vl(p) if and only if the monodromy, or double braiding, of W(p) with M is

trivial. By (2.14), this is equivalent to

2 . _
RMgnH,l,M = RM7M2n+1,1 © RM2n+1,1,M - IdM2n+l,1|ZlM
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for all n € Z. But since M3 generates the group of simple currents {May,11,1}nez by
[CMY?2, Lemma 3.2.1], it is actually necessary and sufficient that

R.%Vt;g’l,M = IdMB,l,M
(see [CKL, Theorem 2.11(2)]).

Lemma 2.10. Suppose we have a short exact sequence
0—A—M-—B—0

of generalized M(p)-modules such that A and B are objects of C_?\/((p) having no composition

factors in common. Then M is also an object of C.(/)\/l(p)'

Proof. Since A and B are (finite-length) objects of CRA ) M is a finite-length M (p)-module
in Cpq(p). Thus M is also an object of Rep” M(p) by [CMY2, Proposition 3.1.3]. By the
discussion preceding the proposition, it is now enough to show that R?\/@ M= Idas M-
We will show that if R'QM&L ar 7 Idas v, then A and B must share a common compo-
sition factor. Since A and B are objects of C,?Vl(p)’ since the tensoring functor M3 X e is

exact, and since the monodromy isomorphisms are natural, we have a commuting diagram
0—— M3 1 KA— M3 1 XM —> M3, XB—0
ildM&lm l%“’M lldem
0—— M3 1 KA— M3 1 XM —> M3, XB—0

with exact rows. Thus M3 X A is a submodule of M3 & M. Moreover N := 73343 M
Id s =0 is an M(p)-module endomorphism of M3 1 & M such that

ImN C M3, XA CKerN.

Thus if /' # 0, there is a non-zero homomorphism
M3z BB = (M3 B M)/(Ms1 R A)

— (M3 R M)/Ker N =5 Im N
— /\/l371 X A.

Since this composition is non-zero, any irreducible submodule of its image (in M3 X A)
occurs as a subquotient of M3 1 X B, showing that M3 1 XA and M3 X B share a common
composition factor.

Now because M3 ; is a simple current M (p)-module with inverse M 1, the composition
factors of A, respectively B, are obtained by tensoring the composition factors of Mz ;X A,
respectively M3 X B, with My (see for example [CKLR, Proposition 2.5(5)]). Thus A
and B also share a common composition factor. U

3. TENSOR CATEGORIES OF M(p)-MODULES

In this section we prove that the category Oy of Ci-cofinite grading-restricted gener-
alized M(p)-modules has the vertex algebraic braided tensor category structure of [HLZ1]-
[HLZ8]. By [CMR, Theorem 13], all irreducible M (p)-modules are Cj-cofinite, so [CY,
Theorem 3.3.4] implies that O M(p) 18 & braided tensor category if it is equal to the cate-
gory of finite-length generalized M (p)-modules. For this, [CY, Theorem 3.3.5] implies that
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it is enough to show that the generalized Verma M (p)-module induced from any finite-
dimensional irreducible A(M(p))-module has finite length. We prove this next.

3.1. Generalized Verma M (p)-modules. We first show that the generalized Verma
M(p)-module Gy induced from the simple A(M(p))-module T'(Fy), A € C\ L°, is sim-
ple; the argument is based on the proof of [AM1, Theorem 4.4]. Note that T'(Fy) = Cuy,
where vy is a generating vector in F) of minimal conformal weight h).

Theorem 3.1. For A € C\ L°, the generalized Verma M (p)-module Gy is isomorphic to
the typical irreducible Fock module F».

Proof. First observe that as a Vir-module, F) is isomorphic to the irreducible Verma module
Vh,: Since F) contains a Virasoro singular vector of conformal weight h, there is a non-zero
Vir-module homomorphism Vj,, — Fy. This map is injective because V}, is irreducible for
hx # h;, and then it is also surjective because V},, and F) have the same graded dimension.

Now by the universal property of generalized Verma M (p)-modules, there is a surjection
Gx — F) and thus a short exact sequence

0 — K —Gy—F\—0

of M(p)-modules, with K denoting the kernel. Because Gy contains a Virasoro singular
vector of conformal weight hy and F\ = V}, as Vir-modules, this exact sequence splits
when considered as a sequence of Vir-module homomorphisms. That is, F) occurs as a
Vir-submodule of G, and thus also as a Vir-module direct summand. So there is a Vir-
module projection 7 : G — K.

Recall that the Virasoro singular vector H € M(p) generates the Vir-submodule £3; C
M(p). Thus we may consider the £(p)-module intertwining operator

Y =moYglcs.05,

of type ( £3,If ﬂ). If the Vir-submodule Im Y C K is non-zero, its minimal conformal weight
is one of

ha,  ha+pE/Aphy + (p — 1)2
by Corollary 2.5(2). Since the surjection Gy — F, is an isomorphism on top levels, the
conformal weights of Im Y C K are contained in hy +Z., so that h) cannot be the minimal
conformal weight of Im ). The remaining two options are also impossible because

n® —(p—1)?
4p
for some n € Z, that is, hy = h, ¢ for some r € Z, 1 < s < p. We conclude that Im Y has
no minimal conformal weight, that is, Im) = 0.
We have now shown that Yg, (H,x) preserves the Vir-submodule Fy C G,. Since w and

H generate M(p), this shows that F) is actually the M(p)-submodule of Gy generated by
v). Since vy generates Gy as an M (p)-module, it follows that Gy = F). O

pEAAphy+(p—1)2 €Z ¢+ hy =

Now for r € Z and 1 < s < p, we use G, s to denote the generalized Verma M (p)-module
induced from T'(M,.5). To determine G, ;, we first identify candidates obtained as quotients

of the projective covers P, in C_(/)\/l(p): we define G, s to be the maximal quotient of P, ,
having a one-dimensional top level isomorphic to T'(M, ). More specifically:

® If § = p’ then §T7p = Msz (: fa’l‘,p = PT,p)'
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o If 1 < s < p-—1, then we deduce from (2.15) and the lowest conformal weights of
irreducible M(p)-modules that there is a non-split short exact sequence

0 — SOC(’erVg) — §r7s — M'r’s — 0 (31)
with
» Mr+1,p—s if r>1
Soc(Grs) =2 ¢ Mos @ Mo, if r=1 . (3.2)

Mrfl,pfs if r<1

Notethatgr,sgfa ifr<landl1<s<p-—1.
For any r and s, the universal property of generalized Verma M (p)-modules yields a sur-
jection m,. s : Gp s — Q},s. Our goal is to show that 7, s is actually an isomorphism.
To handle the cases r > 1 and r < 1 simultaneously, we fix r > 1 and use 7’ to denote
either » or 2 — r. Recall that M, s and Msy_, ; are isomorphic as Vir-modules and in
particular have the same lowest conformal weight h,. .

r—1,p—s

Lemma 3.2. Let v, be a generating vector for g}s of conformal weight h, . Then the
Vir-submodule of G, 5 generated by vy s is isomorphic to Vy s/ Vry2,s.

Proof. Since v, 5 is a Virasoro singular vector of conformal weight h,. s, the Vir-submodule it

generates is a quotient of V, ;. When s = p, the Vir-module structure (2.12) of G}/m =M,
shows that v,, generates a Vir-module isomorphic to £,,. Then by Proposition 2.2(2),
Lrp =V p/Vri2,p as required.

When 1 < s < p— 1, the embedding diagram (2.5) shows that the first two non-trivial
singular vectors in V. s have the form

Ur41,p—s = Or4+1,p—s " Urss and Ur42s = Or42,5 * Ur4+1,p—s

for suitable oy41 p—s, 0rr2,s € U(Vir—), where the three singular vectors v, s, vp41 p—s, and
Up42,s have conformal weights h, s, hyy1p,—s, and hyya, respectively. Thus to prove the
lemma when 1 < s < p — 1, we need to show

Or+l,p—s* qu7‘,5 #0 (33)

while
Or+2,50r+1,p—s° E741*,3 =0. (3.4)
To prove (3.3), suppose to the contrary that Ort1,p—s - Ur,s = 0; this would imply that v,

generates a Vir-submodule of @/75 isomorphic to £, s. Then Frobenius reciprocity applied
to the inclusion £, 3 — G,/ s yields a non-zero M (p)-module homomorphism

]:M(p) (Lr,s) — gr’,&
Since Fp(p)(Lr,s) = @jp—y Mak—r,s by Proposition 2.9, we get an M(p)-module injection
Mop—y s — @/75 for at least one k € {1,2,...,r}. But since the M(p)-module exact
sequence (3.1) does not split, no Myj_, s occurs as a submodule of @4/75. Thus £, s cannot
occur as a Vir-submodule of QNT/’S, proving (3.3).
To prove (3.4), note from (2.12) that the Vir-submodule of 'g}/,S/Soc('g}@S) = M, g
generated by v, s + Soc(grg s) is isomorphic to £, ;. Thus

Or+1,p—s° E711",5 € Soc(gr/,s)a
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and this is a Virasoro singular vector of conformal weight h, 1 ,—s. Since (3.2) and (2.12)

show that Soc(grz, s) is semisimple as a Vir-module, Or41,p—s Ur,s generates a Vir-submodule
isomorphic to £;1,—s which in particular does not contain any singular vector of conformal
weight h,192s. Thus (3.4) holds, completing the proof of the lemma. O

Now we begin to study G, ;. We use v, s to denote a non-zero vector in the top level
T(Gys). It is a Virasoro singular vector of conformal weight h,s and thus generates a

Vir-submodule V, s which is a quotient of the Verma module V, ;. From the embedding
diagrams (2.5) and (2.6), V, s contains a singular vector of conformal weight h,;2 s, and we

use vpy2.s to denote its image in V, 5. Note that v,42 s could possibly be 0 (and in fact, we

will show that it is 0). Let K denote the kernel of w5 : G/ g — G,/ 5, so that we have a
short exact sequence

0— K —Gpg—> Gy —0 (3.5)
of M(p)-modules.
Lemma 3.3. The Vir-submodule 17,,75 NK in Gy is generated by vyya .

Proof. The commutative diagram of Vir-module surjections

Vr.s

)

U(Vir) - vy

- ~
TI’SIV?ﬂS

combined with Lemma 3.2 shows that ljn sN K is the image in ]NJT, s of the Verma submodule
V42,5 € Vrs. Since this Verma submodule is generated by a preimage of v,;2 g, it follows
that v,42 s generates V, , N K as a Vir-module. O

The crucial next lemma considerably strengthens the preceding lemma:
Lemma 3.4. The kernel K is generated by vyy2 s as an M(p)-module.

Proof. The preceding lemma shows that v,42 s € K, so the M(p)-submodule (v,42 ) gen-
erated by v,y2 ¢ is contained in K. Then to prove the reverse inclusion, it is enough to show
that the M(p)-module surjection G, s/(vr42,5) = GVT/’ s induced by 7,/ 5 is an isomorphism.

We first claim that G,/ s/(vr42,), as an L(p)-module, is an object of the direct limit
completion Ind(O,), that is, G, s/(vry2,s) is the sum of Ci-cofinite £(p)-submodules. To
prove this, note that the preceding lemma implies

Vr,s N <Ur+2,s> = Vr,s N K7

so that as Vir-modules,

(]77",5 + <U7’+2,s>)/<vr+2,s> = i}7‘75/(1}7‘,5 N <v7’+2,s>)

= NT,S/(VT,S N K) = VT,S/VT+2,S7
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using Lemma 3.2 for the last isomorphism. This shows V, s/Vri2 s is a (Ci-cofinite) L(p)-
submodule of G, s/(v,42,), and it generates G, s/(vr42,5) as an M(p)-module since it con-
tains vy s + (Vp42,5). Thus since M(p) = @,7 Lan+1,1 as an L(p)-module, we have

g’r’.s/<v7’+2,8> =Im Ygr/ys/(vr.m,s)|M(p)®(Vr,s/Vr+2,s)

(o]
= Z Im Ygr/,s/<v1"+2,s> |£27L+1,1®(V7‘,3/V7"+2,s) :

n=0
Each ImYg , /(v 00| Coni110(Vrs/Vrses) 18 @ Cr-cofinite £(p)-module by [Miy, Key Theo-
rem|, so G, s/(Ur42,5), as an L(p)-module, is the sum of O,-submodules.

We now know that G,/ s/(v,42,s) is an object in the braided tensor category Rep’ M (p)
of generalized M (p)-modules that, as L(p)-modules, are objects of Ind(0,). Thus the
L(p)-module inclusion V,s/Vrjias < G s/(vr42) induces, by Frobenius reciprocity, an
M (p)-module homomorphism

f/\/t(p) (Vr,s/VrJrQ,s) — gr’,s/<vr+2,s>;
this map is surjective because its image contains the generating vector v, s + (vp425). Thus
because the M (p)-module category C_(/)\/l(p) is closed under quotients, G, s/(v,y2,s) Will be
an object of C?\/[(p) if the same holds for Fa(p)(Vrs/Vrt2,s)-

For s = p, Far(p)(Vrp/Vit2p) = Fagp)(Lrp) is an object of C.(/)\/[(p) by Proposition 2.9.
For 1 < s <p—1, the Vir-module exact sequence

0— Lrt1p-s — Vrs/Vrjos — Lrs — 0

induces to an M (p)-module exact sequence

r+1 T
0 — P Mak—r—1p-s — Faaip)(Ves/Vrt2.s) — @ Mog—rs — 0
k=1 k=1

by Proposition 2.9 and exactness of induction. Since {./\/lgk,r,lm,s}};ill and {Mog_r s}y
are disjoint sets of irreducible M (p)-modules which are objects of C?\/t (p)’ Lemma 2.10 shows

that Fap)(Vr,s/Vr2,s) is an object of C_(/)\/l(p)’ and thus so is G, s/ (Vr42.4)-

Now since both G, s/(vy42,s) and P, 5 surject onto Q~T/,s, since G,/ s/ (vr42,5) is an object
of C,E)\/l(p)’ and since P, ¢ is projective in C9Vl(1))’ we get a commuting diagram

Pr’,s

]

gr/,s/<vr+2,s> B gr’,s

of M(p)-module homomorphisms, with the horizontal and vertical arrows surjective. In ad-
dition, the horizontal arrow restricts to an isomorphism of conformal-weight-h,. ; spaces, so
the generator v, s+ (vy42.5) of Gy s /(vry2,s) is in the image of the map P s = Gy 5/ (Vry2,s)-
Thus G, s/(vr42,5) is a quotient of P,/ ¢ with a one-dimensional top level isomorphic to
T (M, ). Since we defined Q~T/,s to be a maximal such quotient, the horizontal arrow in the
above diagram must be an isomorphism, completing the proof of the lemma. ]

Now that we know K is generated by v,42 s as an M(p)-module, the next lemma further
elucidates the structure of K:
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Lemma 3.5. The generator vyi2s of K is contained in the top level T(K) and generates
an A(M(p))-module isomorphic to a quotient of T(Myi2.s® M_; ).

Proof. To show v,12 s € T(K), we need to show v,v,42 s = 0 for any homogeneous v € M(p)
and n € Z such that wtv —n — 1 < 0. For v = w, this is clear because v, 2 s is the image
in G,» s of a Virasoro singular vector in V, ,.

For v = H, recall that H generates a Vir-submodule of M(p) isomorphic to L3 1, so
consider the £(p)-module intertwining operator

y = Ygr’,s |£3,1®(97‘,30K).

By Lemma 3.3, )77«,5 N K is a quotient of V, 42 4, so Corollary 2.5(2) implies that the minimal
conformal weight of the Vir-submodule Im Y C G,/ ; is one of

hr+2,sa hr+2,s + p + \/4ph7“+2,s + (p - 1)2-

These conformal weights turn out to be A, hyy2s, hrias. Consider the quotient of Im Y
by the Vir-submodule generated by (Im Y), ) (note this submodule might be 0). Since Y

Im Y/((Im V) n, o)) -
Lo PranK ), Corollary 2.5(2) again
implies that if Im Y /{(ImY), ,]) # 0, then its minimal conformal weight is one of A9 s,

hyias. Since wt H(n)vp12s = hyyo,s — n, this means that

induces a surjective intertwining operator of type (

H(n)vrya,s € (Im V), 1) € 177",5

for all n > 0. We also have H(n)v,42s € K because v,42, € K and K is an M(p)-
submodule of G, ;. Then by Lemma 3.3,

H(n)vp42s € 17r,s NK =UWVir-) - vr42,,

so that H(n)v,42s =0 for n > 0.
Now for general homogeneous v € M(p), it will follow that v,v,42 = 0 for n € Z such
that wtv —n —1 < 0 if we can show that each mode of the vertex operator Yg, (v,z) can

be expressed as an (infinite) linear combination of monomials of the form

oD@ - o®),

where v € {w,H} for each ¢ = 1,2,...,k and all modes that weakly raise conformal
weight appear to the left of all modes that strictly lower conformal weight. We can prove
this by induction on wt v, with the base case v = 1 obvious.

Now consider wtv > 0 and suppose the inductive hypothesis has been proved for all
weights less than wtwv. By [Adl, Theorem 4.2(i)], it is enough to consider the two cases
v = L(-m)v for some m > 2, v € M(p)(wtv—m) and v = H_,v for some n > 1, v €
M(p) (wt v—2p—n+2)- For the case v = H_,v, the Jacobi identity iterate (2.3) and commutator
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(2.2) formulas yield

YQ,J s (H—n:‘;? x) = Z(_l)i <_n> <H—n—ixiYgﬂ s (177 w) - (_1)n‘rin7iYQT{ s (777 x)Hz)
b Z b b
>0
— Z(_Ui(_”) H 2y, (Uz)— Y ()" (‘”) Y, (U,2)H;

' Z T'/,S ) ‘ Z T'I,S )

>0 1>2p—1
e -n )
= 2 rs = J rl,s

Since the weights of v and H;v for j > 0 are strictly less than wt v, it follows by induction
that the modes of Yg, (H_,v,r) can be expressed in the required manner. The case
v = L(—m)v is similar, so this completes the proof that Vrt2s € T(K).

Finally, we need to determine the A(M(p))-submodule of T'(K) generated by v,4+2 . By
[Adl, Theorem 6.1], there is an isomorphism

AM(p)) = Clz, y]/(P(z,y))

[w] =z + (P(z,y))
[H] =y + (P(z,y))
where )
b— 4 2p—1
P(z,y) = y* — Cp(z — hip) Sf[fx — h1,5)2 for C, = (((2;)_1)')2
Thus
p—1
H(0)* = Cp(L(0) — h1p) [T(L(0) = h,s)? (3.6)
s=1

on T(K). Since vy425 is an L(0)-eigenvector, this means A(M(p)) - vy12,s is spanned by
Ury2,s and H(0)vy42; moreover, A(M(p)) - vr425 is a quotient of the two-dimensional
A(M(p))-module T2 s on which [w] and [H] act by the matrices

o] = [ hrgz,s . 0 ] ] = [ 0 Cp(hra,s — hip) T2  (hryas — o s)?
r+2,s 1 0
The [H]-eigenvalue(s) on T,49 s are the square root(s) of
p—1
Cp(hr-i-?,s - th) H(hr+2,s - hlvs)z'
s=1

Because T'(M,;425) and T(M_, ;) are two distinct one-dimensional A(M(p))-modules on
which [H] acts by such square root(s) (while [w] acts on both by h,12 ), the [H]-eigenvalues
on T,42 s must be distinct and we conclude

T'r+2,s = T(Mr+2,s) ¥ T(M—r,s)-
Thus A(M(p)) - vr42,s is a quotient of T'(M,12s & M_, ). O
Finally, we are ready to prove:

Theorem 3.6. Forr € Z and 1 < s < p, the generalized Verma M(p)-module G, s is
isomorphic to G, s. In particular, G, s is a finite-length M(p)-module in C?\/l(p)'
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Proof. To handle the cases r > 1 and r < 1 simultaneously, we continue to fix » > 1
and take r’ to be either r or 2 —r. We need to show that the kernel K of the surjection
Tt s 2 Grr g — Gpr g is 0. From Lemmas 3.4 and 3.5, together with the universal property of
generalized Verma M (p)-modules, we know that K is some quotient of G, ® G, 5.

Assume towards a contradiction that K = 0, in which case K has a maximal proper
submodule J such that K/J = M, ¢ for either ’ = r + 2 or " = —r. Then we get an
exact sequence

O — MT",S — g'r’,s/t] — gr/,s — 0
of M(p)-modules. Note that M, s and GVTQS are both objects of C_(/)Vl(p)’ and that M, , is

not a composition factor of fQVTQS by (3.1) and (3.2). Thus G, 5/J is an object of CRA(p) by
Lemma 2.10. Then because P, 4 is projective in C,(/)\/l(p)’ and because both G,v ;/J and Py s

surject onto G,/ ¢, there is a commuting diagram

Pr’,s

e

gr/,s/J - gr’,s

of M(p)-module homomorphisms, with the horizontal and vertical arrows both surjective.
As in the proof of Lemma 3.4, the generator v, s + J is in the image of the map P,/ ; —
Gr.s/J, so Gy s/J is a quotient of P, 5. But this is impossible because M, ¢ is not a
composition factor of P, 4, so in fact K must be 0. O

3.2. Existence of tensor category structure. Let Oy, denote the category of Ci-
cofinite grading-restricted generalized M (p)-modules. In light of Theorems 3.1 and 3.6, we
can now use [CY, Theorems 3.3.4 and 3.3.5] to immediately conclude:

Theorem 3.7. The category Opyy,) equals the category of finite-length grading-restricted
generalized M(p)-modules and admits the vertex algebraic braided tensor category structure

of [HLZ1]-[HLZ].

Remark 3.8. Since the irreducible M(p)-modules M, ¢ are C-cofinite, the braided tensor
categories Cpq(p) and C?V((p) are subcategories of Opqqy. By [CMY2, Proposition 3.1.1],

they are also tensor subcategories; in particular, the tensor product formulas of [CMY2,
Theorem 5.2.1] hold in O ().

Our next goal is to find a tensor subcategory of Oy, that contains C?w(p) and in which
the typical Fock modules F) will be projective. Recall that Cj)\/l(p) is defined as the subcate-

gory of Rep? M(p) whose objects induce to (untwisted) W(p)-modules. We also recall that
W(p) has automorphism group PSL(2,C) [ALM1] and that M (p) C W(p) is the fixed-point
subalgebra for the one-dimensional torus TV C PSL(2,C). We can identify TV = C/L°
aCting on W<p) = @nEZM2n+1,1 by

(5 + Lo)|M2n+1,1 = ezma%ﬂ’lﬁldﬂ/bnﬂ,l

for B € C (recall that L = {agn+1,1|n € Z}). Then we could consider the TV-graded
subcategory of O,y whose objects M are homogeneous of degree Y eTVif F(py (M) is
a t¥-twisted W(p)-module, so that C?\/( ) would be the subcategory of degree 0.



26 THOMAS CREUTZIG, ROBERT MCRAE AND JINWEI YANG

However, we will actually need to grade our subcategory of Oy, more finely by the
double cover T = C/2L° of TV, which we can view as the one-dimensional torus of
SL(2,C). This is the automorphism group of the doublet abelian intertwining algebra
Alp) = B,z M1, which is a simple current extension of W(p) [AM3, ACGY]. Simi-
lar to before, M(p) is the T-fixed-point subalgebra of A(p), so for t € T, it would make
sense to consider the subcategory of O () whose objects induce to t-twisted .A(p)-modules.
However, since the theory of twisted modules for abelian intertwining algebras is not well
developed, it is more straightforward to define this subcategory in terms of monodromies
with the generator Mg of the group of simple current M(p)-modules {M,|r € Z}.
Note that the monodromy condition of the following definition is a straightforward twisted
module generalization of the monodromy condition in [CKM1, Proposition 2.65]:

Definition 3.9. For t = 4 2L° € T, we define Of\/i(p) to be the full subcategory of Oy,
consisting of M (p)-modules M such that

Ritoaar =€ 272 81d pg, mar (= €™ Pl gy yimns = €™PVPId i, w1 (3.7)

Remark 3.10. The negative sign in the first exponential of (3.7) is included to ensure
consistency with the usual definition of twisted module for a vertex operator algebra: If
V is a vertex operator algebra with automorphism g, then one usually defines the vertex
operator Yy of a g-twisted V-module W to satisfy

Yw(g - v, e2mx) =Yw(v,z)

for v € V, or equivalently

Y (v, e*™2) = Yy (g~ - v, 2).
That is, the monodromy of Yy is given by the action of g=! on V, not g. Thus (3.7)
corresponds to the action of ¢t = 8+ 2L° on A(p) given by

(B+2L°) |, = e™oPld g,
for r € Z.
Proposition 3.11. Fort = g+ 2L° € T, the category Oﬁ\/l(p) 1s closed under submodules

and quotients. In particular, Oﬁ\/l(p) is an abelian category.

Proof. Suppose M is a module in O.l;\/l(p) and N C M is any M(p)-submodule; N is an
object of Oy since O py(p) is closed under submodules. Then because the monodromy
isomorphisms in O M(p) are natural and because the tensoring functor My 1 X e is exact, we
have a commuting diagram

0 My KN Mo B M My B (M/N) ——0
\LRRAQJ,N \LeﬂﬁmldMZlEM \LR.%MQJ,]M/N

00— My BN Mo B M My B (M/N) ——=0

with exact rows. It follows that
R.%VIZ,LN = eﬂ—iﬁmldMQ,ﬂZ’Nu R%\/lQJ,M/N = BWiB\/%IdMQ,l@M/Nu
so both N and M /N are objects of (’)5\4(13).

Closure under submodules and quotients guarantees that every morphism in Oj\/l(p) has

a kernel and cokernel. The other properties of an abelian category are also easy; Of\4(p)
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is closed under finite direct sums, for example, because X is an additive functor and mon-
odromy is natural. O

Now we can define a T-graded subcategory of O pq(p):

Definition 3.12. We define (9;{4@) to be the direct sum subcategory P, (95\4@) of O pypy:
Objects of O/T\/((p) are M(p)-modules @teT M; such that each M, is an object of Oj\/l(p) and
M; = 0 for all but finitely many ¢ € T. For objects @, My and @, p Ny in O/T\/t(p)’ we

define
Homer, ( P M. P Nt> = @ Hom ) (Me, Ny).

teT teT teT

It is not immediate from the definition that OTM(p) is a full subcategory of O,y(,), but

p)
we will now prove this along with some other basic properties:

Theorem 3.13. With O/T\/t(p) defined as above,

(1) Let My be an object of Oi\l/t(p) and My an object (95\24(1)) for ty,to € T. If t1 # to,
then Hom pq(,) (M1, M) = 0. In particular, OTM(p) is a full subcategory of Opq(p)-
(2) The category O%(p) 18 closed under submodules and quotients. In particular, (’)/T/l(p)
is an abelian category.
(3) If My is an object of Of\l/[(p) and My is an object (’)3\24(1)) forty,to € T, then M1 X Mo
is an object of Of\l/;z;% In particular, O%t(p) is a tensor subcategory of Opq(p)-
Proof. To prove (1) and (2), we will need the open Hopf link map hy; € Endagg, (M)
associated to My 1, for any object M in Opyy). Since Ma; is a rigid simple current
M (p)-module with tensor inverse My 1, any evaluation homomorphism

e: Mo1 B Moy — My

is an isomorphism. Then for an object M in Opq(y), we define hys to be the composition

—1

I} -1 , ,
M 25 My RM S Moy R M) B M —2P 20 A0 ) (Mo B M)

2
Id g MR Ay o AMg 1, Mg 1M
%

> M071 X (M271 X M)

eXId l
—0 My ®M 25 M.

(M(),l X M2,1) X M

Since the unit, associativity, and braiding isomorphisms in Oy, are natural, the M(p)-
module isomorphisms Ay define a natural automorphism of the identity functor on Oy

Moreover, if M is an object of Oj\/l(p) for t = 8+ 2L° € T, then hy = e™PV2PId,,.

Now to prove (1), let M; be an object of (’)f\l/[(p) and M> an object Oj\QA(p) fort; = B1+2L°
and ty = B2 + 2L°. If f € Hompyy,) (Mi, Mz), then naturality of the open Hopf link
automorphisms implies

f=fohu ohyf =hapofohy =R PVay

Thus f = 0 unless perhaps 51 — 82 € \/2/pZ = 2L°, that is, t; = to.
To prove (2), let M = @@, M; be an object of (’)3;[(1)). The non-zero M, are the distinct
eigenspaces of hys, so hjs is diagonalizable with finitely many eigenvalues. Now if N C M
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is an M(p)-submodule, then N is an object of O,y(y), so naturality of the open Hopf link
automorphisms implies that Ay = hys|ny. In particular, hy; preserves the submodule N,
hy is also diagonalizable with finitely many eigenvalues, and the eigenspaces of hy are
subspaces of the corresponding eigenspaces of hys. Since the hjs-eigenspaces are the non-
zero M, this shows that N = @teT N; where N; C My and N; # 0 for only finitely many
t € T. Each N; is an M(p)-submodule of M; because it is an eigenspace of the M(p)-
module endomorphism hpy. Proposition 3.11 now shows that /V; is an object of (’)5\4([)), SO
N is an object of 0%, (p)- This proves O};l(p) is closed under M (p)-submodules.

To show that O/T\/l(p) is also closed under quotients, we have just shown that any quotient
M/N, with M an object of (’)/:C[(p) and N an M (p)-submodule, has the form @, . M;/N;
where M;/N; = 0 for all but finitely many ¢ € T" and both M; and N; are objects of (’)ﬁ\/l(p)
for t = p+2L° € T. Then Proposition 3.11 shows that M;/N; is an object of Oﬁ\/l(p)’ SO
M/N is an object of O%l(p).

To prove (3), suppose M; is an object of 05\14(;)) and Ms is an object of O%(p) for
t1 = 1+ 2L° and to = B2 + 2L°. Then by the hexagon axiom,

2 _ 1—1 2
RMz,l,M1®M2 - -’4,/\/12,1,M1,M2 ° (RM1,M2,1 X IdMQ) o AM17M2,17M2 © (IdMl X RMz,l,Mg)o
-1
o -'4]\/[1,,/\/12,1,]\/12 o (RM2,17M1 X IdM2) 0 AM2,1,M1,M2

___miff2/2p -1 2
= e AM2,17M17M2 © (RM2,1,M1 X Idas,) 0 AM2,17M17M2}

_ eWi(Bl+ﬂ2)mIdM2,1IE(M1@M2)’

+t2 ]

which means that M; X Ms is an object of Oﬁ\lxl(p)

Remark 3.14. The open Hopf link map hjs associated to Ms 1 used in the preceding proof
is somewhat different from the usual open Hopf link map defined in references such as [CG,
Section 3.1.3], since we have defined hj; using the map e™! : M1 — Mo X May q, rather
than using the composition

iM2,1 0M2,1xIdMo,1

i Mig — My B Mo,

Mg 1,Mp,1

R
M271 X Mo,l _—

2miL(0)

Mo XMy

(where iy, is the coevaluation and 6 = e is the ribbon twist). Since e o is by
definition the categorical dimension dim ) Ma1, has is related to the usual open Hopf
link map (denoted ®pq, a7 in [CG]) by g, 1 = (dimM(p) Mai)h.

Our next goal is to show that (’)/TM (p) contains all simple M(p)-modules in O pyp). First
we need a lemma:

Lemma 3.15. Forr € Z and Fy a typical irreducible M(p)-module,
Mt BEE Friay (= F oz = Fy onyz) (38)
Proof. There is a non-zero H-module intertwining operator ) of type (]]E:““Tvl). Thus if f

a7
denotes the inclusion M;.1 < F, ;, then Vo (f ® Idr,) is an M(p)-module intertwining

operator o1 type ). S a an )\ are irreducible -modules, s roposition
tor of type (12*"31). As Fa,, and Fy are irreducible H-modules, [DL, Propositi
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11.9] says Y(wy, x)wp # 0 for any non-zero wy € Fy, ,, we € Fy, and this means Y o (f ®
Idz,) # 0. Then the universal property of tensor products in Oy, induces a non-zero
M(p)-module homomorphism F': M1 K Fy = Frya,,;-

Since M,.; is a simple current M(p)-module, the domain of F' is irreducible. The
codomain is also irreducible because A + a1 # ap g for v’ € Z, 1 < ' < p —1 when
A€ (C\L°)U{ayp|r € Z}. Thus F is an isomorphism by Schur’s Lemma. O

Now we can prove:

Proposition 3.16. For A € (C\ L°) U{a,p|r € Z}, the typical irreducible M(p)-module
F) is an object of (’))""2? Moreover, forr € Z and 1 < s < p, the irreducible M(p)-module

M, s is an object of (’)a”—;%

Proof. For A € (C\ L°) U{a,p|r € Z}, we use the balancing equation for monodromy, the
tensor product formula (3.8), and the conformal weight (2.7) to calculate
Rg\/b,l,]:)\ = H-M?,l&FA © (9;41271 > 9]_-;)

2mi( h —h —h
=e WZ( Moz, Real )\) Idpm, 1XFx

= em‘[(>\+0¢2,1)(040—>\—042,1)—042,1(040—042,1)-M@o—/\)11(1/\4271&_,_.A
—2micz 1 A
= e “Ma21 Isz,lng‘

Thus F) is an object of Oj‘\j{(%o by (3.7). For r € Z and 1 < s < p, the same calculation

using the formula My KM, = M, ¢ from [CMY2, Theorem 3.2.8(1)] shows
R%vt M. = 627ri(hr+1,s_h2,l_hr,s)IdM2 MM, = eﬂi[(r—l)p—(s—l)]IdM2 RM, -
2,1, rs s 7,8 s 7,8

(Note that although the lowest conformal weight of M, ; equals h, only for r > 1, it is
always congruent to h, s modulo Z.) Since

emil(r=1)p=(s=1)] _ mi[(1-r)p—(1=9)] — = emiams V2

it follows from (3.7) that M, is an object of Oarf §2L : =

: . 0 T .
Next we determine the relation between C M(p) and O M(p)*

Proposition 3.17. The category CO of [CMY?2, Section 3.1] equals (’)0+(2) EB(’);“V;(Q)HLO.

Proof. Recalling that —‘ spans L°, we denote OOJF(QPL) ® 0% (/ 2)+2L by OF /vt( ) Since QT‘ +
O‘T‘ € 2L°, Theorem 3. 13 and its proof show that OL M(p) is a full tensor subcategory of O vq(p);
in particular, C’)ﬁ;( ) is closed under tensor products, finite direct sums, and subquotients.
Any object in (’) M(p) has finite length, and its composition factors are objects of (’) M(p)
since (’)ﬁ ) is closed under subquotients. Proposition 3.16 shows that an irreducible M (p)-
module is an object of O/L\/Ot(p) if and only if it is one of the M, s forr € Z, 1 < s < p, so
OJL\; (p) 182 full tensor subcategory of Cpy(,) defined in [CMY2, Section 3.1].

On the other hand, CRA(p) is also a full tensor subcategory of Cpy() that contains every
irreducible M, ; for r € Z, 1 < s < p (see Proposition 3.2.5 and Theorem 3.3.1 of [CMY?2]).
Moreover, [CMY2, Section 5| shows that C9\4(p) has enough projectives and that every
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indecomposable projective object occurs as a direct summand of a tensor product of two
simple objects. This means that C,(/)\/l(p) is the smallest full tensor subcategory of C () that

contains all the M, ,, so C_(/)Vl(p) is a subcategory of Oﬁ;(p).

Conversely, to show that Oﬂ(p) is a subcategory of C?\A(p)v note that O/L\/Ol(p) is the sub-
category of modules in Cyy,) whose indecomposable summands M satisfy R?Mz’l’ M=
+Id s, 0, while from the discussion preceding Lemma 2.10, C?\/l(p) is the subcategory
of modules M such that R%\/(;;,l,M = Id - Now let M be an indecomposable object of

(’)ﬁ; ) To show that M is also an object of 69\4 () Ve fix an isomorphism f : Mo KMy 1 —
M3 1 (guaranteed by [CMY2, Theorem 3.2.8(1)]) and calculate

Rivts v = (f B1dar) 0 R, ymate, a0 © (f 7 B 1dar)
= (f ®1dn) 0 Anty g Mor,m © Tty B R A1) © ARg, | ar ity ,©
° (Rg\/lg,hM X Idaty,) © Ay M Mo, © Td gy, B R, )0
© A.X/}Q,l,./\/lz,l,M o (f' XMldy)
=+ (f X Idy) 0o Ay Mo gm0 (Tdpg,, X Rg\/lth) ° AHZ,I,MQ,LM o (f~1 R Tdy)
= Idms  mm

as required. m

3.3. Projective M(p)-modules. In this subsection, we classify projective objects in the
tensor category Of/l(p) defined in the previous subsection. In particular, we will show that

(’)/T\/l(p) has enough projectives, that is, every irreducible M(p)-module has a projective

cover in O%t(p)‘ For the atypical modules, this is an easy consequence of Proposition 3.17
combined with the results of [CMY2]:

Proposition 3.18. Forr € Z and 1 < s < p, the indecomposable M(p)-module Py s is a
projective cover of M, s in O/Tvt(p)'

Proof. Tt is shown in [CMY2] that P, s is a projective object of C.(/)\/l(p)’ so by Proposition

3.17, P, s is an object of (’)f/l(p) which is projective in the subcategory (’)/I(/Ot(p) = O(}\j{?pL)O <)

(97\/;(; 2)+2LO. To show that P,  is still projective in O%[(p)’ consider a surjection p: M — N

and a morphism ¢ : P,s — N, where M = GBteT M; and N = EBteT N; are objects of
O/Tw(p). We need to show that there exists f : P, s — M such that po f = gq.
Assuming as we may that ¢ # 0, Theorem 3.13(1) implies No = Noj2r0 @ No_ja42r0 18
non-zero. Then because p is surjective, Mpo = Mojare © My_ /24210 is also non-zero and
Imp|ar,o = Nie.

Thus because P, is projective in Oﬁ(p), there is a morphism f : Py — Mo < M such
that po f = ¢, showing P, 5 is also projective in O/T\A(p). Moreover, the same argument as

concludes the proof of [CMY?2, Proposition 3.3.5] now shows that P, is a projective cover
of M, in O?Vl(p)' O

The typical irreducible M (p)-modules are their own projective covers in O/T\’/l(,p):
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Theorem 3.19. For A € (C\ L°) U {ayp |1 € Z}, the irreducible M(p)-module Fy is

projective in OM(p)' In particular, Fy is its own projective cover in OM(p)'

Proof. The case A\ = a.p is covered by Proposition 3.18, so we assume A € C\ L°. Since
F) is simple and every module in OTM » has finite length, a straightforward induction on
length implies that it is enough to show that any short exact sequence

0—M-—N—F\,—0 (3.9)

splits when M is simple and N is an object of O%(p)'
Let h be the minimal conformal weight of M, so that (3.9) can fail to split only when
h—hy € Z. If h—hy € Z,, then the top level T'(N) contains T'(F)), so the universal property
of generalized Verma M (p)-modules implies that N contains a non-zero homomorphic image
of Gy = F) (using Theorem 3.1). That is, N contains F) as a submodule and (3.9) splits.

If hy — h € Z, then we can dualize (3.9) to get an exact sequence
0— Fagr — N — M — 0.

In this case N’ contains a non-zero quotient of G(T'(M')); this quotient is isomorphic to
either M" or N’ since N’ has length 2. But since M’ 2 F,,_», Theorems 3.1 and 3.6
show that F,,_» is not a composition factor of G(T'(M’)). Thus N’ contains a submodule
isomorphic to M’, and then N’ = F, _\ @& M’. Dualizing again shows that (3.9) splits.

It remains to consider h = hy; in this case (2.7) implies that M is isomorphic to either
Fy or its contragredient F,,—y. If M = F, _», note that F,,_x 2 Fa as M(p)-modules
(since A # a1,) while L(0) acts identically on T'(Fq,—») and T'(Fy). Thus H(0) must act
by different eigenvalues on T'(Fy,—») and T'(Fy). If we denote these H(0)-eigenvalues by
H,,— and H), respectively, then the top level T'(M) has a basis with respect to which
H(0) and L(0) act by the matrices

no = T gl o=

for some a € C. Since H(0) commutes with L(0) and H,,—x # H\, we get a = 0, so

T(M) = T(Fayg—r) € T(Fa). Thus M is a length-2 homomorphic image of the generalized

Verma M (p)-module G, —x & Gx = Foo—x @ Fa, and again we see that (3.9) splits.
Finally, we need to consider the possibility M = F,. In this case, ), does have a non-

split self-extension in O pq(;), namely, the H-module F §2) with two-dimensional top level on
which h(0) acts by the matrix
Al
o)

Thus it is enough to show that any non-split self-extension of F in O,y(,) is isomorphic to

]:)(\2), and that ]:)(\2) is not an object of O/:C/l(p).
First consider any non-split exact sequence

0—).7")\—>M—>.F)\—)0

in Opq(p)- Then the top level T(M) has a basis with respect to which L(0) and H(0) act

by the matrices
| hyn a | Hx b
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for certain a,b € C. Since H(0)? is a polynomial in L(0) by (3.6), and since Hy # 0 (because
(3.6) shows that Hy = 0 only for A = a5, 1 < s < p), it follows that b is completely
determined by a. In particular, a = 0 would imply both L(0) and H(0) are diagonalizable
on T'(M), which would then imply T (M) = T(Fy) @ T(Fy). By the universal property of
generalized Verma M (p)-modules, this would imply M = F) @ F). Consequently, a # 0
since M is indecomposable, and by adjusting the basis of T'(M) if necessary, we may assume
a = 1. Thus up to isomorphism, there is only one possible A(Mp))-module structure on
T(M). In fact, T(M) = T(F /(\2)) since F. >(\2) is one possible non-split self-extension of F).

Since M has length 2 and both its composition factors intersect T'(M), we see that M is
generated by T'(M). Then the universal property of generalized Verma M(p)-modules
applied to the isomorphism T'(M) = T(]—'f)) shows that M is a length-2 quotient of
G(T(FP)). Thus if we can show that G(T(F”)) =2 F, then it will follow that M = F{”)
as required. In fact, since T(]-")(\Q)) contains T'(F)) as an A(M(p))-submodule, G(T(]:g)))
has a submodule isomorphic to Gy = F,. Then since G(T(]—")(\Q))) is generated by its top
level, so is G(T(FS)))/.F,\. But since

T (GI(FED)/F) = T(F),

this means that G(T'(F )(\2))) /F» is also a homomorphic image of Gy = F,. This shows that
G(T(F >(\2))) is a length-2 self-extension of F). Since by definition G(T'(F. )(\2))) surjects onto
the length-2 self-extension .7-">(\2), we must have G(T'(F /(\2))) =F /(\2), as required.

)

We have now shown that up to isomorphism, F /(\2 is the only non-split length-2 extension

of F) in Opy(p). So to complete the proof of the theorem, we just need to show that F ;\2)

is not an object of (’)/:(’A(p). If ]—")(\2) were an object of (’)/T\/[(p), then it would be an object of
A2L° A+2L°

OM(p) M) DY
Proposition 3.16. Then Theorem 3.13(3) would imply that Fq, ,—x X .7-")(\2) is an object of

Oij[’é) YQL . Now, there is a surjective H-module intertwining operator

because it is indecomposable and its composition factors are objects of O

Vi Faryr®F — FO llogal{z}.
As Y is also an M (p)-module intertwining operator, it induces an M (p)-module surjection

fal,p—A IX ‘F§2) _— ‘F(Z)

Ql,p*

Thus because (’)/TM (p) I8 closed under quotients by Theorem 3.13(2), F. )(\2) an object of O_/j\—‘/l(p)

( )

would imply the same for .7-"&21??. But .7-"0([2171) is not an object of (’)f/l(p) because Fq, , is

projective in (’)/TM ) by Proposition 3.18. So F /(\2) is not an object of (’)%(p) either. O

We conclude this subsection with a useful observation about the subcategories C’)x{ 550 for

A+2L°
M(p)
is isomorphic to some F, such that A — p € 2L°. Thus an easy induction on length using

Theorem 3.19 yields:

A € C\ L°. By Propositions 3.11 and 3.16, any composition factor of an object in O

Corollary 3.20. For A € C\ L°, any object of (’)ﬁéﬁo 1s isomorphic to a finite direct sum
of Fock modules F,, such that X\ —p € 2L°.
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4. FUSION RULES

In this section, we compute tensor products in O () involving typical irreducible mod-
ules; see [CMY2, Theorem 5.2.1] for all tensor products involving only atypical irreducible
modules and their projective covers.

4.1. Atypical-typical fusion. We first determine how M > tensors with typical modules:

Lemma 4.1. For any A € C\ L°,
MI,Q ‘ZI -F/\ = f)\+a1’2 @ f)\fal’z'
Proof. By Theorem 3.13(3), Proposition 3.16, and Corollary 3.20, M2 K F, is a finite

direct sum of Fock modules F,, such that A + a2 — p € 2L°. Since M > contains L; 2 as
a Vir-submodule by (2.12), we have for any such p a linear map

T Fa
T < M fk) = Iz <£1,2 fA>

Y= y|£1,2®}—>\

Since M 2 is an irreducible M(p)-module, [DL, Proposition 11.9] says that this map is in-
jective. Thus because Fy and F,, are irreducible Vir-modules (since A, u ¢ L°), Proposition
2.6 and Remark 2.7 imply that the multiplicity of F, in Mj 2 X F) cannot be greater than
1. Moreover, by Corollary 2.5, the multiplicity of F,, can be non-zero only if

pt o p!
hy =P+ =+ 7\/4ph>\+ (p—1)2

1 1 Q1,2
= 5)\()\ — Oé()) + 50&%72 + \/72>p <\/ 2p)\ —p + 1) = h)\:tal,2

(for this calculation, note that ag 2 = —%a_ = ﬁ) Thus if F,, has non-zero multiplicity

(equal to 1) in My o X F), then p is one of A+ a2 or ag — (A £ 12). We can rule out the
latter two possibilities because

A+ 1,2 — (ao —AF al,z) €2\ +2L°,
and 2\ 4+ 2L° is disjoint from 2L° since by assumption A ¢ L°.
We have now shown that Mo X Fy is a submodule of Fyyn,, & Fr—a;,.- To show
that this direct sum is indeed the tensor product module, we need to demonstrate non-zero

M (p)-module homomorphisms My o X F\ — Fyiq,, for both sign choices. First, as in the

proof of Lemma 3.15, there is a non-zero map Mj 2 W Fx — Fiiq, , induced by a non-zero

H-module intertwining operator of type ( ]]E:““l]fx), for any A € C\ L°. To get the second
a2

non-zero map, the first case implies that F) is a direct summand of My X F)\_4,,. So

because M 2 is a rigid M(p)-module (see [CMY2, Section 4.2]),

dim HOIHM(p) (MLQ X ]:,\, .7:)\_04172) = dim HOInM(p) (.F)\, MLQ X .7:,\_0[1’2) =1.
More concretely, using ¢ to denote an injection F) < Mo K F\_,, ,, the composition

My oM AM1,27M1,277">\7041’2

Id, X
Mig R Fy ——— M2 R (M2 R Fy 0 ,) P (Mg BMy2) K Fy o,

6M1,2®Id]:)\7041’2 lfkfoq,z
Ml,l IEI)\—O[LQ ? ]:A—Ozl,z

is non-zero; here ey, , is the evaluation homomorphism. g
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We now use Lemmas 3.15 and 4.1 to compute how each M, ; tensors with the typical
Fock modules:

Theorem 4.2. Forr€Z,1<s<p, and A€ C\ L°,

s—1

M, s BRI =D Fovar.tta_- (4.1)
=0

Proof. We prove the r = 1 case first by induction on s. The base case s = 1 is obvious
because M 1 is the unit object of OM(p) and o1 = 0, and the s = 2 case is Lemma 4.1.
Now suppose we have proved (4.1) up tosome s € {2,3,...p—1} and consider s+1. Asin the
proof of Lemma 4.1, M 41X F) is a direct sum of F, such that A+aq 411 —p € 2L°, so we
just need to determine which F), appear in the tensor product, and with what multiplicity.
On the one hand, associativity, the fusion rules of [CMY2, Theorem 3.2.8(2)], and the

inductive hypothesis show that M ;1 W Fy is a summand of:

Mo W (M KF)) = (M2 KM ) K Fy

= (M1 KFy) B (M1 XF))
s—2

= (M1 BF) & D Fovar, stta -
=0

On the other hand, the inductive hypothesis, Lemma 4.1, and the observation o s + a2 =
Oél,s:i:l yield

s—1
My B (MR Fy) = Mo B Faya, tto

/=0
s—1
= @ (*7:/\+a1,s+041,2+@a_ S ~7:/\+a1,s—041,2+€a_)
/=0
s—1 s—2
= @‘F}\-i-al,erl-i‘gOéf @ <]:/\+a1,51+(s—1)a S?) @]:)\4-@1751-&-&1)-
/=0 £=0
Comparing these two computations, we see that
s—1 s
My st1 WFNE Fryar o i+(s—1)a D @f,\mLSHMa_ = () Fatarepr+a_
=0 /=0
since a1 s—1 — a— = aj ¢y1. This completes the proof of the » =1 case of (4.1).

For general r, we need the identity M, ; K M; ¢ = M, s proved in [CMY2], the r =1
case of (4.1), and Lemma 3.15:

My s RFy = (Mg IMy ) IFy =M, K(My K F))

s—1

s—1
= @Mr,l X ‘F)\Jrozl)erZa_ = -7:)\+a,.,1+alys+fa_-
=0 =

[en]

Since a,,1 + 1,5 = g, this yields (4.1). O
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We next compute how the projective covers P, s tensor with typical Fock modules, using
the preceding theorem and the fusion rules

,Pr,sfl S3) Pr,s+1 if 2<s<p-2
MLQ X 7)7,75 = ’Pr’pfg ®2- Pryp if s=p-—1 (4.2)
Prp-1 if s=p
from [CMY2, Theorems 3.2.8(2) and 5.1.4(2)]. Note that the first case in the above fusion
rules is vacuous when p = 2, 3, and the second case is valid for p > 3.

Theorem 4.3. Forre€Z,1<s<p-1,and A€ C\ L°,
7)7175 X F = (MT+1,p—s X .7:)\) ®2- (Mns X .7:)\) (&) (M’r—l,p—s X ./—")\)

p—1

@(IA+ar,s+£a, ® Fatar_1p_oatla)- (4.3)
=0

1

Proof. We first note that the two formulas given for P, ;X F) are equivalent because by the
fusion rule (4.1) and the identity a,41p—s = s + sa_,

(Mr,s X f)\) S (MrJrl,pfs X }—)\)

s—1 p—s—1 p—1
= @ ‘FA+QT,5+£04— @ @ ‘F)\+ar+1,p—s+fa— = f)\+04r,s+za—
=0 =0 =0

forreZ,1<s<p-—1,and A€ C\ L°.

We now prove the theorem by downward induction on s beginning with s = p — 1. For
this case, we use the third case in (4.2), associativity, the fusion rule (4.1), and Lemma 4.1
to compute

p—1 p—1
= M172 & @ ‘F)\+ar,p+‘€a— = ('FA+ar,p7al,2+£a— @ ‘F)\+aT,p+al,2+ea—>'
/=0 /=0
Since
Qrp — Q12 = Qpp—1, Qrp+ Q12 = Qr_1]1,

this proves (4.3) for s = p — 1. This also proves the theorem in the case p = 2.
For p > 3, we now prove the s = p — 2 case of (4.3). On the one hand, the middle case
of the fusion rule (4.2) together with (4.1) yield

(MLQ X Pr,p—l) X Fy\ = ('Pr,p_g X f)\) ®2- (an X f)\). (4.4)

On the other hand, the s = p — 1 case of (4.3) together with the fusion rules of [CMY2,
Theorem 3.2.8(2)] yield

M2 R (Prp 1 KF\) ZMi o R( My 1 KFN) B2 (Myp1 BFy) & (M1 K Fy))
= (MT+1,2 X ]:)\) ®2- (Mr,p72 X -7:>\)
®2- (Mryp X Fy) @ (MT,LQ X Fy). (4.5)

After comparing the right sides of (4.4) and (4.5), the Krull-Schmidt Theorem shows that
Prp—2 X Fy has the same indecomposable summands as

(Mrj120RFN) @2 (M p o RFN) & (Mp_12 X Fy),
proving (4.3) in the case s = p — 2.
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Now in general for p > 4, suppose we have proven the s and s+ 1 cases of (4.3) for some
s€{2,...,p—2}; we will prove (4.3) for s — 1 using the first case in the fusion rule (4.2).
On the one hand,

(M1 R P ) RF\ = (Prs—1 BFN) ® (Prst1 X Fy)
= (Prs—1 BFN) & (Mrgips—1 BFN) B2 (M1 KFy) D (Myp_1ps—1 K Fy).
On the other hand,
M2 K ('PT,S X Fy) = M2 K ((Mr-i-l,p—s XFy\)D2- (./Vlhs X Fy) @ (Mr—l,p—s X Fy))
2 (Myg1p—s—1 XF\) B (Myg1p-sy1 XFy) B2 (M1 XFy)
B2 (M1 RF)) S (M1 ps—1 KF)) & (Mg pst1 XFy).

Comparing indecomposable summands as before then shows that (4.3) indeed holds for
s — 1. This proves the theorem. ]

4.2. Typical-typical fusion. We now compute F\ X F,, for \,u € C\ L° and either
A+ p € L°or A+ p ¢ L°. The first possibility is covered by the following theorem:

Theorem 4.4. For A\, € C\ L° such that A+ p = ag+ a5 for somer € Z and1 < s < p,

p p
ARFR= P Pwve @ P
3’:3 S/=p+278
s'=s (mod 2) s'=p—s (mod 2)

Proof. We first determine the simple quotients of Fy X F,,, which by Theorem 3.13(3) and
Proposition 3.16 have the form M, o for a, ¢ € ag + ays + 2L°. By symmetries of
intertwining operators and the fusion rule (4.1),

~ MT’,S’ ~ f)‘_a’ﬁs
HomM(p) (AKX Fus Mr’,s’) = IM(IU) (]:‘)\ Foo-rta ) = IM(ZD) <M2_T/ o .7:>\>

s'—1

= HomM(p) (Mg_rgs/ X .7:)\, .7:)\70”75) = @ HomM(p) (F)\+a27r/’s/+ea—7FA*CM‘,S)’ (4'6)
£=0

Thus Hom vy (Fx X Fy, My ) is non-zero (and one-dimensional) if and only
gy o Flo_ = —ay, (4.7)

for some ¢ € {0,...,s —1}. Let S, 5 denote the set of labels (1, s’) such that (4.7) holds.
From the definitions, (4.7) holds if and only if

(r—rp=s+s—2(0+1).
Since 0 < ¢ < s’ —1 < p, we have
—p+1<s+s-200+1)<2p—2,

which means that r and r — 1 are the only possibilities for »/. If ' = r, then we get
0+1 = S/;S, which must be an integer no larger than s’. That is, (r,s’) € S, if and
only if s < s’ < pand s = s (mod2). If ¥/ = r — 1, then we get £+ 1 = Suf%, which
must be a positive integer. That is, (r —1,s') € S, s if and only if p+2 — s < s’ < p and
s =p—s(mod?2).

Thus the theorem amounts to the claim Fy X F,, = @(r’,s’)ESr,s Py I (7, p) € S, 5 for
r" =ror 7’ = r—1, then the non-zero homomorphism F\XF, — M, , = P, is surjective.
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Thus because P, ), is projective in O/:Ct(p)v it occurs as a direct summand of F\ X F,,. For
(r',s") € S5 with 1 <s < p—1, we can repeat the calculation (4.6) with M, ¢ replaced by
P, ¢ and then apply the fusion rule (4.3). It follows that there are two linearly independent
M (p)-module homomorphisms Fy X F,, — P, y. At most one of these homomorphisms
has image contained in Soc(P, s) = M, ¢ since dim Hom v (F B Fpy My o) = 1 for
such (1, s"). Thus from the Loewy diagram (2.15) of P, ¢, the second linearly independent
homomorphism Fy X F, — P, ¢ is either surjective or has image containing at least one
of Myr41,-g as simple quotient. But the latter option is impossible: it would imply
Hom yq(p) (Fa B Fpy Myrt1 o) # 0, whereas it is easy to see that if (1',s") € S, 4, then
(r"£1,p—5") ¢ S, Consequently, there is a surjective map F\ X F,, — Pp ¢ for all
(r',s") € Sy, and then P, ¢ occurs as a summand of Fy X F,, by projectivity.

Since F\XF,, is a finite-length M (p)-module and P,/ ¢ is an indecomposable direct sum-
mand for any (17, s') € S, s, there exists for each such (1, ') a decomposition of F\KF), into
a direct sum of indecomposable submodules that includes P,s ». Then because the indecom-
posable submodules appearing in such a decomposition are unique up to isomorphism by
the Krull-Schmidt Theorem, and because the P, o for different (r/,s") are non-isomorphic,
FAARF,=ZX® @ "es,.. Prs for some X. Thus for any r" € Z and 1 < 5" < p,

HOIIlM(p)(F)\ g‘F/MMT”,S”) =~ HomM(p)(XaM’l‘”,S”) EB @ HomM(p)(P’r",S’aMT”,S”)‘

(r',s")€Sr,s
But since
o (528 5 Mo ={ 4 i (0005 5
and since '

dimHOHlM( )('PT s’ ,./\/lr 3//) = (5(7, FORCLAY
this means Hom () (X, My o) = 0 for all 7" € Z and 1 < 8" < p. Since X is a (finite-

length) module in Of{f&;‘;r s 2L , it follows that X = 0. This proves the theorem. O

It is worth recording the r = s = 1 case of the preceding theorem as a corollary:
Corollary 4.5. For A€ C\ L°, FA X Foo-x = D, oqq P,s-

Using this corollary and the fusion rule (4.3), we also prove the following lemma that we
will need for the next theorem:

Lemma 4.6. For \,u € C\ L°,
p—
(FABFp) B Fog—p = EB Frtao+(E+)a_

Proof. We calculate
(fkgfu)gfao—ugf)\g(fugfao—u)

p—1
= P (P1s BT = D P (Frraretto [0Frtan, otta-]);
sodd sodd ¢=0

where the summand in brackets does not occur for s = p (in case p is odd). Since

s+1 S
als=op+ (p— T a_, Qpp—s = o + Ta—7
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we have
p—1
GB (]:/\+a1,s+€a7 [@‘F/\—&—ao,pfs—kfaf]) = @}-}\—i—aoﬂf—i—f’)af
sodd 0'=0
for all £, proving the lemma. O

It remains to compute F) X F,, when A+ p ¢ L°:
Theorem 4.7. For A\, € C\ L° such that \+p € C\ L°,

p—1
FARF, = Faspra
=0
Proof. First we claim that
2(p—1)
FAK ]:u = @ aﬁ()‘a/‘)}-)\-i-u—kﬁaf (4'8)
=0

for certain multiplicities ag(A, ). The theorem will then reduce to showing that as(\, p) = 1
for £ € {0,...,p—1} and vanishes otherwise. To prove the claim, note that Heisenberg fusion
rules and projectivity of F) in Of/l ) imply that F) is a direct summand of F 4, X Fq,—p:

Fatp—ao R Fag-p EFr @ X
for some X. Then using Lemma 4.6,
p—1
(AKX fu) © (XK ]:u) = (]:A+u—oco X faoﬂi) XF, = @ -7:/\+u+(£+£’)a,a
0,0'=0
proving (4.8). It remains to determine the coefficients ag(\, p).
Each as(\, ) < 1 since Fy, Fp, and Fyyp4eq_ are simple Virasoro Verma modules, and

thus dim 7, (]:*]_TA“;__[:—) =1 (recall Remark 2.7). Now by Lemma 4.6 again,

p—1
@ f>\+ao+(€+f’)a, = (f)\ gf#) X fao*#
£,0=0
2(p—1)
= B a1 (Farptta B Fogp)
£=0
2(p—1)
= @ ag(A, p)ap (A + p+ Lo, g — N)f)\+ao+(€+€/)a_- (4.9)
2,0=0

In particular, for 0 <n < p — 1, we get the identity

> arMpmag(A+p+ Lo 00— p) =n+1. (4.10)

(+0=n
We prove that ag(A, u) =1 for £ € {0,...,p — 1} by induction on ¢. The case ¢ = 0 follows
from the n = 0 case of (4.10) (that is, from ag(A, p)ag(A + p, a0 — ) = 1), or from the

fact that there is a Heisenberg intertwining operator of type ( ]f;;ﬁ‘) Now assume that
i
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ag(A,u) =1for £ € {0,...,n— 1} and n < p— 1. Then (4.10) together with the induction
hypothesis and ag(A 4+ g+ na—, ap — p) = 1 yields

n—1

an(A\, p) + Z apA+p+(n—>0a_,a0—p)=n+1.

=0
Since all coefficients are 0 or 1, the only possibility is a, (A, u) = 1 = ap( A+ p+La—, ag—p).
Thus ag(\, ) = 1for £ € {0,...,p—1} and any A, p such that \, u, \+pu ¢ L°. In particular,
ap AN +p+Lla_,ag—p) =1for £,¢ € {0,...,p—1}. Thus (4.9) can only hold if ap(\, ) =0
for £ > p—1. O

5. RiGcIDITY

In this section, we show that the tensor categories O 4,y and O_/j\—‘/l(p) are rigid. Thanks to

[CMY?2, Theorem 4.4.1], it is enough to show that all simple M(p)-modules are rigid. We
already showed in [CMY?2] that the atypical irreducible modules M, ; for r € Z, 1 < s <p
are rigid, so it remains to consider the typical Fock modules F) for A € C\ L°. The idea is
to choose evaluations ey : Fp,—x W Fy — M1 and coevaluations iy : My 1 — F\ K Fpo—»
in such a way that (at least one matrix coefficient of) the rigidity composition
I3 PRI r,
f)\ — ./\/l171 X f)\ —)(J—")\ X ,/_"aO,A) Y .F)\
A}l,f& o F Idr, Xe T
LT AR (Fay A RFy) —2—25 Fy R My =25 Fy,

depends analytically on A. Since this composition is non-zero for A = a,.,, r € Z, it does
not vanish identically and thus will be non-zero on a dense open set of \. We will then
use the fusion rules of the previous section to prove rigidity for all \. We begin with the
construction of suitable evaluation and coevaluation candidates.

5.1. Evaluation and coevaluation for typical Fock modules. For all A € C, we fix a
non-zero lowest conformal weight vector vy € Fy of conformal weight hy = %)\()\ — ), and
we identify F,,_, as the contragredient of F) via the unique non-degenerate H-invariant
bilinear form
<',~> : Fao—A X f)\ — C

such that (vy,—x,vx) = 1. We will prove that F) is a rigid M(p)-module with dual Fy,_».

We first need an evaluation ey : Fp,—\ X Fy — My 1. By intertwining operator symme-
tries from [HLZ2, Equations 3.77 and 3.87], we get an intertwining operator Ao(Q0(Yx, ,))

M/

of type (]__ao_lk’l}_k).
form (-,-) such that (1,1) =1, Ag(Q(YF,,_,)) becomes the intertwining operator of type

M1
N ﬂ) such that

Identifying M'Ll = M, via the non-degenerate invariant bilinear

(-

(v,AO(QO(Y;QOA))(w/,x)w) = <Yfa0ﬂ(v, —z )b (1) = 2L(0) gmiL(0) e‘rL(l)w> (5.1)
for v e My, w € Fy, and v’ € F,,—x. To simplify the dependence on A, we rescale by
setting ) = e_ﬂihkAO(QO(Y]-‘aoi)\)). Then from (5.1) and the scaling (1,1) =1,

Ex(Vag—x, 2)vx € 272 (1 4 2 My [[2]]). (52)

Now the universal property of vertex algebraic tensor products yields a unique evaluation
ex : Fag—x X Fy — My such that ey o Vo,—x = &\, where V,,—» denotes the tensor
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Fag-2BFy
Fx Fag—r
]'—AX]}-QO—A)
FrxFag-r7"

Next we construct a coevaluation iy : My 1 — F\ X F,,_» in the case that F) is simple
as an M(p)-module, that is, A € (C\ L°) U{ayp |7 € Z}. Certainly a unique (up to scale)

non-zero such map exists because the fusion rule

FAR Fopr= P Prs
sodd

product intertwining operator of type ( ) Likewise, ), denotes the tensor product

intertwining operator of type (

of Corollary 4.5 and the structure of P; 1 as an M(p)-module shows that FyKF,,_ contains
a unique submodule isomorphic to My ;. (Corollary 4.5 also holds for A = ay.p,, r € Z, by
the 7’ =2 —r, s = s’ = p case of the fusion rules in [CMY?2, Theorem 5.2.1(1)].) However,
we would like to choose 7y in such a way that its dependence on A is not too arbitrary. To
choose a suitable 7y, note first that

L(O)(Pr1)o)  Soc(Pra)) = (Mia)y) = C1,

so we might at first attempt to define iy such that iy(1) is the coefficient of 272"\ in
L(0)Yx(vx; Z)vag—x (since this coefficient is a vector in (Fy X Fu,-1)(g)). But this will not
work because (P1,s)[o] might be non-zero for some s # 1, so that the coefficient of x 72 in
Va(vx, T)Vqy—x might involve a contribution from such P 5. The next lemma, whose proof
uses the higher-level Zhu algebras Ayx(M(p)) of [DLM], provides a way to filter out such
unwanted contributions; recall that for v € M(p), o(v) is the component of an M (p)-module
vertex operator that preserves conformal weights:

Lemma 5.1. There exists v € M(p), independent of A\, such that for all A\ € (C\ L°)U
{onp |7 € Z},

o(v) - Resg 2™ 1Y) (v, ) Vay—x € (Fa B Foo-M)[0]

generates the unique submodule of Fy X F,,_x isomorphic to My ;.

Proof. First, (FARFqu,-2)(0) is an An(M(p))-module for N = {%J since hy p = —%

is the minimum of all conformal weights h; . By Corollary 4.5, there is an Ay (M(p))-
module isomorphism

It (AR Fag-N)jo) — @(771,5)[0}-
sodd
Then since

L(0)(P1,s)j0] € Soc(Pr,s)j0] = (Ma1,s)0]5
for each s, we have
L(0) - Res, thkfly,\(vA,a;)vao,A es

where S is an Ay (M (p))-submodule of (F) X Fu,—x)(o) isomorphic to P, ,qq(M1.s)(0)-

As each M, is a simple M(p)-module, S is a semisimple Ay (M (p))-module. More-
over, the distinct non-zero (M s)(g are non-isomorphic Ax (M (p))-modules: If (M )g =
(M1,5)(0), then My s and My ¢ are both simple quotients of the generalized Verma M (p)-
module Gn((Mis)o))- So recalling from Subsection 2.1 that Gn((Mjis)(o)) has a unique
simple quotient, My, = M o as desired. Now by the Jacobson Density Theorem, there
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exists [u] € An(M(p)) (independent of A) such that o(u) acts on @, qq(M1,s)jg) by
D oaa ds11d(pm, ) - So taking v € M(p) such that [v] = [u][w] in An(M(p)),

o(v) - Res, thk_lyA(vA,x)vao,,\ = o(u)L(0) - Res, mQh*_lyA(vA,:r)vao,A
= (f/\_1 oo(u)o fy) <L(O) - Res,, w2hA*1y,\(v>\,a:)va0,>\>
=(fitopiof) (L(O) -Res, 2271y, (v, x)vao—x>
where p1 : @, 4q P1,s — P1,1 is the M(p)-module projection. Consequently,
o(v) - Res, :c2hA*1y,\(v>\, Z)Vag—

is a vector of conformal weight 0 in the M (p)-submodule of FyXF,,_» isomorphic to M ;.
We still need to show that o(v) - Res; 22" 71y (v, 2)va,—a # 0. To do so, observe that

Cap- (Reso 22271V (03, 20002 =1 £ 0

by (5.2). Thus because f;l((Pl,s)[O}) C Keregy,—» for s > 1, we must have

I (Resx th*’l%(w,x)vaoa) ¢ Kerps.

Moreover, (p1 o fy) (Resx x%*_ly,\(vA,:v)vao_A) is not in the maximal proper submodule
of P11 because this submodule is contained in the kernel of any homomorphism to Py ; —
M 1. Thus by the structure of Py 1,

L(0)(p1 0 fy) (Resx x%*_ly)\(v)\,x)vao_A> £ 0,
and then
0(v) - Resy oYy (03, 2)vag - = (f7 0 b1 0 f2) (L(0) - Res, 2 7' W) (0, 2)va 1 )

= 17 (L)1 0 £1)(Ress 2™ 19 (03, 2)v0y ) ) # 0

as well. 0

For A € (C\ L°) U{ayp |7 € Z}, we now have a non-zero coevaluation candidate

i)\ : M171 — f)\ g]:aof)\

1+ 0(v) - Resy 22 1Y) (0y, 2)vag

with v € M(p) as in the preceding lemma. We can rewrite the formula for i) using the
commutator formula (2.2); for j € N, we use 7; to denote the projection from M(p) to the
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conformal weight space M(p);y:
ix(1) = o(v) - Resg 2™ 1Y) (uy, ) vay -

= Res, 221 <y,\(v,\, V)Vag—x + Z Z ( )xj_”_ly,\(ﬂj(v)nv,\, m)vao_,\>

720n>0

= Res, 27 * <y)\(arL(0)vA, x)xL(O)o(v)vao,A

+Y > (j ; 1>yA(~TL(O)7Tj(U)nU)\> iv)xL(O)UaO—A)

j20n=>0
J .
= Res, 2"V (uf) v, 1)0 (07 (5.3)
=1

for suitable homogeneous u?),v\9) € M(p) and nj € Z (with u) vU) =1 as appropriate),
and the substitution x + 1 in )y is accomplished using the branch of logarithm log1 = 0.
Since the v, v and n; are independent of A, the right side of (5.3) is defined for all
A € C, though it might vanish if F) is not simple.

5.2. The rigidity argument. In this subsection, we give the proof that all typical Fock

modules, and indeed the entire categories O 5(,) and (9;{4 (p)> AT€ rigid, modulo some complex
analytic results that we will prove in the next subsections.

To show that F) is rigid for A € C\ L°, [CMY3, Corollary 4.2.2] shows that it is enough

to prove that the rigidity composition Ry given by

I3 PRI F,

]‘—)\ —>M11 &f)\ —>(}—)\®fa0 )\) @f)\

A;’i Fag—2FA

Fr B (Fop— A@Jﬁ)ﬂﬂ-}ﬁ/\/ln—ﬂ-}
is non-zero. In particular, it is sufficient to show that
(Vag—xs Ra(vr)) = (Vag—n, Y(ir (1), 1)vy) # 0, (5.4)
where
Y=rr o(ldr, Key)o A;i,fao—xfx °© Vi;

here Vg is the tensor product intertwining operator of type ((F@F‘XO‘*MFA). By (5.3),

FaBFap—x Fa
(Vag—n, Ra(vy)) is the constant term in the formal series
J
A0 2) = 3 (g2 VE OV (@D 0r, Do gy, 1)o). (5.5)
j=1

By convergence of iterates of intertwining operators among Ci-cofinite M (p)-modules (see

[Hul] or [HLZ7, Section 11.2]), we can substitute  — 1=% in this formal series (using any

choice of branch of logarithm) and get an absolutely convergent series for |z| > |1 — z| > 0.
We always use log to denote the principal branch of logarithm on C\ (—o0, 0]:

log¢ =In|¢| +iarg(

4

where —7m < arg( < w. For ( = %, note that log( %) defines a single-valued analytic
function on C\ ((—o0,0]U[1,00)), and that this functlon agrees with log(1— z) —log z since
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both functions obviously agree on the real interval (0,1). Thus substituting x +— elos(:5%)

in (5.5) and using the definitions of ) and of the unit and associativity isomorphisms in
Opm(p) (see [HLZ8] or the exposition in [CKMT1, Section 3.3]), we get

z<vm 2 V(MO (o, 1)o(v! vy 2. o)

I
.M“

(1_2)2hx+wtu(j)fnjfl <va0,,\,y(e (log 2)L(O) ), (4, UA’ log(172))0(v(j))va07/\,1)1)/\>

<
Il
-

(1 . Z)Zh)ﬁrwt u(]')fnjfl.

I
-M“

<
I
—

.<e—(logZ)L() . o YD (ul 'U)\ elog(l—Z))O(U(j))Uao_)\,elogZ)e(logZ)L(O)UA>

Il
.M“

(1-— z)2h*+Wt“(j)_”j_l <va0,>\, Qo(Yf/\)(U%jj)U)\, DEN (00 ) gy, elogz)w\> (5.6)

<
Il
-

for z such that both sides converge, that is, 1 > |2| > |1 — 2] > | > 0. For such z,

the factors (1 — z)2a+wt ut—n;—1 agree with their binomial expansions as power series in
z. Thus the right side of (5.6) is a series in powers of z which converges absolutely to a
multivalued analytic function on the punctured disk By(0) \ {0} of radius 1 centered at 0,
or to a single-valued analytic function on the simply-connected open set B;(0) \ (—1,0].
To prove (5.4) and thus show F) is rigid, we will show that (ve,—x, Ra(vy)) is an analytic
function of A which does not vanish identically, and thus is generically non-zero. For this,
we need to enhance the analyticity in z of the right side of (5.6) to analyticity in both A and
z; this is the content of the following theorem, which we will prove in the next subsection:

Theorem 5.2. For any homogeneous u,v € M(p), n € Z, and analytic function r(\) on
C, there is a finite set S C C such that the series

(1-— z)ro‘)<va0,>\, Qo(Yz, ) (unvr, 1)Ex(0(v)Vag—», €8 %)vy ) (5.7)
converges absolutely to a function analytic in both X and z on (C\ S) x (B1(0) \ (—1,0]).
Moreover, this analytic function is the solution of a differential equation of the form

ngp = d"y
N = > an(h 2) - T (5.8)
n=0

whose coefficient functions an(A, z) are analytic in X and z on (C\ S) x (C\ {0,1}).

Recall that (ve,—x, Ra(vy)) is the constant term in the formal series p(A, z) of (5.5).
Substituting x — ¢ using the principal branch of logarithm log ( yields a function (A, ()
which is analytic in ¢ for ¢ € B1(0) \ (—1,0]. Moreover, the calculation (5.6) shows that

J
1-=2 () —
A, — 1— 2hx+wtu n;—1,
e(ME) =0

i=1

 (ag-x QoY) (W) 02, DE(0(0D)vag -2, €8 7)03)
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for 1 > |z| > |1 —2 > 0. For 1 < j < J, let S; C C be the finite set of Theorem 5.2
corresponding to u), v\ € M(p), n; € Z, and the analytic function 2hy +wtuld) —n; —1.

Now applying Theorem 5.2 and the variable change z = (1 +¢)7*, % =—(1+ 4)26%, we
see that ¢(\, ) is analytic in both A and ¢ for A € C\ S, where S = szls’j, and for ¢ such
that |1+ ¢| > 1 > || > 0 (a non-empty simply-connected open subset of By(0) \ (—1,0]
that we will call V). Moreover, the analytic function ¢(X, ) on (C\ S) x Vj is a finite sum
of solutions to differential equations of the form

Np = e
— = b\ Q) (5.9)
v = 2 ac

whose coefficient functions by, (A, {) are analytic for A € C\ S and ¢ € C\ {—1,0} (when
changing variables from z to ¢ in the differential equation (5.8), the singularities at z =
0,1, 00 become singularities at ( = 00,0, —1, respectively).

Since each summand of (A, () is analytic in ¢ for all ¢ € By(0) \ (—1,0] and also
solves a differential equation with analytic coefficients for ¢ in the non-empty open subset
Vo € B1(0) \ (—1,0], each summand of (A, () is actually a solution to the differential
equation on the entire connected set B1(0) \ (—1,0], for all A € C\ S. It is not immediately
evident that (A, {) is also analytic in A at any ¢ € B1(0) \ (—1,0] (outside of V), but this
is proved as part of the proof of the following theorem:

Theorem 5.3. Suppose p(A, () = Zi\n/lzl Zf:o Fnk(A, Q)ehm1oeC(log ¢)F is a series solution
to a differential equation of the form (5.9) such that:

e The hy, € C for 1 < m < M are pairwise non-congruent mod 7.

o For each m and k, frmrx(X,C) = >, cz fmpkn(X) (" is a Laurent series in ¢ whose
coefficients are functions of A defined on a non-empty open subset U C C.

e The coefficient functions by (X, C) in (5.9) are analytic in both X\ and { on the open
set U x (B1(0) \ {0}).

e The series p(\, () converges absolutely on U x (B1(0) \ (—1,0]), and thus for any
A e U, ¢(X ) is analytic in ¢ on B1(0) \ (—1,0].

e For some non-empty open subset Vi C B1(0) \ (—1,0], (A, () is analytic in both A
and ¢ on U x V.

Then for 1 <m < M, 0<k < K, and all n € Z, the function fp kn(A) is analytic on U.

We defer the proof of this theorem to Subsection 5.4. We take ¢(A, () in the theorem to
be the individual summands of (5.5) (with x + €!°8¢). Then the h,, € Cfor 1 <m < M are
a maximal set of hy 4, s odd, that are pairwise non-congruent mod Z (since Fy X Fp,_» =
D, aqa P1,s) and K = 1 (since the nilpotent part of L(0) squares to 0 on any P ). The
differential equation of the theorem is that of Theorem 5.2 (with a change of variables from
zto ¢ = 122), the open set U is C\ S, and Vo = {¢ € C||1 +¢| > 1 > [¢| > 0}. Thus

z

taking hi = hi1 = 0, Theorem 5.3 implies that

f1,00(A) = (Vag—x, Ra(va))

is analytic on U = C\ S. (Although we explicitly defined Ry only for A such that F) is
simple, the function (A, ¢), and thus also the coefficient function fi 00()) is defined for all
A € C, as noted at the end of Subsection 5.1.) We can now prove:

Theorem 5.4. For all A\ € C, the M(p)-module Fy is rigid.
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Proof. Since (vqy—x,Rx(vy)) is analytic on the connected open set C\ S, it is either iden-
tically 0 or its zeros form a discrete subset of C\ S. We claim that (ve,—x, Ra(vy)) is not
identically 0: Indeed, it was shown in [CMY2] that F,,  for r € Z is rigid and therefore

Oér’p
Hom yq(p) (Fao_rp W Fa,,, M11) = End vy (Fanp) =2 C,
Hom () M1, Fa,, B Fa,_,,) = End vy (p) (Fan,) =C.

Thus because eq, , and i,, , are non-zero, the actual evaluation and coevaluation for F,,
have to be non-zero multiples of e, , and i,, ,, respectively. Consequently, Id]:aw is a
non-zero multiple of Ry, ,, so that R,, , # 0 for r € Z. Since S is a finite set, o, ¢ S for
infinitely many r € Z, and therefore (vq,—x, Rx(vx)) # 0 for infinitely many A € C\ S.

The above argument combined with the analyticity of (va,—x, 9a(vy)) shows that there
exists 7 € Z and € > 0 such that for all A in the open ball B, (« ) of radius € around . 5, Fy
is rigid as an M(p)-module (and we may assume ¢ is small enough so that F) is simple for
all A € Be(ayp)). Then for any A such that 0 < |A| < ¢, the tensor product Fxiq, ,XFa,_,
is also rigid and contains Fyia, tas ., +(p-1)a. = Fa as a direct summand by Theorem
4.2. Thus F) is rigid for all A € B.(0).

Now consider any A € C\ L° and any 0 < 0 < e. Since the zeros of (va,—x, R (vy)) form
a discrete set of C\ S, the circle {A\+u € C||u| = ¢} can contain infinitely many such zeros
only if it contains one of the (finitely many) elements of S. Thus there is some ¢ < ¢ and
some p with |u| = d such that A4y € C\ L° and Ryy, # 0. Thus Fyy,, X F_, is rigid and
contains F) as a direct summand, proving that F) is rigid for any A € C\ L° (and rigidity
of Fy for A € L° was proved in [CMY2]). O

Combined with the rigidity results of [CMY?2], the preceding theorem shows that all
simple objects of the tensor categories Oy, and O%t(p) are rigid. As every object of

O m(p) has finite length, [CMY?2, Theorem 4.4.1] shows that all objects of O () are rigid:

Theorem 5.5. The tensor category Opyp) is rigid and ribbon, with duals given by contra-
gredient modules and ribbon twist § = e2™L(0).

Theorem 5.6. The tensor category (’)%{(p) 1s rigid and ribbon.

Proof. We just need to check that (’)/T\A(p) is closed under contragredients. For the sub-

category C_[/)\/l(p) = Og\jéfjo <) Ox}é 2)+2LO, this was done in [CMY?2, Corollary 4.4.3]. For

A € C\ L°, all objects of ONF2L" are direct sums of Fock modules F, such that A\ —p € 2L°

M(p)
by Corollary 3.20, and the contragredient of such a direct sum is an object of 07\2(—1);\+2L°

by Proposition 3.16.

5.3. Generic Fock modules and differential equations. In this subsection, we prove
Theorem 5.2. The idea is repeat Huang’s derivation in [Hul] of regular-singular-point
differential equations satisfied by products of intertwining operators such as (5.7), but in
such a way as to guarantee that the coefficient functions of the differential equation are
analytic in the Heisenberg weight A\. To do so, we replace the Fock modules Fy and F,,—x
in the derivation of the differential equations with a generic Fock module F, on which the
Heisenberg zero-mode h(0) acts by the monomial . We define the generic Fock module
more precisely as follows.

Recall that the Zhu algebra A(H) of the Heisenberg vertex operator algebra H is isomor-
phic to Clz]. Thus Clz] is the top level of the generic Fock H-module F, := G(Clz]); we
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identify 1 € C[z] with a generating highest-weight vector v, € F, such that
h(n)vy = 0p 0T - vy

for n € N. The operator h(0) gives F;, the structure of a C[z]-module, and each homogeneous
space F(n), n € N, in the natural N-grading of F, is a finitely-generated C[z]-module
(generated by vectors of the form

h(—n1) -+ h(—ng)vy

such that each n; € Zy and ny + -+ + ng =n).

For each A € C, there is an A(H)-module homomorphism C[z] — Cvy C F) sending
p(z) € C[z] to p(A)vy. The universal property of generalized Verma H-modules then induces
a unique (and surjective) H-module homomorphism p) : F, — F) such that py(v;) = vy.

Lemma 5.7. For each A € C, Kerpy = (x — \) - F.

Proof. From the definition of py, (z — \) - F,, C Kerpy, so p) induces a surjective map
Dx: Fo/(x—N) - Fp — Fa

such that px(vy + (x — A) - Fz) = vy and Kerpy = Kerpy/(z — \) - Fp. Setting v; =
vy + (x — X) - Fz, note that 75 is in the top level T'(F,/(z — \) - Fz), and that h(0)v; = \vg.
Thus by the universal property of generalized Verma H-modules, there is an H-module
homomorphism

r:Fa — Fu/(x = N) - Fy

such that gy(vx) = vz. Then g\ o px = Idz, /(z—x).F, since Uy generates F/(z — A) - Fy. In
particular, py is injective, which implies Kerpy = (z — ) - F. O

Using F; and the homomorphisms py, we now prove that the coefficients of series similar
to (5.7) depend polynomially on A:

Proposition 5.8. Fixz homogeneous u,v € M(p) and n € Z. Then for all A € C,

(Vag—x, Q0 (YF,) (unvy, 1)EN(0(V)vag—x, 2)Ur) = Z Gm(X) 272 Tm (5.10)

m>0

as formal series in powers of z, where qn(\) € C[\| are polynomials depending only on wu,
v, and n.

Proof. Let {v;}icr be a basis of M(p) consisting of homogeneous vectors, and let {v}};cr
be the dual basis with respect to the nondegenerate invariant bilinear form (-,-) such that
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1,1) = 1. The definitions of Qy(Yr, ) and &£, (recall in particular (5.1)) yield
A
(Vag—x, Qo(YF, ) (unvr, 1)Ex(0(0)vag -2, 2)VA)

= Z <va0—>\7 QO(YfA)(UnUA, 1)UZ> (véa g)\(O(U)’UaO_)\, Z)U)\)

el
= Z <€L(1)7}a0_)\, Y7, (v, —l)unv)\> e Tiha.

el

) <Yfa07k(v£7 _271)ezL(1)272L(o)emL(o)O(v)vaTA’ ezL(l)v/\>

= Z Z_Qh)\ <Uoc0—)\7 Y]:)\ (Ui7 —1)Unp)\(’[)z)> <Y]:a0,>\(vga —z_l)o(v)pao_/\(vz), U)\>

el

=> 27 (vag-n, a (YE, (vi, = ns)) (Pag-r (Y, (), =27 )o(v)vs), v2)
el

Now for each i € I, the projection of Yr, (v;, —1)u,v, to the degree-0 space F,(0) has the

form qZ(l)(:U)vx for some qZ(l)

(x) € C[z] depending on v;, u, and n, so
(vap-2:2r (Vr (v, — D)) = . ().

Similarly,

<p040—)\(Y-7:x(U;7 z Uﬂc U)\> Z k+1 paD_A((vg)ko(v)vm),v)\>zk+1
k€eZ

= (—1)"t {(Pag—r(o(vj)o(v)vy), vy) 2V
_qz( )( —/\)th”i

where (—1)"*%io(v})o(v)v, = ql@) (x)vg. Thus (5.10) holds with

N = Y 4" Ng (a0~ A)

wt v,=m

for m € N (since wtv; = wt v} for all ¢ € I). O

We now consider the generic Fock module F, as an M|(p)-module by restriction; recall
the Cy-quotient F,./C1(F,) where

Cy(Fy) =span{v_qw | w € Fp,v € M(p),wtv > 1}.

The natural N-grading on F, restricts to a grading on C1(F,), so each homogeneous space
[Fz/C1(Fp)](n) = Fu(n)/[C1(Fz)](n), n € N, is a finitely-generated C[z]-module. Although
F is certainly not a Cy-cofinite N-gradable weak M (p)-module, we do have:

Lemma 5.9. For any sufficiently large n € N, there is a non-zero polynomial d,,(x) € Clz]
such that dy(z) - Fz(n) C [C1(Fy)](n). That is, [Fz/C1(Fz)](n) is a torsion Clx]-module.

Proof. Fix any A € C. Since F)y is a Cj-cofinite M(p)-module by [CMR, Theorem 13],
Fa(n) = [C1(Fy)](n) for n € N sufficiently large. For such n and for any w € F,(n),

pa(w) = Z _1’w Zv_lp,\ Zp,\ (v w @)
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for suitable v € M(p), w¥ € Fy, and @ € F, such that py(@?) = w® (recall that py
is surjective). Since py preserves the N-gradings of F, and F), we may assume that each

v(j)lﬁ(i) has degree n, and thus
Fa(n) = [C1(F2)l(n) + (Kerpy)(n) = [C1(F2)](n) + (z — A) - Fa(n) (5.11)

for n sufficiently large, using Lemma 5.7.
Now as a finitely-generated Clz]-module, Fy(n) = S0 Clz] - w; for certain w; € F,(n).
By (5.11), each generator w; satisfies

I
w; = ¢+ (x—N) Zpij(x) w
j=1

for suitable ¢; € [C1(F;)](n) and p;;j(x) € Clz]. Equivalently,

I—(zx—=Npu(r) —(z—Npe(z) - —(z—Npur(x) w1 cl
—(x — )1021(15) 1—(z—Np(r) - —(x—Np(x) wy || e
= Npn(@)  —(— Npa(@) e 1= (= Npu@) | | wr o

Multiplying both sides by the adjugate of the matrix on the left and noting that [C1(F;)](n)
is a C[z]-submodule of F,(n) since x commutes with v_; for any v € M(p), we get

dp () - w; € [C1(F2)](n)

for each i, where d,,(x) is the determinant of the matrix. This determinant is not identically
0 because d,(A) = 1. Since d,,(z) - Fz(n) C [C1(Fz)](n), this proves the lemma. O

We now fix non-zero polynomials d,,(z) for all n € N: for small n we choose d,(x) = 1,
and for all n sufficiently large we choose d, () such that d,(z) - F(n) C [C1(Fz)](n). Then
for all N € N, set py(z) = Hfl\;o dn(x); by construction, these polynomials satisfy

pN(z) - Fz(n) C pu(x) - Fu(n)

whenever n < N. Finally, for N € N, set Py(x) = HQLO pn(x); by construction, these
polynomials have the property

Py (x) - Fo(n) € Pna(x) - [CL(F2)](n) (5.12)

whenever n < N is sufficiently large.

We can now begin proving that series such as (5.7) satisfy suitable differential equations.
Since Fy and F,,—» are Cq-cofinite M(p)-modules, [Hul, Theorems 1.4 and 2.3] already
show that such series are solutions to differential equations with a regular singular point
at z = 0 and thus converge absolutely to multivalued analytic functions in z. However, we
need these multivalued functions to be also analytic in A, so here we adapt the methods of
[Hul] using generic Fock modules to show that the coefficients of the differential equations
may be taken to be analytic in A. To shorten the discussion, we will follow a somewhat
different exposition than [Hul] and derive the existence of the differential equations and the
regularity of the singular point z = 0 simultaneously.

Similar to [Hul], let R = C[z, (1 — 2)~!] be the (Noetherian) ring of suitable rational
functions in z. Then take three generic Fock modules F,, F;,, F;, and consider

T:R®fxl ®.7:$2®f$3’
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which is an R[z1, z2, x3)-module in the obvious way. The N-gradings of the generic Fock
modules induce an N-grading of T":

Tn)= @ R Fu(n)® Fay(ng) @ Fuy(ng). (5.13)
ni+n2+n3=n

As in [Hul], we take the quotient of 7' by certain intertwining-operator-inspired relations.
Our relations are simpler than in [Hul] because in series such as (5.7), the leftmost insertion
is always the lowest-conformal-weight vector v,,—x. So for v € M(p) with wtv > 0 and
homogeneous w; € Fy,, we € Fy,, and w3 € F,,, we define

A(v, wy,wa, w3) =1 Q@ v_qw; @ wy ® w3

_Z ((1 —Z)_k_l ® w1 ® vpwe ® w3z + 1 @ wy ®w2®vkw3) ,
k>0

B(v, wy, wa, w3) = 2V UTIEWs @4 @ v_qwy @ ws

4 pivtdesws ((—1)’“(1 —2) "l @ @wr @ws — 2P @ w; @ wa ® Ukw3) :
k>0

t v+d
C(Uuwl)w2aw3) =2z" vtdegwz R w1 @ wo @ v_qws

+ Z(—l)kzww+degw2 (1 Q@ upwi @ wy @ ws + 2 P @ wy @ vpws @ wg) .
k>0
Since
degvpw = wtv +degw — k —1
for homogeneous v € M(p) and w € F,, the relations B(v, w1, ws, w3) and C(v, w1, wa, ws)
are indeed elements of T.

Let J be the R[x1, z2, z3]-submodule of T' generated by A(v, w1, we, ws), B(v, w1, ws, ws),
and C (v, wy, w2, ws) for all homogeneous wy € Fy,, wo € Fy,, w3 € Fuy, and v € M(p) such
that wt v > 0. Somewhat differently from [Hul], T'/.J is not a finitely-generated R[z1, x2, 3]
module; we need to take a submodule instead. Recall the polynomials Py (z) € C[z] chosen
above; we define S to be the R[x1,x2, x3]-submodule of T'/J generated by all

PN(.%'1>PN($2)PN($3)ZN Sw J
for N € Nand w € T(N). Similar to [Hul, Corollary 1.2], we have:
Proposition 5.10. The R[z1,x2,x3]-module S is finitely generated.

Proof. Since the homogeneous spaces of each generic Fock module are finitely-generated
C|z]-modules, each homogeneous space T'(N) is a finitely-generated R|[x1,x2,x3]-module.
Thus to prove the proposition, it is enough to show that when NV is sufficiently large, any
generator Py (x1)Py(z2)Pn(23)zY - w + J of S, where w € T(N), can be written as an
R[z1, z2, z3]-linear combination of generators P, (x1)P,(x2)Pp(xz3)z" - w + J where n < N
and w € T'(n). Indeed, (5.12) and (5.13) show that when N is large enough and w € T'(N),
PN(ZL‘l)PN({L‘Q)PN(:Eg)ZN W E PN_1(:L'l)PN_l(:L'Q)PN_l(l'g)zNR X -
’ (Ol(f$1)®]:$2 ®]:363 +]:5131 ®Cl(]:$2)®]:13 +]:£L"1 ®]:12 ®Cl(]:903))'

Then because for any homogeneous v € M(p), vertex operator degrees satisfy

degv_1 =wtv >wtv—k —1=degug
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for k > 0, the form of the generators A(v, w1, ws,ws), B(v, w1, ws, ws), C(v, w1, ws, ws) of J

imply Py (z1)Pn(22)Py(23)2"™ - w + J is in the R[x1, z2,x3]-submodule of T'/.J generated

by elements P, (x1)P,(z2)P,(x3)z" - w+ J for n < N and w € T'(n), as desired. O
Now similar to [Hul, Corollary 1.3], we get:

Corollary 5.11. For any homogeneous wi € Fy,, wa € Fyu,, and wz € Fy,, there exist
N € Z4 and elements a,(z;x1,x2,x3) € R[x1,z2,23] for 0 <n < N —1 such that

P o (1) Prio(22) Pryo(23) - (2N @ w1 @ L(=1)Nwp @ wy) + J
N-1
= Z an(z;21, 02, 23) - (2" @ w1 @ L(—1)"wy @ w3) + J,  (5.14)
n=0

where 0 = degwy + deg wo + deg ws.

Proof. Since R[x1, x2,x3] is a Noetherian ring by the Hilbert Basis Theorem, any submodule
of the finitely-generated R|[xi,z2,z3]-module S is finitely generated. In particular, the
submodule generated by

{Prto(21) Prvo(22) Pato(23) - (277 @ w1 @ L(=1)"w2 ® w3) + T }nen (5.15)

has a finite generating set. As each of these finitely many generators is a finite R[z1, x2, 3]
linear combination of elements from the generating set (5.15), we may take the generating
set to be finitely many of the elements in (5.15). Consequently, (5.14) holds for N sufficiently
large (where we have absorbed the factors P4, (21)Ppto(22)Prio(z3) for n < N into the
elements ay,(z; z1, 22, x3)). O

We can use the preceding corollary to obtain differential equations for products of inter-
twining operators. Thus suppose we have families of intertwining operators yf and y; for
A € C of types ( }.f ?/V) and ( FQOK }-A), respectively. Similar to the proof of [Hul, Theorem

1.4], there is for each A € C a linear map

qbyf,yé : T — Cllog z]{z}
f(2) —m
m@uq@wg@wg l—)g(—l)k( i )Zkf(z)

+ (Vag—x; Y2 (A(w1), 1) V3 (pag—r(w2), 2)pa(ws)),
where f(z) € C[z] and m € N. Asin [Hul], the R[x1, 22, x3]-submodule J is contained in the
kernel of ¢3’f73’§' This follows from the fact that v,,—) is a lowest-conformal-weight vector
of Fuo—x together with the Jacobi identity commutator formula (2.2) and the n = —1
case of the iterate formula (2.3). Thus ¢y1>\7y2)\ descends to a well-defined linear map on
T/J, which then restricts to a map S — C[log z]{z}. If we apply this map to the relation
(5.14), multiply by (1 —2)"™ for some function r()), use the L(—1)-derivative property for
intertwining operators and the product rule, and then divide by 27, we get:

Theorem 5.12. For any wy € Fy,, wa € Fz,, and w3 € F,, there exist N € Zy and ele-
ments an(z;x1, 2, x3) € R[x1, 2, 23] for 0 < n < N —1 such that for any families {yf}wc
and {yé\})\ec of M(p)-module intertwining operators of types (]—‘ﬁ/v) and (]_.QOK ]_.A), re-
spectively, and for any analytic function r(\), the series

(1= 2)" (wag—x, V2 (pr(w1), D)V (Pag—r(w2), 2)pa(ws)) € Cllog 2]{z}
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is a formal solution to the differential equation

N
Pn(N) Py (g — NPy (V)2 (jz + f(_A)Z) (N, 2)

N-—1

d r(A)\"
= n ;A7 _Aa)‘ " )\7 .
S enteihao AN (G {0L) o0

Since all the coefficient rational functions a,(z; A\, g — A, A) in this theorem are analytic
at z = 0, the differential equation has a regular singular point at z = 0. We will apply the
theorem to V; = Qo(Yz,) and V3 = &, to prove Theorem 5.2; we will also use the following
result from the theory of ordinary differential equations (see for example [McR2, Appendix
A] for a proof):

Theorem 5.13. Consider a regular-singular-point differential equation with parameter \,

N-1

dVp d™
N _ n
N = g an(A, 2)z T

n=0
where the coefficient functions a,(\, z) are analytic on U x B1(0) for U a non-empty open
set of A € C and B1(0) the open ball of radius 1 centered at z = 0. Suppose moreover that

{e00n) = T aun Zh(mm}w

m>0

is a family of formal series which solve the differential equation for each A € U, where h(\)
and gm(X) are analytic on U. Then for each \ € U, the series p(\, z) converges absolutely
for each z € B1(0) \ {0}, and

QD()\,GIOgZ) _ e(logz)h(k) Z Qm()\) ,m
m>0
defines a (single-valued) function which is analytic in both A and z on U x (B1(0) \ (—1, 0]).

We can now complete the proof of Theorem 5.2:

Proof. For any homogeneous u,v € M(p), n € Z, and analytic function r(\) on C, we take
W1 = UpUyg, we = 0(V)v,, and ws = v, in Theorem 5.12 to conclude that

(1= 2)" Mgy -1, Q(VE, ) (Unvr, 1)EN(0(0)vag-», €% )0y ) (5.16)

is a formal solution to a differential equation of the form (5.8) whose coefficient functions are
analytic for z € C\{0,1} and A\ € C\ S where S is the finite set of roots of Py (\)Pn(cag—A).
Moreover, this differential equation has a regular singular point at z = 0, and Proposition

5.8 shows that (5.16) satisfies the conditions of Theorem 5.13 with h(A) = —2h) and
U =C\S. Thus (5.16) converges absolutely to an analytic function in both A and z on
(C\.S) x (B1(0) \ (=1,0]). O

5.4. Proof of Theorem 5.3. Throughout this subsection, we use the notation B,(zg) for
the open ball of radius r centered at zg € C. Recall the setting of Theorem 5.3: we have a
series solution ¢(\, () = Z%zl Zszo Tk (A Q)elmloel(log ¢)* to a differential equation

N-1

dNp d"p
aeN = nz:o b (A, C)W (5.17)
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whose coefficient functions by, (A, ¢) are analytic in A and ¢ on U x (B1(0) \ {0}), where U
is a non-empty open subset of C. Moreover:

e The h,, € C for 1 < m < M are pairwise non-congruent mod Z.

e For each m and k, f, (A, Q) = > ez fmin(A) (" is a Laurent series in ¢ whose
coeflicients are functions of A\ defined on U.

e The series ¢(A, () converges absolutely on U x (B1(0) \ (—1,0]), and thus for any
A e U, p(A, Q) is analytic in ¢ on B1(0) \ (—1,0].

e For some non-empty open subset Vy C B1(0) \ (—1,0], ¢(A, () is analytic in both A
and ( on U x V.

Our goal is to show that for 1 <m < M, 0 < k < K, and n € Z, the coefficient functions
fmkn(A) are analytic in A on U.

First, since the series (A, () is absolutely convergent for A € U and ¢ € B;1(0) \ {0},
so are the Laurent series f, k(N ¢) = > _,,cz fmkn(A) ¢". This means that for any simply-
connected open subset V' C By(0) \ {0} and any single-valued branch of logarithm ¢(()
defined on V, the series

M K

S Fuw0, Q) e O (g

m=1 k=0
also converges absolutely for all A € U to a function that is analytic in ( on V. We now
show that this new series is also analytic in A:

Lemma 5.14. For any simply-connected open subset V- C B1(0)\ {0} and any single-valued
branch of logarithm €(C) defined on V', the function Z%zl Zszo k(A Q) ehmtQp()F is
analytic in both X and ¢ on U x V.

Proof. Fix any (; € V; we need to show that oy (A, () = Z%zl ZkK:o Tm k(A C) ehmtQp(¢)F
is analytic in both A and ¢ for A € U and ( contained in an open neighborhood of {;. Recall
we are assuming that (X, () = Z%Zl Zszo Fnk(A, ) em1o8S(log ¢)* is analytic in both A
and ¢ on U x Vj for some non-empty open set Vy C B1(0) \ (—=1,0]. Then if we fix ¢y € V),
we can obtain ¢y (A, {) on V (for any A € U) by analytic continuation of (), ¢) along some
continuous path 7 : [0, 1] — B1(0) \ {0} such that v(0) = {p and (1) = (1.

We can cover the image of the path v with finitely many overlapping open disks B, (v(t;)),
0 < i <1, as follows: First take r > 0 to be no larger than the minimum distance from
the image of v to the compact set (B1(0) \ Bi(0)) U {0}, so that B,(y(t)) € B1(0) \ {0}
for all t € [0,1]. We then take tg = 0 so that our first disk is B,({y); for convenience,
we may assume 7 is small enough so that B,({y) C Vp. Now assuming we have chosen
t; for some ¢ > 0, we choose t;4; (if it exists) to be the minimum element of [¢t;, 1] such
that |y(tiy1) — v(t;)] > 5. This process terminates after finitely many steps: Since 7 is
(uniformly) continuous on the compact set [0, 1], there is a § > 0 such that |y(t) — y(t)| < 5
if [t — | < &; consequently, t;41 —t; > ¢ for all i such that t;,1 exists. At the end of the
process, we have (1 = (1) € B, /2(7(tr)) by construction.

We now prove by induction on i that the analytic continuation of ¢ (A, () along the path
v is analytic in both A and ( on U x B.(y(t;)). Since (1 € B,(y(t1)), this will prove
the lemma. For ¢ = 0, the analyticity claim holds by assumption since we are assuming
B, (v(to)) = Br(¢p) € Vp. If we now assume the claim holds for some ¢ > 0, then the analytic
continuation to By (v(t;+1)), which we denote as p;+1(A, (), is analytic in both A and ¢ on
U x (Br(y(ti)) N By(7(tix1))). Since v(tiy1) € Br(y(ti)) N By (vy(tiy1)) by construction, we
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can thus expand

0ir1(N, €)= Z%Hn (€ —(tis1))" (5.18)
n>0

for all A € U and ¢ € B.(7(ti+1)) for ¢ > 0 sufficiently small, where the functions ¢;11 ()
can be expanded as a power series about any A € U and thus are analytic functions on U.

We also know by induction that ¢;41(A, {) is a solution to the differential equation (5.17)
on U X By(vy(ti+1)). Since y(ti+1) is a regular point of the differential equation, since the
coefficient functions by, (A, () in (5.17) are analytic in both A and ¢ on U X B, (y(ti4+1)), and
since the coefficient functions ¢; 1., () are analytic on U, it follows that the power series
(5.18) converges absolutely to a solution of (5.8) on the entire domain U x B, (y(ti+1)), and
that moreover this solution is analytic in both A and ¢ on U X B,.(y(ti+1)) (recall the regular
singular point generalization of this result in Theorem 5.13). Thus ¢;4+1(A, ¢) is analytic in
both A and (, proving the inductive hypothesis and thus also the lemma. ([l

We will use the preceding lemma to show that the functions f,, ;(A, () are analytic in
both A and ¢. To do so, we fix for any simply-connected open subset of V' C B;1(0) \ {0} an
analytic single-valued branch of logarithm ¢(¢) defined on V. Let S(U, V') denote the set of
all functions (A, ¢) such that:

e (A, () is analytic in both A and ( on U x V.
e (A, () has the form

M K
PO =D gmp(X Qe Qe

m=1 k=0
for some M € Z, and k € N, where the h,, € C are non-congruent mod Z and each
Jmak(N Q) = > ez fmkn(M)(" is an absolutely-convergent Laurent series for each
AeU.
e Every single-valued branch

n) )\ C Z Z€Q7rmhm q) hmt(¢ ( (C) —|—27Tin)k

m=1 k=0
for n € Z is also analytic in both A and ( on U x V.
It is clear that every e (Q)C[¢(¢)]-linear combination of functions in S(U, V) is an element of
S(U,V), for any h € C, and that if ¢» € S(U, V), then (™ € S(U, V) as well for any n € Z.

By Lemma 5.14, our original series ¢(A, ¢) is a function in S(U, V') for any simply-connected
open set V C B1( )\ {0}.

Lemma 5.15. For any function ¥(\, () = Zf\r{:l Zszo Im ik (N, Qe OOk € S(U, V),
the Laurent series gm (X, ) are analytic in both X\ and ¢ on U x 'V, for all1 <m < M and
0<k<K.

Proof. We prove the lemma by induction on K. When K = 0, and setting g,, = gmo for
1 <m < M, we have

) ) 1 g1(A, C)eht©) Y(A, Q)
e2mih e2miha e2mihag g2(\, C) h2t(¢) M (N, €)

627ri(M—1)h1 627ri(M—1)h2 . eQﬂ'i(M—l)hIM (A C) hMZ ,lp(M—l) ()\’ C)
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Because the h,, are non-congruent mod Z, the Vandermonde matrix is invertible and hence
each g, (), ¢)el m() is a C-linear combination of functions which are analytic in both A and
¢ on U x V. Thus each g, (A, () is also analytic on U x V.

Now we prove the case K > 1 by induction on the maximum m < M such that
gk (A, ¢) #0. We have

K
1[)(1)()‘74) _ 62mhm1/1()\, C) — Z ng,k(A,C)ehm[(C) <627rihm (E(C) + 27T7,)k _ 627rih,~n£(c)k)

where g;, (A, () = 0 for m > m and

9;717}(_1 = QWiKezﬂihﬁgﬁz,K()\a C)

Since (D (\, () —e2mhmah( X, ¢) € S(U, V), induction on m implies that g,k (A, ) is analytic
in both A and ¢ on U x V. Then also gz x (), e Q0(()K € S(U, V), so that

»(\,€) — g,k (A, Q" O (OK € S(U, V)

as well. Then by induction on m again, this implies that g, x(A,() is analytic in both A
and ¢ on U x V for all m and K, completing the induction.

Note that this argument also works for the base case m = 1 of the induction on m, since
in this case K — 1 is the maximum power of £(¢) in (M (X, ¢) — e?™h14)(A, ¢), and then the
inductive hypothesis for the induction on K yields the desired analyticity of g1 x (X, (). O

The preceding lemma implies that the coefficient functions f,, (A, ¢) of our original series
©(A, () are analytic in both A and ¢ on U x (B1(0) \ {0}). Thus each f,, , has a Laurent
series expansion

Frk N0 = D e (A= A0)™¢"

n,n/€Z
about (Ao, 0) for any \g € U, where

1 ! z —n—1 —n—1
Cm,knn’ = - C " ()\ - )\0) " fm7k()‘7 C) dA dC
(2m0)% Jicl=r Jia—ro|=r

for suitable 7,7’ > 0. Since fp, (A, () is analytic in X at A\g for any ¢ such that |{] = r,
we get Cpy pnn = 0 for n’ < 0. Thus by the uniqueness of Laurent series expansions, all
coeflicient functions fp, ;. n(A) for n € Z have power series expansions about any Ao € U
and thus are analytic on U. This completes the proof of Theorem 5.3.

6. APPLICATION TO CYCLIC ORBIFOLDS OF THE TRIPLET ALGEBRAS

The full automorphism group of the triplet vertex operator algebra W(p), p > 1, is
PSL(2,C) [ALMI1], and thus the (conjugacy classes of) finite automorphism groups of
W(p) follow an ADE classification. For m € Z., the finite subgroup of PSL(2,C) of type
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Ay, is Z/mZ, and the vertex operator algebra W(p)Am is the corresponding cyclic orbifold
subalgebra of W(p). It is a simple current extension of M(p):

W(p)*™ = P Mamni1.1- (6.1)

neL

In [ALMI1], Adamovié, Lin, and Milas proved that W(p)?= is Cy-cofinite and they con-
structed 2pm? distinct irreducible W(p)Am—modules, which they conjectured to be the full
list of irreducible W(p)4=-modules [ALM1, Conjecture 4.10]. They verified this conjecture
for small values of m and p in [ALM2], and then in [AM4], Adamovi¢ and Milas reduced
the conjecture to [AM4, Conjecture 2.3], which amounts to the simple current property
of the M(p)-modules M, 1, » € Z. Thus the fusion rules in Lemma 3.15 and [CMY?2,
Theorem 5.2.1(1)] combined with [AM4, Theorem 2.5] already complete the classification
of irreducible W(p)Am—modules. In this section, we will use the tensor category structure
on O/TM ) and the vertex operator algebra extension theory of [CKM1, CMY1] to quickly

rederive this classification of irreducible W(p)4m-modules. We will also describe the projec-
tive covers of all irreducible W(p)?m-modules, compute all fusion rules involving irreducible
W(p)4m-modules, and establish rigidity and non-degeneracy of the braided tensor category
of W(p)Am-modules.

Before studying the representation theory of W(p)4m in more detail, we recall the direct
limit completions of vertex tensor categories studied in [CMY1]. For any vertex operator
algebra V and category C of grading-restricted generalized V-modules, the direct limit
completion, or Ind-category, of C is defined to be the category Ind(C) of generalized V-
modules (typically with infinite-dimensional conformal weight spaces) whose objects are
the unions of their C-submodules. Equivalently, a generalized V-module X is an object of
Ind(C) if and only if every vector b € X generates a V-submodule which is an object of C.
The main Theorem 1.1 of [CMY1] states that Ind(C) is a vertex algebraic braided tensor
category (with structure as given in [HLZ1]-[HLZ8]) under the following conditions:

e The category C is closed under submodules, quotients, and finite direct sums, and
every module in C is finitely generated.
e The vertex operator algebra V is an object of C, and C admits the vertex algebraic
braided tensor category structure of [HLZ1]-[HLZS].
e For any intertwining operator ) of type (WIXW2) where W7, Wy are objects of C and
X is an object of Ind(C), the image ImY C X is an object of C.
For the third condition above, recall that the image of an intertwining operator ) of type
(Wleg) is the submodule of X spanned by coefficients of powers of x and log z in Y (w1, z)ws
for wy € Wy, wy € Wa. In the case V- = M(p), we have:

Proposition 6.1. The direct limit completions Ind(O () and Ind(OTM(p)) both admit the
vertez algebraic braided tensor category structure of [HLZS].

Proof. For Ind(O(p)), the result follows from [CMY1, Theorem 7.1], which states that for
any vertex operator algebra V', the category of C-cofinite grading-restricted generalized V-
modules satisfies the conditions of [CMY1, Theorem 1.1] if it is closed under contragredient
modules. For Ind((’)%(p)), the intertwining operator condition is the only one left to check.
If YV is an intertwining operator of type (WlXW2) where W1, Ws are objects of (’)3\:[ ) and X

is an object of Ind((’)%l (p)), then Im ) is an object of O () since the category of C1-cofinite
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M (p)-modules and its direct limit completion satisfy the conditions of [CMY1, Theorem
1.1]. Thus by the universal property of tensor products in O M(p)» ImY is a quotient of

W1 X Wsy. But since W7 X Wy is also the tensor product of W7 and W5 in (’)%(p), and since

OTM(p) is closed under quotients, Im Y is also an object of O%t(p)' g
We also have:

Proposition 6.2. Any grading-restricted generalized M(p)-module is an object of the direct
limit completion Ind(Opq(p))-

Proof. Let M be a grading-restricted generalized M (p)-module. The grading-restriction

conditions imply that
M= @ @M[h;ﬁ‘”]’
pneC/ZneN
where for any coset € C/Z, h,, € p is chosen so that My, —n) = 0 for n € Z. Moreover,
each My, 1 is finite dimensional. To show that M is an object of Ind(O (), it is
enough to show that each (grading-restricted) submodule M, = @, cy M, 1+ is an object
of Ind(Op(py) (since Ind(Oy(p)) is closed under arbitrary direct sums).

Pick an irreducible A(M(p))-submodule of the (finite-dimensional) lowest conformal
weight space of M,,; it generates an M (p)-submodule M; C M,,. Then pick an irreducible
A(M(p))-submodule of the lowest conformal weight space of M /Mj; it generates an M (p)-
submodule My/M; C M, /M. Continuing in this manner, we obtain a filtration

0CM CMC---CM,,
where each M;/M;_; is a homomorphic image of a generalized Verma M (p)-module.

Since Theorems 3.1 and 3.6 show that all generalized Verma M (p)-modules have fi-
nite length, each M; has finite length and thus is an object of O(). Further, finite-
dimensionality of the weight spaces of M, imply that M, = U2, M;, so each M, and
thus also M = @,uG(C/Z M,,, is the union of its O,y(,)-submodules. Thus M is an object of
Ind(O M(p)) ]

Now by (6.1), the vertex operator algebra W(p)?4m restricts to an Mp)-module in
Ind(Opq(py) (and also in Ind((’)/TM(p))). Thus by [HKL, Theorem 3.2] (or more precisely

[CMY1, Theorem 7.5]), W(p)?™ is a commutative algebra in the braided tensor category
Ind(Op(p)) (o1 Ind(O/TM (p))). We use Rep W(p)4™ to denote the tensor category of (possibly
non-local) W(p)4m-modules (as in [KO, HKL, CKM1, CMY1]) which restrict to generalized
M(p)-modules in Ind(Opq(py). Then Rep? W(p)4™ is the braided tensor category of (local)
generalized W (p)?»-modules in Ind(O Mp))- Let Cyypyam be the category of all grading-
restricted generalized W (p)?m-modules; it is a braided tensor category by [Hu3]. Since
all objects of Cyy(,)a,n are also grading-restricted generalized M (p)-modules, Proposition
6.2 shows that Cw(p)Am is a subcategory of Rep? W(p)Am; indeed it is a braided tensor
subcategory by [CKMI, Theorem 3.65] (or [CMY1, Theorem 7.7]).

Let Fyypyam : Opmpy — Rep W(p)A™ be the tensor functor of induction, defined on ob-
jects by Fyypyam (M) = W(p)4m R M (where X denotes the tensor product on Ind(Oxy(,)))
and on morphisms by Fyyp)am (f) = Idyyp)am B f. Induction is exact since Opyp) is
rigid (see for example the proof of [CMY2, Theorem 3.2.4]). Moreover, ]-"W(p)Am maps
simple objects in Opq) to simple objects in Rep W(p)4m by [CKMI1, Proposition 4.4]
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(which applies because tensoring with Maynt11, n # 0, does not fix any simple object
in Oy(p))- Moreover, the argument of [CMY3, Proposition 5.0.4] shows that every simple
object of Rep W(p)?™ is isomorphic to the induction of a simple M (p)-module in O M(p)»
and that Fyypyam (M1) = Fyypyam (Mz) for simple modules M; and M; if and only if
My = Moppi1,1 XMy for some n € Z. This discussion shows that we can use induction to
classify all irreducible W(p)“Am-modules (see also [AM4, Theorem 2.5]):

Theorem 6.3. The category Cyypyam of grading-restricted generalized W(p)Am -modules
has precisely 2pm? distinct simple objects, given by
Wrs := Fyy(p)m (M;s), F=r+2mZecZ/2mZ, 1 <s<p

and .
mL = m , A L —L°\ L° L.
VatmI fW(p)A (F») +mL € (m \ ) /m

Proof. Any simple generalized W(p)Am—module in Rep” W(p)Am is necessarily grading-
restricted since W(p)Am is Co-cofinite (see [ABD, Corollary 5.7]). Thus it is enough to
determine all simple objects of Rep® W(p)4m, and for this it is enough to determine which
irreducible M (p)-modules induce to local W(p)m-modules. As in the discussion preceding
Lemma 2.10, Fyy)am (M) is local if and only if R3, . |y = Idmy,, 0 @0 For simplicity
of notation, we use M) for any A € C to denote the irreducible M(p)-socle of F. Then
similar calculations as in the proof of Proposition 3.16 show that

2 _ -1 -1
RM2m+1,17MA - 9M2m+171®MA © (9M2m+1,1 > M)\)

L 2Wiaom 1,1 _ 2mimog A
=e m IdM2m+1,1@MA =e€ IdM&zmH,l&MA’

80 Fyy(pyam (M) is local if and only if A € Lre.

For A1, A2 € LL°, we also have Fwpyam (Ma,) = Frypyam (My,) if and only if

MAz = Man-H,l X M>\1 = M)\1+a2mn+l,1
for some n € Z. Since
{omny11|n € 2} = —may Z =mlL,

we see that W(p)Am has precisely 2pm? distinct irreducible modules parametrized by
%LO /mL = %Z/ 2pmZ. Moreover, the modules in the statement of the proposition give a
complete list of isomorphism class representatives. ]

By [Hu3], every simple module in Cyw(p)am has a projective cover. To determine these
projective modules, we treat W(p)“™ as a commutative algebra in Ind((’)%‘(p)). First:

Proposition 6.4. Every generalized W(p)4™-module in Rep® W(p)4m restricts to an M(p)-
module in Ind(O;{/l(p)).

Proof. Let X be a generalized W (p)“m-module in Rep® W(p)4™. By definition, X is the
union of its O(,)-submodules, so we just need to show that any finite-length M(p)-
submodule M C X is an object of O%t(p)' We may assume that M is indecomposable,
in which case we need to show that Rf\@ .. 1s a scalar multiple of the identity.

We first claim that R%MMH’LM = Idmyyyq,mm- To prove this, let ¢ : M < X and

JjiMomi11 — W(p)4™ denote the inclusions, and let px : W(p)A™ & X — X denote the
morphism induced by the vertex operator Yy : A® X — X ((x)) and the universal property
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of the tensor product in Ind(Oy(,)). By naturality of the monodromy isomorphisms in
Ind(Op(p)), the diagram

Tdpq X -
Momirg B M — 0 Moy B X —22% s W(p)An B X
2 2 2
LRMQmﬂ—l,lvl\/j RM2m+1,17X lRW([))A"L,X
IdM2m-~-1 ey JXIdx
’ A
M2m+171 X M M2m+171 XX W(p) m XX
BX | Moy 41 1BX
126

X

commutes, with Id rq,,, ., ; X7 injective by the exactness of Moy, 111X e and jX1Idy injective
because Moy, 41,1 is a direct summand of W(p)4m. Now, py o RIZ/\/(p)Am v = px by the

definition of Rep® W(p)Am (as given in [KO, CKM1], for example), so

MX‘M2m+1,1|EX O(IdM2m+1,1 &i)OR%2m+1717M = MXO(jgi) = IUX|M2m+1,1@XO(IdM2m+1,1 @i),

Because Id g, ,, X is injective, it is enough to show x|y, 2x is injective as well.
In fact x|y, ®x is an isomorphism with inverse

-1
(X Moy 1 1BM gy q1) 7 Rldx

1=t
X M RX

(Mo IM _opp11) KX

AL
Mom+1,1M—2m+1,1,X

Momi11 B (M g1 K X)

Iy, 1,1 IZ“X|M—2m+1,1gx

Momi11 KX,

since Moy, 41,1 is a simple current and the multiplication px is associative. This proves the
claim.

Now we consider R?Vl% - Recall the open Hopf link map hjps defined in the proof of
Theorem 3.13, as well as the standard open Hopf link ®, 5s discussed in Remark 3.14. Since
®q ps defines a ring homomorphism from the Grothendieck ring of Opy,) to End ) M
(see for example the graphical proof in [CG, Section 3.1.3]), the relation between hjy; and
P ry v from Remark 3.14 combined with R-%\/(2m+1,17M = Id My, 40 mm implies

2m
p2m (I)/Vlz,hM q)M2m+1,17M

=1 = - = Idy,.
(dlmM(p) Mg 1)2m lelM(p) Mot M

Thus hjys has finite order on all finite-dimensional conformal weight spaces of M, which
means that hjys is diagonalizable on M with 2mth roots of unity as eigenvalues. Assuming
as we may that M is indecomposable, hys = e™™/™Id; for some n € {0,1,....,2m —1}. It
is now immediate from the definition of h,; that

9 4
Id./\/lo,l X RMQJ,M = eﬂzn/mIdMO,ﬂZ’(le@M)'
Then by naturality of the unit and associativity isomorphisms,

R.%\/D,l,M = F © (IdMQ,l IZ (IdMO,l IZ Ra\/lz,l,M)) © F_l = eﬂin/mIdnglﬁM
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where F' is the composition

AMQJ,MQJ,MQJ&]W

M2,1 X (Mo,1 X (M2,1 X M)) (Mg,l X M0,1) X (Mg,l, @M)

eRld vy R Mo | KM
—

l
Ml,l X (Mz’l X M) —_— ./\/l271 X M
and e : Mo I Mg — My is any isomorphism. This proves the proposition. 0

By the preceding proposition, Rep? W(p)4™ is precisely the braided tensor category of
generalized W (p)4m-modules which restrict to M (p)-modules in OTM(p)' Since Cyy(pyam 18
a braided tensor subcategory, we can now identify the projective objects in Cyy () an as the

inductions of projective objects in O/T\’/((p):

Theorem 6.5. For A+ mL € (LL°\ L°) /mL and ¥ € Z/2mZ, the irreducible W(p)*m-
modules Vximr, and Wr ), are projective in Cw(p)Am. For7=r+2mZ € Z/2mZ and 1 <
s < p—1, the irreducible W(p)Am -module Wr s has a projective cover Ry 5 := ]:W(p)Am (Pr.s)
with Loewy diagram

W?,s

Proof. For notational simplicity, let Py for A € C denote the projective cover in (’)/TM ) of
the irreducible M (p)-module M, C F). Since O/:Ct(p) is generated as a tensor category by
its simple objects, [CKL, Theorem 1.4(1)] implies that the induced module Fyy ) am (Py) is
local if and only if Fyy(p)am (M) is local. That is, Fyy ) am (Pa) is an object of Rep’ W(p)A4m
for A € %LO, and then because P, is projective in Ofvl(p), the same argument as in [CMY 3,
Lemma 5.0.6] and [ACKR, Lemma 17] shows that F,
and then also in Rep? W(p)4=.

The proof that Fyypyam(Pr) for A € LL° is a projective cover of Fwpyam (My) in
Rep? W(p)A™ is the same as the proof of [CMY3, Proposition 5.0.7], so we omit it here. For
A€ LL°\L° or A = ayy, r € Z, we have Fwpyam (Pr) = Fyypyam (M), 80 Fyypyam (M)
is a simple projective object in the subcategory Cyy(p)am. For A = ay s with r € Z, 1 < s <
p— 1, the Loewy diagram of Rz s = Fyy)am (Py,s) can be derived using a similar argument
as that in [MY, Theorem 7.9], using the Loewy diagram of P, s from (2.15), exactness of

fw(p)Am, and Frobenius reciprocity. In particular, Rz, has finite length and thus is a
projective object in Cw(p)Am as well as a projective cover of Wk ;. O

p)Am (Py) is projective in Ind(o%(p))

Since the induction functor Fw(pyam is monoidal, all tensor products of simple objects
in Cyy(pyam follow immediately from the M(p)-module fusion rules in [CMY?2, Theorem
5.2.1(1)], Theorem 4.2, Theorem 4.4, and Theorem 4.7:

Theorem 6.6. Tensor products of simple modules in Cyyp)am are as follows:
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(1) For7,7 € Z/2mZ and 1 < 5,5 < p,

min(s+s’'—1,2p—1—s—s') D
WF,S X Wﬁ,s’ = @ Wr+r’—1,€ = @ RT—I—T’—LK’
l=|s—s'|+1 (=2p+1—s—s’
{+s+s'=1 (mod 2) {+s+s'=1 (mod 2)

where sums are taken to be empty if the lower bound exceeds the upper bound, and
we use the notation Ry = Wry, for 7 € Z/2mZ.
(2) For7 € Z/2mZ, 1 < s<p, and \+ mL € (ZL°\ L°) /mL,
s—1
WF,S X V)\erL = @ V)\JraT,sqLEa_erL-
=0
(3) For \+mL,u+mL € (LL°\ L°) /mL such that A+ 1 € ag + a s +mL for some
reZ andl <s<p,

p p
Vapme @Vimr =2 @ R P R
l=s l=p+2—s
¢=s (mod 2) {=p—s (mod 2)

(4) For \+ mL,u+mL € (LL°\ L°) /mL such that \+ p ¢ L°,

p—1
v)\—i-mL X V,LL+’H’LL = @ V)x—i-u—i-Za,—&-mL-
(=0

Finally, we establish the non-semisimple modularity of Cyy ) am:

Theorem 6.7. The tensor category Cyyyam of grading-restricted generalized W(p)Am-
modules is rigid and thus also ribbon, and its braiding is non-degenerate. That is, Cw(p)Am
s a non-semisimple modular tensor category.

Proof. By Theorem 6.3 and because induction maps rigid objects to rigid objects, all simple
W(p)4m-modules are rigid. Rigidity of Cyy(pyam then follows from [CMY2, Theorem 4.4.1]
since every object in Cyy () an has finite length. Non-degeneracy of the braiding follows from
[McR2, Main Theorem 1] (alternatively, we could prove this through direct calculation of
monodromies using the classification of simple W(p)4m-modules and the balancing equation,
as in the proof of the m =1 case in [GN, Theorem 4.7]). O
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